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Introduction

The absorption of gases from some carrier by a liquid is one of
the most widely used mechanisms in Industrial operations. This process
plays an essential part in the recovery of light olls, in the pwrifica-
tion of domestic gases, in humidification, in the recovery of gasoline
from natural gas, and in many other phases of industry.,

The research towar& an understanding of vapor liquid transfer and
hence absorption began about 1900, but it has been only in the last
‘twenty-five years that intensive research has been undertaken on the
gubject. This research has shown that the rate of mass transfer depends
on such physical conditions as contact area, temperature, pressure,
equilibrium relations, and upon an arbitrary value called the efficiency
of the particular type of equipment.

Early absorption preoocesses consisted simply of bubbling a gas
through a liquid but this was found to be unsatisfactory except in the
case of very soluble gases, With the recognition of the depth of liquid
and size of the gas bubbles upon the absorption the trend developed
toward developing conditions giving maximum surface area coﬁf.act. This
led directly to the design, development, and use of packed tm with
the purpose of the packing being to increase the contact area or as
sometimes called "effective area." Slats, broken quarts, scr@ana, brick,
berl sadelles, raschig rings, and spheres are a few examples ¢i’ the
numerous types of packings used. P
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The design of packed columns is based mainly on experience and to
a small extent on theory.V The use of packing necessitates a large tower
of heavy construction. It is obvious that the pumping costs in such
units would be high but probably the greatest objection is that such
systems tend to plug either by accumulation of tar-like materials or by
resinification of active materials on such large surfaces. This results
in reduced capacity and higher pumping cost and the necessity of periodic
cleanings, Nevertheless practically all industrial sbsorption has been
carried out in this type equipment until very recent years., At the present
time packed columns and spray columms are being used industrially with
the packed column still predominating.

The spray system of absorption was developed to try to overcoms
the objections of the packed columns and stlll retain the "effective
area" concept of absorption., In this system the liquid is dispersed at
the top of the columm as a spray and during its fall comes into contact
with the rising gas. In the most recent design of spray systems the
sprays are collected at different points in the column and recirculated
in gecondary sprays at velocities in excess of the inlet rates., It has
been shown commercially that the decrease of the size of the liquid drop
and resulting increase of the liquid-gas contact area gives betier absorp-—
tion, A major advantage of the spray system over the packed columm is
the tremendous decrease in the size and weight of the equipment necessary .
to handle the same capacity.

The work done in developing absorption equipment has seemed to have
as a principle aim the development of greater contact area between liquid
and gas as shown by the use of smaller gas bubbles in bubbling gas through
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liquid, the use packed and bubble plate columns, and the use of spray
gystems of increasingly finer sprays. With this thought in mind it is
only logical to consider the use of atomization for absorption.

Atomization breaks up the bulk liquid into a host of tiny droplets,
causing a greatly increased surface area of the liquid to be exposed to
the gas, and pemi:‘bs of intimate mixing, As an example of the increase
of area consider the droplet formation from one liter of ligquide. If
the 1liquid 1s assumed to have a spherical shape it will have a diameter
of approximately 12.lL 'c‘entime’oers and a surface area of L83 square
centimeters. Now if this liter of liquid is broken down into equal
sized spherical droplets 1.2l microns in diameter, there will be one
billion droplets having a total surface area of 483,000 square centimetera.

This thesis was undertaken in an effort to initlate work towards
the utilization of atomization for absorption processes. Laboratory
size absorption equipment was developed in which the earrier gas, con-
taining the gas to be absorbed, was used to atomize the liquid being
used as solvent, This constituted a co-current absorption system.

A slightly soluble system, carbon dioxide and water, and a highly
soluble system, benzene and kerosene, were selected for experimental
work. The carbon dioxide water system was used mainly to evaluate the
equipment and to determine the concentrations of absorbed gas that could
be obtained by atomization, The results were also compared with pub=
lished date on absorption of carbon dioxide by water.

The benzene-kerosene system was selected because of its close
resemblance of the commercial process of recovery of coke oven gases

with wash oil, In the experimental work it was tried to simulate con=
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ditions as found in industry in order that comparison could be made between
published results and experimental results. The effect of drop size and
interfacial area, as produ?éd by atomization, upon absorption was studied

and the results noted,
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Historical

The work of this thesis deals with both absorption and atomization
therefore it is felt proper to give background on these two fields.
This will be done by giving a brief review of absorption with special
emphasis being placed upon the contact area between liquid and gas,
and a brief review of the theory of atomization with related work in

measurement of drop sizes.
Review of Absorption

Gas absorption, in general, involves the treatment of a gaseous
mixture with a liquid which dissolves one or more of the gaseous con-
stituents. Usually the gas phase is composed of two or more constituents,
ons of which is solubie while the others are inert, Most absorption
processes, as found industrially, are carried out in towers with the gas
and hquid flowing countercurrent to each other. Packed or bubble-cap
towers are generally used in order to attain intimate contact between
the liquid and gas, although for some purposes spray towers are used.

The design of absorption equipment, the use of different types of
packings, and the use of spray towers are all the result of much investi-
gation, The extent of this work may be realized by reference to standard
Chemical Engineering textbooks such as those written by Badger and
McCabel, Walker, Lewls, McAdams, and Gilliland’, Sherwood?, and Brown

and Assbciates3 » to mention a few as well as to Perry's CHEMICAL
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ENGINEERING HANDEDOKS._‘There are many excellent literature surveys of
the subject, two of which the reader may be referred to are Theses by
Osborne6 and Grosse.’

For the purpose of this thesis only a few of the highlights in the
development of gas absorption, especially as attaining to the importance
of surface or interfacial area, will be discussed in the text with a
complete bibliography being given for any additional reading desired.

Possibly the first person to give much thought to the theoretical
and/or actual aspects of absorption was Hurtere. He used three types
of absorption systems in his work:

1. Simply bubbling gas through a liquid.

2. Spray type, or liquid drops falling through an open tower.

3« Packed tower, or use of fillers in a tower.
Hurter favored the third method for absorption and hence possibly started
the emphasis on packed and bubble plate type towers., It is interesting
to note that his work did include the spray type of tower which is gain-
ing popularity at the present time,

Next of interest was the work done by Partington and Parker9 on
tower design and the definition of absorption efficilency, They defined
absorption efficiency as the number of pounds of gas absorbed per minute
per square foot of liquid surface and showed it to depend upon the
partial pressure of the gas, the nature and rate of flow of the absorbing
fluid, the temperature, and the turbulence of the liquid and gas.

Donnan and Hassonlo proposed that absorption was a transfer of
matter and presented a mathematical analyéis of an absorption process.

They pointed out the importance of turbulence, relative motion, and -
interfacial area between gas and liquid.
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In the early 1920's ‘ﬂhitmanu proposed the two-film theory of gas
absorption which states that the absorption rate is dependexit on the rate
of diffusion of solute through a gas film, an interface, and then a
liquid film, He showed that the transfer of solute through the films
was proportional to a driving potential, which could be either a pressure
or concentration gradient, and called the proportionality constants
diffusion coefficients, This theory has been expanded and substantiated
by many other workers among whom may be mentioned Davis and Crandaxlil.l2 s
Chilton and Colburnl3, Hanks and McAdams', and Arnoldl, The complete
theory is very well outlined by Sherwood2 in his textbook with equations
being given for the cases where:

1. Idguid film controls,
2. Gaseous film controls,
3. Neither film controls.,

These equations state that the rate of transfer of solute from the
gaseous phase to the liquid phase is directly proportional to the cone
centration or pressure gradient and interfacial area and indirectly
proportional to the temperature and film thickness. From this it may
readily be seen that any factor to influence any of the above will in-
fluence the rate of absorptlion.

This theory of the mechanism of ahsorption is well received at the
present time although the supporting equations contain two quantities
which are practically impossible to determine, These are interfacial
or absorbing ares and film thickness, This difficulty is overcome by
using a new factor, called absorption coefficient, which combines the
two previous quantities, It is necessary to experimentally determine
this new factor.

The overall transfer coefficient, Ka, which, in the English system,
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has the units pounds per hour per cubic foot per atmosphere driving force
contains the overall all transfer coefficient per unit area K and the
interfacial area a., These two values are grouped because of the
difficulty to determine either separately.

Beker, Chilton and Vernon16

made a rather intensive study of
liquor distribution over various types of packings in order to try to
determine the effective wetted area or interfacial area, With packings
large in comparison to the tower diameter they found a decided tendency
for the liquid to concentrate along the walls and hence small interfacial
area as compared to packing area, They found, however, that with the
ratio of the diameter of tower to diameter of packing 8 to 1 or greater
and with proper feed distribution reasonably uniform distribution could
be expected throughout the column, Mayo, Hunter and Nashl7 expanded
this study in a very ingenious manner, They used Rashig rings made of
double layer paper as packing and circulated water containing red dye
through their tower. After running for 10 to 15 minutes the tower was
drained and the packing removed and dried, The rings were divided and
the dyed area measured for the inner and outer surface. The tower was
fitted with a paper liner so that the wetted wall surface might also be
measured. The measurement of dyed surface would be a measurement of
wetted area, Thelr work agreed very well with tﬁat of Baker, Chilton,
and Vernonlé.

The criteria for a good packing has been the object of much research
and this research is well summarized by Badger and McCabel.

Whitman, Long and WantlB returned interest to the spray type tower

in their studies of the rate of absorption for a small drop of water
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falling freely through gas. They found the absorption rate coefficient
obtained in this manner to be very mich greater than those reported for
absorption through flat liquid surfaces, from rising gas bubbles, or in
wetted wall columns. This has been explained as being due to the
comparatively thin film of stagnant gas associated with the drop. The
velocity of fall of the drop and any rotary motion during its fall would
be factors contributing to break&ﬁp of the gas film.

Hixson and Scottl? probably started the present era investigation
of spray towers. They point out the work done on packed and bubble
plate columns and the lack of work on the spray system although spray
towers were the earliest type of absorption apparatuss. In their work
they used a very small tower and apparently did not have an adequate
method of condensing their spray, as they make the statement that if
drops were too small the gas would carry them out of the tower., In the
discussion of their work they tabulate the length of liquid jet from
the nozzle prior to spray formation., This they then dismiss as being
unimportant, giving the reason that the concentration of gas at the
nozzle end of the tower is low and that the surface area exposed to the
gas is smaller in comparison with the liquid flowing. It has been shown2®
that actually the highest rate of absorption takes place in the vicinity
of the nozzle.

Johnstone and Kleinschidt?©, in their investigation of absorption
of gases in wet cyclone scrubbers, presented information that is pertinent
to this thesis. They pointed out that from a theoretical standpoint it
would be expected that atomization of the absorbing liquid would provide

a large surface area of contact, and that such a surface travelling
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through the gas would be ideal for the absorption of very soluble gases.
The workle done on measurements of absérption on single droplets has
verified this by showing the existence of a high absorption coefficient,
They attributed the lack of favor with which spray systems were received
industrially to be caused by "rule of thumb® methods of design, without
proper appreciation of such factors as size of droplets, their inter-
facial velocity, the number of droplets per unit volume of tower, and
the mechanism of mass transfer in the liquid phase., It was also pointed
out by these authors that measurements made on a large spray tower
indicated that the rate of absorption was high immediately in front of
the nozzles, but that it dropped off rapidly with distance. No measure-
ments of the size distribution of the droplets from the nozzle were
made, but they stated that it was obvlious that the smallest particles,
which were the source of the major portion of the absorption, lost their
initial kinetic energy and could not penetrate more than a few feet in
the gas. It should be emphasized that the system used for the above
observations employed countercurrent flow,

These investigators used two wet cyclone gas scrubbers designed
specifically for spray systems as gas absorbers, From their work they
developed a theory of absorption by a spray droplet which seems to agree
well with other available references. It was also pointed out that
drops of the size of 25 microns supplied 50% of the absorption surface
in their work although these droplets amounted to less than 0.1% of the
total volume of liquide They feel that any decrease in drop size in-
creases the absorption in two ways, the increase of the number of drops
and hence area of the liquid and the decrease of velocity giving longer

contact time.
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Johnstone and Silcox21 expand the previous workzo done on cyclone
spray towers using laboratory size equipment. They assert that the
quantity of gas absorbed by a liquid drop depends in part on the area
of the drop, the velocity relative to the gas, and the time of travel.
Their system was not countercurrent but across current in nature and
mass transfer corresponded to only slightly more than one theoretical
plate in a single unit. The number of transfer units available in a
short height was found to be quite large and almost complete absorption

of a solute gas could be obtained when the proper solvent was selected.

Theory of Atomization

Atomization can be defined as the process of subdividing a liquid
into droplets of such size that there can be no further size decrease
by physical means. This definition, while it may be accurate, does
not quite picture atomization as it is recognized in industry. For
the purpose of this thesis, atomization will be defined as a process
which produces an extremely high ratio of surface to mass of a liquid,
It is felt that this latter definition more clearly pictures atomization
as recognized by most scientist and engineers, Although spray might
be defined by a very similar definition, atomization is usually pictured
as producing much smaller droplets and hence more surface area per unit
mass.

Rayleigh'sBo observation of the collapse of a round cylindrical
liquid column under influence of surface tension was apparently the first
recorded work done on drop formation or atomization. He found that the

column is unstable if its length exceeds its circumference,
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Castlemanil described atomization of liquids in air streams as
follows: "A portion of the large mass is caught up (say at a point
where the surface is ruffled) by the air stream and, being anchored at
the other end, is drawn out into a fine ligament, This ligament is
quickly cut off by the rapid growth of a dent in its surface, and the
detached mass, being quite small, is swiftly drawn into a spherical drop."
He stated that, within limits, higher air speeds caused finer ligaments
having shorter duration and gave smaller drops. Also he made the observa=-
tion that a liquid forced unde¥ high pressure into still air was atomized.
He concluded that this was the reverse of air-stream atomization, but
very similar in that the fast moving liquid would lose filaments to the
still air in the same manner as the fast moving air drags ligaments from
quiescent liquid,

Joyce32 gives a good picture of the process of atomization. Although
his article is devoid of references, it is apparent that his description
is based on the observations of earlier investigators. The influence of
such investigators as Rayleigh®©, Castleman3l, and SchweitzerS> can be
detected. Briefly his description is as follows: To atomize a liquid,
force is applied to the liquid to set it in motion and it is constrained
in some manner so that it will emerge as an attenuated film., This film
is then disrupted into shreds or filaments by the persisting Ealance
of energy in the liquid derived from the force which promoted the initial
flow or in some cases by additional applied force. The shreds or filaments
break up into smaller fragments. The surface tension of the ligquid causes
these small fragments to rapidly assume spherical shape.

The atomization of a liquid therefore involves enforced attentuation,
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ligament or filesment formation, and disruption. The disrubtion of the
filaments, by the action of the surface tension, follows the _j d rule.
The filaments may vary greatly in diameter and therefore the resulting
droplets will also vary in size correspondingly, thus producing a spray
composed of droplets of a wide range of sigze,

I% must not be assumed that there is a clear line of demarcation
between the attenuation and filament formation. The formation of the
filaments is due to the force causing attenuation and to surface tension
and there is an interplay of these forces during atomisgation.

Nuldyama and Tanasawa3® studied the atomization patterns of liquids
by taklng stereoscopic instantaneous photograms of liquid jets atomized
in high speed alr streams. At low air velocities they found that the
relative motion between air and liquid produced bead-like swellings and
contractions which increased in amplitude until the liquid jet finally
breaks up and forms individual drops. If the velocity of the air is
increased, a fluttering action occurs in the jet which forms a shape
like that of a twlsted ribbon. A portion of the ribbon is caught up by
the air stream and is drawn out into a fine ligament. This ligament
is in turn quickly cut off and the separated mass swiftly forms a
spherical drope A further increase in the air velocity causes the
horizontal part of the twisted ribbon to flatten and form a cobweb-
like film, This film 1s so thin that it tears apart and diffuses into
microdroplets, Upon still further increasing the air velocity the
number of films gradually increase until the twlsted ribbon disappears
and only a large number of the cobweb-like films are seen,

Three common methods of atomizing liquids are centrifugal disks,
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pressure nozzles, and two-fluid nozzless. The centrifugal disks atomize
by means of extending the liquid into a fine sheet and discharging it
at high speed from the periphery of the rapidly rotating disk. The
degree of atomization, as a function of disk speed and diameter, is
believed to be effected by the peripheral speed as opposed to the
angular speed. Pressure nozzles bring about atomization by forcing
liquid under high pressure and with a high degree of spin through a
small orifice, The characteristics of the spray or fog is determined
by the pressure and orifice size, Two fluid nozzles, characterized by
paint spray guns, perfume atomizers, etc., bring about atomization by
the impingement of a stream of gas on a slowly moving stream of liquid.
They operate at relatively low pressures,

The distribution of drops in a sprayed jet, the effect of the
quantity of air, and the effect of the relative velocity between air
and liquid in the case where water was atomized by air in a convergent
nozzle were studied by Nukiyama and Tanasawa3h. They concluded that:

1. With the exception of the extremities, the mean
drop diameters are uniform in the sprayed jet
and that atomization was finished completely at
the throat of the nozzle.

2. With the relative velocity constant, the ratio
of liquid to air controls the drop size and not
the velocity of the water, the size of the water
orifice; or the nature of flow of the water, When
the ratio of volume of air to volume of water
exceeds 5,000 the drop sigze remains constant.

3. When the ratio of volume of air to volume of water

is greater than 5,000, the drop size is inversely
proportional to the relative wvelocity.

In another paper35 these investigators studied the effect of the

above properties, as well as the effect of different size air and water
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orifices, on sharp edged and cylindrical nozzles. They concluded that
the effects were the same as found for the conver_gent nozzle and that
varying the sige of the air and water orifices did not change drop size
if the relative velocity and liquid-gas ratio remained constant.

The effect of viscosity, demnsity, surface tension, relative velocity,

and liquid-gas ra‘bi.o‘ma.y be expressed by the empirical equation3 7
do= 585 '/T_ + 585 ()% o (1,000 q )15 1
/) %)
v'/'/_o_ /e

where do = mean diameter of drops in microns.

v = relative velocity between liquid and air stream in meters
per sec.
O = density of the liquid in grams per cubic centimeter,

O = surface tension of the liquid in dyne per centimeter.
A = viscosity of the liquid in dyne seconds per square centimeter.
Qg = quantity of alr in cubic centimeters per sec.
QL = quantity of liquid in cubic centimeters per sec.
This equation is valid under the following conditions:
l, Air is used as atomizing gas.
2. Density between 0.8 and 1.2.
3. Surface tension between 30 and 73.
L. Viscosity between 0,01 and 0.30.
The effect of viscosity, surface tension, and density, as well as velocity
and quantity ratios, may be deduced from the equation, When the ratio
of air to liquid is large the second term will be small and the first
term will govern the drop size, thus showing viscosity to be of minor
importance, When the air to liquid ratio is small the second term will
be large a.ﬁd thus govern the drop size. In this case the surface tension

would have only slight influence. The density effects the size of drops
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inversely at all times.

The dimensions of the above equation are inconsistent unless the
authors had assigned dimensions to the constants, nevertheless its
validity has been substantiated by the work of many other investigators
as will be explained below,

Drop size determination has been the object of much more research
than the theory of a/tomization and a few methods will be mentioned,

The most recent method of determining drop sizes seems to be that
proposed by Geist, York, and Brown?? in which they use an electronic
spray analyzer., This consists of a charged wire, inserted into a
moving suspenslon, connected to electronic circuits which count the
electrical pulses created by the interception of drops and wire. The
size of the electrical pulse is a function of the size of the drops.
The investigators®’ are doing further research on this method, btut at
the time of their report it was not suitable for small droplets,

Shallow sampling cups, coated with non-wetted material and having
a flat transparent bottom, are filled with a liquid that is non-miscible
with, and having a density slightly less than, the sprayed fluid. The
drops of sprayed fluid will settle through the liquid in the cup and
may be photographed”.

Direct photography of the drops in the sprayed jet by actual in-
sertion of the camera into the spray has been tried by many different
investigators and is fully explained by York}"o « This method avoids
physical sampling,

The theory of light scatteringm has been used for measuring
particle size., This is done by measuring the intensity of light scattered

at right angle to a beam passing through the spray and calibrating this
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against the number of drops, The decrease in light transmission through
the spray is measured and calibrated to give the number of drops of
given sizes,

Drop sizes are determined by a series of four oil=-coated slides
in the cascade 1mpa.ctorh2 method of analysis, A sample of the spray
passés through a small opening and impinges on a slide placed perpendicular
to the opening, Soms of the spray is not collected on the slide and
passes through another opening and impinges on a second slide and so on
until drops have been deposited on all slides, The theory is that the
larger drops deposit on the first slide and decreasing sisze drops on
the next three slidss,

The wax method of drop sigze determination as described by Je:\:rc:e32
consist of atomizing liquid wax into a flowing water bath, then collecting
and siging the solid wax particles,

Microscopic slides or plates are used to determine drop size and the
technique varies greatly. For example, the method used by Lewis, Edwards,
Goglia, Rice and Smith43 consisted of simply waving a microscopic slids
through the spray at a velocity of several feet per second and then
counting the drops, The method used by Nukiyama and Tmasawaﬁh, as
described below, was somewhat more complicated.

It appears, from the literature, that the work done by Nukiyama
and Tan,a.ss:waﬂ“37 is the most reliable to date. They measured drop sigze
in gas stream atomization, both with convergent nozzles and sharp edged
orifices, Air was used to atomize water, as well as water glycerine,
water-methanol, water-ethanol, and water—ethanol-Glycerine solutions,

The drops were collected on a specially prepared oil slide by means of
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& shutter arrangement and photographed. The number of drops were counted
and the mean diameter, do, calculated from3l

do= Yx® ¢ an/ Jx® e an 2
where A n represents the number of drops, the diameters of which lie
between x and _4 x, It was found that the mean dlameler of the drops
were uniform everyvt;ere in the sprayed jet except in the extremities.

The diemeters of the water orifices were varied in these invesgtliga-
tions fram 0.2 to 1 mm and those of the air orifices from 1 to 5 mm. The
air velocity, water velocity, and eir-water volume ratio were also varied
as noted above in the explanation of equation 1, This empirical
equation has been well substantiated by later investigators and as the
equation is based on all other work performed by Nukiyame and Tanasawa3lt:38,
it would seem in turn to substantiate all of their work.

These investigators also presented an empirical equation for
determining the mean drop diameter of gasoline, etihyl, alcochol, and

heavy 0113 7

» as well as an empirical equation for particle size digtri-
bution. The latter equation, which is similar to the Maxwell equaticn
for velocity distribution in a perfect gas, contains four constants that
are dependent upon the type nozzle and conditions of atomization. lewis,
Edwards, Moglia, Rice, and smith3 comment on this equation and derive
several different sets of constants.

The latter :’1.nvestiga’c.cn'814~3 conducted a very detalled investigation
of atomization and drop size determination for the "Office of Scientific
Research and Development." They concluded, from a literature survey,
that the best correlation of available data was the work by Nukiyama

L3138

and Ta.nasawa3 , and therefore their efforts were to test the validity

of the Japanese equations. Besides their own experimental data and
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results, these investigators subject data of Houghton, Sauter, and lee
to analysis by equation 1. They find rather good agreement and point
out what they believe to be the causes for descrepencies. For example,
Sauter, using an air Venturl, assumed all drops to be spherical and
distributed uniformally across the spray. DBoth of these assumptions
have been shown to be erroneous. Houghton's measured drop sizes were
smaller than those predicted by the equation but this was thought to
be an error due to sampling technique. It was pointed out that failure
4o measure jusﬁ one large drop among as many as a 1,000 small drops would
seriously effect the mean drop diemeter. The data of Lee's experiments
were found to agree well with calculated values from equation 1.

It was specifically pointed out’"3 that the work done by Nukiyanma
and Tanasawa appeared valid not only for small gas atomizing nozzles, but
also for other types such as pressure nozzles and large Venturi nozzles,

Yorkpo, in his work on drop size determination, used a standard
paint spray nozzle which is much different from the nozzles used by
Nukiyama and Tanasawa, but ﬁis data showed a definite tendency to
extend the curves presented by the Japanese and thus further substantiate
their work,
An excellent literature survey of atomlization and spray is DeJuhasz'shh
"Bibliography on Sprays," and supplement number one to this Bibliography
by Deduhasz and Meyer.hs

Bevanst® , Piercel?, and Limper8, in individual reports, give
evidence supporting the validity of the empirical equations proposed by

Nukiyama and Tanasawa.



Nozzle Design

One of the first, and perhaps most important, things considered for
this thesis work was the design of a suitable nogzle, A search of the
literature and of spray equipment catalogs yielded numerous types of
nogzles for consideration, These included such types as the standard
paint sprayers, perfume atomizers, pressure nozzles, high-speed rotating
disks, and two fluid type nozzles to mention only a few. Although it has
never been clearly defined as to where this transition is that enables one
to differentiate betwsen sprayed liquid and atomized liquid, the two fluid
type .nozzles seemed capable of giving drops of such a gize that no
question would arise concerning this peint. Nukiyama and TanasawaB 7 R
using this type nozzle, were able to obtain, and measure, d_rops having
& mean diameter of less than 20 microns,

It was decided to try the two fluid nozzle for the present investiga=-
tion and & nozzle as shown in Figure 1 wes designed, This noszle is much
like those used by Nukiysma and Tanasawas | » in the work on drop size
determination, Fundamentally the nozzle consists of a gas inlet, a liquid
inlet, a liquid orifice, a mixing chamber, and & gas-liquid mixture outlet
orifice. Actually the design and machining of the nozzle was more critical
than the above would suggest, The liquid inlet entered the rear of the
nozzle and terminated 0.39 inches from the inside wall of the nozzle's
frontspiece. A 0,0135 inch orifice, exactly centered, was drilled in
the liquid inlet. The frontsplece was drilled, exactly center, with a
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0.150 drill and this hole was machined to taper outward at an angle of
60 degrees, thus giving a 0.150 inch sharp edged orifice. The criterion
for selection of the size of the liquid nozzle was the smallest that would
allow maximum anticipated flow of liquid., No special criterion was used
for selection of the size of the outlet orifice except that it has roughly
about eleven times the diameter of the liquid orifice.

The location and size of the gas inlet did not appear critical other
than it be placed behind the outlet of the liquid orifice in order not to
impinge upon the liquid stream, and be large enough to accommodate anti-
cipated flow, It was located 3/Li~inch behind the liquid inlet and was a
standard 1/l~inch brass tube fitting. Likewise the size of the mixing
chamber apparently was not critical as the liquid rate, gas rate, pressure,
and size of the outlet orifice would control the degree of atomization.

The nozzle as described above proved to be satisfactory, but in order
to note the effect of different orifice sizes another nozzle was designed
as shown in Figure 2. This new nozzle was basically the same as the first
nozzle, but was so designed that orifices of different sizes could be
installed. In other words, it was what could be called Yconvertible! as
opposed to "permanent." The liquid inlet of the second nozzle was fitted
with a cap with a 1/li-inch holed drilled in the center. Liquid orifices
were drilled in small plates which would fit inside of the cap. The end
of the liquid outlet tube and inside of the cap were machined so that, when
assembled, the cap would seal the plate containing the liquid orifice
firmly against the liquid outlet tube. Three such orifice plates were
constructed, the sizes of the orifices being 0.,0146, 0,0256, and 0.033

inches with maximum capacities being 160, 385, and 650 cc per min. respectively
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under the conditions used.

The discharge end of the nozzle was also modified to enable the
interchange of outlet orifices. This was done by threading the outside
of the nozzle to accommodate a cap, drilling the cap, and fitting the
cap with orifice plates in the same manner as was done for the liquid
outlet. Three plates were machined to fit into the cap, drilled, and
tapered, in the manner described for the first nozzle, to give orifices
of 0,150, 0,120, and 0,073 inches, Dimensions of the body, mixing
chamber, gas inlet, and liquid inlet as well as location of gas and
liquid inlets were retained the same as in the original nozzle described

above and shown in Figure 1,
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Absorption of Carbon Dioxide with Water

The carbon dioxide~water system was used for an initial investiga-
tion of £he effect of atomization on absorption. This system was used
mainly to evaluate the nozzle design and to determine the nearness of
approach to handbookzz, equilibrium values obtainable by means of
atomization, Some comparison of the actual absorption was made with
published results for packed columns, but these were not as conclusive
as desired., The published results were not of recent date and also

their validity could not be substantiated,

Experimental Apparatus

The experimental appa?atus used for the first part of the investiga~-
tion on the carbon dioxide-water system is shown diagrammatically in
Figure 3. This apparatus was used for all runs shown in Tables 1 = 6,

The carbon dioxide supplf was a fifty-pound cylinder of compressed gas.

The gas line from the cylinder to the junction with the alr line contained

a gtandard carbon dioxide reducing valve and a calibrated gas rotameter

for controlling rate and pressure and measuring the volume of the gas,

The air supply was an Ingersoll Rand air compressor., The line from

the compressor to the junction of the alr and carbon dioxide lines contained
a needle throttling valve, a pressure gauge, and a gas rotameter placed

in the order mentioned, Upon leaving their respective rotameters, the

air and carbon dioxide lines were joined and a single line was led to

the nozzle.
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The water supply was taken from the city water main and filtered
through a glass wool filter which was placed in the supply line., The
water rate was measured by a liquid rotameter and controlled by means
of two conirol valves, placed before and after the rotameter in the
line., A bleed-off valve was placed in the water line for the purpose of
purging and of blowing out the nozzle. The water was introduced into
the nogzzle from the back, Figure 1, and mixed with the gas mixture in
the mixing chamber., The mixture was discharged into the collector as
a fog.

Several different sizes and types of collectors were tried as listed
in Tables 3 and L with a 2 3/4 x 48 inch pipe being selected. The collector
was placed in a vertical position, sealed to the nozzle at the nozzle end,
and open to the atmosphere at the discharge end.

The atomizing nozzle used was a sharp-edged gas atomizing nozzle
shown in Figure 1 with a 0,0135 inch water orifice and a 0,150 inch gas-
water mixture orifice.

Several faults were found with the apparatus as described above, The
two most outstandiﬁg were insufficient air capacity and unsatisfactory.
results due to the use of city water>, In order to correct these faults,
along with several minor ones, the apparatus was modified as shown in
Figure L. The Ingersoll Rand air compressor was replaced by a Worthing-
ton compressor having a capacity of 17 c.f.m., and a source of distilled
water was added. This source consisted of a three and a half gallon
pressure tank, in principal an acid egg, which was pressurized by means
qf the Ingersoll Rand compressor. Alig the collector was changed to a

5 1/2 x 36 inch glass column to enable observation of the fog pattern.
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The collector was now sealed at beth ends and discharged into a Cotrell
precipitator, Some runs, as noted in the tables, were made without the
collector, but with the nozzle discharging directly into the Cotrell,

The Cotrell, Figure 5, was made of a 1 3/8 inch inside diameter
copper tube 2l inches long with a platinum wire centered in the tube as
an electrode, A potential of 10,000 to 15,000 volts was supplied from
a high voltage power pack, The vapor entered the side of the tube near
the bottom and the condensate was discharged ffgm the bottom by gravity
with the gases being swept out of the top of the tube,

The nozzle was also modified as shown in Figure 2 and described

under "Design of Nozzls,"

EXperimental Procedure

The experimental procedure differed somewhat during the course of
the investigation., For all runs shown in Tables 1 - 6 the separate
gtreams of carbon dioxide and air wére metered by means of gas rotameters,
then mixed and fed into the atomizing nozzle, Rates of both streams were
maintained constant by means of manually operated control valves. |

Tap water from the Bethlehem city water main was introduced to the
nozzle through a liquid rotameter with the rate being maintained constant
by manually operated control valves. The temperature of the water wasjthat
of the underground lines and therefore varied somewhat from day to day.

The water entered the atomizing nozzle from the back and then into
the chamber of the nozzle through a 0,0135 inch orifice, The gas mixture

entered the chamber of the nozzle from the side, picked up the water and
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the mixture was then dispersed into a collector through a 0.150 inch
orifice as a fog. Pipes of various sizes and lengths were tried as
collectors so as to note the effect that each had on the fog pattern
with a 5 1/2 inch x 3 foot glass coluwm being selected. The end of
the collector through which the nozgzle fitted was sealed around the
nozzle to prevent air from being drawn in by the fog leaving the nozzle,
Samples for analysis were taken from the discharge end of the collector
which was left open to allow the system to remain at atmospheric
pressurs. The temperature of the mixture was taken in the collector.

Runs were made in the following manner: The inlet gas eomposition
and the liquid and gas rates were fixed, The cooling effect due to the
throttling of the carbon dioxide caused fluctuations in the rate of
flow?3, These fluctuations were eliminated by allowing the carbon
dioxide to flow long enough to maintain essentlially constant temperature
and hence constant flow rates through the throttling valve before taking
. readings. After rates had become steady, liquid samples were taken from
the end of the collector and analyzed. Readings of rates of flow,
temperature, and pressure were taken at the time of collecting the sample.

The procedure used for the remainder of the investigation of the
carbon dioxide-water system differed only slightly from that as described
above, Air for all runs listed in Tables 7 = 10 was supplied by a larger
compressor, but it was treated in the same manner as before. Distilled
water was used instead of water from the city main and it was introduced
into the system in the same manner as described above, The only difference
was the source, which was now a pressurized tank, The major difference
was the collection of the sample, Where before the sample was collected
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at the open end of the collector, it was now collected from a dlscharge
line on the bottom of the Cotrell precipitator. The emd of the collector
was sealed, with an outlet leading the gas to the Cotrell, The procedure
for manipulation of controls, readings, and analysis remained the sams.

For all runs listed in Table 10, dlischarge from the nozzle was
not dispersed into a collector and thence into the Cotrell, but instead
was put directly into the Cotrell with the sample being collected from
the bottom of the Cotrell; ménipula.tion of controls, readings, and
anslysis remained the same.

Method of Analysis

Since the composition of the two inlet atreams were determined by
metering known quantities to the system, only the cutlet streams remained
to be determined, It was declded to analyze the outlet liguld stream
and to determine the outlet gas stream by method of difference.

The first method of analysis of the liquid stream consisted of
straight titration of the water-carbon dioxide solution with a standardized
bage, Ten ml, samples were collected from the collector in a pipette
and introduced into a flask. The 32003 of the solution was neutralized
by titrating directly with 0.,0527N Ba(OH),. All runs of Tables 1 - L
were analyszed in thishmanner. .

It was noted that reproducible results could not be obtained from
the same sample if only a few minutes were allowed to elapse between the
original analysis and a check analysis., Presumably this was due to
carbon dioxids being lost to the surrounding air, and, if this were true,

it was logical to assume that some of the gas would escape during sampling



33.
and titration, as well as upon sitting.

A second method of a.u.za.ly:s:i.s:23 was tried in an attempt to decrease
the possibility of escape of the gas. In this method the sample was
collected, as before, in a 10 ml, pipette, but was immediately neutraliged
by introducing it into a flask containing an excess of 0.0527N Ba(OH),.
The end of the pipette was placed bensath the surface of the Ba(OH) 2
when transferring the sample, The excess BHa(CH), was neutralized by
titrating with standardized HCl. Phenolphthalein was used as the
indicator in all titrations, Runs shown in Table 5 were made to check
these two methods of analysis., From the results it was apparent that
carbon dioxide had been escaping in the first method of analysis so the
second method was adopted for the remaining experimental work.

To insure accurate analysis of the dissolved carbon dioxide, and
to preclude the error due to the acidic or basic quality of the water,
blanks were run on each batch of water used. This was accomplished
by titrating samples of the water obtained from the tank prior to
starting actual runs, and making necessary corrections in the analysis
of the carbon dioxlde~water sample.
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Absorption of Benzene with Kerosene

A study of the effect of atomization on absorption was made on
the benzene-kerosene system. It was necessary to produce an air-benzene
mixture of known composition and to use this mixture as the atomizing
gas. The method adopted, as described below, for this study contained
many variables and efforts were made to note the effect of all the

obvious ones,

Experimental Apparatus

The experimental apparatus used for the investigation of absorbing
benzene vapors in kerosene is shown diagrammatically in Figure 6. A
three and a half gallon tank, pressurized by an Ingersoll Rand air com-
pressor was used to supply kerosene to the system. The air line, con-
taining a diaphram reducing valve for maintaining constant pressure on
the tank, entered the tank at the top and the liquid outlet was 2 1/2
inches from the bottom., The tank was equipped with a pressure gauge and
a thermometer, The liquid line from the tank to the nozzle contained a.
rotameter and two quarter inch, stainless steel, needle valves, The
valves were placed before and after the rotameter.,

The benzene tank was a 6-foot length of standard 2-inch pipe fitted

at the top for an air inlet line and a filling plug., A fitting for =
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liquid outlet line was placed four inches from the bottom and the bottom
end of the pipe was sealed with a standard pipe cap. Compressed air to
pressurize the tank was furnished by a Worthington Air compressor. The
air line contained a Conover reducing valve for the purpose of maintaine—
ing constant pressure on the benzene system and a shut-off valve, The
liquid line from the benzene tank was equipped with a rotameter, a
quarter—inch stainless steel needle valve, a standard quarter-inch T with
a bleed~off line and valve, a quarter-inch valve, a check valve, and a
vaporizer which were placed in the order mentioned, The bleed—-off
line and valve were placed in the liquid line to enable "in place"
calibration of the rotameter. This was accomplished by closing the
quarter-inch valve between the bleed-off and check valve to direct the
benzene flow into the bleed-off, During actual runs, the valve on the
bleed=-off was closed and the quarter-inch valve mentioned above was
opened full. The purpose of the check valve was to preclude the possibility
of vapor backing into thé liquid line as the benzene was vaporized,
Sufficient pressure was maintained on the benzene supply tank to reduce
this possibility to a minirmum,

The vaporizor consisted of nine feet of eighth-inch copper tubing
would around a half-inch core in a single layer. This was covered with
asbestos as insulation and wound with a 26 ohm resistor consisting of
number 22 Nichrome wire, The whole assembly was covered with}eighth-
inch asbestos to insulate against heat loss. The vapor line leaving the
vaporizer led to a T which was also wound with resistance wire to act
as a booster heater, The resistance wire was insulated from the T by sheet

asbéstos and also covered with asbestos lagging. A thermometer was



37.
placed in one outlet of the T, and the vapor line from the T was connected
through the back of an elbow into the air line, The heating elements of
the vaporizor and booster heater were connected in series and controlled
by a standard Variac.

Air was supplied by a Worthington air compressor having a rated
capacity of 17 C.F.M, at B5 pounds pressure, The air line leading from
the compressor to the junction with the benzene vapor line contained a
flexible connecting line, a Conover pressure regulating valve, a pressure
gauge, a thermometer, a rotameter, and a valve, all placed in the line in
the order mentioned. The purpose of the flexible connectlion was to damp
the vibration of the equipment caused by the air compressor.

At the point of junction of the air and benzene vapor lines the air
had to make a 90=degree turn with the vapor Jjoining the alr stream dur-
ing this time, Just downstream from the junction a union was installed
to permit breaking of the line for the purpose of checking possible
benzene condensation, The line carrying the gas mixture was connected
to the nozzle by a quarter-inch copper tube,

The nozzle, described under "Design of Nozzle," was connected into
a collector consisting of a glass column 5 1/2 inches in diametsr and 3
feet longe. The collector was fitted at both ends with standard column
flanges and placed just off the horizontal to allow drainage., The flange
on the upper end of the column was tapped and fitted with the nozzle and
a thermometer. The flange on the lower end of the column was tapped and
fitted with a sampling tube, a pressure gauge, and a gas outlet line,

The gas outlet line was led out of the building to prevent accumlation

of benzene vapors in the work space,
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All rotameters, thermometers, and pressure gauges were calibrated,

Experimental Procedure

It was necessary to "warm up" the equipment for forty-five minutes
to an hour prior to each new series of runs., The compressors and Variac
were started and allowed to run about thirty minutes and then the liguid
benzene flow was started into the system. After the benzene flow had
started, another fifteen to thirty minutes was allowed to enable the
vaporizor and vapor lines to attain constant temperature., This warm=up
period was necessary as the air compressors tended to heat for awhile
after starting, thus causing the air temperature to change, and also
benzene would condense in the vapor lines prior to entering the air
stream when the equipment was cold. When the temperature of the benzene
vapors, measured at the T just prior to entering the air line, became
steady at 120° centigrade, the air-benzene line was broken and checked
for condensed benzene, If no liquid benzene was present, the benzene,
air, and' iiquid rates were set and the system was allowed to run for
several mir'mtes longer before runs were started. All of the above pre-
cantione were taken to insure representative and reproducible samples
when the actual runs were started.

Rmm were made in the follow:i.ng manner: After all rates were steady,
the collector was drained and then washed, by allowing about 200 - 300 c.c.
of liquid to collect and draming, before the sample was taken for
ve.nalysis. The sample was taken i‘on analysis and a.naJyzed immediately
‘w the Interferometer as descnbed under “Analytn.cal Methods." Readings
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of air rate, temperature and pressure; benzene rate, temperature, and
vapor temperature; kerosene rate and temperafure 3 and the temperature
of the mixture inside the chamber were taken and recorded at the time
of sampling,.

The line carrying the air-benzene vapor mixture was broken Just
beyond the polnt of mixing before and after each run to check for
possible condensation of benzene vapors. In the event of benzene con-
densate being found the run concerned was thrown out and a new run made,
When a change in any of the fixed rates eccurred during a run, the run
in queation was thrown out and a new run made,

The calibration of the Interferometer was checked each day using
kerosene and benzene samples taken from thelr respective tanks prior

to starting the equipment.

Analytical Methods

Originally it was planned to analyze the inlet and outlet gas
streams and to meter the inlet liquid, thus tying down three of the
four streams, The composition of the fourth stream, the outlet
liquid, was to be derived by difference and checked frequently by dis-
tallation analysis. This procedure would necessitate an accurate
anglysis of the benzene-alr and benzene-air-kerosene mixtures.

A modified Orsat analysis, in which the samples of the gas were
burned and the products of combustion measured accurately, was tried,
Although this method takes a long time to run, it is simple and also
gives a check for accurateness in that the decrease in volume has to

be balanced against the carbon dioxide formed. Using air-benzene
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mixtures it was found that this balance could not be made, The decrease
in volume always exceeded the carbon dioxide formed. The most plausible
explanation for this seemed to be incomplete combustion with part of
the benzene burning to carbon instead of carbon dioxide, After repeated
trials with the equipment, a coating of carbon could be seen in the
combustion tube, The intensity of the heat on the ignition wire was
increased and the rate of passing the sample over the wire was decresased,
but still there seemed to be incomplete combustion,

The Orsat combustion method was abandoned and a method using 20%
Oleum and Rromine was tried., The sulphuric acid solution of the
Combustion Orsat was replaced with a solutibn of 20% Qleum and Bromine
thru which the sample was passed repeatedly until no further reduction
in volume was discernable, Although this method had reportedly been
used with very satisfactory results it was noted that the sample led
out of the Oleum could be caused to burn in the combustion chamber. As
benzene was the only constituent present which should burn, this indicated
incomplete absorption of benzene in the Oleum. Identical samples were
analyzed by the combustion method and by the method using Oleum. In all
cases the combustion method indicated a higher percentage of benzene
in the mixture, so the second method was also abandoned as being un—
satisfactory.

Next a gas Interferometer was tried, Gas cells were placed in a
standard portable Interferometer and benzene-air mixtures were led through
one cell and air through the other., This method proved satisfactory for
very low concentrations, but two faults were found, The first was the

narrow range of the instrument due to its great precision and secondly
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the difficulty of calibration at concentrations in excess of 1% benzene
in air, The solubility and physical properties of benzene precluded
the accepted methods of collecting gas mixtures and of moving the mixture
through the Interferometer.

Numerous other methods of benzene-air analysis were considered,
with the most promising being the use of "cold fingers," dew point
determination, arid thermal conductivity cells, but none was found which
would give the accuracy desired. In view of the difficulty encountered
in the analysis of the gas stream, a method was sought in which the
constituents entering the stream could be determined without analysis,
This was accomplished by adding a benzene vaporizor to the equipment.,

. Thus the benzene was metered through an accurately calibrated rotameter,
then vaporized, and led into the air stream in the gaseous state. The
alr was metered just prior to mixing with the benzene vapor, In this
manner the composition of the inlet gas mixture could be accurately
determined.

With the above modification the composition of the two inlet streams
could be determined, but the two outlet streams were still undetermined,
As efforts to analyze the inlet gas stream had failed to yleld a satis-
factory method, it was decided to determine the outlet gas stream by
difference and to analyze the outlet liquid stream, Several methods
of analysis were considered for this stream, with analysis by Inter-
ferometer being used. The gas cell of the portable Interferometer was
replaced by a one centimeter liquid cell, Although the Interferometer is
basically an instrument for measuring refractive indices it works on a

basis of comparison with a known solution and this property was utilized
for analysis.
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The mamufacturers of the Interferometer state that, due to the high
precision of the instrument, generally the calibration will be a straight
line function for the first third of the range. In this range of the
instrument the solutions are so dilute that Raoult's law holds in most
cases, and it was found to be true in the case of benzene-kerosene
solutions. The instrument was carefully calibrated for each new batch
of kerosene and each time a straight line function was obtained for
solutions which did not differ more than 1.3% by volume. Since the
Interferometer proved to be an accurate and highly reproducible means
of analyzing the benzene~kerosene solution it was adopted as the method
of analysis for this work.



Experimental Results

The carbo;z dioxide~water system was used mainly to evaluate the
equipment and nozzle design. The data collected for this purpose is
given in Tables 1 - 10, Air rates and carben dloxide rates in all the
tables have been corrected to cubic feet per minute at one atmosphere and
70° F. The pressures listed in the tables are of the metered gas and
not that.of the gas-water mixture. The pressure of the gas-water
mixture was one atmosphere.

Table 1 was prepared to show the time necessary for a constant
sample to appear at the sampling end of a pipe 1l feet 10 inches long,
This time appeared to be used for the liquid sample to travel the length
of the pipe as it was later found that constant samples could be obtained
almost instantaneously right at the nozzle,

Table 2 indicates the effect of varying gas rate upon absorptien
using pure carbeon dioxide. The inerease of gas rate decreases the size
of the liquid droplets thus exposing greater surface arsa for absorption.

Table 3 shows the results of using a carben dioxide-air mixture
for the gas and varying the rates and composition of the gas. All sub-
sequent runs for the carbon dloxide-water system were made using alr
and carbon dioxide,

Table L was prepared to show the effect of different type collectors
on the absorption. It was noted that the collector did not seem to help
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thg actual absorption but worked mainly as a device for breaking down
the fog pattern. The best collector appeared to be a L foot by 2 3/k
inch plpe in a horizontal position, The use of a smaller collector
resulted in a high gas velocity and hence possible blowing out of the
absorbed carbon dioxide., A larger sized collector would not adequately
condense the fog, thus leading to smaller observed values of absorption,
Runs 12 = 16 of Table L were made one day and runs 17 - 36 were made the
next day.

Table 5 shows a comparison of anaiy‘bical methods, Two samples were
taken on each run and analyzed by the two methods described under
analytical methgds. On the basis of the results shown in Table 5 the
second method of analysis described was accepted for the remainder of
the experimental work. All runs shown in Tables 1 - L, had been analywed
by titration with barium hydroxide.

Table 6 indicates the effect of changing gas composition on the
amount of carbon dioxide absorbed. A glass column was used as a collector
to observe the break up of the fog pattern.

All runs shown in Tables 7 - 10 were made using distilled water and
with a mociification to the original equipment, The procedure for this
work and the equipment modificatipns are explalined under experimental
procaedure and experimental equipment.

Table 7 shows the results of varying gas compositions and rates at
low liquid rates. The collector consisted of a § 1/2 inch by 3 foot glass
column and the gases from the collector was discharged into a Cotrell
precipitator. The nogzle used was the "convertible" nozzle shown in

Figure 2 with a 0,150 inch outlet orifice and a 0.,0146 inch liquid



L5,
orifice, The total gas rate varied from that which would barely break
up the liquid stream to rates which produce very fine fog,

Table 8 shows the results of varying gas rates and compositions at
higher liquid rates than used in Table 7. The nozzle used was the same
as described above with a 0,150 inch outlet orifice and a 0,0256 inch
liquid orifice, All other conditions were as described for Table 7.

Table 9 shows the results of varying gas rates and compositions at
very high liquid rates. A 0.033 inch liquid orifice used was in the
nozzle with all other conditions remaining the same as above,

The data of Table 10 shows the results obtained when using no
Collector and thus is an indication of the absorption actually obtalned
due to the nozzle, The mixture from the nozzle was discharged directly
inﬁo a Cotrell precipitator and collected, Runs 1 —= 15 were made using
the original nozzle shown in Figure 1 and runs 16 - 43 were made using
the nozzle shown in Figure 2 with a 0,150 inch outlet orifice and a
0.0146 inch liquid orifice. Rates of all streams were varied, as noted
by the tabulated data, in ord;r to compare the results with those obtained
using collectors and different sized orifices.

The kerosene—bengene system was used to study the effect of atomiza=
tion on absorption and the results obtained are tabulated in Tables 12 =
20, Air rates have all been corrected to atmospheric pressure and 70o F.
The volume of benzene vapors was calculated using the perfect gas law,
Drop size was calculated using Equation 1 with the assumption being made
that the density and viscosity of the benzene-air mixture was the same
as that of air, This assumption is Justified because of the very low

concentrations of benszene used. The pressure in the collecting system



L6,
was atmospheric at all times,

A commercial grade benzol was used in the early part of the in-
vestigation and the results are shown in Tables 12 ~ 1ll.

The gas mixture used for the runs shown in Table 12 was approximately
3% by volume benzol., Gas and liquid rates were varied in order to obtain
different liquid gas ratios and different drop sizes,

Table 13 shows the results of varying liéuid rate upon the drop size
and upon the absorption, The gas used was 1% by volume benzol,

Runs 1 - 15 of Table 1, were made using & gas approximately 1% by
volume benzol and runs 16 - 23 were made using a gas approximately 1% by
volume chemically pure benzene,

Tables 15 - 20 depict the results obtained using a pure benzene-air
mixture for the gas mixture with the composition ranging from 0.L% to
3.,2% as indicated, The liquid orifice for runs 13 - 20 of Tables 16 and
17, runs 11 - 18 of Tables 18 and 19, and runs 10 = 20 of Table 20 was
0.0256 inches in diameter,

The diameter of the liquid orifice for all other runs shown in
Tables 12 - 20 was 0,0146 inches and that of the outlet orifice for all
runs was 0,150 inches,



TAHLE 1

Determination of time necessary to obtain constant
sample using iron pipe 10'11l" x 2 1/2" as collector.

Run Time Temp « Water Co €O, absorbed
min, °F, Rate Rate gr. COp per
ce/min,  C.F.M, 100 grs Hy0
1 1 66 93 2,26 0,056
1 2 66 93 2,26 0.088
1 3 66 93 2,26 0,091
1 k 66 93 2.26 0.163
1 5 66 93 2,26 0,165
2 1 69 81 2,29 0.086
2 2 69 81 2,29 0.094
2 3 69 81 2.29 0.1l
2 L 69 31 2.29 04137
TABLE 2

Effect of variation of CO, rate.
Collector - 10'11" x 2 1/2" iron pipe.

Run Temp. Water CO. COo absorbed

OF Rate Ra%e gr. CO, per

ce/min. C.F.M, 100 grf HyO
3 80 96 0.k2 0,076
L 80 96 0.56 0,098
5 80 96 1.05 0.117
[ 80 96 1,52 0.136

TAELE 3

Effect of variation of gas composition,
Temperature 70°F,
Collector - 10'11" x 2 1/2" iron pipe.

Run  Press Water Air C02 %co2 CO2 absorbed
psia Rate Rate Rate inlet gr. CO, per
cc/min, C.F.M, C.F.M, 100 grs Ho0
7 3L.T 128,0 3.35 0.85 20.3 0.012
8 2Le7 128,0 1.90 0.76 28,6 0.026
9 22,7 128.0 1.57 0.73 31.7 0,032
10 23.7 125.5 1,37 0.94 L0.6 0.056
11 29,7 125.,0 1.30 1,30 50,0 0.092



Run

TABLE L4

Effect of varying sigze of collector.
CO2 rate 1,26 C,F.M, air rate 2 C.F.M,

Pressure 32,7 psia. 38.6% CO, in inlet gas

Type Collector

8tx 2 3/)4"
Lix 2 3/
No pipe

Ltx 2 3/4"
Lrx 2 3/)_“1

Ltx 2 3/4"
h'x 2 B/LL"

pipe horiz,
pipe horiz.

pipe vert.
pipe vert.

pipe vert.
pipe vert.

2%x 1/2" rubber hose

Lrx 2 3/4n
3'x 5 1/2"
31x § 1/2n
1tx 1 7/8n
1'x 1 7/8n

pipe horiz.
pipe horiz,
pipe horiz,
pipe horiz.
pipe horiz.

2'x 7/8" pipe hariz,

2'x 7/8%

pipe horis,.

2'x 7/8% pipe horiz.

21 7/8u
2'x 7/8n

2y 7/8"
2'x 7/8"
2y 7/8”
11x 2 3/h"

pipe horiz.
pipe
2'x 7/8" pipe
pipe
pipe
pipe horiz,

horiz.
horiz.
horiz,
horiz,

pipe horiz,

(constricted end)

1tx 2 3/

pipe horiz,.

(constricted end)

1'x 2 3/L4"

pipe horiz.

(open end)

Water
Rate
CC/mino

92
92
92
67
67

85
85
90
88
88
88
90
90
90
9l
90
90
82
85
85
92
96
93

85
92

Temp.
oF.

69
69
69
69
69

70.
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

70
70

COy
gr.
100

absorbed
COy per
grs H20

0.08L
0.129
0o083
00038
0.0L47

0.035
0.035
0.058
0.110
0.026
0,031
00038
0.050
0.0L5
0.033
0.031
0,022
0.0L0
0.0)-‘\3
0.0L11
0.028
0.043
0,037

0.035
0,031

L8.



TABLE 5

Comparison of titration methods.
and temperature were held constant.
37 & 38 and 85 cc/min. for runs 39 - 47.
glass column in a horizontal position.

Collector was

Gas rate and composition, pressure
Water rate was 92 cc/min. for runs

hr x 2 3/4n

L.

Gr. CO2 absorbed per 100 grs.

Analyzed by placing

ml, of sample in 10 ml,

Run Gr. COp absorbed per
100 grs. Hy0. Analyzed HyO.
by titration with Ba(OH)»
of Ba(OH)
excess Ba(CH
37 0,025 0.047
38 0.027 0,057
39 0,037 0,050
Lo 0.038 0,060
L1 0,035 0,060
L2 0.028 0.0l
L3 0,037 0,059
N 0.035 0,059
L5 0.033 0.05L
L6 0.037 0.058
L7 0,038 0.060
TAELE 6
Effect of veriation of gas composition.
Water rate constant at 100 ce/min,
Collector L' x 2 3/L" glass column
Run Temp. Press %co Air co
OF. psia inlgt Rate Ra%e
C.FOMQ COFQHO
48 70 23,0 32.0 1.55 0673
L9 70 29.7 B.3 2,10 0.83
50 68 31.7 16.3 3.08 0.60
51 76 29,7 50.0 1.20 1,20
52 76 23,0 32.9 1.5k 0.7k
53 76 29,7 27.9  2.07 0.84

% and titrating
0

), with HC1

002 absorbed

gr. CO, per
100 grs H20

0.050
0.040
0.030
0.073
0.054
0.038



Run  Temp.
oF

1 71
2 71
3 71
L 71
5 71
6 72
1 72
8 72
9 12
10 72
1 72
12 73
13 13
1L 73
15 73
16 73
17 13
18 73
19 73

Water
Rate
CC/minc

975
101.5
111,0
111.0
llo.o
111.0
111.0
111,0
111,0

87 .0
141.0
118,.0
115.5
115.5
115.5
115,.5
112.5
112.5
109.0

TABLE 7

Absorption of 002 with Water

Air
Rate
C.F.M,

2.5
1.67
2.16
3.27
0.77
1.19
1,74
0.57
0,77
0.93
1.13
1.13
0.93
0.77
0.55
0.37
0,27
0.00
1.77

co
Ra%a
C .F .n.

1.3L
1.68
1.53
1.53
0.31
0.50
0.35
0031
0,31
0'31
0.31
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.76

Total %CO 2
Vol. Inlet
Co.T.M,

3.79
3.35
3.69
5.00
1.08
1.69
2,09
0.88
1 008
1.24
Llolhy
1.36
1.16
1.00
0.78 29,
0.60 38,0
0,50  L5.7
0.23 100,

2.53 30,2

® & 8 o

N PN W
o s a @

P

.
NOARARIAHH O~~~ OULN &

50.

002 absorbed
gre COp per
100 grs Hs0

0.048
0.075
0.071
0.055
0,036
0.023
2 0,040
0,037
0.031
0.029
0,023
0,025
0.032
0.03L
0.0L43
0,047
0.089
0.039



TABLE §

Absorption of CO, with Water

Run Temp., Water  Air co Total  #CO, CO, absorbed
OF, Rate Rate Ra Vol. Inlet gr. COp per

CC/min. CoFoMo C.Fouo CoFoMo 100 grs H20
1 73 3L5 2.51  1.3h  3.85  3L.8 0,051
2 13 260 1.83 1,57 3.40  L6.2 0.066
3 1713 285 - 2,16 1.5 3.70 L1.6 0.072
L 73 307 0.75 0430  1.05 28,7 0.039
5 T4 305 1.20 0,50 1.70  29.6 0.0LL
6 b 305 1.7h 0,35 2,09 16.7 0,025
7 80 400 0.55 0430 0.85  35.5 0,043
8 8o 100 0.95 0.32 1,27 25.3 0.038
9 80 1,00 1.19  0.33 1.52 21.5 0.028
10 80 400 1.61 0.7k 2,35  31.6 0.0L0
L 79 115 0497 0,50  1.u47 340 0.0L2
12 79 1as 1. 0.7 2,18 3440 0.0l
13 80 115 2,02 0.97 2.99  32.6 0.047
1 80 415 2,70 1.29  3.99  32.4 0.050
15 80 387 LoL6 2,03 6,49 31.3 0,049
16 80 L1s5 Le53 2,03 6.56 31.0 0.051
17 179 las 5.9 2,48 7.97 31.1 0,05}
18 79 Lo2 6.77 3.06 9.83 31,1 0.057
19 179 375 8.10 3.42  11.51 29.7 0.053
20 79 s 3.50 1,63 5.13 31.8 0.050

21 19 115 2,70 1.29  3.99  32.3 0,051
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TABLE 9

Absorption of CO, with Water

Temp. Water Adr COo Total #CO, CO, absorbed

OF Rate Rate Rate Vol, Inlet gr. COp per
cc/min. C.F.M., C.F.M. C.F.M, 100 grs H,0

81 615 2,60 1,27 3.87 32.8 0.039

81 615 3.34 1.56 L.90 31.8 0.042

17 575 0.55 0,30 0.85  35.4 0,038

77 575 0,93  0.u8 1.l 33.9 0.039

77 570 140  0.72 2.12 34,0 0.043

78 555 1.94 0495 2,89 32,9 0,045

78 5L5 2,60 1,27 3.87 32,8 0.042

78 517 3.34  1.56 Lo90 31.9 0.0LY

78 L9s L.32 2,00 6.32 31.6 0.050

78 k75 5.27 2,13 7.70 31.6 0.054L

78 las 9.58 2,98 12,56 23,7 0,050

75 545 2.6 1,27 3.87 32.8 0.0kLL
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TABLE 10

Absorption of CO, in Water.
Discharge from Nozzle Dgrect to Cotrell.

PO RO B 1 B b bt e e

Water = Adr  CO Total %00,  CO, absorbed
Rate Rate Rage Volume Inlet gr. CO2 per
cc/min.,  C.F.M, C.F.M, C.F.M, 100 grs Hy0
31,0 0.55 0.30 0.85 36.5 0.0L8
21,0 0.78 0.32  1.10 29,3 0.033
21,0 0,98 0,33 1.31 25,1 0.0L8
21.0 1.23 034  1.57 21.6 0.0l1
21.0 1.46  0.35  1.81  19.2 0.036
22,0 1.75 0,37 2,12 17.3 0,03k
22.0 1,99 0,38 2.37 15.9 0.036
23.0 1.77 0.56 2,33 24,1 0.0kl
23,0 1.55  0.76  2.31 33.0 0.057
23,0 1.3L4 0.95 2,29 ld.h 0.072
23.0 1.22 1.08 2,30  U47.0 0,083
23.0 1.12 1.19 2,31  5l.5 0.093
29.0 0.91  1.42 2.33 61,1 0.092
29.0 0.91  1l.L2 2,33 61.1 0.095
29.0 0.67 1,62 2.29  T70.7 0.123
26.5 0.56 0,30 0,86 3L.9 0,042
26,5 0.73 0.30 1.03 29,1 0,025
26.5 0.95 0.32  1.27 25.1 0.02L
29.0 1.18 0433 1.51 21,8 0.023
29.0 1.66  0.35 2,01 17.4 0.018
26.5 1.91 0,36  2.27 15.8 0,015
28,2 1.70 0.57 2,27 25.1 0.025
26.5 1.50 0,74  2.1L 33,5 0.035
26.5 1.18 1,05 2.23  L7.0 0.0l1
26,5 0.86  1.34  2.20 60.9 0,062
26.5 0.66 1.58 2.2L  70.5 0.079
83.0 1.21  0.53 1.7L  30.4 0.040
72.5 2.76 1.34 L.10 32,6 0.060
105,0 0437 0.30 0.67 LL.B 0.051
105.0 0.37 0.30 0.67 Lh.8 0,042
105.0 0.75 0,31 1,06 29,2 0.039
105,0 0,95 0,32 1,27 25,1 0,030
105.,0 1.21 0.3k 1.55 219 0.025
105.0 1,42 0.34 1,76 1933 0,027
105.0 1.66  0.35 2,01  17.4 0.023
105.0 1.91 0436 2,27 15.8 0.023
105.0 1.70  0.55 2.25  2L.h4 0.03L
105.0 1.50 0.7k 2.1 33.5 0.0L5
105.0 1.27 0.93 2,20 L2.2 0.061
105,.0 1.18 1.03 2.21 Lh6.6 0.066
105.0 1.06 1,13 2.19 51.6 0.073
105.0 0.86  1.37 2,23 61, 0.084
105.0 0.66 1.58 2.24  70.5 0.097



Method of Absorption

Packed Column
Atomization

Packed Column
Atomization

Packed Column -
Atomlzation

Packed Column
Atomization

Packed Column
Atomization

Packed Column
Atomization

Packed Column
Atomization

~ Packed Column
Atomization

Packed Column
Atomization

Packed Column
Atomization

Packed Column
Atomization

TABLE 11
Comparison of Absorption

% CO
Inlet

18.6
1743

19.2
19.2

33.1
33.0

5.4
15.9

3Le6
3L.8

16.0
15,9

17.2
17.3

29.2
29.2

21.6
21,6

23.6
2k

25,8
25.1

54

CO Absorbed
GO
ggs HZO

0.011
0.034

0.012
0,036

0,021
0.057

0,008
0.036

0.022
0.051

0.009
0.029

0.010
0.034

0.018
0.039

0.015
0,041

0.013
0.0LL

0.024
0.0k8
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6l.

Discussion of Results

The carbon dioxide-water system was used primarily to evaluate the
design of the equipment and will be fiiscussed chiefly in connection with
this evaluation.

As this system consisted of atomizing & liquid and then collecting
the spray it was essential to have some means of condensing the atomized
liquid. The results shown in Table L may be used to assess the proper
design of a collector and to note some of the characteristics of the
system. In the use of collectors of small diameter the welocity of the
gas mixture was excessive and seemed to desorb some of the absorbed gas,
It was concluded that this constituted two systems, an absorption system
in the nozzle and a desorption system in the collector., The use of a
long collector of larger diameter seemed to produce the same effect.

A collector of rather large diameter also produced what appeared to be

low absorption. This result can be explained as belng due to insufficient
condensation, or the sampling of the larger drops only. The actual
absorption was not being measured as the finer drops, which would contribute
greater surface area, were being swept out of the collector by the

escaping gases,

The validity of the above assumptions were based on visual observa-
tions of the phenomena talking place and on the results as listed., It can
_be noted from Table 4, run 1, that the absorption obtained when the

sample was taken directly from the nozzle was greater than that obtained



65.

with any collector other than the L foot by 2 3/l inch pipe and 8 foot

by 2 3/l inch pipe in a horizontal position. The use of a larger collector
in conjunction with a Cotrell precipitator which condensed the finer

drops gave excellent results but it can be seen by comparing Table 7 and
Table 10 that the Cotrell alone was sufficient to condense the‘fog.

The criteria for design of a suitable collector for an absorption
system using atomization would seem to be one in which the gas was not
allowed to sweep through the liquid containing the absorbed material and
one in which complete condensation took place, A Cotrell precipitator
meets the above requirements and can be used for any non-~combustible
system,

The design and characteristics of the nozzle used was g main item
of study. In the preliminary study the nozzle shown in Figure 1 was used,
The data shown in Tables 7 - 9 was collected using the convertible nozzle,
Figure 2, with different sized liquid orifices. As shown by the results,
apparently the size of the liquid orlfice does not materially affect the
design of the nozzle was long as the relative velocity and liquid-gas
volume ratios remain constant., This result was to be expected as it
follows from the fact that drop size would remain constant under these
conditions and hence surface area of the liquid would remain constant.
The actual nozzle design seems to be immaterial providing the conditions
of high relative velocity and/or high gas-liquid volume ratios are ob-
tained., Thus, given the conditions of a system, a nozzle may be designed
to fit the system.

All other parts of the equipment were auxiliary to the nozzle and
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collector. With the modifications, noted under "Experimental Apparatus"
they proved to be adequate.

Although the primary consideration was the evaluation of the equip=-
ment geveral features of absorption noted are worth mentioning. Paramount
among these is the nearness of approach to recognized equilibrium values
of the solubility of carbon dloxide in water attainable almost instantan—
eously by the method of atomization when pure €Oz wag used as the gas.
For example in run 6 of Table 2 the absorption was 96.,2%¢ of handbook’
va.luesaa, in run 1 of Table 1 it reached 9L.6%4, and in run 2 of Tabls 1
it was 884, When an air-carbon dioxide mixture was used as the atomiz:\;ng
gas it was found that the equilibrium value calculated by using the
partial pressure of carbon dioxide and Henry's Law was exceeded at times,
This discrepancy between calculated values of expected solubility and
actual solubility obtained by absorption had been noted previocusly by
Koch, Stutsman, Hum, and Hutohings.23 Two possible explanations may
be given for this discrepancy if it is recognized that the system used
in deriving the tabulated values of solubility and of Henry's constant
was pure carbon dioxide and water, Thus the change in partial pressures
of carbon dioxide was caused by a change in the total pressure of the
system and not by the addition of an inert gas. From this it follows
that the system used, air-carbon dioxide-water, is actually a different
system. The total pressure of the actual system used was always 760 mm
gad this fact may well have changed the solubility of the carbon dioxide.
Another possibility would be that the supposedly inerts in the air,
nitrogen and oxygen, affected the solubility of the carbon dioxide, It
is true that both oxygen and nitrogen are only very slightly soluble in
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water but even this slight solubility may affect the activity of the
carbon dioxide in this system, Neither of the above reasons are being
stated as the cause of the noted descrepancies but only as possibilities,

Although drop sizes have not been calculated for this system the
result of decrease of drop size on absorption may be noted by reference
to Table 2, The - increase of gas rate, with liquld rate and nozzle
constant, increases the relative velocity and gas-liquid volume ratio
and decreases drop sigze,

In order to judge the effectiveness of an absorption system using
atomization a comparison of the results obtained in this experiment was
made with the results obtained from an experiment using a packed column.zh
Runs were selected from the Tables on page 991 of reference 2l which had
percentage compositions nearly the same as runs in the present experimerit
and the data was converted to grams of carbon dioxide per hundred grams
of water as a basis of comparison., Table 1l was prepared to depict the
compared results,.

The results of the above comparison show that a higher concentration
of gas was consistently obtained from atomization than from the packed
column absorption. The actual difference is even more pronounced than
the tabulated figures indicate as the packed column was operating at
temperatures ranging 10° to 150 Centigrade below those of the present
experiment,

As previously stated the primary reason for using the kerosene-
benzene system was to be able to compare experimental results with
published results in order to judge the effectiveness of atomigation

in an absorption process. This comparison and also several different
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aspects of the process as noted during the experimental work will be
discussed.

The publigshed results selected for the comparison was that presented
by Glmroekihg for a packed column egquivalent to fouxj transfer units.
The data obtained by Glowoekild was shown as a plot of gallons of wash
oll per ton of coal versus percentage recovery of benzol, Glowoekl!s |
curves, as reproduoedﬂin this thesis, are plotted as cubic centimeters
of wash oil per cubic centimeter of benzene, These are the same curves
as the conversion was made using the authors data of 2,21 gallons of
benzol per ton of coal. Although the published results were obtained
using a gas composition of approximately 1% benzol by volume, the state-
ment was made by the author that the composition of the inlet gas did not
‘materially affect the percentage recovery., Figure 7 is a comparison of
data obtained in this experiment using compositions of gas of 1% by
volume berizol or benzene and of CGlowoekl's curve. The experimental data
used for the plot was obtained from Tables 13, 1k, 15, 16, and 20, Only
those runs which were made using a 0,0146 inch liquid orifice and which
had mean drop diameters of less than 190 microns were used., The reasons
for this choice will be given below in the discussion of Figure 8,
It can be noted from Figure 7 that the results obtained by atomization
a:bsorption compare most favorably with those obtained using a packed
column of four transfer units.

The effect of drop size on absorptlion appears to become pronounced
when the mean diameter of the drops are about 190 microns., This is shown
in Figure 8 which is a plot of the data of Table 1l4. The percentage

recovery can be predicted for this system at any point up to the critical



69

NOILVZINOLVY ANV NWNT10D d3MOVd 40 NOSIHVAWNOD —2 3JdN9id
IN3IZN3IE 29 ¥3d 3INISOHIN S0

09l

ovi o¢l 00l

08

09

0 o

4

(6¢) NOILJYOSEY NANT0D d3INOVd X
NOILdH¥0SEY NOILVZINOLY O

0z¢

(004

09

08

00l

%

Ad3A003Y



70

09l

4215 d04dd 40 104444 -8 J4dN9I4

AN3IZN38 20 H3d 3INIASOH3IN S‘I)

ol 0zl 00l 08 09 ov 02
x ol
ﬂ\q
\m
X OO
e
"

b 06l < 3ZIS doH¥A X
b 061 > 3ZI1S doya ©

0¢

ov

09

o8

001

%o

Ad3A033Y



71,
drop size, but beyond that size the results become erratic and unpre-
dictable, This result was as anticipated when the experiment was under—
taken, although the actual critical slize could not be predicted without
experimental results, It was felt that atomigation would produce large
surface area and provide intimate mixing thus making a co-current system
feasible for absorption. It was recognized that this would necessitate
small droplets and the results as explelined above bear out the original
assunptlions,

A discrepancy in the results was found to exist when the absorption
obtained using a 0.0256 inch liquid orifice was compared with that ob=-
tained using a 0,0146 inch orifice., Although, for the same kerosene-
benzene ratio, the droplets were smaller for the larger liquid orifice,
according to Equation 1, the percentage recovery was less, A close
obgervation of the process gave an explanation for this discrepancy. It
was noted that some of the liquid was dripping from the nozzle and was
not being atomized when the larger orifice was uséd. Thls resulted in a
lower. kerosene-benzene ratio in the atomized liquid then that tabulated.
Figure 9 was plotted with data obtained from both orifices and although
the above discrepancy exists it can be noted that the same tendency of
the curve persists for both orifices.

Temperature apparently does not have a&s pronounced an effect on the
atomization absorptlon process as 1t does on the packed column absorption.
No definite conclusions can be drawn on this peint as the temperature
differences used in the present experiment were not large, Nevertheless,
the proposal seems valld as may be seen in Figure 10 which is a plot of
experimental data having a temperature differential of 6° F, and three
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curves presented by Glowoeki. The data obtained in this experiment all
falls very close to the same curve in spite of the temperature difference.

The concentration of benzene in the inlet gas has been reported to
have very little effect on the percentage recovery at any given kerosene~-
benzene ratio in packed column absorption.h9 In the present experiment
it was found that an increase of concentration of benzene in the inlet
gas increased the percentage recovery of benzene., Thls increase was not
particularly large, but as can be noted from Figure 1l it existed.

The concentration of benzene in kerosene is not tabulated in the
tables but can be readily calculated from the percentage recovery, benzene
rate, and kerosene rate. It was found to increase with the decrease in
drop size thus giving further evidence of better absorption by the smaller
droplets. The fact that percentage recovery seems to depend partially
on the kerosene~benzene ratio ﬁay be explained in part by this concentra=-
tion. The rate of transfer of the benzene from the gas to the liquid
has not been determined but it is logical to assume that it depends in
part on the concentration of benzene in the liquid., Another thing that
would haye an effect on the percentage recovery and the rate of transfer
would be the surface area of liquid exposed per unit time per unit volume
of gas. In order to check this factor the total surface area per unit
time was calculated from the data of Table 13 where the volume of gas
per unit time is constant, The area calculated was found to remain -
almost constant as the decrease in liquid rate offset the decrease in
drop size, These two factors, the concentration of the benzene in the
liquid and the fairly constant surface area of liquid exposed per unit

time to unit volume of gas, seem to offer an explanation for higher
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percentage recovery at higher l;erosene—benzene ratios. The concentration
of benzene in the larger liquid drop is less and thus providgs a greater
driving force for benzene to go from the gas into the liquide When the
droplets exceed 190 microns in size these effects seem to diminish and
less efflcient absorption is obtained.

A most important consideration of any process is the cost, not only
of the process tut also of the equipment., The results of this experiment
show that atomization absorption can be ascomplished in a system consist=-
ing simply of an atomizing nozzle and a collector. Since the system is
co-current no large tower or chamber is needed to provide ligquid gas
contact, therefore the cés’o of equipment should be much 16wer for a
commercial absorption system using atomlzation than for those now in use,
The power and operating costs would be the basic criteria for selection
of this system. Pumping power should be low but the necessity of com=
pressing the gas would be important., In 'the present experiment the
pressures of the gas used to atomize the liquid varied, in general, from
one to 15 pounds. In a few cases higher pressures were used, but were
not found to increase the absorption enough to warrant their use, The
pressures used in any system would have to be determined by such factors
as design of the nozzle and capacities to be treated and also the power
requirements for compression would be determined by the same factors,

Another lmportant aspect of cost in commercial absorption system is
the "down time" or time lost due to cleaning or repairing the equipment.
This factor is often large in packed column systems but should be
practically eliminated in an atomization absorption system. The latter

system, could easily be designed with a number of atomizing nozzles that
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could be used for standby purposes, In this way if an operating nozzle

became plugged or inefficient due to wear it could be removed without
stopping the absorption process,

Commercial systems for the recovery of benzene in wash oils are in
use at the present time that consist of series of towsrs which total as
mich as 300 feet in helght, The cost of such a unit, both operating
and initial, is gx'eat. This experiment shows that the same recovery can
be accomplished by atomization absorpiion and the resulis compare most
favorably with those obtained from the packed columns, Also, although
laboratory sized equipment was used, this experiment shows that atomiza=-
tion absorption would require much smeller equipment as it precludes
the use of large towers to hold the packing and provide liquid-gas

contact space.
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Conclusions and Recommendations

The conclusions that may be drawn from this experiment serve
mainly to Jjustify the originsl premises concerning an atomization
absorption process. The work was undertaken with the idea that the
increase of area of liquid thét would be possible by atomization, in a
process which used the gas to be absorbed as the atomiging gas, would
yield an efficient co-current absorption system., This system, as con-
ceived, would conslist simply of atomiz:;.ng nozzles and a collection
system, with necessary auxiliary equipment, thus resulting in a
tremendous decrease in size and weight over present equipment.

From the results obtained in this experiment it can be concluded
that absorption by atomization is feasible and practical and that the
system, being co~current, would require much smaller equipment than is
required for present absorption processes. The need of large towers
for contacting the gas and liquid counter-currently is eliminated as
well as 1s the use of packing, Atomization absorption would need only
atomizing nozzles discharging into a collector and thus the size would
be determined by the size of a collection unit necessary to accommodate
the capacity of the system. A Cotrell precipitator serves as a good
collector for a non-combustible system,

It was originally thought that decrease of drop size would allow
‘greater concentrations of gas to be absorbed in the liquid almost
instantaneously and the results of the experiment verified this. The
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equilibrium conditions of solublility can be very nearly approached simply
by use of the two fluid atomizing nozzle. The time required for this
condition to be attained is so short that it could be said to be
instantaneous as the liquid and gas are travelling at the rate of
about 100 meters per second and are in contact for a distance of only
0.0l meters thus a contact time of 0.0001 seconds.,

In view of the results obtained in this experiment it is recommended
that a larger system be built for the study of atomigzation absorption
with the ultimate goal being commercial use, From the present findings
it is easy to conceive of the tremendous decrease in the size of
commercial equipment that could be realized over packed columns. Other
important considerations from a commercial viewpoint is the fact that
an atomization absorption system could easily be designed to be continuous
and not have to be stopped for cleaning and repair of noszzles, and the

high concentrations of solute in solvent possible,
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