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A THEORETICAL STUDY OF SKEW PLATES

I. INTRODUCTION

1. Objects and Scope of Investigation. = During the past

few years some consideration has Dbeen given by various investi-
gators in this country and abroad to the analysis and design of
skew plates and slabs. In the field of reinforeced concrete these
studies bave been of considerable interest and practical impertance,
especially in the case of highway bridge slabs which cross streans,
rallways, or other highweys below at an oblique angle, It is common
knowledge that modern traffic and speed requirements in the United
States stipulate the construction of meny skew structures. Whereas
bridge slabs usually are provided with integral curbs and rails,
which tend to make the structural belavior more complex, it is
nevertheless of interest to ascertain the manner in which the more
simple slabs perform. Stiructural engineers have been studying the
skew plate simply supported on all four sides, the clamped ckew
plate, and skew slabs simply supported on two sides with two free
edges, in addition to the more practical bridge slabs with integral
curbs mentioned previocusly.

A gkew plate or sleb may be defined as one heving the shape
of a parallelogram which is not & rectangle or a square. Some
engineers designate the rectangular or square plate as one having
zero skew, In any case, by the term degree of skei. in so far as

this investigation is corncerned, there will be meant the angle of



distortion from the rectanguler or square shape. This designation
corresponds in general with the practice and the technical literature
pertaining to other types of skew structures. As in the case of skew
x’:u.rche'.?,,l the skew effect in plates depends upon the ratio of the
lengths of sides as well as on the angle of skew.

It is the purpose of this investigation to study theoreti=-
cally the structural action of skew plates simply supported on all
four sides, subjected to a uniformly distributed lateral load, and a
clamped skew plate similarly loaded. In the course of these studies
various systems of coordimtes were employed to determine whether the
gkew boundsries would lend themselves to treatment more readily by
one sysfem than by the others. It is to be observed, moreover, that
although the results reported herein pertain directly to metal plates
(Poisson's ratio approximetely 0.3), they can be easily modified to
include other materials, such es corc rete in which case Poissonts
ratio may be veried from 0.15 to 0.20.

In this work simply supported skew plates were investi-
gated by the method of finite differences, by trigonometric series
satisfying the plate equation throughout and the boundary conditions
only at certain points, and by a few power-series approaches. A
clamped skew plate was also treated by these methods &nd other pos-
sible lines of attack were pointed out. A preliminary review was
made of solutions for triangular plates with a view to ascertaining

the effect of the demsity of diff erence«equation networks and to

1 .
The Design and Construction of a Skew Arch, S. C. Hollister,
Proc. A.C.I., V. XXIV, 1928, p. 371.



determining some measure of the accuracy to be expected for similar

mesbes in the case of skew plates.

8, Previous Studies of Skew Plates and Slabs. - In recent

years the struc tural behavior of skew plates snd slabs les been in=
vestigated meinly by means of the method of finite differences. The
first publication on skew plates that has come to the writer's atten=
tion is a paper by Cecilia Vittoria Brigatti.1 Results were obtained
by difference equations for uniformly loaded skew plates simply sup~
ported and clamped, the sides being of the same length. The fundas
mental considerations in this work appear to be open to guestion.

Adolf Anzelius? has given some attention to a uniformly
loaded skew plate, simply supported on two opposite sides and free on
the other two., His solution is in the form of series involving
hyperbolic and trigonometric func tions, which yield an infinite
system of linear equations. The method smployed is approximate and
appears to be quite cumbersome. As in other similar approsaches, the
accuracy of the method depends upon the number of coefficlents taken
in the series. Anzelius gave, qualitatively, only twis{l ng moments
for a 45~degree skew slab.

A summery of results obtained by means of difference equem
tions for uniformly loaded skew slabs, in particular, with two op=

posite sides simply supported and the other two edges free, has been

1Applicazione del metodo d1 H. Marcus al calcolo della pisstra
perallelogremmica, Cecilia Vittoria Brigatti, Ricerche di
Ingegneria, Vol. XVI, March-April 1938, No. 2, p. 42.

2{ber die elastische Deformation parzllelogrammformiger Platten,
Adolf Anzelius, Der Bauingenieur, Vol. 20, Sept. 1939, No. 35/36,
D 478,



abstracted from the doctoral work of Helmut Vogt! and promulgated in
a paper® by the same anthor. Vogt has given particular attention to
the arrangement of the reinforcement in bridge slabs., Brief mention
was also made of skew slabs simply supported on four sides and unie

formly loaded.

Studies of skew slabs by means of difference equatione have
also been made during recent months by V. P. Jensen, and his results
are scheduled to sppesr in a University of Illinois Bulletin.®
Uniformly loaded skew slabs simply supported on four sides, and
similarly losded stew slabs simply supported on two opposite edges
and free on the other two sides, were analyzed by use of difference
equations developed in & form readily applicable to networks made up
of lines parallel to the sides, regardless of the degree of skew,

In these slabs the ratio of the length of the long side to that of
the short spen was kept nearly constant and equal to a value of 2.C.
Poisson's ratio was taken to be 0.2, Particular attention was given
by Jensen to a simple span slab=bridge with curbs and a 45~degree
skew, The Newmark method®of obtaining influence surfaces by means

of difference eguations proved to be useful in.these studies., Alsc

1Beitrag zur Berechnung schiefwinkliger Platten, nebst Anwendung
bei der Berechnung und Anordnung der Bewehrung schiefwinkliger
Bruckenbauwerke, Helmut Vogt, Dissertation, Technische Hoch=
schule, Fanover.

®Die Berechnung schiefwinkliger Platten und plattenartiger
Briuckensysteme, Helmut Vogt, Beton und Eisen, 39, No. 17,

SAnalyses of Skew Slabs, V. P. Jensen, Bulletin in Press,
Reinforced Concrete Slabs Investigation conducted in the Engi=
neering Experiment Station of the University of Illinois in
cooperation with the Public Roads Administration of the Federal
Works Agency and the Illinois Division of Highways.



there was considered by Jensen the effectiveness of reinforcement for

various arrangements of the main and transverse steel.

3« Notation. - The following designations were selected

for this dissertation:

X, ¥, 2 rectangular coordinates

r, © polar coordinates

ty, t2, t3 trilinear coordinates

Q1s Q2 93y 9y quadrilinear coordinates

u, v, w displacements in x, y, z directionms,

respectively

a, ¢ horizontal dimensions indicated for each

' solution

intensity of uniformly distributed load

h thickness ¢f plate

E modulus of elasticity of material in
tension and compression

G modulus of elasticity of material in shear

n Poissont's ratio (lateral contraction to

longitudinal elongation)

Eh® s
N —————a flexural rigidity of plate
12(1 = u®)

M4, My bending moments per uwnit of length in
sections perpendicular to x~ and y-axes
respectively; positive directions for
moments, shears and stresses shown in
Figs. 1 and 2.

Mxy twisting moment per unit of length in
sections perpendicular to =x-axis

M., Mg bending moments per uniy of length in

sections perpendicular to radial and
tangential directions; positive when pro-
ducing compression on top of plate



rt

Mlv MS: Ma

6o 6,
Z;y’ 1;2'.2;2

€x €y €5

Ty Ty

ny'szvaz

Cm,n etc.

Mo Ag Ay

twisting moment per unit of length in
sections perpendicular to radial
directions; positive when producing
compression in line parallel to
direction r =t on top of plate

bending moments per unit of length in
sections perpendicular to directions
1, 2, and 3, respectively

normal components of stress in x=
and y=directions, respectively

shearing components of stress; first
subscript indicates the axis to which
plane (in which stress is acting) is
normal, and second subscript indicates
direction of shearing siress

vertical shear per unit of length in
sections normal to x- and y-&xes,
respectively

unit elongations in x- , y» and
z—~directions, respectively

radii of curvatures of middle surface of
plate in planes parallel to the xz= and
yz-planes, respectively

shearing strain components

coefficients in power series

intervals in difference equations networks
indicated for each solution



II. ORDINARY THEORY OF PLATES

4. Assumptions and Limitations. =~ In the ordinary theory of

plates several simplifying assumptions are made, resulting in con-
comitant limitatiors. As a matter of convenience the plate is con~
sidered to be horizontal, homogenecus, elastic, isotropic, uniform in
thickness, and subjected to lateral loads only. In addition o being
uniform, the thickness must be small compared with the lateral
dimensions. The deflections and the energy of deformation in the
medium-thick plate are not affected by the vertical stresses
(tensions, compressions, and shears) as they are in the case of

thick plétes. ;ikbﬁise, the energy due to shortening and stretching
of the middle surface may be neglected, which is tantamount to stat-
ing that the deflections are small relative to the thickness of the
pPlate. This work of deformation, naturally, rmst be considered in
the theory of thin plates. It 1s taken for granted, furthermore,’
that Hooket!s law applies to the horizontal strains. In the theory

of beams, it will be recalled, plane cross~sections before bending
are assumed to remain plape after bending, Similarly, in the ordie
nary theory of plates, straight lines normal to. the middle surface of
the plate before bending remein.straight and normel after bending.
Analogous to the concept of straight«line variaxion of tensile and
compressive stresses in the cross=section of the beam, there follows
in the case'of the plate the postulation that horizontal unite
stresses (tensions, compressions and shears) in verfﬂ:al sections

are distrimted linearly. .






5, Fundemental Differentizl Becuations, -~ The derivation of

the differential cquations for the ordinary thecry of plates in
Certesian coordinates has been given by various writers in the techni-
cal literature,! and it will, therefore, be given briefly only in
appendix form (see Appendix A). It is pertinent, however, to cutline
here the basic equations for later reference.

The bending and twisting moments in the distorted plate

(see Fig. 1) are given by the expressions:

3% “w
M_= =X + b

o

5y2
3% 3%y
MY"‘N<5‘:);E+H§;§) (1)

%W
Uy == (L= W5y

in which w designates the deflection, p 1s Poisson's ratio for
the material, and N, the flexural rigidity, is a function of the
mcdulus of elasticity, E, of the material, the plete thickness, h,
and Poissont's ratio, as is manifested from the equation:

.
. 12(1 = u®) 2

‘Theory of Plates and Shells, S. Timoshenko, 1940, p. 85;
Theory of FElasticity, R. V. Southwell, 1936, p. 228;
Die elastischen Platten, A. Nadai, 1925, p. 18;
Die Theorie elastischer Gewebe und ihre Anwendung auf die
Berechnung biegsamer Platten, H. Marcus, 1932, p. 1, etc.



Lagrange's equation for the flexure of plates produced by

a uniformly distributed lateral load p mey be shown to be

. o 3% 3w .

(3]
axt 3x*dy® 3yt ¥
or
2
v = vavw=§ (3a)
in which
2 3% _»°
& — ——
v 3x® Bya

is Laplace's operator.
From the equations (1) it is clear that the moment sum is

expressible in the form

My + My = = (1 +p) NV°w (4)

The vertical shears are given by the equations:

=w N o
v Naxv“w
(5)
- & 7*
Vy ==X 3y Vw
Maximoum stresses, occurring at the surface, are
§ =28 ¢ x5 T~ a8y (g

x ;E' Ty "R bxmy e

From the shears and the twisting moments it is possible to

deduce the vertical reactions:

10






e wl B% oy 2%
“[&5 (2= W WJ

(n
Ry=vy,+..a.§ﬂ
X
3 3
==-N |8y (2 ) &
dy dx dy

These reactions are defined in the ssme marmmer as the vertical shears.

6., Polar Coordinates. = The differential equations for the

bending of plates may be readily placed into polar fqrm by some

simple trensformations. It will be necessary later tc use the concept
of average curvature at a point of the distorted plate and, con-
sequently, it is introduced here. Curvature in the x2-~ and

yz~planes are clearly

1.3 %

ry Ox 3x ox= (e)
and

L2 ow 2%

ry N dy dy dy= (9)

respectively (see Fig. 2).
It can be shown that at the same point the sum of the
curvatures in any two perpendicular directlons n and t 1is equal

to the sum of equations (8) and (9), or symbolicelly,

[

L,L 2

Ta Ty

1,1 _3% 3%
2L T e (10)

=aaw+
L '

o






where I, and r, are defined in 2 menner similar to r, and Ty
This invariant sum has been designated as the average curvature of the
platets surface at a point.

Transformation from Cartesian to polar coordinates (see

Fig, 3) yields the result

2 ow 3%
W = -—-+ 4 + 1 oW (11)
v ar® r dr r° 2e°

By repetition of this operation it is possible to obtain Lagrangels

plate equaticn in the form

zvzw_ 52 QI.-‘§._+ l—;.a_e-_)(azw+l-aw+l_.i)=§ (12)

Equations (11) and (12) will be employed later in the approximate
trigonometric-series sclution for a skew plate,

From simple transformati on equations, expressions for
moments in polar form may be deduced by stipulating that the x-axis
coincides with the redius r. If t 4s the direction (tangentisl)
perpendicular to the radial direction r, M, and M; are the moments
per unit length acting in sections perpemdicular to r and t,
respectively., These moments and the corresponding twisting moments,

M.¢, may be shown to be

Y o (l@l.-x-l__.a:!
U = N[r2 il Py raaez)

b r d3r r® ae®
32 3 (23)
W 1 w
N‘r"‘“(l"“)n(iarae'?é'e’)
e e (1 = 9 1w
== (1-w ¥ r 36



7. Trilinear Coordimetes. - In the solution of problems

involving triangular shapes, for example, in the torsion of a bar
having an equilateral, triangular section, in the flexure of a plate
kaving the same superficial dimensions and subjected to lateral
loads, and in the buckling of a similar plate due to forces acting
in the plane of the original middle surface, it would not appear to
be particularly fortuitous to attempt a solution by means of tri=
linear coordinates.

As may be seen from Fig. 3(c), elements in the trianguler
plate are located by means of the three coordinates t,, 5, and tg,
measured perpendicularly from the sides AC, AB and BC, respectively.
For the equilateral triangular plate the following equations relate

the trilinear coordinates to the Cartesian:(l)

t r+ . [i
1= 2y
ta=r+-§+‘,—§y (14)

tg=r~-x,

where r 1is the radius of the inscri bed radius.
Leplace’s operator for trilinear coordinates is

3% 9% 3% a2 3% i

= + + - — - - (15)
3t 355 35 4y,  dtdt; | Atgdt,

VB

Repetition of this operation twice gives the plate eguation in tri-

linear form

lNote on Some Two Dimensional Problems of Elasticity Connected
with Plates having Triangular Boundaries, B. Sen, Calcutta
Matheme tical Society Bulletin, Vol. XXVI, 1934, pp. 65~72.

15



2 2 2 t] ) 2
@ v = 3T . 9% L _ _8 __9 .9
3t dtZ  ot% 21,9t ¥t.dt; dt5dt,

(16)

L ad b -

32 © 32  3t2  dtdt; At Aty dtgdt,

(Bew + 3% . % _ 3% 3%w 3%w )= b

N
It shaald be noted, however, that solutions for the problems concern-
ing the equilateral triangular shape have also been obtzined by the
use of Cartesian coordinates.® Moreover, it is to be observed that
there appears to be no particular advantage of the trilinear co-

ordinate approach over the other.

8. Quedrilinear Coordinates. = The expression for average

curvature in a thirty-degree skew plate with equsl sides may be put
into quadrilinear-coordinate form by means of simple transformations.
Reference to Fig. 3(d) enzbles one to relate the quedrilinesr cow
ordinates, messured perpendicularly from the sides to the element in

question, to the Cartesien coordinates by means of the equations

Q; =T =y

g =r+y

(ian
wor-Baed

in which r 1is the radius of the inscribed circle, and q,;, g,
a5, and q, are the coordinates of the element from AB, CD, AC, and

BD, respectively.

1Berechnung der ringsum frel aufliegenden gleichseitigen
Dreiecksplatte, S. Woinowsky~Krieger, Ingenieur-Archiv, IV
Band 1933, pp. 254=262.
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For the curvature in the x~direction there results the

relation
....‘.W. J3% _33 + 3% (18)
ax® 43q3 =2 q35q4 4 6qz

and the corresponding relation for curvature in the y-direction is

given by the equation

2
w

ﬁI\J
o

Lo

3% _ 3%, 3% ., 13% 1
3y2 3qf 3 <23af 4

£

-2 3°w + 3%w - 3% (19)
94,9G; aqlaqa aqlaq4

2%
aqéaq4

aaw + azw
3qz90; 89289,

i

-1
2

The sverage curvature for the equal-sided, thirty-degree

skew plate in guadrilinear form is, therefore,

%, 3%, 3% _ [ 3% , 3%
30339z 99309y
(20)

L % 3% [ 3% | % .
949,905  99p8q, aqlaq4 94294y

Repetition of this operation twice, with § on the right
side, results in the plate egquation in guadrilinear form.

A few expressions 1nvoiving polynomials in gquadrilinear—
coordinate: form were assumed for the deflection function, but it
did not appear possible with these to satisfy simultaneously the
plate equation and the boundary conditlons for the egqual-sided,
thirty-degree skew plates. Since simple polynomiel forms in

Cartesien coordinates do not appear to be satisfactory for expressing



the deflection function, there is litile wonder that the same should
be found t0 be true for polynomials expressed in quadrilinear—
coordinate form.

It is possible to obtain & power series in guadrilinesar
form which would yield an approximate solution of skew plate problems.
Since this procedure would have entalled considerably more work then
a similar series approach in Cartesian form, solutions were not sought
by the method employing quadrilinear coordinates, In thie dissertation
the power-series approach, useful for attacking & wide variety of
plate problems, was dealt with only in Cartesian coordinates and was
applied to a few plate problems which were treated also by other

methods.

9, Difference Eguations. — By means of difference equations

-

it is possible to obtain approximate solutions for many plate problems
which cannot be treated easily by exact methods. Skew plates and slabs

fall into this category. Many writers have applied this method to

1

plate problems, Since finite squares, rectangles and triangles (hexagons)

1In 2ddition to those mentioned previously, the following refer—
ences are given:
Bestemmelse af Spoendinger i Plader ved anvendelse af Difw
ferensligninger, N. S. Nielsen, Kopenhagen, 1920;
Die Theorie elastischer Gewebe und ihre Anwendung auf die
Berechnung biegsamer Platten, H., Marcus, Znd Ed., Julius
Springer, Berlin,,1932; Die elastischen Platten, A. Nadai,
Julius Springer, Berlin, 1925, p. 205; The Calculation of
Flat Plates by the Elastic Web Method, Joseph A. Wise, Proc.
A.C.I., Vol, XXIV, 1928, p. 408} Design of Reinforced Concrete
Slabs, Joseph A. Wise, Proc. A.C.I., Vol. XXV, 1929, p. 712;
Analysis of Plate Exemples by Difference Methods and the Super=
position Principle, D. L. Holl, Journal of Appl. Mech., A.S.M.E.,
Vol. 3%, No. 3, Sept. 1936, p. A-8l; Cantilever Plate with Con~
centrated Edge Load, D. L., Holl, Journal of Appl. Mech.,
A.S.M.E.,, Vol. 4, No. 1, March 1937, p. &~E,
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(see F&g.%) are used in the formation .of difference~equations nete
works, rather than the corresponding infinitesimal elements as=
socizted with differential equations, only epproximate results are
obtained. The approximations become better, the smaller the elements,
An attempt was made in this investigation to ascertain the effect of
the density of the networks for triangular as well as skew plates.

The procedure for the method of finite differences as pre—
sented by H. Marcus has been followed throughout this dissertation.
According to Marcus, the elastic web is said to consist of a network
of elastic strings attached to the edges of the plate in such a way
as to conform with the boundary conditions of the actual plate or
slabs, In ﬁhe case of a plate loaded by a concentrated load, it is
desirous to arrange a network which has a point of intersection at the
position of the load. If the load is uniformly distributed, it is
replaced by a statically eguipollent system of concentrated forces
applied at the intersection points contiguous to the loaded area. The
difference equations relating the deflections of the web usu2lly yield
a system of simultaneouns linear equations in normal form.

From the equations

v = % (32)
and
3% . 22
ﬁ”‘“(g‘;%* -a-;‘%) (21)

there may be deduced the equation of the elastic surface:

‘72 MH=-p (22)

where- M is a function of the moment sum.



The sum of the moments in the x- and y-~directions is

2 2 -
prdpe-ven (L), (23)
ox oy

The deflections, W, of a membrane subjected only to fiber
stresses parallel to the surface, are related to the horizontal com=
ponent, S, of the surface stresses by the differential equation

2 5, 3%

. 24
ox oy (24)

7/ e ]

Manifestly, S must be constant over the entire membrsne because of
conditions of static equilibrium. If § = 1, comparison of equotions
(22) and (24) suggests the theorem:?

"The deflection of a membrane loaded with
loads proportional to those on a given
plate may be considered as the sum of the
principal moments of the actual plate."

Similar to the procedure in the case of beems it is possible to ar-
rive st another theorem:

A second membrane may be loaded with
elastic weights proportional to these
moment sums and, subject to appropriate
boundery conditions, the deflections of
the latter membrane will be proporticnal
to the deflections of the actual plate
under the given loading system.”

= 1)

The el agstic weights in the second theorem are actusally

*Anel ysis of Plate Examples by Difference Methods and the
Superposition Principle, D. L. Holl, Jourmal of Appl. Mech.,
A. S, M. E., Vol. 3, No. 3%, Sept. 1936, p. A=-81l.

J?
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Differentiation of equation (21) results in the equations:?®

2 - 4.

1 = TCRATIe - S &

ox oy B Ay
. v (25)

LT 3%l _ g 3w (1 + ) otw

dy* " dx® [;F g x%y*® T ax*
Likewise, by differentiation of equations (1), there are

deduced the expressions:

) 2
vs ¥ = 3 Mx + §.;M£
X x
4 4
axay | oyt
(26)
32}5{ 3%
v2 My = —=+ ’:y
Y oax dy
4 4
S w 3w 'w
== N[ZI+ (1 + ) +
ay4 . dax®dy® W -6;4-
The designations
3% , . %K
~f9y=—=tu
b= R
a‘?& +, O (
- = 2% o 27)
¢y ayz [ ox® 7
2%
- = (1 =p) M
¢xy o Axdy
result in the identities
VaMx ' o ¢x
Vi =~ ¢, (28)
Vi, =~ by

1Die Theorie clastischer Gewebe, H. Marcus, p. 1l.



The third theorem resulting from this d@iscussion may be
stated as follows: 1

"The membrane carrying loads

- 2%, 2%
#x = S5 b 552

v aya ax®

-

aa‘ﬁ
= (1~p)
¢’W . dxdy

and having 8 = 1, forms a moment
diasgram for §he Mz, My, and M
moments of the elastic plate,®

Bquation (5), giving the shearing forces, mey be put in

the form
3 V& YA
=w N = = e—
Vx dx ¥ ox (29)
d -] M
V. ==X -—-§7 w = —

It is obvious from this discussion that the solution of the

plate problem is manif ested by the eguations

2 o

Y
Ve

"
1
e

1
]

=l

In accordance with the Marcus procedure, the membrane is

con—

sidered to be replaced by an elastic web and the relations between the

elastic plate and the elastic web are to be briefly indicated. The

complete derivation is given by Marcus and Wise, and it will therefore

not be given here.

1Die Theorie elastischer Gewebe, H. Marcus, D. 113

The Calculation of Flat Plates by the Elastic Web Method, Joseph

A, Wise, Proc. Ah.C.I., Vol. XXIV, 1928, p. 416.






The mesh widths of the web are Ay 1in the x-direction and
Ay 1in the y-direction, and the force Fyx is the load contiguous to
the intersection voint k. If Hy and Hy are teken to be the hori-
zontal components of stress in the wires of the elastic web in the =
and y-directions, respectively, and Wy 1is the deflection of the
point k, it is possible to deduce the relation® (see Fig. 5)

H . B -
o K v A =R (30)

Ny

where (A ¥))  1s the second derivative between the W=ordinates of
x

the nodal points, Spaced at intervals Ay, and (A& W) , 1s similarly
defined for the y=direction.
The horizontal components of surfece stress in the membrasne

are related to the horizontal components of stress in the wires of the

web by the defining equations

Hy = AgSy H, = AS. .

The load P, 1is given by the equation

Pk = pkhxky .

Therefore,

(31)

"
i
J
N

Sx ;.2 = S 2 -
& W + X ¥
"2 (a k)x Af; a Wy

S5, then there result

Should H = H, =H and S =85

the equations
1 2 - 1 2 P
— (KT * — (AT, =-E (32)
- My y H

1
Die Theorie elastischer Gewebe, H. Marcus, p. 16.
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and 2 2
Sr;, Bwy % 63
A2 A2 S
¥
which, for Ag= ky = A, give
(A7) + () =P - 2= A (34)
ATl TA T E e et ot e B

This may be put in the form generally used in the case of square

meshes:
- - - A Bgh®
A= (Fy+ T+ v 7)) =By 3= B (35)
The analogy inherent in equations (22) and (33) gives the
relation

M, = 8,7, (36)
where S; 1is the gquantity S referred to the first membrane.
Now, if the elastic loads p, = W, eore zpplied at the inter—
section points of the web and § 1is set equal to S;, the deflections,

¥, of the nodal points are related by the equations?

s R Nl

G A2 =
x Y
& %), (Ae?k)y=*"v"_k=“ M
AZ A S5 5,52

For the deflections of the plate itself, there holds the expression

(37

= hi)

_a.ﬁ-{- .a-_a;“::u
3x*  3y®

and, by analogy, 1t becomes apparent that

1IDie Theorie elastischer Gewebe, H. Marcus, p. 17.
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Ve = % (38)

Equetions similar to (35) may be written for determining the values
Of Zk .
Bending woments and twisting moments in the case of rec-

tangular meshes (see Fig, 4(Db)) are given by the expressions?

Rl

Kz 2
x y
2%, =% =% 2%« Z: = %
i, - slsa[zk = (39)
¥ X
(2, +2,) ~ (3, + 2)
Mxy = (1~ ) 5;8, 2 a9 9 L .
4A_A
Xy

The vertical shearing forces are to be found from the

equations
oW S
V.= 8, —= ' 28 (ﬁ' e W )
(20)
oW S
v :Sl_’_=.—1._(w uﬁ)
J y = v n o

& similar study of the web with an equilateral triangular

(hexagonal) network (see Fige. 4(d)) yields the simple relations?

am -2 (m ot rw tw_+w +w) =D
T 5\ 1 o P g "r' T§
3 1
(41)
- — - - - - - - AR = a2
4%, - & (%, + 3 + B + T+ T, +T,) =T =N .
" 3(1 1% Bt Byt gt B =W o= M 5

From the W= and %-values, as before, it is possible to find the

moment sums W= ®S, and thedeflections w = 5,5; = .

=il

1Die Theorie elastischer Gewebe, H. Marcus, p. 18.

®Die Theorie elastischer Gewebe, H. Marcus, p. 30.






Bending moments in the directions 1, 2, and 3 (see Fig.

6(a)) may be obtained from the following:

(2% - 7, ~ %)

My = (1 = ) 8,5, Oy soc o7 + w8,y
(2B = 93 = 7)
Mae = (1 = ) 5,5 £ }\é L~ s WSy P (42)

(z'z'k =%, = 7,)
Mgk = (1~ ll) 5,52 ar + S W
()\y sec Q)

wherein 20 equals 60 degreés.

Vertical shearing forces are given by the terms

5, (H"E - Wq)

22\y sec O

]

V:Lk

(W - Wy)
ok = 8, —b——42 1)

2K (43)

X
(ﬁr - ?o)

S, _
2)».3, sec o

fi

Vak

The twisting moments result from the expression (see Fig.
4(d)k

‘ (44)
SISB

v [(‘Ep +3g) ~ (3, + ar)] :

= (1 -

From Fig. 6(a) it is clear that. M, = Mge In order to find

My, it is possible to use the simple equation

My = (1 + w) M- My . (23a)

The maximum and minimum bending moments may be shown to be

29



M, + 1 2 2
= X t = - M)
Mpay = —3& 22 ’ (M= M) %+ anl . (45)
Qin

The maximum valuse of the twieting moment is

%J(Mx -u)® v af (46)

To obt:;in the trajectories of the principal moments
(see Fig. 6(b)), use is made of tke eguation

2Mxy

x~ My

ten 20 = (47)






II11. PRELIMINARY STUDY OF TRIANGULAR PLATES

10. Simply Supported Bguilateral, Triangular Plate Sub-

jected to a Uniformly Distributed Load. - A brief preliminary study

of the effect of the density of difference-equations networks on
certain deflections and moments was made for some triangular plates
in order to obtain a rough measure of the reliability to be ex—
pected in the case of skew plates,

Considerable work has already been published on the
simply supported equilaterzal, triangular plate subjected to a uni-
formly distributed load,’? and some of this is to be mentioned
here togetber with additional results that have been found by the
writer.

Difference~equations networks for the equilateral, tri=-
angular plate are shown in Fig. 7. The five-coefficient case was
analyzed by Marcus.® The eight~coefficient network was worked up
by the writer and the maximum deflection was compared with that of
the former case as well as with the exact value given by Woinowsky-
Krieger.® This comparison is shown in Table I.

It is very likely that the twelve-coefficient value would
be still closer to the exact deflection. Clearly, however, the

agreement even in the five~coefficient solution is good.

1Die Theorie elastischer Gewebe, H. Marcus, p. 135.

2Berechnung der ringsum frei aufliegenden gleichseitigen
Dreiecksplatte, S. Woinowsky-Krieger, Ingenieur-Archiv, IV,
Band 1933, p. 265.
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TABLE I
COMPARISON OF MAXIMUM DEFLECTIONS
FOR SIMPLY SUPPORTED EQUILATERAL, TRIANGULAR PLATE

SUBJECTED TO A UKIFORMLY DISTRIBUTED LOAD

Solution Maximam Deflection Approximation
4
5 Coefficients 0.00951 - 2.7 %
g Coefficients 0. 00940 %4_ 1.2 %
Exact 0.00926 P_;i -

A comparison of the maximum values of the bending moments
along the vertical angle-bisector has been made by Woinowsky-Krieger
in the paper previously alluded to, and the agreement ‘between his

values and those of Marcus is remarkably good (see Table II).

TABLE II
COMPARISON OF MAXIMUM AND MINIMUM MOMENTS
ALONG ANGLE~-BISECTOR CF SIMPLY SUPPORTED EQUILATERAL,

TRIANGULAR PLATE SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD

(s = 0.3)
Solution Max. Mx 1 Min. Mx N Max, M 1
(y = =0.1074¢c)” (y = 0,9180c)” (y = 0.2234c)
5 Coefficients 0.0753 pc® -0,01785 pc® 0.0774 pc®
Exact 0.0744 pc® -0,0168 pc? 0.0777 pc?

Digtance measured vertically from center of gravity of plate
(see Fig. 7).






It is evident from this discussion that in the case of
equilateral, triangular plates, subjected to uniformly distributed
loads, ressonably good results are obtainable by the method of
finite differences even for a relatively small number of intersection

points in the network.

11, Simply Supported Thirty-Sixty-Ninety- Degree Trisngular

Flate Subjected to a Uniformly Distributed Load. = Only the deflec=~

tions at certain points of the plate are compared for this case.

From Fig. & it may be seen that two networks, having 3 and 21 nodal
points, were considered. It is to be observed that the 2l-coefficient
analysis requires considerably more time than the other and yet, in

so far as the deflections are concerned, the difference between the
results does not appear to be too great (see Table III), The per-

centage difference is seen to be around 0

TABLE III
COMPARISON OF DEFLECTIONS AT CERTAIN POINTS OF
SIMFLY SUPPORTED THIRTY-SIXTY-NINETY-. DEGREE PLATE

SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD

Deflection
Solution 1? o1 31
g Z 4
3 Costficients  0.001664 2 0.001539 PT‘;. 0. 000879 P—N—
4 4 4
b b b
21 Coefficiemts  0.001566 -  0.001437 - 0.000818 2

1Points in 3-céefficient case.
Corresponding points in 2l=-coefficient solution are &, 10, and
17 (see Fig. 8).






12. Simply Supported Isosceles Right Triangular Plate

Subjected to a Uniformly Distributed Load. - The deflections, for

this case, as obtained by Nadai's approximate method1 and. the
method of finite differences (12 coefficients) are compared in
Table IV (see Fige 9). It is to be observed that near the center
of gravity of the plate (points 4, 6 and 9 in the twelve-coefficient
network) there is good agreement, whereas nearer the boundaries
there is considerable disagreement. Both methods in this com-

parison, however, are known to be approximate.

TABLE IV
COMPARISON OF DEFLECTIONS OBTAINED BY
NADAI'S APPROXIMATION AND DIFFERENCE-EQUATION NETWORK
HAVING 12 COEFFICIENTS FOR UNI-

FORMLY LOADED SIMPLY SUPPORTED ISOSCELES RIGHT TRIANGULAR PLATE

Point Nadai Difference Equations

wi wN
-z -z
P pa
1 0. 000240 0. 000253
2 0. 000392 0. 000401
3 0.000410 0. 000425
4 0.000628 0. 000625
5 0. 000314 0. 000348
6 0.000632 0. 000635
7 0.000170 0.000216
g 0.000444 0. 000471
9 0. 000580 0. 000682
10 0.000052 0. 000082
11 0.000188 0.000222
12 0. 000314 0, 000326

1Die elastische Platten, A. Nadai, 1925, p. 177-



TABLE V
COMPARISON OF DEFLECTIONS AT CERTAIN POINTS
OF UNIFORMLY LOADED SIMPLY SUPPORTED

ISCSCELES RIGHT TRIANGULAR PLATE

Solution Deflection
11 ol
=l =4
2 Coefficients 0.000678 P2_ 0.000518 P2
N N
p'él‘ p'é)*
12 Coefficients 0.000625 7 0.000471 == _
NL NLL
Nadal 0.000628 P& 0.000usy P2
N ¥

]'Points refer to 2-coefficients case.

In Table V the deflections obtained for the two-coefficient and
twelve-coefficient networks are compsred for certain corresponding points
with those obtained by Nadails approximgte method.

It is realized that the preliminary work on triangular plates
discussed here is by no means complete. Only a rough measure of the
effect of network density has been obtained for certain deflections and

moments. In the case of skew plates the investigation of this effect has

been more extensive.



IV, SIMPLY SUPPORTED THIRTY-DEGREE SKEW PLATE WITH EQUAL SIDES

SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD

13, Analysis by Method of Finite Differences. =~ The most

convenient network for the analysis of a 30-degree skew plate by

the difference-squations method is a triangular (hexagonal) arrange-

ment formed by drewing lines parallel to the sides and the shorter
diagonal of the plate (see Figs. 4(d), 10 and 11).

In order to determine the effect of the mesh intervals
on the results for deflections &nd moments in the case of the uni=-
formly loaded simply supported 30-degree skew plate having equal
sides, (length = 2c),three networks of varying density (A = s, 2, ;)
were analyzed by this method.

The difference equations relating the W- and z- values
at:the intersections of the lines forming the networks result in
a system of simultanecus linear equations. The number of these
equations depends upon the number of intersection or nodal points.
In the perticular plate now being considered, it is to be observed
that there is symmetry about both diagonals and, conseguently,
only one quarter of the plate need be analyszed.

If the length of the sides is divided into four parts
(A = %), it is apparent that four nodsl points result (some of them
are re?eated) and, therefore, four simultaneous linear egquations
must be written and four coefficients are to be found. For

A= 2 and A = % there are to be written sixteen and twenty-five

39
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equations, respectively. As it was pointed out previously, the
equations relating the deflections of the membranes invblved in
this method are usually in normal form, and they may be solved
conveniently by the " Doolittle Method ¥ of solving simultaneous
equations.? “

The boundary conditions for the membranes associated
with simply supported plates8 are indicated in Fig. 12. It is
to be noted that the relations given for z in this figure are also
valid for Ww.

Substitution in equations (41) gives the following

equations for the sixteen-coefficient solution:®

x

QApplication of the Theory of Least Squares to the Adjustment

of Triangulation, Oscar S. Adams, Special Publication No. 28,

U. S. Coast and Geodetic Survey, 1915. See also: Analyses of

Skew Slabs, V. P. Jensen, Concrete Slabs Investigation Progress
Report - February 1941, Part I. Another method of substitution

is given in the paper: Der abgekurtzte Gauss'sche Algorithmus )
a186eine einheitliche Grundlage in der Baustatik, Peter Pasternak,
1926.

®Die Theorie elastischer Gewebe, H. Marcus, 1932, p. 37.

®The sixteen—coefficient case for the uniformly loaded, simply
supported 30-degree skew plate is given as a sample illustra-
tion of the procedure associated with the difference-squation
method of solving slab problems.
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These equaiions may be put into the form given in Table
Vi, The last two columns in this table are the terms which are
on the right side of equations (4&) and (49). Hence, it is to be
remembered that after each of these two columns (Table VI) there

are actually an eqgual sign and zero thereafter, since a minus sign

4
}\2
precedes each of the items in the columns headed Eg— and gég— .
1 172

The menner of solving the equations in Table VI is in-
dicated in Table VII, without explanation. As it was pointed out
previously, the " Doolittle Method " was adopted for simultaneous

equations which happended to arise in normal form.?

The details
of the steps are omitted here, but they are given for a brief

solution in Appendix B.

The solution resulting from Table VII yields the follow-

— L d
ing values for w end 2z:

¥, = 0.618631 E%f Wy = 3.214962 9%;
Eg = 1,105896 " ;108 1.646262 "
;3 = 1.461449 4 Wll= 2,870206 M
W, = 1.949388 W, = 3.518332 "
Wg = 1.682575 §i3= 1.220346
%6 = 2,530822 ¢ ;14= 2.529533 #
37 = 1,757660 't Wy g= 30423915 M
Gg = 2.845728 M ;16= 7736860 "

'See paper by Oscar S. Adems, mentioned earlier in this section.



TABLE VIII

UNIFORMLY LOADED SIMFLY SUPPORTED

30~-DEGREE SKEW FLATE HAVING EQUAL SIDES

16 COEFFICIENTS

AL i oue 03

Point Deflection Moment s
wN L M Ms
-3z
pc pA® A= o

1 0. 003168 1.321059 -0, 057366 -0.057366
2 0.007692 1.710194 0.100776 0.345535

3 0.012139 1.801289 0.402802 0. 645765

4 0. 016673 2.209804 0.795747 0.795747

5 0.015429 1.648328 0.776816 0.855873

6 0.024477 2.380634 1.268258 1.286222

7 0.016760 1.276270 1.150963 0.999806

8 0.029341 2.277665 1.671594 1.599924
9 0.033975 2.625404 1.821893 1.821893
10 0.015454 0. 649457 1.436043 1.126153
11 0.030040 1.925130 1.900214 1.771555
12 0. 038688 2,605217 2.146290 20109223
L 13 0. 010620 ~0. 425828 1,402770 1,402770
14 0. 025658 1.328061 1.802272 1.802272
16 0.037521 2. 359530 2.158576 2.158576
16 0,041948 2.707839 2. 289523 2.289523

€0



TABLE VIII (Cont'd)

UNIFORMLY LOADED SIMPLY SUPPORTED

30-DEGREE SKEW PLATE HAVING EQUAL SIDES

16 COEFFICIENTS

61

A= Z H L= 0‘3
Point Moments
M M M 1
X _J X max. min, )
pA® pA® pAR pAZ pA®  Degrees
1’ ~0,057366 0.861586 -0,795830 1.321057 -0,516837 30
2 0.100776 1.3268%88 ~0.787882 1.720206 ~0.282542 26
3 0.402802 1.497022 -0.667139 1.812749 0.087135 2545
4 0.795747 1.738457 ~C.216402 2.209804 0, 324400 30
5 0.776816 1.410532 <=0,457522 1,650204 0.537145 27.5
6 1.268258 2.021811 -0.631856 2.380698  0.909369 29.5
7 1.150963 1.133735 =-0.159615 1.302199 0.982499  -43.5
8 1.671594 2,027852 =-C.391292 2.279652 1.419794 33
9 1.821893 2.357588 ~0.463905 2.625396 1.554056 30
10 1.436043 0.704098 0.275219 1,527981  0.612163% 18
11 1.900214 1.831054 -0.088666 1.960806 1.770462  -34.5
12 2.146290 2.427542 =0.286360 2.605942 1.967889 32
13 1.402770 0.183680 1.085736 2.012292 -0.425842 30
14 1.802272 1.487121 0.273784 1.960338 1.328054 30
15 2,158576 2.292514 -0,116020 2.359507 2.091583 30
16 2.289523 2.568395 ~0.241513 2.707833  2.150086 30
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TABLE IX

UNIFORMLY LOADED SIMPLY SUPPORTED

30-LCEGREE SKEW PLATE HAVING EQUAL SIDES

26 COEFFICIENTS

A= g s uo= 0.3
Point Deflection Moments

ol M M M

— 1 2 3

e p&a pAR pA®
1 0.001722 1.700281 -0, 221443 -0, 221443
3 0.007363 2.538187 0.034146 0. 585009
4 0.010035 2.985662 0.612237 0.612237
5 0. 010107 2.533434 0.584979 0. 865899
6 0.015759 . 249697 1.104122 1.246712
7° 0.012207 2.302882 0. 849406 1.076280
8 0.020637 34419632 1.63%5887 1.723842
9 0, 023636 3797361 1.917582 1.917582
10 0.013334 1.866957 1.333830 1.231947
11 0. 023959 3.231963 2.139650 2. 064339
12 0.029812 3.938352 2.521841 2.494873
13 0. 013204 1.210377 1.798577 1.361199
14 0. 025178 2.800533 2.539352 2. 296099
15 0. 033436 34814297 2.977627 2.867122
16 0.036372 4,160562 3.091562 3.091562
17 0.011499 0. 240260 2.155240 1.540837
18 0.023834 2.112634 2. 730220 2.448525
19 0. 033903 34447857 3.194083 3.060257
20 0. 039503 4.135562 2.,430034 3. 389648
21 0.007657 ~1.376602 2.104669 2.104669
22 0.019456 1.158988 2. 519951 2.519951
23 0.030787 2.859359 3.060090 3.060090
24 0.038739 3.891260 3.437674 34437674
25 0. 041583 4.239162 3.670311 3.570311
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TABLE IX (Cont'd)

USIFORMLY LOADED SIMPLY SUFPORTED

30-~-DEGREE SKEW PLATE HAVING EQUAL SIDES

25 COEFFICIENTS

c -
A= 5 ! p=0,3
Point Moment s
Mx My Mxy - max. Mmin. e
p)»z p?s’é pkg p?\.a pka Degrees
1 ~0.221443 1.059778 =-1.109560 1.700379 ~C.862044 30
2 -0,191353 1.731358 -1.185322 2.296172 <0.756167 25.5
3 0.034146 2.07076% =1.127662 2.571853 -0.466944 24
4 0.612277 2.194524 -1.370290 2.985658 ~0.178897 30
5 0.584979 1.947334¢ =0.962747 2.445514 0.086798 27
6  1.104122 2.696254 -1,214152 3,352044 0.448332  28.5
7 0.849406 1.969639 =0,708175 2.312430 0.506614 26
8 1.635887 2.883688 -~0.979059 3.420739 1.098836 29
9 1.917582 3.170767 -1.085285 3.79735L 1.290992 30
10 1,333830 1.621261 -0.366621 1.871329 1.083762  34.5
11 2.139650 2.817641 -0.674125 3.233201 1.724079  31.5
12 2.521841  3.448240 -0.833389 3.938502 2.031577 30.5
13 1.798577 1.114906 0.087077 1.809493 1.103990 7
14 2.539352 2.551327 =0.291234 2.836634 2.254044  44.5
16  2,977627  3.461646 -0.546849 3.817643 2.621629 33.5
16  3.091562 3.804384 -0.617185 4.160676 2.735270 30
17 2.155240 0.468989 0.750884 2.441134 0.183094 21
18 2.730220 2.130674 0.193926 2.787478 2.073417 16.5
19 3.194083 3.273989 -0.223780 3.461354¢ 3.006718 18.5
20  3.430034 3.873473 -0.430651 4.136128  3.167377 31.5
21  2.104669 -0.216173 2.003902 3.265084 -1.376588 30
22  2.519951 1.612574 0.785748 2.973585 1.158941 30
23  3.060090 2.926268 0.115892 3.126999 2.859358 30
24 3.437674 3.740012 -0.261877 3.891220 3.286466 30
25 3.570311 4.016252 =C.386159 4.239190 3.347372 30
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TABLE X
UNIFORMLY LOADED SIMPLY SUPPORTED
30-DEGREE SKEW PLATE BAVING EQUAL SIDES
4 COEFFICIENTS

)\‘c H }L*’-Oo}

2
Point Deflection Moment s
wi M M M
—_Z 1 -] 3
pc pAR A= e
1 0.018215 0. 5564529 0.198897 0.198397
2 0.03175% 0.570167 0.405769 0.418545
3 0. 028216 0.318395 0.470017 0.470017
4 0.045291 0. 665023 0. 585802 0. 585802
Point Moments
M M M M M
x N Xy max. min. ©
pA? A? pA° pA® m® Degrees
1 0.198897 0.435987 ~0.205323 0.554530 0.080353 30
2 0.405769 0.537883 =0.087539 0.570423 0.359229 28
3 0.470017 0.368937 0.087539 0,520558 0.318397 30
4 0.585802 0.638617 =0.045738 0.665022 0,559395 30
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TABLE XI
COMPARISON OF MOMENTS AND DEFLECTIONS
AT THE CENTER OF THE UNIFORMLY LOADED SIMPLY SUPPORTED

30-DEGREE SKEW PLATE FOR DIFFERENT NETWORKS

Moments 25 Coefficients 16 Coefficients 4 Coefficients
A=l A=C A S
5 2 2
My 4.239162 pA® 2.707839 pA® 0. 665023 pA®
0.169566 pc? 0.169240 pc? 0.166256 pc®
M, 3.570311 pA® 2.289523 pA® 0.585802 pA*
0.142812 pc? 0.143095 pc? 0.146451 pc?
MB 3.570311 pA® 2.289523 pA® 0. 585802 pA®
0.142812 pc?’ 0.143095 pc? 0.146451 pc?
M 3.570311 pA® 2.289523 pA® 0.585802 pA?
0.142812 pc® 0.143095 pc® 0.146451 pc®
M 4.016252 pA® 2.568395 pA> 0.638617 pA~
y 0.160650 pc® 0.160524 pc® 0.159654 pc®
M -0.386159 pA® =0, 241513 pa? -0.045738 pA®
¥ -0.015446 pc? -0.015095 pe? -0,011434 pc?
Deflections
4 4

w

0.041583

4
0.041948 Z-

0.045291 T~
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ph4 4
Z, = 1.969178 ¥ 2;0% 3956232 W2
‘23 = 3,107640 " 'z”ll= 7.690210
24 = 4.2068346 U Elga 9.904091 ®
55 = 3,949917 M 213= 2.718592
;6 = 6,26618¢ " 214= 6.568515 M
37 = 4.290623 Y 9.605294 "
Zg = 7.511200 ™ %, .=10.738709 "

Once all the W- and z- coefficients are found, it is an
easy matter to substitute in the equations of Section: 9'in order
to obtain the deflections and moments. These are indicated for
the l6-coefficient solution in Table VIII. It is necessary to
refer to Figs. -4(d), 6 and 10(a) in the preparation and inter—
pretation of these results.

Similar analyses were made for the uniformly loaded,
simply supported 30-degree skew plate or slab, having equal sides,
by utilizing 4~coefficient and 25-coefficient difference-squation
networks (see Figs. 11(a) and 10(b)).

In Tables IX and X there are summarized the deflections
and moments obtained for the 25~ and 4~ coefficient solutions. In
the preparation and interpretation of these results it is neces~
sary to refer to Figs. 4(d), 6, 10(b) and 11(a).

In Table XI there is indicated a comparison of the mo~

ments and deflections at the center of the equal~sided, uniformly















TABLE XII
COMPARISON OF MOMENTS AND DEFLECTIONS
AT SIMILAR POINTS OF THE UNIFORMLY LOADED SIMFPLY SUPPORTED

30-LEGREE SKEW PLATE FOR TWO NETWORKS

Moments 16 Coefficients 4 Coefficients 16 Coefficients 4 Coefficients

c

c

— = c, N . | —J—
A= I A = A 2 A 3
Point 4 Point 1 Point & Point 2
My 2.209804 pA® 0. 554529 pA® 2.277665 pA® 0.570167 pA®
0.138113 pc? 0.138632 pc® | 0.142354 pc® 0.142542 pc®
M 0.795747 pA® 0.198897 pA® | 1.671594 pAZ® 0.405769 pA®
2 0.049734 pe® 0.049724 pc® | 0.104474 pc? 0.101412 pe?
M 0.795747 pha 0.198897 pAz 1.599924 px 0.418545 px
3 0.049734 pc? 0.049724 pc® 0.099995 pc® 0.104636 pe
M 0.795747 pAz 0.198897 pha 1.671594 p&a 0.405769 paz
X 0.049734 pc? 0.049724 pc® 0.104474 pc® 0.101412 pc®
M 1.738457 pA® 0.435987 pA® 2,027852 pA® 0;523833 pA®
4 0.108653 pc? 0.108997 pe? 0.126741 pc® 0.130971 pc?
M ~0.816402 pA°  =0,205323 px ~0.391292 pxz ~0. 087539 pA
N -0,051025 pc®  =0.051441 pe® | -0,024456 pc®  ~0.021885 pc?
D -
eflections c4 . 4 04 c4
w 0.016673 B~ o.01e215 B | o.0293a1 B o.031755 2
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TABLE XII (Cont'd)
COMPARISON OF MOMENTS AND DEFLECTIONS
AT SIMILAR POINTS OF THE UNIFORMLY LOADED SIMFLY SUPPORTED

30~DEGREE PLATE FOR TWO NETWORKS

Moments 16 Coefficients 4 Coefficients
c [}
A= Z A= Z
Point 14 Point 3
My 1.326061 pA, 0.318395 pA>
0.083004 pc 0.079599 pe
M, 1.802272 pA® 0.470017 pA®
: 0.112642 pc?® 0.117504 pc®
M 1.802272 pA: 0.470017 pk:
3 0.112642 pc 0.117504 pec
M 1.802272 pAs 0.470017 pA>
x 0.112642 pc 0.117504 pe
M 1.486121 pA- 0.368937 pA,
v 0.092882 pe 0.092234 pc
M 0.273784 pA 0.087539 pA%
Xy 0.017112 pec 0.021885 pc
Deflections

w

pc
0.025658 —§—

. pc4
0.028216 —§—



1oaded,simp1y supported 30-degree skew plate for three different

networks, It is seen that the moments Ml , M, M Mx , and My

2 3’
are in fairly good agreement even in the 4~ coefficient case.

The twisting moments, Mxy’ are in fair agreement only
for the 16~ and 25~ coefficient solutions.

The deflections at the center of the plate agree fairly
well again only for the 16~ and 25~ coefficient cases.

In Table XII may be found a comparison of the moments
and deflections at corresponding points of the uniformly loaded,
simply supported 30~degree skew plate for the 16~ and 4~ coefficient
cases. MAgain, the bending moments compare favorably, and the larger
differences occur for the deflections and twisting moments.

Figs. 13 and 14 give the deflections along the diagonals
of the uniformly loaded simply supported 30-degree skew plate.

Fig. 15 represents the contours for this case.

The trajectories of principal moments for the same plate,

similarly loaded, are given in Fig. 16.
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14, Solutions in Trigconometric Series. - Another approxi-

mate method for determining deflections and moments in a plate is one
in which the deflection function is set up in the form of a trigono=
metric series, satisfying the plate equation. This series contains
a set of arbitrary constants which can be solved for in such a manner
as to satisfy the boundary conditions at an arbitrary number of points.
The degree of approximation, naturally, depends upon the number of
points selected on the boundary, but it has been found that in many
cases a relatively small number of points is sufficient to give fairly
reliable results. There is reason to believe that the use of approxi-
mate methods is justified, since the assumptions made in theories are
very seldom entirely true in practice.
i The approximate determination of the stress function for

the prismatic bar in torsion and the deflection function in a
clamped square plate has been indicated by J. Barta.® These problems
had been worked out previously by more exact methods, and the agree=
ment found by Barta was fairly good.

The trigonometric series approach may be used quite readily
in the solution of both simply supported and clamped skew plates.
Both of these cases are treated for a 30-degree skew in this disw
sertation. It is to be noted (see Fig. 17) that a new set of
Cartesian=~coordinate axes is chosen in order to take advantage of
symmetry.

In Fig. 17(c) it is seen that the number of points chosen

along the entire boundary is 12. It is sufficient, therefore, to

lUber die neherungsweise Losung uniger zweidimensionaler
Elastizitatsaufgaben, J. Barta, ZAMM, Vel. 17, No. 3, 1937,
pp. 184-185.



satisfy the boundary conditions at points B, D. F, and G.

Because of symmetry, the assumed deflection function is

taken to be
4
- Pr 2 2
WE =—+ a,+ r®,cos 206 + r%
6ay  © 2 2
+ r‘}‘a,4 cos 49 + r4c4 cos 20 + r6a6 cos 66 (50)

+ r606 cos 46 + r8:_ cos 60 .

8

The boundary conditions for a simply supported edge

(length of side = a) are

w=20 (51)
and
2 2
2 . 9w, oW
= = 5
Vw 5?55'50, (2)
which in polar form is given by
- 3% 3w, 1 3%
VRt T Rt E 0 (e22)

From equations (50) and (52a) it is cl ear that st the

boundary points the following relations must be valid:

5
L]

2 28 2
_____plt+ a. + r cos 28 +r
GAN 0 2 £ 2

+ r4a4 cos 46 + r4c4 cos 28 + r6a6 cos 68 (53)

+ r6c6 cos 46 + rScs cos 686 = 0

2
‘72 w = ﬁ%—-+ d4cp T 12rac4 cos 20
(54)

+ 20r4c6 cos 46 + 28r6c8 cos 66 = 0

It may be easily shown that the assumed deflection function

(Equation 50) satisfies the plate equation

ec



V=2 . (32)

By substituting the values of r and © for points B,
D, F, and G in equations (53) and (54), and allowing a and its
powers t0 equal unity, it is possible to obtain the following eight

simul taneous equations:

1 1 1 1 1
 t S a, t oA + + - + o
(1 ag*gEatgoatipeat T50at 5%

1 1 p
+ & + — + =
2% " 356 %8 " Togaw - ©

2 L -
(2) 4c2+304+406+ 2% " 16 0
. 9
G) mmdemrieat T %
+2‘( gl + 9 _

%z %6 T 286 °8 * 1lozan

(4) 4ca—9c4+§§-c6—---1f?-cs+%=0

(5) ao+§§ag+16c2“aga4+gi—é-g4-£g-6—a6 (88)
“sgz 06“652;6 °3+Té§§74§=°

(6 4c2+%c4-%c6~%c8+%=0

(7) ao"%az"'ice“]}';‘éaz;“%g%*'}ézas
~ 125 % * 3¢ °8 * Touw = ©

(8) 4c2aic4-§c6+%cs+1—z§=o

The solution of these equations yields the values of the

arbitrary constants:



a, = 0.002 705 9329 ¢, = 0.005 787 30°4§

=g =g

ag ==0.003 867 8560 2g = 0.004 115 0544 2

cp =-0.014 880 8677 § cg = ~0,013 889 5211

Hig =Hid o

a, = 0,013 156 5067 'fr cg =-0.006 803 4953

These values, multiplied by the correspouding powers of a
(length of side), may be inserted in equation (EOQ) to give the ap-
proximate solution for the deflection function.

From the resulting expression there may be obtained the

maximum value of deflection by letting r = O:

4
w .. = 0.002 705 9329 £
N

or

= 0.04 6a BC2
Whax = 04043 294 92 5

where a = Zc.
The corresponding value obtained by the method of finite

differences is

4
Woay = 0.041 583 1—’:-1-

which indicates a difference of about 4 per cent, bhased upon the
difference-equation value.
From equations (13) and (50), there may be deduced the

expressions for the radial and tangential moments:

g2



.- pra
M. = N[-lle—N-*' 2ay cos 20 + 2cp + 12r®a, cos 48

+ 12r%, cos 20 + 30r4a6 cos 66 + 30f4c6 cos 48 +.56r6cg cos 66

+

pre 2a. cos 20 + 2c, - 12r®a, cos 46
Bliew = <%= 2 4

- 30r4a6 cos €0 - 10r4c6 cos 48 - .'881'6c8 cos 6@ )]

(56)
3pr?

X (———-— + 28, cos 20 + 2¢cz + 12r®a, cos 40 + lzrbc cos 2@
[u 168 2 2 4 4

=
of

n

)

+

30r48.6 cos 68 + 30r4c6 cos 46 + 56r6cg cos 66)4

E_.r.i e 2 A
16§ — 22z cos 20 + 2cy ~ 12r%ay cos 46

+

]

301‘48.6 cos 68 - 1Or406 cos 40 - 2Sr6c8 cos 69]

For r=0and © =0, at the center of the plate, these

expressions reduce to

M, =~ 2N aa"'ca"'!-'-(cz'."aa)]
. (s7)
M =-2N[p,(a3+c2)-a2+c2]

At the center of the plate these moments are found to be

M, = 0.044 105 2544 pa?
= 0.176 421 0176 pc*
My = 0.033 275 2576 pa?

0.133 101 0304 pe@

which compare fairly well with the corresponding difference-equation

moments






M, = 0,169 566 pc?
M, = 0.133 894 pc® .
The percentage differences based upon the difference-~
eguation values, for these radisl and tangential moments are 4

and 0.6, respectively. The agreement for the deflections and moments

in this case is fairly good.

15. Power—Series Methods. — Several power—series approaches

are {0 be indicated for the approximate solution of plate problems.
In the case of the uniformly loaded, simply supported 30-degree
skew plate having equal sides, it is desirable to set up a set of
Cartesian~-coordinate axes as shown in Fig. 18(a), This enables one
to take advantage of the symmetry prevailing about both axes.

The deflection function may be written in the form

w=§(y +ﬁx+f§a) (v =5 xﬂf-};a) (v +/—x~fga)

oo oo (58)
GoFaZa By, 2o, e AT @

Since this equation involves the product of expressions

for the sides, it is apparent that one of the boundary conditions

w=0 (59)
is already satisfied.

Other conditions to be imposed on equation (58) are that

v4w = % (33)



throughout the entire plate, and that

Viwe=o (60)
along the boundary.

It is ;o be expected that an approximate solution of the
deflection function should result, if the equations (3a) and (60)
are satisfied only at certain points within the plate and certain
other points along the boundary, respectively.

Yrom equations (58) and (60), it is feasible to set up
one of the condition eqaations'in the form

N &R, = ,2(.
> V7w = a¥( 1200’0 +

[ EXe,
o
+

e,

2,0 0,2

+ x° (9600'0 - 5702 0~ 9% 2)

+ y2 (= -

y® (=3eg o = 2Teq o)

x4 (602)
+ X (288 + 18

a? (2 ‘20 % 2)

b} b

4
+ 2

a®

x%y®

a®

o+
(2c2'0 18c0,2)

+ (-60c2,0 + 36c0'2) =0,

if only three terms are taken in the power series. This condition
is to be satisfied for points B, D, and E along the boundary (see

Fig. 18(c)).

Substitution of the values of x and y for these three points

gives the equations

86



&7

, ]
(1) —1200’0 - 900’2 =0, .., .Ww=2

!
(2) ~6eq o = 2.625c2’0 = 3.3T5cq p =0 . . . . W=4

{
(3) 1200,0-302'0"0, ¢ o ¢ a2 w=2

if the side & and its powers are temporarily set equal to unity.
From equations (3a) and (58) there may be deduced the ex-

pression

N ¢ : )
5.‘7 W o= 19200’0 ].20c2’0 72c0'2

X2
+ = (2976c2’0 * 288c0’2) (61)

TR (- :
+ L ( 96c2’0 + 28800’2) =1,

This equation is to be satisfied only for points 1, 2, 4 and
5 (see Figs 18(c)). The resulting equations may be shown to be

[}
(4) 19200'0 - 120‘:2’0 - 72c0,2 =14 ea.ow=4

{
5 + - = e & w e 4
(8) 19200’0 66°z,o 54°o,2 1 W= 2

: !
+ 05 - . = s & & o
(6) 19200’0 61 °s 0 40 500’2 1 w=2

!
- 12 . =] s s o s oW 4
6c0 =

(7) 192¢ 2

= 138c

0,0 2,0

There are, therefore, seven equations in three unknowns
which are to be solved. This may be done by observingAthe following

rule: !

*precise Surveying and Geodesy, M. Merriman, 1908, p. 22.
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" For each of the unknown quantities form
a normal equation by multiplying each
observation equation by the coefficient
of that unknown quantity in that equa~
tion, and also by its weight, and adding
the results. The solution of these nore
mal equations will furnish the most prob—
able values of the unknown quantities.™

The weights, w{ of the equations are given after each
one. They are arbitrarily selected as egual to the number of
times the points occur in the four quadrants.

The solution of the resulting normal equations gives

the following values:

0.0 = 0. 0050008205
s 0 = 0.0001787776
co’ 5 =-0, 0006745046,

From equations (1) in Section 5 there may be obtained

the bending moments, &t the center,

~—

o 4.9
M="N“%mo*g°ao*“““mo+§°m§

X

- 7 (62)
M = =Nl= 3c + ?.c + u (=3¢ + 2 c_ )
y 0,0 g 0,2 0,0 & 2,0

At the center of the plate there result the values (a = 2c)
4
w = 0,045007 E%
M= 0.196316  pc®

K= 0.11074¢  pc?

which are about &, 16, and 17 percent different from the corresponding

difference—equation values.
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These differences may be reduced by satisfying the condi-

tions for a greaiter number of points and by including more terms in

the power series.

Another power-series method is suggested in which the fol-

lowing integrals are minimigzed:

11 = f (Y 2w)? as T min. (63)
S
Iz= ff (V4w-a§)2dxdyg min. (64)

The constants may be determined from the equations

31,

— =0 (68)
¢

mn

3l o

_2 Zo (66)
dc

mn

The same initial form for the deflection function is used

in this method as in the one worked out previously in detail.

Still another power-series approach is suggested.® There

is agsumed the function

f=(y+3x+'§a) (y~ﬁx-‘,§a) (y+/_x~'r3§_a)

(v =J3 = +‘[Z: a) Z Z ¢ (;)m (%)n (672

upon which'there i$ imposed the condition

rhis method arose out of discussions with Dr. N. M. Newnark.,



ff(vafa-%)ad_xdy:min. (68)

From (67) and (68) it is possible to obtain the coefficients

Cun and, subsequently, the function f.

Then the deflection function is assumed to be

w:(y+ﬁx+ga) (y»}x—'/—%—a) (y*}x‘-ga)

m n
G-FxBa2 > & &

upon which we impose the condition

ff (v - £)% @& ¥ min, (70}

This method was modified to satisfy the conditions only

(69)

at a limited number of points. The results, however, were not suf-
ficiently in agreement with those obtained by the other approximate
methods.

It should be observed that considerably more difficulty
is encountered in the use of the power-series approaches suggested
in this dissertation for the case of simply supported edges than is

the case for clamped plates.



V. SIMPLY SUPPORTED THIRTY-DEGREE SKEW PLATE
WITH RATIO OF SIDES TWO-TC-ONE SUBJECTED
T0 A MIIFORMLY DISTRIBUTED LOAD

16, Difference~Equstions Solutions. - In Fig. 11(D)

there is shown the network for the uniformly, simply supported
30-degree skew plate with the lengths of the sides in the ratio
of two-to-one. The same procedure is followed here as in the
plate with equal sides and, consequently, little need be said
for this case.

Table XIII gives the deflections and moments at in-
terior points and the boundary, excepting those at the corner
points,

Pig. 19 shows the contours for this plate.

17. Other Methods. = The trigonometric-series and
power-series approaches may be pursued here also, but the pro-
pitious symmetry conditions that prevail for the equal-sided
plate are not to be found for the plate with unequal sides.

In the trigonometric-series sclution the odd powers
of r and sine terms must also be considered.

The power-series, likewise, will contain other than

even powers of x and y.

\O
1=



TABLE XIII
UNIFORMLY LOADED SIMPLY SUPPORTED
30-DEGREE SKEW PLATE HAVING SIDES
IN THE RATIO OF 2 70 1
11 COEFFICIENTS

7\=;_; p = 0.3

'Foint Deflection Moment s
wN Ml Ma M3
1

jel p}‘z Pkg Pha
1 0.023776 0. 689485 0. 185564 0.144880
2 0.044993 0.703715 0.499752 0.359635
3 0. 043061 0.299954 0.684717 0.471228
4 0.048625 0.836282 0.451520 0.343665
5 0.079347 1.406879 1.357997 1.024324
6 0. 064001 0.635564 0. 838045 0.431601
7 0. 065201 0. 869524 0.667043 0. 392508
8 C. 099300 1.059317 1.048123 0, 550359
9 0.072576 0.788324 0. 849338 0.40859¢
10 0.072776 0. 854491 0.793477 0.402557
11 0.102873 1.100053 1.095586 0. 543417



TABLE XIII (Cont'a)
UNIFORMLY LOADED SIMPLY SUPPORTED
30-DEGREE SKEW PLATE HAVING SIDES

IN THE RATIO OF 2 T0 1

11 COEFFICIENTS

\Xo)
wl

A=2 § pe=0.3
Point Moments
Mx My Mxy max. min. e
phz p?\a jpk2 pka pAz Degrees
1 0.185564 0,494388 -0.314426 0,690271 0.010319 32
2 0.499752 0.542314 =0.198653 0,720823 0.321243 42
3  0.684717 0.286284 0.099231 0.708064 0.262938 13
4 0.451520 0.636124 -C.284411 0.842836 0,244807 36
5 1.357997 0.205799 =-0.220866 1.398884 0.164912 -10.5
6 0.838045 0.432094 =0,117757 0.869730 0.400407 -15
7 0.667043 0.623009 -0.271940 0.917855 0.372197 -42.5
8 1.048123 0.723743 -0.293845 1.221568 0.550299 =-30.5
9 0.8493%3¢ 0.514835 -0.219234 0.957834 0.406338 -26.5
10 0.793477 0.573541 -0.260923 0.966659 0.400359 -33.5
11 1.095556 0,730463 -0.321372 1.282608 0.543410 ~30
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Vi. CLANPED THIRTY-DEGREE SKEV PIATE WITH :
EQUAL SIDES SUBJECTED TO A UNIFORMLY DISTRIBUTED LOAD

18. Analysis by Method of Finite Differences. - In

solving the problem of the clamped plate, it is convenient to
relate the membrane deflections in such a manner that only one
set of simultaneous equations need be solved. This msy be done
in the following way.

Prom the second of equations (U4l) there may be written

the relations (see Pig. U(e))

- 2, - - - - - A®
- = + % +Z +F + % + =% N
4 %) 3 (21 Z, + E zP z(l zr) ' 55
4% -2(z +% +%_+Z +35_+37) =% O
% 3'(ZA B tEgtE *EYE) =W
2. - 2 (% Z 4+ % + 3 z Z =%

ll-zl '3"(21{+ Zg * I, ZT+ zp+ zv) W

4% -Z2(3. +% +%_ +3 +37 +5) =7 O

B - g BB E B T P T =R (71)
- 2- - Ed - - -

- + = "
l&zr 3.(z * I, zG-e- Zy + E, zl) L
4E -2(E +E% +% +% +%_+3) =7

°c 3 U P i k E H ]

- 2 . - - - - -
4% -<(Z +Z +% +%_+2% +2) =% ¥

P 3 © v k 1 H F P

From equations (71) and the first of equations (Ul)
there is found the more convenient form

42 Z2-10(2 + % +% +2% +% + %)
r

+ zZ o+ +E +Z + 2% + %

(B + T+ B+ 2+ 2 + 3

2 (3 + %, + T+ 5+ 3+ F) e
+ ZRJZT+ZU+ZV+ZG' ZH
_ 9 pA

in 515,



TABLE XIV
UNIFORMLY LOADED CLAMPED 30-DEGREE
SKEW PLATE HAVING EQUAL SITES

16 COEFFICIENTS

}\=% s p=0.3

Point Deflection Moments
pC PA® AR pAR

1 0.000440 -0.08428¢ 0.075654 -0,138513%
2 0.001339 -0, 226305 0.209767 -0.156285
3 0. 002410 ~C. 369557 0.201683 -C. 073520
4 0.003919 0.107912 0.488398 ~0. 229509
6 0. 006665 0.277831 0. 720474 -0. 260080
7 0. 003664 ~C. 762506 ~C. 060125 0. 208976
8 0. 008551 0.458741 0.744322 -0.119157
9 0.010656 0.939737 1.699625 -0, 244719
10 0.003240 -0.177311 -0.216376 0.347719
11 0. 008760 0.585401 0.611740 0.0564672
12 0, 012802 0.958844 1.123920 ~C.131579
13 0.001782 -C. 082983 -0, 527702 0.785134
14 0.0C6963 0.524883 0.390833 0.202693
15 0.012224 0,958416 0.989663 ~C, 027060
16 0.014384 1.112409 1.250479 ~0,119571



TABLE XIV (Cont'd)

UNIFORMLY LOADED CLAMPED 30~DEGREE
SKEW PLATE EAVING EQUAL SIDES
16 COEFFICIEM'S

A=E ;o wb=0.7

Point Deflection Moment s
2 e 'l Yy
pe pA® pA* pA?
17 0 -0, 045034 -0.150112 0
18 0 -0.182127 -0, 607089 0
19 0 “o. 3 83836 -1, 279452 0
21 0 ~0,712181 -2.373603 0
22 (¢ =0, 706964 ~2. 356648 0
23 0 -0, 514224 -1, 714081 0
24 ¢} -1.414117 =0, 814189 0. 519550
25 0 ~1,944152 -1.119360 0.714287
26 0 =1.958497 ~1,127620 0. 719557 -
27 C -1.605281 -0.924252 0.589784
28 0 -1, 0565548 ~-0. 607740 0. 387811
29 0 ~0. 500849 -0, 288367 0.184013
30 0 ~0,123842 -0. 071303 0. 045500

98









For this particular clamped plate 16 coefficients were
used (see Fig. 10(g). The procedure related previously gave the
deflections along the disgonals, and these are represented in
Fig. 20, The contours are shown in PFig. 21.

Teble XIV contains the deflections and moments at the
intersection points of the network (see Fig. 10(2)) and at cer-

tain boundary points.
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19. Solutions in Trigonometric Series. — The trigonometric-

series approach, as mentioned previously, applies to the clamped skew
plate as well as to the simply supported case. Again, a plate having
a thirty~degree skew is selecited, the sides being clamped and the
lengths equal to a.

The assumed function for the deflections must satisfy the

plate equation

TV =2 (32)

throughout the entire plate and the boundary conditions, as before are
to be met at an arbitrary number of points (12 in this case).
Boundary conditions at points B, D, F, and G (see Fig.

17(c)), which must be satisfied, are clearly

w =0

oo (73)

Aw

Y- c .

Becaus e of symmetry fhe deflection function may be put in

the form

4
pTr 2 2
W= &+ ag+ r; cos 26 + r<
64N = ®
+ r4a4 cos 46 + r4c4 cos 26 + r6a6 cos 66
(74)
+ r606 cos 4€ + rgas cos 80 + rgcS cos 69

+ rloc1 cos 86 .

0
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Differentiation of equation (74) results in

= t re cos y ] ‘C
ar 16N

+ 4r3au4 cos 40 + 4r3c4 cos 20 + 6r5a6 cos 68
+ 6r5c6 cos 40 + 8r7ag cos &6 + Sr'fcs cos 66

+ 10r9clo cos 86

(75)
=~ = = 2r2a; sin 20 -~ 41*4&4 sin 46

- 2r4c4 sin 26 - 6r636 sin 6@ - 4r6c6 gin 46
- Sr‘gag sin 8@ - 6r8cg sin 6€ - Srloclo sin 8@
By substituting values of r and © for points 3B, D, F

and G (see Fig. 17(c)) and setting & equal to unity, it is feasible

to arrive at the following ten simulianeous equations:

1 1 1
°4342164164646646
+_1'_a,8 l 8 1 clo+-—L=O

256 256 1024 1024N
(2) Qn * 0y *t & 8 +.;|-'c +.6...a +§.—c
2 2 4 574 32 6 32 6
g 8 10
2 g b 2o, — + -2 =0 (76)
126 8 128 8 Blz 10 Togx 7
da, +2 +2_ DR 1 A 1
8 = = g Cc 8, [+] a [

(32 0T LT LT 16747 1647 by 6 gy 6

*81 8l 247 + )

256 %8~ 256 °8 " Toza ©10 ¥ Jozaw



(4)

(5)

(6

(7

(8)

(9)

(10)
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3 3 54 54
8o = Cy =~ =< ay + Cp ¥t —ag=~ —c¢
BT R T R RT 0T 36T 0%
16 87 16 °8 7 512 °10 T Togy

) 2
SRE-LAE LRS- TLAS -DER - L

7 AR - SUNNRE - SR
g192 © " 131072 8 65536 8
243 9p

c + =
2097152 10 16384N

4 2 32 32 1024 1024
27 27 10 . _3p
| ———— - - =0
2096 8~ 2048 “8 ~ oapgs 10T Tooan
3_a +-9-—a. + 2 + 2L 4 (76)
16727 Tog ¢ 256 %4 2048 °6
_ & 243

By - -~ cn =0
16384 8 262142 10

1 1 1 1 1
B ™ = 8y T & Cpy = F=a, w =, + =g
0T g R T BT x4 T 3574 6
1 1 P
- m— (e e By T = O, e + =
126 © Blz © 256 & 2048 10 Tozay
1 3 . 2
- Gy = T T, T ow G, = ar + c
28Tt 47 4% 71676 3376
1 1 5 P
+ — - o—— t — - ————
33 %8~ 16 °8 ¥ B1z °10 T ToEw - O
1 1 1 1 1 1
~%a,+&a -3¢ EI YA S P =0
4. ° g 4 16 4 32 6 g 8 o5 10
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The solution of equations (76) gives the values

ag = 0,000 797 9061 § 2g = -0.016 £88 5960 §
ap = -0,002 205 7884 § cg = =0.049 365 7788 §
ca = =0.C06 507 8196 -g 2y = 0.017 786 7736 §
a, = 0.012 864 7660 T cg = ©0.029 790 9016
¢, = 0.005 736 5111 § ¢ = 0.027 625 4724 &

These values, it must be remembered, are to be multiplied
by appropriate powers of a Dbefore they are inserted in equation,
(74) to give the approximate solution for the deflection functiom.

The maximam deflection for this plate occurs at the center

(r = 0), and its value is found to be
4
Wy = 0:000 797 9061 %‘—
or ‘
pct

Woax = 0.012 766 4976 5 -

The corresponding value obtained by means of difference equations is

24
= pe
Winsx = 0.014 384 ‘-—N-—

which indicates a difference of about 1l per cent based on the latter
values
Referring to equations (13), it is possible to deduce the

following expressions for the radial and tangential moments:



ore
M.=~N [2%; + 2a cos 20 + Zcp + 12r° a, cos 40

+ 12r2c, cos 2@ + 30r4a6 cos 68 + 30r4c6 cos 46

+ 561-68,3 cos 86 + 56r6cg cos 66 + 9Or3clo cos 86

+ W pr2 22, cos 20 + 2cg - 12r®a, cos 46
16N = 4

- 30r4a6 cos 66 - 10r406 cos 46 - 56r6aS cos %6

- 2gph - 8
28r cg COS 68 - S4r ¢ 08 g6 )]

(m

cos 46

2
Mt = - N[p, (jpr + 2ap cos 26 + 2¢, + 12rea4

16N

+ 12r%, cos 28 + 30r4a6 cos 68 + 301'406 cos 46

+ 56r6a8 cos 80 + 56r6c8 cos 68 + 90r8c10 cos SG)

+ P2 2a, cos 20 + 2¢c, =~ 12r2a, cos 46
16N 2 S

- 30ra; cos 68 - 10r%cy cos 46 - 561‘68.8 cos &e

- 6 - g
28r cgy cos 66 = 54r ¢ €08 89] .

For r =0 and © = 0, at the center of the plate, these

expressions reduce to

Mp=- 2N[a2+ cz t (Cz"‘aa)]
(78)
My == 2N b (ag * cz) "‘a:e"'c.e]
which are the same as found for the simply supported plate (constants
are different).

Substitution of the vslues ovbtained for a; and cp

gives

106
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= P
Mr = 0.020 008 4347 pa
= 0.080 033 7388 pc?

and
M, = 0.013 832 2272 pas

0.085 328 9088 pc?
The corresponding difference~equations values are

M, = 0.082 470 .pc?

M, = 0.065 211 pc?® ,

indicating for the radial and tangential moments at the center a
difference of a2bout 3 per cent and 15 per cent, respectively, based
on the difference~equation moments, Cbviously, in the case of the
clamped plate, the boundary conditions should be satisfied for a
greater number of points (for the same degree of approximation) than
in the case of the simply supported skew plate.

For the equal-sided clamped thirty-degree skew plate with
the boundary conditions Dbeing satisfied at only eight points along
the entire boundary (see Fig. 17(b)), the results are naturally less
reliable than those obtained when twelve peints are taken into con-
sideration.

The maximum deflection of the plate obtained by the trigono-
metric-series approach for this case (eight boundary points considered)
is approximately 17 per cent too low based on the difference-equation
result. The difference between the radial and tangential moments as
obtained by the trigonometric and difference~equation methods average

about 20 per cent. Clearly, the degree of approximation in this case

is not satisfactory.



20. Power-Series Methods, = The clamped 30-degree skew

plate having equal sides and Subjected to a uniformly distributed
load may also be analyzed by power—series methods.
The deflection function may be written in the form

(see Fig. 18)

d

+‘/—_-g-_ a) Ay =3 x */:-Z_af(y +y3 x “‘/-_—g—a)a

(v -J3‘x*"—§a>z Z Z ®mn (§)m (g)n :

m=0,2,4s00 0n=0,2,404s

P
v

from which it is apparent that the boundary conditions

are manifestly valid.

Yhe plate equation

viv=§

(79)

(80)

(€1)

(32)

must also be satisfied. By doing this for only a certain number of

interior points, it is possible to arrive at an aprroximate solution

of the problem. It is convenient to select the number of points to

correspond to the number of constants, Chns chosen for the series; in

this manner one obtains as many equations as there are unknowns in the

series. The plate equation may be satisfied for & larger number of

points by normalizing the resulting equations. This process yields

a system of linear equations in normal form (symmetry about the

diagonal) which may easily be solved by the method® mentioned previously.

ipoolittle method.



Six points are now selected within the plate (see Fig,
18(c)) and, correspondingly, six coefficients are taken in the power

series, Obviously, from symmetry, these are CO,O’ 02,0’ 00’2.

04’0, 02'2, 00,4 .
From eguation (79), by a few simple operations, one may

arrive at the differential equation
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Substitution of values of x and y in equations (82)

for the six points gives rise to the following system of equations
- - + 5
(1) 86400’0 138, o 8lc0’2 7.59375¢, 4

+ 2.5312502‘2 + 7.5937500,4 =1

(2) ~378cq,0 * 149.76562502’0 - 11,39062500’2
+ - 5 - .
7-4124765859¢c, o = 4.1824951172¢, o

* 2.4027099609¢cq , = 3

(

ASX|

) 867.37500’0 - 120.1354980469c2’0 + 18.4108886719c0’2
+ 5'8659911155°4,o - 5.761706829002’2

- 17.673521E187cq 4, =

(4) -455.625c0’0 + 172.355712890602’0 + 46.333740234400,2
+ 20.2346663474c, o * 11.9749646187cy 5

* 5.1355376242c0 4 = 1

(8) 918, o= 19-7345Tbc, o + 251.859375¢ o
+ 2.4027099609¢c,, o = 1s.4207763672c2,2

+ 30.404663C859c, 4 =1

(6) 1137.375¢q g = 28.746826171902’0 + 560.2565917969c0,2
+ 0.275207302104’0 - 13.942538738302,2

+ 27.7..10'{1(2)28709c0’4 =
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Solution of this set gives the values

cg, = 2- 6184138565 x 1072
c, ~ = 11.8165756479 x 10°°

c. . = =2.6453532509 x 1072

Q
h

= 20.1633240889 x 10°°
= «10.3051787620 x 1073

¢, , = =1,1029769807 x 1072

The maximum deflection of the plate is found to be

4

. a
W oy = 0.0008284825 EN—

which is about 7.8 per cent below the difference~equation value

4
W ooy = 00000899 P_;‘. .

From equations (1) and (79) it is possible.to determine

the bending moments at the center of the plate

My

0.084732 pc2

My

0.051492 pc® .

These are about 3 and 21 per cent different from the core
responding difference~equations values.
Another power-series method is one which involves the Ritz

method. ! This method, however, will not be given here,

14 Laterally Loaded Clamped Square Plate with Large Deflections,
Stewart Way, Stephen Timoshenko — €0th Anniversary Volume,
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VII. SIMPLY SUPPORTED FORTY-FIVE DEGREE TOTAL SKEW PLATE

2l. Analysis by Method of Finite Differences. - The

network for a U5-degree total skew plate with eight coefficients
is shown in Fig. 22. In this case a square mesh happens %o be
most convenient. The manner of treating this type of problem
has been indicated previously (see Section 9).

Table XV contains the deflections and mome.nts found
for this plate.

Other approximate methods which have been indicated
for previous cases may 2lso be used in the solution of this

problem.
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VIII.  SUMMARY AND CONCLUSIONS

22. Recapitualation. - In this dissertation a ftheore-

tical study of wniformly loaded, simply supported and clamped
skew plates has been made by means of approximate methods. No
exact solution of skew plate problems has, as yet, come to the
attention of the writer. Comparisons were, consequently, made
between approximate methods.

A survey was made of & few systems of coordinates in
order to ascertain their convenience in the treatment of tri-
angular and skew plates., The trilinear and quadrilinear systems
appear to have no particular advantages, except possibly as
regards the question of symmetry. Both seem to require more
effort than the Qartesian-coordinate system in the solution of
the same problems. The trilinear system has been suggested by
an investigator who solved plate problems that have also been
analyzed by Cartesian coordinates. The quadrilinear system
developed in this dissertation, in the case of power-series
methods, would definitely involve more work. The polar-co-
crdinate equations, on the other hand, have been very useful in
the trigonometric-~series solutions.

Fronm & brief preliminary survey of triangular plates
and a more extensive investigation of the uniformly loaded,
simply supported 30-degree skew plate having equal sides, a
measure of the relizbility of difference~squations results for

various densities of networks was obtained. ‘In genersl, it msy
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be stated that a relatively small number of nodal points gives values
which are in .fair agreement with those of more dense and, hence, more
accurate networks. This is especially true in the case of bending
moments. More specifically, in this connection, the following obser-
vations are noteworthy:

(1) In the case of simply supported equilateral, triangular
plates, subjected to uniformly distributed loads, reasonably good re-
sults are obtainable by the method of finite differences even for a
relatively small number (5) of coefficients. The maximum deflection
given by the 5= coefficient and & coefficient solutions varied from
the exact solution by 2.7 per cent and 1.2'per cent, respectively.,

(2) A comparison of deflections at certain points of the
simply supported thirty-sixty-ninety—~ degree plate subjected to a
uniformly distributed load obtained by networks having three znd
twenty-one nodal points showed differemces of about © or 7 per cent.

(3) For the simply supported isosceles right triangular
plate subjected to a uniformly distributed load, the deflections as
obtained by Nadails approximation and a difference-equation network
having twelve coefficients are in fair agreement at points near the
center of gravity of the plate, but nearer the boundaries there is
consideraﬁle disagreement.

(%) A comparison of bending moments and twisting moments
at similar points of the wniformly loaded simply supported thirty-
degree skew plate (equal sides) obtained by the Y- andlb- coefficient
solutions indicated reasonably good agreement. At one pair of corres—
ponding points the results agreedwell within 1 per cent. Dwo other

pairs, for which a comparison was made, showed a maximum difference of
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about 5 per cent for bending moments, whereas the twisting moments
varied by about 10 per cent in one case and by about 22 per cent in
the other. The deflections differed by about 8 or 9 per cent for the
three points investigated.

(5) At the center of the uniformly loaded simply supported
thirty-degree skew plates having equal sides, the bending moments and
deflections resulting from the networks having 25 emd 16 coefficients
agreed well within 1 per cent. The corresponding twisting moments
differed by only 2 per cent.

(6) A similar comparison (see (5)) between these results as
obtained by the 25~ and L4~ coefficient solutions showed good agreement
(within 3 per cent) for the bending moments. The twisting moments and
deflections at the center differed by 19 and 9 per cent, respectively.

The uniformly loaded, simply supporied 30-degree skew plate
with equal sides was analyzed by the trigonometric~series and power-
series methods, as well as by the difference-~equations method.,» and
certain deflections and moments were compared. The following compari-
sons may be enumerated.

(1) The maximum deflection given by the trigonometric-series
method for this case (& coefficients) differs by about 4 per cent from
the difference~equation value. At the center of the plate the radial
and tangential moments differ by U4 per cent and 0.6 per cent, respec-
tively, for these same two methods. The agreement here is seen to be
good.

(2) At the center of the plate, the deflection, w, and the

moments M and M , as obtained by the method using power series (only
X ¥
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three terms and seven points considered),differed by 8, 16, and 17 per
cent, respectively, from the corresponding difference~equation values.
By increasing the number of terms in the series and the number of points
for which the conditions are satisfied, it is possible to increase the
accuracy.

The clamped thirty-degree skew plate with equal sides, sub-
Jected to a uniformly distributed load, was studied by similar methods,
and the following observations were made:

(1) A difference of 11 per cent was found between the maximm
deflections as obtained by trigonometric series (10 coefficients) and
by difference equations. The radial and tangential moments at the cen—
ter differed (for these two methods) by about 3 per cent and 15 per
cent, respectively.

‘(2) The values for the maximum deflection as obtained by
power series (6 coefficients) and difference equations differed by
7.8 per cent., The moments Mx and My differed by 3 and 21 per cent,
respectively.

Moments and deflections obtained by the method of finite
differences were indicated also for the uniformly loaded, simply
supported 30~-degree skew plate with the ratio of sides two-to-one
and for the U5-degree total skew plate similarly loaded and supported.

The structural action of skew plates and slabs in the region
of corners is a matter which was not treated. Singularipies pre—

vailing in these sections probably necessitate the use of more rigor-

ous, mathematical methods,
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X APPENTICES
APPENDIX A

DERIVATION OF DIFFERENTIAL EQUATIONS
OF ELASTIC SURFACE OF PLATE
Yhe derivation of the fundamental diff erential eguations
of the elastic plate is given here only in skeleton form. Reference
to the Notation (Section 3) and Figures 1 and 2 should clarify the

designations in the steps of the derivation.?®
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ipie elastische Platten, A. Nadai, 1925, p. 18.
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The last expression is Lagrange's plate equation.
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APFPENDIX B

SOLUTION OF SIMULTANECUS EGUATIONS

The solution of simultaneous equations may be undertaken
in the mannerl used by most engineers or, if the equations can con-
veniently be put into normal form, the " Doolittle Method " is very
satisfactory, especially in the case of a large number of unknowns,

In order to illustrate the " Doolittle Method '"'with an
a&{equate explanation, the brief problem associated with the 4-
coefficient solution of the uniformly lcaded, simply supported plate
having equal sides will now be worked out.

The normal form relating the deflections of the first

membrane for this cese may be written as follows:

- - _ pka

6w - 2w, = 1.6 5T

=

2wy 10w2 2w3 Zw4 = 3 =
1 (e)

) i - P;\z

- 2W_+6W_ -~ W = 1,5 =——

2 3 4 Sl

- ) + = . -

2 Wy w3 3 Wy 75 Sl

In equations (a) it is apparent that symmetry prevails
about the diagonal terms on the left—hand side of the equations.

It may be shown® that, for this reason, only the diagonal terms and

lstructural Theory, Sutherland and Bowmen, Second Edit.,
pp. 282283,

®Adjustment of Observations, Wright and Heyford, Chapt. I¥,
Pp. 93-148.



those above and to the right need be considered.

SOLUTION OF DIFFERENCE EQUATICKS

A
1 2 3 4 EE—
B 1
(1) 6 -2 -1.5 2.5
(2) (-)w; 0.333333 0.250000 =0, 416667
(3) 10 -2 -2 -3 3
(4) -0, 666667 -0.500000 -1.166667
(5) 9-332}33 -2 -2 -3.500000 1.83%3333
(6) (=%, 0.214286 0.214286 0.375000 =0,196428
(77 6 -1 -1.5 345
(8) ~0,428572 =-0,428572 ~0,750000 ~1.607144
(9) 5.571428 -1.428572 =-2.250000 1.892856
(10) (-».)W3 0.256410 0.403846 ~0.339744
(11) 3 -0.75 2.25
(15) =0.366300 =0.57693%2 =0.943223
(13) -0.428572 -0.750000 -1.178572
(14) 2.205128 -2.076923  0.128205
(18) (—)w4 0.941861 ~0.058139
2163 _ 7, = 0.941861
17 (‘>f3 0.241503  0,403846
(18) - 7?2= " 0.645349
(19) (=)w, 0.134289 0,201828  0.375000
(20) | W, = 0.715117
(21) (“)il 0.238372 0. 250000
(22) W, = 0.488372

The first step in this method is to write the first eque~-

tion, with the sum of the terms placed in the check or summation

column.

Next, divide the entire line by the first number and change
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signs. Check this equation by adding the terms in the second line.
This addition should give nearly the same value as the division
gave, Underline this second line, since it is essentially the
solution of the first coefficlent in terms of the others.

Then, insert the second of equations (a), omitting the term

s

to the left of the diagoral. The next step consists of multiplying
the gquantity 0.333333% and the other terms to the right in the
second line by the factor = 2 which is above the 10 in line (3).
Then,add lines (3) and (4) to obtain line (5). Again, divide by
the first term in the last line mentioned and change signs. This
equation is the solution of the second unknown in terms of the
quantities to the right. Meanwhile, the check column is continued
as the work progresses. It is to be observed that several plaas
of checking may be worked out, but these will not be enumerated
heres

It should be noted that lines (12) and (13) are both
required to be written. Dine (12) is obtained by multiplying
every number to the right of and including number O, 256510 in
line (10) by the factor ~1.428572, Likewise line (13) results
from the multiplication of every number to the right of and in-
cluding 0.214286 in line (6) by the factor =2 directly above the
0.214286. If lines (1) and (2) were to have numbers in them also
in the column 4, & similar operation would be performed. This
process is continued until the last unkmnown, ﬁ4, is found.

Finally, the known values are substituted successively
back in the underscored lines to give the other unknowns, These

values are t0 be substituted in the original equations to obtain



& check.
A similar procedure is followed in comnection with the
z- equations.
Considerable time is saved by this method, the saving being

increased as the number of unknowns becomes greater.
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