Emergence of Zoonotic Disease Due to Habitat Loss and Biodiversity

> Elyse Barkstrom Lehigh University EES097, Fall 2020

Definition, prevalence, & reasons for concern

TABLE OF CONTENTS 02

CORRELATES

Contributors to

emergence and increasing

prevalence

03 ETIOLOGY

Mechanisms of action for zoonotic disease in the human body

A look into causes of the Pre current global crisis

SOLUTIONS

05

Preventative actions and future considerations

ZOONOSIS IN GENERAL

Definition, prevalence, & reasons for concern

Zoonotic

- Disease that Disease ted from animals to humans
- 3 out of every 4 new or emerging infectious diseases (EIDs) in people come from animals (*Centers for Disease Control and Prevention, 2017*).
 - Examples:
 - \bigcirc COVID-19
 - \bigcirc Ebola
 - Salmonella
 - Zika Virus
 - Swine Flu

Chomel, B.B., (2009). Encyclopedia of Microbiology

Zoonotic

- A significant **Diseaste**eat to global health, global economy and global security
- Emergence involves dynamic interactions among populations of wildlife, livestock, and people within rapidly changing environment
- Complex mechanisms

CORRELAT ES

Contributors to emergence and increasing prevalence

Factors Contributing to Increase of EID

- Rise of global temperatures
 - Greater vector distribution (mosquitos, ticks, sandflies, rodents)
- Travel and tourism on the rise to more exotic areas
- Agriculture and Farming
 - Disrupts natural ecosystems
 - Intermingling of species
 - Exploitive antibiotic use
- Urban Expansion & Deforestation
- Bushmeat and Hunting

.

Other Factors

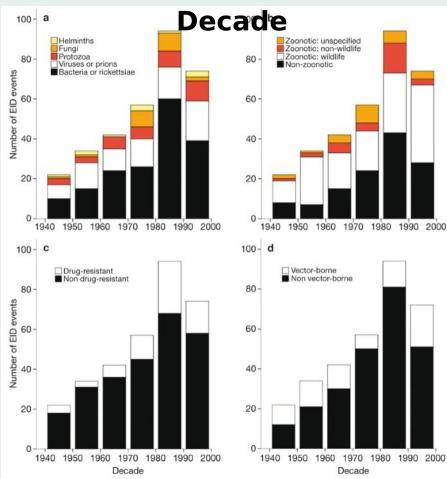
Also baseline dependent on:

- \bigcirc Geographical distribution
- Method of transmission
- Biodiversity
- Population density
- Efficacy of control efforts

.

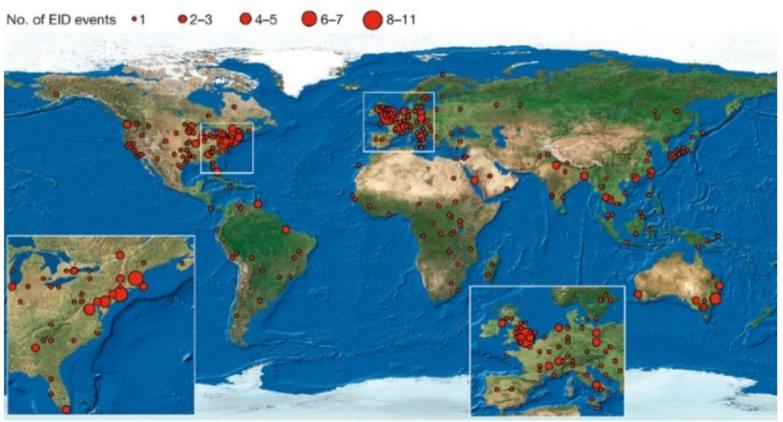
Global Trends in Emerging Infectious Diseases (*Nature*, 2008)

• Methods:


- Biological, temporal and spatial data from 335 infectious diseases between 1940 and 2004.
- $\, \odot \,$ Accounted for biases
- Compared the location of EID events to five socioeconomic, environmental, and ecological variables matched onto a one degree grid of the globe

• Categories:

 Pathogen Name, Year, Pathogen Type, Transmission Type, Transmission Mode, Driver, Economic Development and Land Use, & Location


Jones, K.. et al (2008) *Nature Communications*. 451: 990-993

Number of EID Events Per

Jones, K.. et al (2008) Nature Communications.

Global richness map of the geographic origins of EID events from 1940 to 2004.

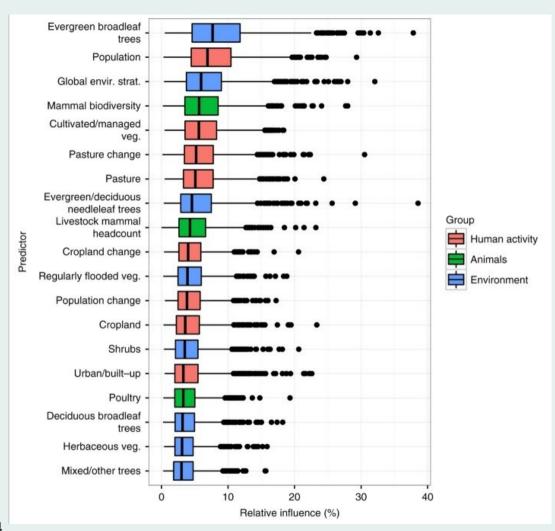
Jones, K.. et al (2008) Nature Communications. 451: 990

Global Hotspots and Correlates of Emerging Infectious Disease (Nature 2017)

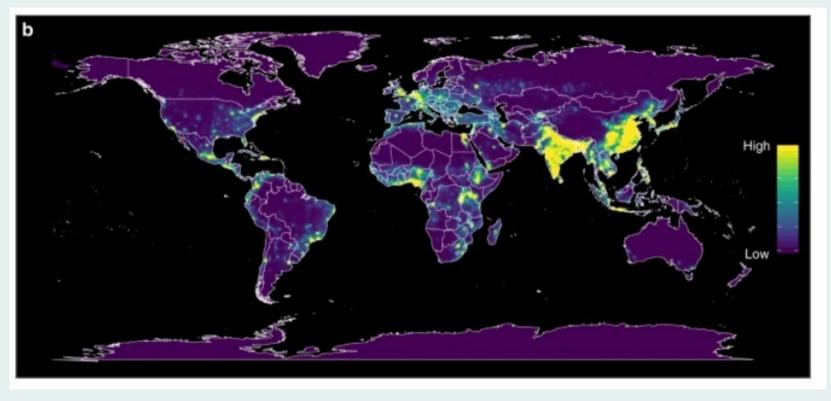
• Built on 2008 study:

 Claim it is limited in its' mechanistic inference due to lack of specificity in predictors and reporting bias

Updated database and employed a new modeling


framework

- Regression tree models
- Spacial Model


Jones, K. et al (2008) Nature Communications. 451:

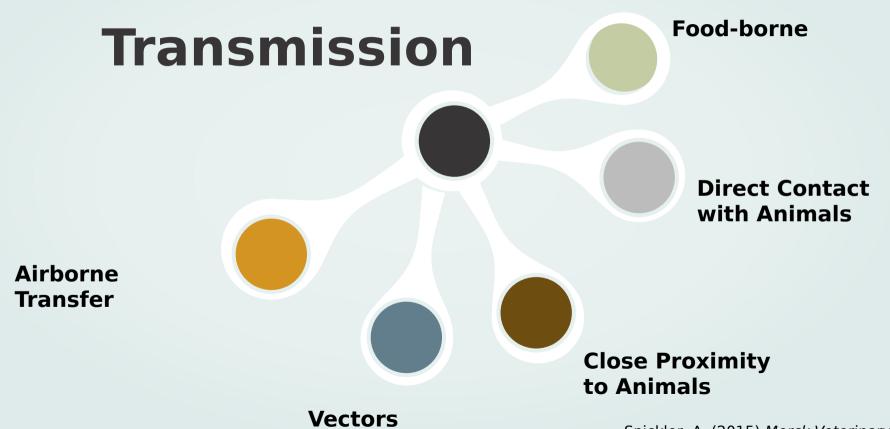
Relative influence of predictors on EID event occurrence probability (2017)

- Tropical forest climate, large population, & high mammalian biodiversity had highest relative influence
- Could be due to increased "depth" of the pathogen pool

Heat map of predicted relative risk distribution of zoonotic EID events

Allen, T. et al (2017) Nature Communications. 8:1124

ETIOLOGY


Mechanisms of action for zoonotic disease in the human body

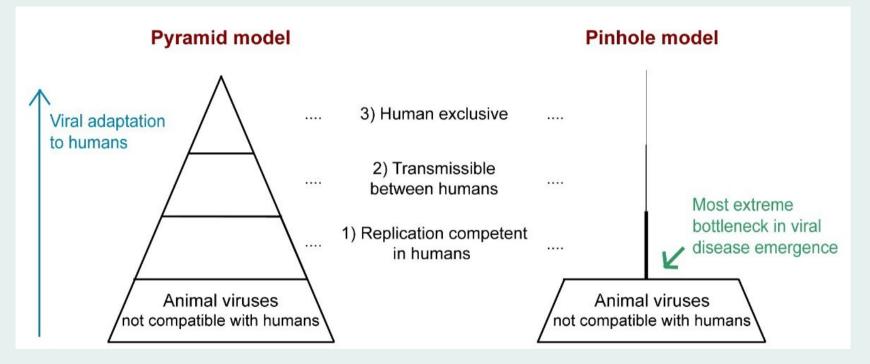
Causes

Zoonotic diseases can be caused by:

- Bacteria
- O Viruses
- ⊖ Fungi
- Parasites
- Prions
- Mostly transmitted through mammals
 O Due to close evolutionary relation

Spickler, A. (2015) Merck Veterinary M

Zoonotic Viruses


- Invade normal, living cells and use those cells to multiply and produce other viral-cells like themselves
- Virus must:
 - $\odot\,$ Shed enough from the original animal host
 - Be equipped with the molecular machinery to enter human cells
 - needs the right protein to bind to a receptor on a human cell
 - $\odot\,$ Be able to replicate & infect other cells
 - $\odot\,$ Evade the human immune system

Study: Viral Zoonosis & Host Genetics (2019)

- Host genetics define success for which animal viruses will achieve replication
 - Must correctly execute tens to hundreds of protein-to-protein interactions within the host cell
- Extreme bottleneck effect: viruses with greatest risk to humans have fewer genetic barriers to integrate into host cell machinery

.

Extreme bottleneck in viral disease emergence: The replication of animal viruses in early human host.

Warren CJ, Sawyer SL (2019) PLOS Biology 17(4): e30002

Study: Viral Zoonosis & Host Genetics (2019)

- To replicate:
 - Interact with useful human proteins
 - Receptors, restriction factors, etc.
 - Simultaneously avoid interaction with immunity proteins that will destroy them
 - B and T lymphocytes
- For most animal viruses in nature, this too many interactions to master by chance in a random encounter with humans
- Thin genetic barriers between animal and human cells are very dangerous

.

BATS & COVID19

A look into causes of the current global crisis

Coronaviruses (CoVs)

- Prone to cross-species transmission, able to rapidly adapt to new host
 - RNA virus
 - Large genome size
 - Frequent recombination
 - High genomic plasticity
- Recent emergence of a number of CoVs affecting livestock and human health

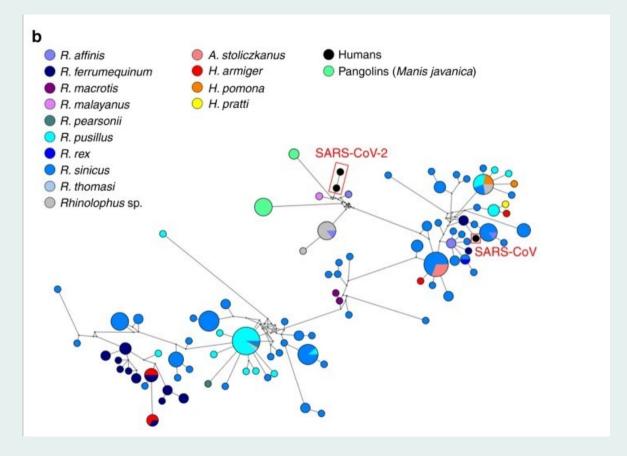
.

Bats are Sources of Viral Zoonotic Disease

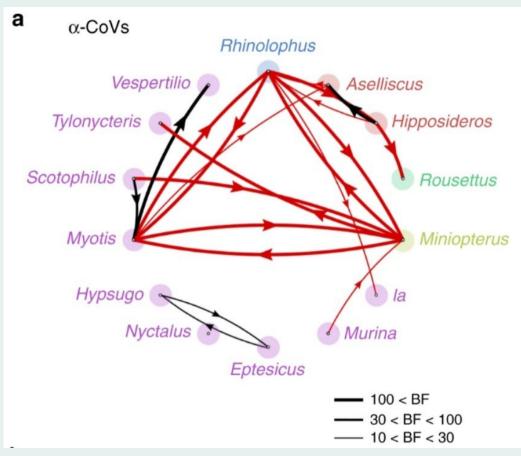
- Human exploitation & detenoration of habitat quality
 O Increased likelihood of human contact
- Bat viruses are not pathogenic in reservoir hosts
- Flight:
 - Causes elevated metabolic rate & body temperature
 - Faster DNA damage repair & genome evolution
 - No inflammatory response

Platto, Sara et al. (2020) Biochem. and Biophys. Research Co

.



Bats & Coronavirus


- Bat origin: 64 millions of years
 - Coevolutionary process between Chiroptera and pathogens
 - $\odot\,$ Can infect a wide variety of hosts
- Bats are hosts for α CoV and β CoV
 - Combination of CoV virulence factors & bat morphology is dangerous

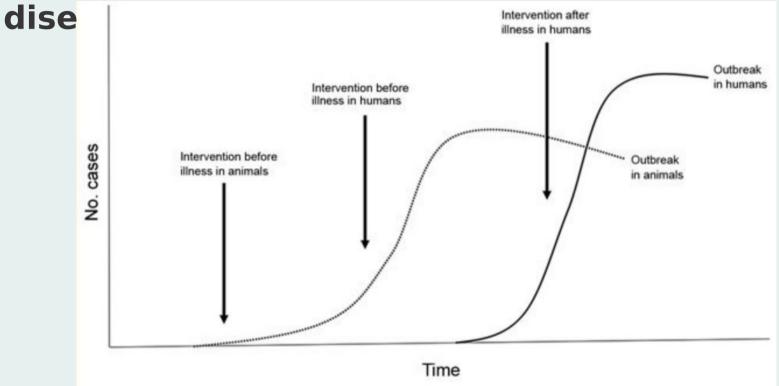
Maximum clade credibility tree: Bat Species, Pangolins & Humans

Latinne A et al. (2020) Nature Communications 11

Inter-genus host switches

Latinne A et al. (2020) Nature Communications 1

SOLUTION S


Preventative actions and future considerations

Need for Preventative Action

- Current efforts mostly post-emergence oriented:
 - Quarantine
 - $\odot\,$ Drug and vaccine development
- Delays in detection & response + increased global urbanization and connectivity cause extensive mortality across cultural, political, and national boundaries

Opportunities for intervention to prevent and control endemic and emerging zoonotic

Belay Ermias D et al. (2017) Emerging infectious diseases S6

Preventative Steps

- Need to preemptively identify origins & causes
 - Focus on surveillance, prevention and control steps
 - Containing EIDs closer to source
- Close collaboration between global animal, human, and environment health sectors
- Main goal: reduce contact with high-risk wildlife
 - Wet markets, trade, bat caves, sensitive ecosystems

Summary

- Experts believe that zoonotic diseases are the currently biggest threats to global public health.
- Climate change and habitat loss are pushing high-risk wildlife closer to humans, causing an increases in transmission S emergence rate

transmission & emergence rate.

Bats are dangerous reservoir hosts for many EIDs

O COVID19

 Action must be taken in order to predict EID capability to cause other epidemics THANKS •

Prof. Kenneth Kodama & EES097 professors

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

Bibliography

- Allen, T., Murray, K.A., Zambrana-Torrelio, C. *et al.* "Global hotspots and correlates of emerging zoonotic diseases". *Nat Commun* **8**, 1124 (2017). <u>https://doi.org/10.1038/s41467-017-00923-8</u>
- Bartlow, Andrew W et al. "Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment." *Veterinary sciences* vol. 6,2 40. 6 May. 2019, doi:10.3390/vetsci6020040
- Belay, Ermias D et al. "Zoonotic Disease Programs for Enhancing Global Health Security." *Emerging infectious diseases* vol. 23,13 (2017): S65–S70. doi:10.3201/eid2313.170544
- Chomel, B.B.. "Zoonoses." *Encyclopedia of Microbiology* (2009): 820–829. doi:10.1016/B978-012373944-5.00213-3
- Latinne, A., Hu, B., Olival, K.J. *et al.* "Origin and cross-species transmission of bat coronaviruses in China." *Nat Commun* **11**, 4235 (2020). https://doi.org/10.1038/s41467-020-17687-
- Jones, K. E. et al. Global trends in emerging infectious diseases. *Nature* **451**, 990–993 (2008).
- O'Shea, Thomas J et al. "Bat flight and zoonotic viruses." *Emerging infectious diseases* vol. 20,5 (2014): 741-5. doi:10.3201/eid2005.130539
- Platto, Sara et al. "Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease." *Biochemical and Biophysical Research Communications*, 16 Oct. 2020, doi:10.1016/j.bbrc.2020.10.028
- Pandit, Pranav. "Habitat destruction and biodiversity loss at the root of emerging infectious diseases." *UCDavis One Health Blog*, 7 April 2020
- Spickler, A. "Zoonoses" Merck Veterinary Manual. 2015
- Rahman, M. et al. "Zoonotic Diseases: Etiology, Impact, and Control" *Microorganisms*. (2020) 8(9):1405. doi: 10.3390/microorganisms8091405.
- Vidal, John. "Human impact on wildlife to blame for spread of viruses, says study." *The Guardian*, 7 April 2020