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Abstract

Since their dawn, database management systems have saturated virtually every 

area of academic and commercial domains They have proven to be as indispensable 

as the paper and pencil. Yet while relational database management systems 
(RDBMSs) have been made so readily available, most are still quite primitive with 
regard to semantic abstraction. It may be argued that these RDBMSs are not much 

more than mere vessels of information having little knowledge of the semantics—the 

underlying, meaningful aspects—which apply to the data they represent. Few systems 

allow tables to “know” about other tables around them, and almost no systems allow 

knowledge of tables governed by different types of RDBMSs. The notion of data 
semantics spans a single record’s relation to itself (cross-field semantics), a record’s 
relation to other records in the same table (cross-record semantics), a record’s relation 

to records of other tables (cross-table semantics), and even a record’s relation to 
records of other tables governed by other RDBMSs (cross-platform semantics). It 

suggests the concept of inferring certain data-manipulative actions based on other 

committal actions performed on a given database.
This dissertation proposes a knowledge-/rule-based approach to inject high- 

level semantics into today’s various RDBMSs The system has been dubbed the 
Semantic Database Management System (SDBMS) and uses rule-bases associated 

with each database under its control to represent semantic repercussions relative to 

data-manipulations (inserts, updates, deletes, and the like) The databases governed by 
the SDBMS may be of potentially differing RDBMSs A semantic engine (SE) is used 

to control inferences within the rule-bases and translate manipulative consequents to 
respective RDBMS engines Users, developers, and programs alike access data 

governed by the SDBMS through a semantic interface (SI)
The goal of this work is to provide centralized access of many forms of data 

through a universal medium, making primitive database engines more powerful and 

powerful database engines more flexible It provides a means for communication 
between RDBMSs and promotes more “intelligent” systems Most importantly it 

lessens the burden previously posed on producing a myriad of ad hoc customized 

programs subsequently requiring linkage to RDBMSs to inject the otherwise lacking 

semantic knowledge.
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1 .0 INTRODUCTION AND BACKGROUND

The use of database systems has become as common as the paper and pencil in 

today’s business and scientific communities. Database technology has literally worked 

its way into every facet of commercial development. Yet while database systems, 

especially large ones, have proven themselves extremely useful, their creation remains 

somewhat tedious. To combat the problem of designing these large systems 

researchers have derived several semantic modeling paradigms. These paradigms 

allow the database creator to produce a detailed model of the domain which the 

databases will represent

Often, however, the power of these models does not extend much beyond the 

design phase of large database systems As the systems pass from design to 

implementation much of the semantic information is lost due to the implementation 

platform’s inability to integrate the information. Figure 1 depicts the standard 

evolution of a large database system

in phase one of this cycle a requirements analysis is conducted which sketches 

the domain which the database system is meant to represent This involves analyzing 

the system as a whole and determining what parameters dictate the formation of the 

system Phase two traditionally involves some form of modeling—usually a semantic 

model-which is generated to define the global scope of such a system This phase 

solidifies work done in the requirements analysis, outlining the entities, objects, 

classes, and relationships required to represent the system’s domain in phase three 

the entities, objects, classes, and relationships outlined in phase two are translated 

(mapped) to implementation platform representations This is most often necessary 

since the implementation platform is not entirely capable of representing all 

information within the semantic model of phase two and hence a one-to-one mapping 
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of representations is not possible It is at this time that much of the useful semantic 

information is lost. Phase four occurs mainly in relational database system 

implementations and involves “cleaning up" the relations derived in phase three This 

encompasses such aspects as the removal of redundant relations, reduction to more 

efficient relations, etc The design/implementation cycle is now complete. Often, 

however, this resulting implementation is not powerful enough to fully administrate its 

use among multitudes of non-expert end users. Therefore, a fifth phase is commonly 

required to combat this problem The fifth phase involves the creation of a customized 

user-interface which replaces semantic information lost during the mapping of phase 

three This is an arduous process requiring low-level codification of the lost semantic 

information, information which was implicitly included in semantic design, but must 

now be explicitly integrated into the final implementation Hence, integration of 

semantic database information is performed twice with today’s technology—once 

during design and once again in implementation.

The thrust of this dissertation is, therefore, to develop a formal system for 

integrating high-level semantics into the design and implementation of large database 

systems. Such a system shall be deemed the semantic engine (SE) and shall be 

accessed by users and programs alike via a semantic interface (SI) Semantic 

information associated with databases shall be incorporated immediately during the 

design and implementation phases and continue to evolve throughout the system’s life 

span Figure 2 depicts how such a semantic system would be integrated as a front end 

to today’s database management systems Users, designers, database administrators, 

and programs communicate with the SE through the SI The SE accepts special 

semantic commands from the SI which are translated into the appropriate database 

engine commands which, in turn, physically access the data in this manner 

universality of representation and access is achieved as the SE may be generically
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programmed with knowledge of how to communicate with multiple database engines. 

The balance of this dissertation details the power required by such a semantic system 

and how it can be integrated into today’s database technologies.

2 .0 SEMANTIC MODELING AND THE ENTITY/RELATIONSHIP MODEL

“The motivation for [semantic modeling] research.. [is] as follows: Database 

systems generally—relational or otherwise—really have only a very limited 
understanding of what the data in the database means; they typically 

“understand” certain simple atomic data values, and perhaps certain many-to- 

one relationships among those values, but very little else...”

— Date, 1990

It may be said that existing relational database management systems 

(RDBMSs) are merely an amalgamation of data types, data values, fields, and records, 

and that these systems do not generally “understand” what meaningful constraints exist 

between them, nor do they “understand” how they function together to form a 

cohesive representation of a particular domain It may be unfair, however, to state 

that existing DBMSs are totally lacking in semantic aspects The use of domains, 

primary keys, and foreign keys indeed brush the edge of “semantics,” yet they 

represent a mere fraction of the true semantics which may apply to the DBMS as a 

whole

There has been a continuing effort to integrate more semantics into database 

paradigms To date, however, semantic integration has mainly profited the design 

phase of database systems, leaving much of the implementation aspects to customized 

program interfaces. Researchers have proposed several different “semantic modeling” 

techniques which may be adhered to during the design phase of a given database 
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system These modeling approaches inject a certain degree of data semantics by 

splitting representations into entities, types, properties, identities, and relationships. 

Using these generic semantic concepts one may maintain that the world is made up of 

entities which represent conceptual and/or physical objects (eg, Daniel, container-25, 

equation-45, etc ) Each entity has associated with it one or more properties 

describing the characteristics, attributes, etc, commonly associated with the given 

object (e g , hair color, volume, number of parameters, etc ) Types are used to define 

the various classifications of entities (e g , a person, a storage container, a 

mathematical equation, etc.). A type defines which properties an entity has when 

belonging to that type. Every entity has an identity which uniquely differentiates that 

entity from other entities of the same type (eg, Dan’s full name: “Daniel John Smith,” 

etc ) The semantic notion of identity is similar to the relational concept of the primary 

key—as an identity uniquely distinguishes an entity, a key uniquely identifies a record 

Finally, relationships describe the interactions between entities—how one entity relates 

to another

In 1976, Chen formalized these generic terms into the Entity/Relationship 

(E/R) Model In this model entities are split into two categories: weak entities and 

regular entities Weak entities are those whose existence is dependent on the existence 

of another entity Regular entities are those which are not weak (i e , those entities 

which exist independent of any other entities). Properties were divided into several 

categories: simple, composite (formed by the concatenation of two or more 

properties), key (a uniquely-identifying property), single-/multi-valued, missing 

(properties representing “unknown” or “not applicable” aspects), and base or derived 

(those which derive their values from some calculation of other property values). Two 

categories represent possible relationships: type relationships (those which form 

relationships between types/classifications—e.g., a human “is a” mammal) and token 
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relationships (those relationships which simply link one entity to another entity—e g , 

Dan “loves” Sue). Types, in turn, are made up of two classifications: subtypes and 

supertypes. Subtypes are said to inherit the properties from their supertypes 

Generalizations are formed by working one’s way from subtype to supertype, while 

specializations are derived from supertype to subtype.

Using these terms one may depict E/R Diagrams which map the various 

features of the E/R Model onto a particular domain representation. Using this 

diagram, one may then translate the design to the implementation platform by using 

some of the following rules of thumb

A Transformation of entity types

1 . each entity type is a base-relationship

2 the key of this base-relationship is the key property of the entity 

type

3 all other properties are mapped to simple fields in the base 

relationship

B Transformation of binary relationships

1. mandatory membership classes

a if an entity type E2 is a mandatory member of a many-to-one 

relationship with entity Ei, then the relation scheme for E2 

contains the prime attributes of E,

b a key posted to another relation is called a foreign key

2. optional membership classes

a if entity type E2 is an optional member of a many-to-one 

relationship with entity type E^ then the relationship is 

usually represented by a separate relation scheme 

containing the prime attributes of E, and E2, along with any 

attributes of the relation

3 many-to-many binary relationships

a always represented by a separate relation consisting of 

prime attributes of each of the participating entities, along 

with any attributes of the relation itself

C. Transformation of n-ary relationships
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1, represented by a separate relation consisting of prime attributes 

of each of the n participating entities, along with any attributes 

of the relation

D Transformation of subtypes

1, represented by a separate relation containing the prime 

attributes of the supertype, along with any additional attributes 

of the relation

It is during this mapping stage from the design to the implementation where 

much of the useful semantic aspects are lost The diagram is in essence broken into its 

constituent parts, losing the global cohesion of the system as a whole (i e, one is left 

with many independent tables—each of which having a limited “understanding” of the 

tables around them). Thus, in the mapping to an implementation database 

management system one loses semantic abstraction. Beyond this most notable 

problem it can be stated that while the E/R Model promotes a solid ground for the 

semantics behind the structure of the database system—superficial semantics—it does 

not, however, prove to be as useful in describing what the data actually represents. 

The modeling scheme seems to be deficient in several areas. Among these 

deficiencies a lack of context-sensitive restriction of values (e.g., a T; F,—the value of 

field Fi of table T|— may only contain values a, ft, or y if T; F2 is equal to 5), 

constrained field-value acquisitions, inferable field values (e g , the value of Ti F2 may 

be inferable from the combined values of T; F; and T2.F4), semantic “key” violations 

(e g , the key for table T; may not be valid given other field values of the same record 

or its relationship with records from other tables—i.e., the key may be syntactically 

valid, but semantically invalid), etc A more detailed discussion of these semantic 

requirements missing from existing modeling schemes is left to the subsequent 

chapters of this dissertation
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Given the drawbacks of existing semantic modeling approaches—profitability 

only in the design phase, degradation of semantics in implementation, requirement for 

reintegration of semantics through customized program front-ends, the inherent lack 

of complex semantic representations—it is clear that a viable solution to the integration 

of complex data semantics must inject new, more powerful semantic aspects, while at 

the same time allowing a seamless translation to existing database platforms without 

the loss of semantic information.

Other semantic modeling approaches have been presented over the years, but 

most bear much resemblance to the E/R Model and shall, therefore, be dispensed with 

The advent of object-oriented database management systems (ODBMSs) has re­

injected much of the semantic aspects which were traditionally lost by their relational 

counterparts. However, the codification of object-oriented databases remains 

somewhat tedious, often relying on heavily trained “object engineers” to write the 

complex methods required to embed semantic aspects Further, although the use of 

ODBMSs is growing in industry, it still has yet to prove itself as a domineering force 

in data management. RDBMSs currently dominate the global information pool and it 

is this dissertation’s focus to present a means for complex semantic support for these 

systems, while at the same time centralizing many different types of RDBMSs with a 

universal data interface

2.1 WHAT EXACTLY IS MEANT BY “DATABASE SEMANTICS?”

To more clearly understand the terminology of “database semantics” let us 

examine the model posed in figure 7 This design represents a very simplistic 

production plant environment were raw materials are used to create products 
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Chemicals (the raw materials) are brought into a plant site and placed in a holding area 

until they are processed in a reactor to produce a particular product in this example 

the state of the production plant may be represented by a handful of relational 

databases. A chemical database is used to store the dictionary of chemicals utilized by 

the plant A holding database is used to keep track of which of those chemicals are 

currently available at the plant site and what their quantities are. A products database 

is required to hold the dictionary of products which may be produced by the plant’s 

reactors. Since the production of a given product may require particular quantities of 

more than one chemical, a recipe database is integrated to describe which chemicals 

and quantities thereof are required to produce a given product Finally, an in-process 

database is required to keep track of which products will be in-process at what times 

and in which reactors (an in-process chemical database similarly keeps track of which 

chemicals will be “in-process” to produce a given “in-process” product).

Having created these databases, we are confronted with the reality that the 

databases by themselves are not much more than mere vessels of information But 

what of the underlying semantic issues of this representation scheme? Indeed, what 

does one mean by “semantics" in this context9 Consider the following “semantic” 

assertions about the fictitious production plant

a “The ID of a new chemical record should be automatically assigned by the 

system—never by the user."

b. “Once a chemical ID is assigned it may never change ”

c “The ID field of a new chemical record should not be assigned until the 

chemical name is known.”

d “Explosive-type chemicals are volatile by nature ”

e. “A product which is assigned to the in-process table must exist in the 

products database ”
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f “An in-process record which references a product that requires an 

authorization number must itself identify a valid authorization number.”

g “Product IDs referenced in the in-process table must exist in the products 

table ”

h “The value of the special handling field of a chemical record must be either 

Y’ or‘N’”

i. “Volatile chemicals require special handling.”

j. “Volatile products require authorization numbers.”

k “The inclusion of one or more volatile chemicals in a product’s recipe 

makes that product volatile ”

1. “Should insufficient quantity of a given chemical be present in the holding 

area, any product which requires that chemical based on its recipe may not 

be produced (i e , may not be assigned to the in-process list) ”

m

Admittedly a few of the assertions above may be implicitly handled by the 

database management system chosen for implementation However, most of the above 

items cannot be implicitly handled by existing RDBMSs. Further, one should plainly 

see that most of these semantic assertions do not lend themselves to the E/R Model as 

described above These types of semantics proceed far beyond the notion of entities, 

properties, and types. As a result semantic issues such as these must at present be 

handled by customized front-end applications which control the semantics of the data 

before they reach their respective database destinations Figure 8 depicts this scheme 

of front-end semantic integration Procedural semantics must be codified in a 

particular programming language for every application This code must then be cloned 

and included into each application which need make use of it Changing one set of 

semantics may require changes to program code in multiple applications. As one can 
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readily see semantic integration in this manner is highly decentralized, unconnected, 

and unorganized. Indeed, a full overview of semantics encompassing the entire system 

may not be possible due to the hodgepodge sprinkling of semantics between multiple 

applications One must take all program code from all applications into account when 

referencing system-wide semantics. For every new application developed to be 

integrated with the databases, program code representing semantic aspects must first 

be identified in other applications and reproduced in the new application—a nightmare 

for both designer and developer alike. These problems are further compounded when 

a heterogeneous system is developed as depicted in figure 9 Multiple database 

engines and multiple programming environments can cause severe organizational 

problems Imagine not only reproducing procedural code intended to control 

semantics, but having to then translate it from one programming language to another 

A simple, problematic pattern results the larger such a system becomes, the more 

confusing and unwieldy.

3.0 LOGICAL RULE-BASED SEMANTICS

Research into several semantic modeling methodologies has led this researcher 

to settle on a logic/rule-based representation. By incorporating rule-based technology 

into its representation scheme database systems can be closely coupled with the power 

of artificial intelligence/expert systems instead of the traditional database 

management system with an expert system front-end, this research strives to merge the 

two into one autonomous unit, eliminating the often tedious task of codifying complex 

linkages between the two The expert system portion of this marriage would inject 

semantic control into an otherwise lacking database management system
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This representation must not be confused with other existing forms of database 

representation schemes such as relational algebra, relational calculus, or SQL Each of 

these existing representations boast pros (and cons) of their own, yet all seem to share 

a mutual absence of higher level abstraction as was mentioned in the preceding 

chapter—that of semantic abstraction

Research into the merging of rule-base and database technologies is currently 

dominated by the object-oriented community Systems such as POSTGRES 

(Stonebraker, et al, 1991] and STARBURST [Lohman, et al, 1991] have attempted to 

integrate rule-bases with various object-oriented data management techniques to 

promote the concept of “active” databases—databases which allow the invocation of 

rules to perform automated processing in response to specific changes made to the 

data, regardless of what entity made those changes. Take for example the following 

POSTGRES and STARBURST rule examples:

POSTGRES:

ON event (TO) object WHERE

POSTQUEL-qualification

THEN DO [instead]

POSTQUEL-command(s)

STARBURST:

CREATE RULE non_empty_dept ON Departments 

WHEN DELETED 

IF SELECT *

FROM Employees

WHERE deptno IN

(SELECT dno

FROM dd AS (DELETED()))’, 

THEN 'SELECT d dno, 'non-empty'

FROM d as (DELETED())

WHERE d.dno IN 

(SELECT deptno

12



FROM Employees)’, 

ROLLBACK WORK );

Rule systems such as these use trigger mechanisms to control rule processing 

The POSTGRES syntax listed above allows users to define rules which trigger on 

specific events (e g , insert, update, retrieve, etc ) The majority of these systems, 

however, embed the inference engines required for rule processing deep within the 

database management system itself As a result, only databases explicitly dedicated to 

those systems may reap the benefits of rule-based semantics (i e , semantic integration 

is homogeneous with respect to POSTGRES-compatible implementations). Little 

research has thus far been dedicated to relational systems—those systems which 

continue to dominate academic and commercial domains. STARBURST does share a 

fundamental link with the research proposed herein as it attempts to extend the 

existing relational model to include objects and rules. However, STARBURST’s rules 

are beneficial only to SQL-compatible RDBMSs (i.e, STARBURST may be 

considered heterogeneous only among SQL-based implementations). Single record- 

manipulative database systems which are not SQL-compatible may not benefit from 

this set-based, query extension approach Further, the declaration of rules in this 

manner may be very difficult for those who understand the “semantics” of the rules 

they wish to employ, but who may not be fluent in the pragmatics of complex, nested 

SQL representations. The rule-based approach proposed herein dwells on a logic­

based representation scheme which is not dependent on SQL compatibilities and is 

intended to provide a heterogeneous linkage to any relational system—both single­

record manipulative and multi-record manipulative systems alike.

Indeed, there does exist a commonality of purpose between the research 

presented in this dissertation and existing object-oriented rule-based semantics. The 

focus of this research, however, is to provide a means for the integration of high-level 

13



rule-based semantics with existing relational database management systems, and that 

this approach should act in & front-end capacity to allow a universal bridge to many 

different types of RDBMSs Instead of modifying each individual database engine to 

embed rule-based control deep within, this research proposes to create a single 

semantic engine which then interacts universally with existing database engines to 

control rule-based semantics without explicit modifications to the database engines 

themselves (figure 10). By controlling rule processing at the front-end one is able to 

unify many types of database systems, which would not have been possible through 

currently proposed embedded approaches.

It is important to note here that the bulk of this research centers itself around 

the semantics of data definition and manipulation. Semantic issues described herein 

concern themselves primarily with the semantic constraints of a database’s existence— 

row/column constraints—and how its existence relates to other databases—table/table 

constraints This dissertation is therefore concerned with the creation (data definition) 

of large database systems and their functionality—inserts, deletes, updates, and the like 

{data manipulation) The investigation into semantic repercussions of queries {data 

utilization) is somewhat beyond the scope of this paper Nevertheless, semantic 

details of data definition and manipulation would definitely play a role in such an 

investigation.

Definition and manipulation aspects of database semantics play a crucial role in 

large database systems—especially systems which are designed to function in a 

processing environment. These types of systems do not concern themselves so much 

with large amounts of querying responsibilities (although they certainly can), but are 

more concerned with keeping track of the state of some process (e.g., a warehouse, a 

plant-site, a tracking system, etc ) Often these types of large databases are tied-in 

with some form of automation processing system with little (sometimes even no) 
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human intervention. Thus, it becomes important for such systems to understand the 

semantics of the structures and global interactions of the databases they employ.

The succeeding chapters detail a logical rule-based approach for representing 

and implementing higher-level database semantics Later it will be shown how this 

approach may be integrated into both single-record manipulative RDBMSs and multi­

record manipulative RDBMSs alike, providing a universal medium for centralized 

access of many different types of database systems.

3.1 Semantic Rule Syntax

Before proceeding with a formal declaration of the logical rule-based semantics 

an overview of the rule’s syntactical conventions is necessary. Rules within the 

Semantic Database Management System (SDBMS) abide by the syntactical 

restrictions of the following extended Backus-Naur form (BNF) grammar (note: BNT 

operators are distinguished in bold-face, and should not be confused with valid 

SDBMS operators which are not in hold-face).

<rule>

<lhs>

<rhs>

<operator>

<test-comp>

<set-comp>

<t-binding>

<s-binding>

<t-oper>

<s-oper>

<category>

<function>

<index>

- {<category>} <lhs> => <rhs>
= <test-comp> [ <operator> <lhs> ] I -^ ( <lhs> )

= <rhs> a <rhs> I <set-comp> I <function>
= A | V

= <table> [ [<index>] ] <field> [ [A] ] ( <t-binding> )

= <table> [ [<index>] ] <field>( <s-binding> )
= <t-oper> <t-binding> | <variable> I <constant>

= <s-binding> <s-oper> <s-binding> I <variable> I 

<constant>
= > < I ...
= + - | 4- | X

= A C I R

= <any valid SDBMS function/operation>

= <a number greater than 1 (i e , 2, 3, 4, ...)>
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<variable> ::= <an upper case letter (i.e., A, B, C, , Z)> 

<constant> ::= <a constant expression (e g., 12, 32.4, ‘Dark’, etc )> 

<table> ::= <any database name within the semantic domain>

<field> ::= <any valid field name for the given table>

Some valid syntactic examples of SDBMS rules are as follows:

1 {C} plant2.reactor_id( X ) a reactor_schedule.id( X ) 

a reactor_schedule.status( ‘to-be-cleaned’ ) 

=> plant2.override( shut down' )

2 {C} reactors.chemical_id( X ) a -, ( chemicals id( X ) ) 

=> Abort( reactors )

3 {C} chemicals.chemical_id[A]( X )

a reactors.chemical_id( X ) a chemicals chemical_id( Y ) 

=> reactors.chemical_id( Y ) a Update( reactors )

We can see in the first example—a committal rule, as distinguished with the 

“{C}” prefix-that “pl ant2” and “reactor schedule” denote table names, while 

“reactor id,” “id,” “status,” and “override” reference field names. The binding X 

indicates a variable while the binding ‘shut down’ is a constant. In the second rule 

example—also a committal rule—we see the use of the negation operator (—,, or NOT) 

and the use of an SDBMS function, namely “Abort.” The convention has been 

adopted to note <table>s and <field>s in all lower case (e.g., plant! reactorjd) 

String constants are always shown within single quotes (e.g., ‘Yes’, ‘No’, ‘Y’, Fred’, 

etc ), while numeric constants simply appear as numbers (e g , 1, 15, 32 43, etc ). 

Variables are distinguished as a single upper case letter (e g , X, Y, etc ) Finally, 

SDBMS functions are customarily denoted with the first letter of the function name 

capitalized (e g , Abort, Delete, Update, etc ).

Having detailed the syntactic constraints of such a language it is important to 

distinguish between two types of semantics which will be discussed in the succeeding 
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chapters of this dissertation. The first type shall be deemed rule-semantics and is 

intended to indicate the semantics of the SDBMS’s rule-based language itself (i.e , the 

meaning behind the rule-language represented by the BNF grammar above as 

understood by the semantic engine). The second type shall be deemed data-semantics 

and is meant to reference the semantic knowledge represented by the rules (i e , the 

actual semantics which pertain to the databases as represented by the SDBMS rules) 

Data-semantics can be further broken down into two subtypes: extensional semantics 

and intensional semantics. Extensional semantics are defined herein to refer to the 

semantics of the tuples of the base relations or inter-table relations With extensional 

semantics one may define the relations between tables on a global scale Intensional 

semantics are defined herein to refer to the meaning within a given table or intra-table 

relations. Where extensional semantics concerns itself with table to table contentions, 

intensional semantics concerns itself with row-to-row and column-to-column 

constraints and other repercussions within a single table on a more local scale. Figure 

3 depicts the differences between the extensional and intensional paradigms.

The next section illustrates the rule-semantics of the SDBMS logical language. 

The various types of semantic database information which are capable of being stored 

within SDBMS rules—extensional and intensional data-semantics—are detailed in 

succeeding chapters)

3.2 Semantic Rule Categories and Rule-semantics

Within this proposed semantic representation each database system has 

associated with it a semantic knowledge base, a set of logical rules, which govern its 

integrity constraints, consistency, redundancy verification/elimination, inferable field 
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values, type checking, security, etc Rules described within each semantic knowledge 

base are divided into four categories: acquisition rules, committal rules, and removal 

rules Acquisition rules are referenced during buffering of a new database record prior 

to insertion of the record into the database. This represents a slightly new approach to 

database technology as the SDBMS has access to new data before it is actually 

committed to the database itself Committal rules govern semantic functionality after a 

new record has been sufficiently buffered just prior to insertion and committal to the 

database. Committal rules also govern semantic functionality just prior to 

modification of an existing record (i.e., record updates). Removal rules are referenced 

just prior to a queued record’s deletion from the database.

3.2.1 Acquisition Rules

The main premise for the acquisition rule category was to increase user­

interface performance. By adding a built-in buffering capacity for a new record’s field 

values the SDBMS becomes a powerful tool since real-time semantics may be 

enforced as each field value is independently acquired—before the actual insertion of 

the entire record into its respective database Field values for a new record are 

acquired through the SDBMS Semantic Interface (SI). As each new field value is 

acquired by the SI it is immediately conveyed to the SDBMS semantic engine (SE) 

where any semantic rules pertaining to that new field value are considered 

Results/consequences of those rules are immediately returned to the semantic 

interface. Thus, semantic constraints may be enforced on data before it is actually 

committed to the storage medium

Take for example the following acquisition rule
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{A} plantl product_id( X ) a ->( productionl product_id( X ) ) 

=> RejectValue( plantl product_id )

Here, the “{A}” prefix denotes an acquisition rule The atoms “plantl” and 

“productionI” refer to tables within the semantic domain. The atom “product id” 

denotes a field belonging to those tables “X” represents a variable which is to be 

bound with a field value Semantically, this rule maintains that any newly acquired 

product identification number for a record which is to be inserted into the “plant 1” 

database must currently exist in the “productionl” database. This particular example 

pertains directly to the referential integrity rule:

“The database must not contain any unmatched foreign key values ”

— Date, 1990

In this example we may think of “plantl product id” as a foreign key to the 

“production 1 ” table Since some forms of database implementation platforms allow 

for referential integrity it may seem unclear why such a semantic system should 

redundantly accomplish the same task. The SDBMS’s ability to handle referential 

integrity provides several benefits over simple foreign key verification First, should a 

database implementation platform be incapable of handling referential integrity the 

SDBMS may enforce this integrity itself Hence, all database implementation 

platforms governed by the SDBMS are now capable of handling referential integrity 

Second, should the database platform be capable of enforcing referential integrity the 

SDBMS offers an alternate approach (i e, instead of traditionally declaring foreign 

keys one may simply represent referential integrity constraints by way of logical rules). 

Third, since acquisition rules are processed immediately as field values are acquired 

19



the user/program can be made aware of a referential integrity breach immediately 

before other field values are declared and the record is inserted (or updated) in the 

table Fourth, by defining referential integrity constraints with logical rules we are not 

limited with foreign key constraints The referential integrity rule insists that foreign 

keys must match, very specifically, primary keys, not alternate keys of other tables 

By using logical rules the SDBMS is capable of handling extended referential 

integrity. This is similar to referential integrity (as was seen in the above example), 

however, we may define referential integrity constraints which do not insist upon 

specifically matching foreign keys Take for example the following rule:

{A} planti type( 'toxic' ) a -,( production 1 type( 'toxic' ) ) 

=> RejectValue( planti type )

In this example, assuming that the "product id" field is the primary key in both 

the “plant!” and “production!” tables, and the “type” field is a simple field in those 

tables, the SDBMS is able to extend the notion of referential integrity without the use 

of foreign keys Here a “plant I ” record may not contain the value 'toxic' in the simple 

field “type” unless there exists at least one record in the “production!” table whose 

simple field “type” contains the value 'toxic '

Acquisition rules always fire in a forward-chaining fashion matching the first 

component of the antecedent of the rule to the newly acquired field value The first 

component of the antecedent of an acquisition rule always pertains to a newly acquired 

field value in the original sample rule shown above the variable X is bound to the 

new value of the "product id” field from the “planti” database This bound variable is 

then used in the second component of the rule’s antecedent to test (search) for its 

existence in the “production!” database Since the second component is surrounded 

by the negation operator (-.), should there not exist a “production!” record where the
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“product-id” field value equals X (i.e., a failed search for a record where 

production! product id = X) the rule’s consequent is executed. Here the only 

component of the consequent states that the newly acquired field value must be 

rejected Exactly how the SE goes about considering a given SDBMS rule will be 

discussed in subsequent sections of this chapter

The interested reader will note that this semantic rule exhibits what is known as 

the closed world assumption

“(The closed world assumption] states that omission of a certain tuple from a 

given relation implies that the assertion corresponding to that tuple is false ”

— Date, 1990

Thus, if we think of each row (tuple) in a given table as a logical assertion 

about the existence of something in the world, the absence of such a row (and hence 

the absence of the assertion) indicates that that ‘thing’ does not exist.

3.2.1.1 Buffering New Database Records

In order to make use of the SDBMS acquisition rules a dialogue must ensue 

between the user and the SE by way of the SI A sample dialogue might look as 

follows: (For now SI communication will take the form of a simple procedure-like 

command language. Later it will be described how the SI can be integrated into both 

single-record manipulative and multi-record manipulative relational database 

frameworks and how basic natural language techniques may be incorporated to create 

a powerful interface )

NewRecord( “plant!” );
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SetField( “plantT’, "product_id”, “A123B920” );

The first command issued to the SE, NewRecord, functions in two capacities. 

First, it creates a context for the semantic dialogue—namely, that the “plant 1 ” database 

will be used in the succeeding dialogue and hence its semantic knowledge base must 

now be loaded into working memory if it has not been previously Second, a buffer 

must be created for the new record’s data values to be stored before the record is 

committed to the database by an insertion command As each field value is 

independently acquired via the Set Fie Id command the value is incorporated into the 

buffered data structure and any acquisition rules which contain the field name in the 

first component of its antecedent are considered Once an antecedent is proven true 

the resulting consequent of the acquisition rule is then executed Should the SetField 

command fail (because of a breach in semantic integrity as dictated by the acquisition 

rules), the user/program is made aware of this breach immediately and the field’s value 

is not set

3.2.2 Committal Rules

The second category of semantic rules is the committal rule These rules like 

the acquisition rules are forward-chaining. However, unlike semantic acquisition rules, 

committal rules are considered in bulk Given an acquisition rule, it is only considered 

if and when the field value of the first component in its antecedent is acquired—during 

this time all other non-conforming acquisition rules are ignored Alternately, 

committal rules may be considered en mass by the SE as each rule must be verified 

before the actual insertion or update of the buffered record into its respective database 

occurs Take the following committal rules for example:
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1 {C} plantl product_id( null ) Abort( plantl )

2 {C} plantl .product_id( X ) a production! product_id( X ) a  

production! serial_required( Y' ) a plant! serial( null ) 

=> AcquireValue( plant! serial )

3 {C} plant! chemical_id( X ) a chemicals.id( X ) a  

chemicals volatile( Y' )

=> plant! special_handling( Y' )

The prefix "{C}” denotes the committal rule category. The first rule maintains 

that the "product id” must be non-null for insertion/update to succeed This form of 

semantic representation may not be required in most database management 

implementations as they implicitly test for non-null values—usually reserved for key 

fields However, some lower-level database platforms do not allow implicit non-null 

checking and hence can be made more powerful by the SDBMS The interested 

reader will note that this particular rule could not be classified as an acquisition rule 

since the component in its antecedent binds to null. The reason for this is obvious 

since a field value is null until it is acquired. Further, since acquisition rules are 

considered only as a field-value is acquired, this type of rule would never be 

considered if the “product id” field value was never acquired and hence was null

The second committal rule states that if a product is to be inserted/updated in 

the “plantl” database and the product is listed as requiring a serial number in the 

"production 1” database, then the field “serial” for “plant 1 ” must be non-null Here we 

begin to see the power of the SDBMS as a field can be semantically defined as non­

null within a specific context in one context the “plantl” record’s "serial” field is 

defined as non-null (i e, when the “production!” database dictates that the product 

requires a serial number) In another context the “plant 1 ” record’s “serial” field is 
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allowed to be null (i.e, when the “production!” database dictates that the product 

does not require a serial number).

In the third example the rule states that if the “plantI” record to be 

insert ed/updated is listed as a volatile chemical, then the “special handling” field of the 

“plant 1” record should be automatically set to 'Y’ This type of rule implies an 

inferable field value since the value of the “special handling” field of a “plant 1” 

record may be (indirectly) inferred from the “chemical id” field value

Semantic committal rules conform to several rule-semantic constraints. The 

first component of the antecedent is always a “<table> <field>( <binding> )” 

designation, where the <table> denotes the type of record which is currently under 

consideration for insertion or update and the <field> denotes a valid field name for a 

record in that table The <table> portion of this component references the record 

which has been previously buffered in semantic context (as described above)—either a 

new record which awaits insertion or an existing record which has been modified and 

now awaits update and committal to its respective database. Any reference to this 

<table> in the remainder of the rule will access the buffered data for that record in 

semantic context The <binding> of the <table> <field> pair represents the currently 

buffered field value for that record in semantic context. The <binding> itself may 

denote either a variable or a constant in the case of a variable binding the current 

value of the designated field is immediately pulled from the buffered record currently 

in semantic context and bound to the variable. Once the variable is bound 

consideration of the rule’s antecedent continues—that variable may not be re-bound in 

the remainder of the rule’s consideration in the case of a constant binding the field 

value which has been buffered within the semantic context is tested against the 

constant If the test succeeds the remainder of the rule’s antecedent is then

24



considered. Should the test fail, consideration of the rule ends and the next applicable 

committal rule is considered.

It is important to note that all committal rules begin with a 

“<table>.<field>(<binding>)” component and that the <table> atom of this component 

defines which type of record the rule is to be applied By this convention the SE can 

immediately discern that the three sample rules listed above apply to a “plant 1" record 

to be committed to the “plant 1” database, as all rules begin with a component which 

references the “plant 1” table Hence, the <table> atom of the first component in an 

committal rule references the record which has just been buffered in semantic context. 

Any further references to that <table> in the remainder of the committal rule will 

access the buffered field values of that record

Two types of binding are applied during rule consideration record binding and 

field-value binding Within field-value binding there exist two subtypes of binding: 

variable binding and constant binding (described above). To illustrate the 

functionality of these two types of bindings—namely, record binding and field-value 

binding—let us examine exactly how the SE considers the third rule in the example 

shown above

As previously declared the first component defines the type of record which is 

under consideration for committal: “plant 1.” The “plant 1” reference is immediately 

bound to the “plant 1 “ record which has been buffered in semantic context Field­

binding occurs as the variable “X" is bound to the buffered “chemical id" field value 

of the “plant 1 " record The <table> atom of the second component of the antecedent 

references the “chemicals" database At this time the record which is referenced by the 

“chemicals” atom of the component is unbound. Implicit in the interpretation of this 

second component is the SE’s knowledge about the “chemicals" table’s structure— 

how many fields make up the table’s primary key, what fields belong to the composite 
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key, etc. In this example let us say that the “chemicals" database consists of a single­

field primary key “id.” Since (1) the “chemicals” record is unbound, (2) the variable 

“X” is bound, and (3) the “id” field uniquely identifies a “chemicals” record (since it is 

the only field composing the primary key), the SE interprets the “chemicals id( X )” 

component as follows: “search for the record in the ‘chemicals’ database where the 

value of field id’ is equal to ‘X.’”

Should this search fail, the “chemicals” record cannot be bound and hence 

consideration of the rule ceases since its antecedent cannot be proven true. Upon a 

successful search the “chemicals” record is bound to the record resulting from the 

search The bound record now becomes part of semantic context and any further 

references to fields of the “chemicals” database will access the bound record’s field 

values Since the “chemicals” record is now bound, the “’Y’” in the third component 

instructs the SE to test whether or not the “volatile” field value of the “chemicals” 

record, which was bound in the previous step, is equal to Y Should the third 

component hold true, the consequent of the rule is carried out

As noted above, “plant I ” was bound to the new-record which was previously 

buffered in semantic context. Thus, the only component of rule three’s consequent— 

“plant I special_handling( Y )”—instructs the SE to act on the buffered record for 

“plant 1 ” The component is fully translated by the SE to mean: set the value of the 

field “special handling” of the buffered record for the “plant 1” table to Y (note the 

single quotes around the Y making it a constant value and not the variable Y)

In general, bindings of components found within the antecedent of an SDBMS 

rule instruct the engine to variably bind or test the existing field value of a record 

within semantic context Bindings found within the consequent of an SDBMS rule 

always instruct the SE to set the value of a field This set operation will override any 

existing value for that field in favor of the value inferred by the rule. Special semantic 
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functions are also available for use within the consequent of an SDBMS rule The first 

rule in the above example uses the “Abort” function which instructs the SE to cease all 

remaining committal rule considerations and abort the insertion/update operation of 

the buffered record into its respective database Additional SDBMS functions will be 

discussed in subsequent chapters

3.2 3 Removal Rules

Removal rules are similar in format to committal rules However, removal 

rules are considered just prior to deletion of a record from a database. Take the 

following removal rule for example

{R} storage.chemical_id( X ) a chemical_removals chemicalJd( X ) a  

chemical_removals.instances( Y )

=> chemical_removals.instances( Y + 1 ) a  

Update( chemical_removals )

The prefix “{R}” denotes a removal rule As in the case of the SDBMS 

committal rules, the first component of the antecedent in a removal rule identifies what 

type of record the rule is to be applied before a deletion occurs Hence, the <table> 

atom of the first component in the rule’s antecedent is always bound to the record 

which is to be deleted More accurately, this <table> atom is bound to the <table>’s 

current record within the semantic context The sample removal rule above, therefore, 

pertains to a “storage” record which is to be deleted Upon consideration of the rule 

by the SE the reference “storage” is immediately bound to the “storage” record which 

is about to be deleted By the same token the variable X is bound to the value of the 

“chemical id" field of the bound “storage” record The <table> atom of the second 
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component in the antecedent "chemical removals" is currently unbound and, 

therefore, requires a search to bind its record. The SE carries out the search for the 

"chemical removals" record where the field "chemical id" is equal to the variable X. 

Should this record be found it is bound to the "chemical removals" reference and 

consideration of the rule’s antecedent continues. Since "chemical removals" record is 

now bound, the third component of the antecedent binds the variable Y to the 

“instances” field value of that record.

The first component of the consequent makes use of a semantic <operation> 

(as syntactically outlined in the BNF grammar above)—namely, the “+ operation. 

This component causes the SE to set the "instances” field value of the previously 

bound "chemical removals” record to Y + 1 (eg, if Y=1, then Y+l=2). The SE s 

translation of the “+” operation makes use of the operator overloading paradigm, 

controlled by the SE. If the operands of the “+” operation are character strings, the 

result of the operation is the concatenation of those strings If the operands of the “+ 

operation are numbers, the result is the numerical addition of those numbers

The second and final component in the rule’s consequent makes use of another 

SDBMS function “Update ” This function instructs the SE to update the current 

record in semantic context for the "chemical removals’ table—the record bound by the 

search which had taken place during consideration of the second component of the 

antecedent

3.3 Use of the Index Constraint in Rule-semantics

In the preceding section many rule-semantic repercussions of the SDBMS BNF 

grammar have been touched on. One aspect, however, has been left unattended the 
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use of the <index> constraint on record bindings. Consider the following portions of 

the BNF grammar listed above

<test-comp> <table> [ [<index>] ] <field>( <t-binding> )

<set-comp> <table> [ [<index>] ] <field>( <s-binding> )
<index> ::= <a number greater than 1 (i.e., 2, 3, 4, ...)> I A

To fully understand how the <index> constraint is utilized within the SDBMS, 

let us examine the following removal rule

{R} storage, productJd( X ) a -,( storage[2], productJd( X ) ) 

a storage.type(Y) a type_log.type( Y ) => Delete( typejog )

This rule maintains that should a certain product record be removed from the 

“storage” database and no other records of that product exist in the “storage” 

database, and there exists a “type log” record for that product’s type, then remove 

that “type log” record from the “typejog" database The first component of the 

antecedent binds the reference “storage” to the record which is to be deleted The 

variable “X” is then bound to that record’s “product id” field value The second 

component makes use of the negation operator (->) which indicates that the result of 

the second component should be negated The <index> constraint is used in the 

second component (“storage[2]”) to indicate that, although it is to be bound to a 

“storage” record, it must be a different record than the “storage” record bound in the 

first component of the antecedent The “storage[2]” reference at this point is, 

therefore, unbound—implying a search, since it lies within the rules antecedent (as 

noted in the previous sections) Based on the remaining atoms of the second 

component in the antecedent the SE executes a search of the “storage” database where 

the value of the “product id” field is equal to “X.” This is a somewhat complex 
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search since the SE must ensure that any record found during this search is not 

identical to the record bound to the original “storage” reference—recall that the 

originally bound “storage” record has not yet been deleted from the database and 

therefore still resides within it The SE accomplishes this task by performing a basic 

search and then, in the case of a keyed database, comparing each (possibly composite) 

key field value of the record resulting from the search with the respective field values 

of the previously bound “storage” record. If the similarity check fails, the record 

resulting from the search is bound to the “storage[2] reference. If the similarity check 

succeeds, the search continues until a differing record is found or further searching is 

not possible Should the “storage” database be non-keyed (i e , more than one 

identical record may exist) the SE must employ some other form of similarity check 

(perhaps checking the literal record number as identified by the database file). 

Continuing with consideration of the rule, should the search prove successful, the 

negation operator halts consideration of the antecedent and the next applicable 

removal rule is then considered However, should the search fail, the negation 

operator causes continued consideration of the remainder of the rule’s antecedent. 

The third antecedent binds the variable Y to the value of the “type” field for the 

buffered “storage” record bound by the first component. The fourth component of the 

antecedent searches out the “type log” database for a record whose “type field is 

equal to “Y” and, if found, binds this record to the “type log” reference. The rule’s 

consequent makes use of yet another SDBMS function “Delete” which performs a 

removal action on the “type log” record which was bound during consideration of the 

fourth component in the antecedent. Note that this removal action, in turn, spawns 

consideration of all removal rules which apply to a “type log ” record
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It may be stated that any reference to a <table> atom of a component which 

does not make use of an <index> atom is implied to be of index, 1 For example, the 

above rule may be thought of as follows:

{R} storage! 1 ] product_id( X ) a -i( storage[2], product_id( X ) ) 

a storage[1].type(Y) a type_log[1 ].type( Y )

=> Delete( type_log[1] )

Further, any use of a <tablep[ <index]> ] component implies uniqueness of 

that bound record to all other <tablej>[ <index;> ] references within that SDBMS rule 

where i*l. The use of the <index> atom gives great power to the SDBMS as rules 

may be written which define semantic repercussions of one record within the context 

of other record(s) of the same type.

3.3.1 Use of the A Index

Careful examination of the committal rule category might lead one to the 

question: “What if a particular system requires a certain committal rule to fire for an 

update of a record, but not for an insert of that record—how can this be accomplished 

when both update and insert manipulations are governed by the same rule category?” 

For example, let us say we had a database system which required the tracking of 

various user updates in particular let us say there exists a “daily log” database, and 

we wish to keep track of how many times the value of the field “location” is modified 

within this record More specifically, we are not interested in how many times the 

record (as a whole) was updated, but rather how many times a specific field value was 

modified This type of rule may be represented as follows;
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{C} dailyjog. location[A]( X ) a daily Jog. id( Y ) 

a tracking.id( Y ) a tracking.displacements( Z )

=> tracking.displacements( Z + 1 ) 

a Update( tracking )

The A index is used to reference differing field values from the time an existing 

record is queued to the time the record is to be re committed to its respective 

database. In this example, should a particular “daily Jog” record be queued with an 

original “location” value of L ], and during the time of buffering this value changes to 

L2 (via the SDBMS command SetField), the binding of “dailyJog.location” would 

equal L2, and the binding of “daily log.location[A]” would equal L%

A <table> <field>[A] binding is only valid (i e , can be bound) when an existing 

record is queued and the SDBMS SetField command is used on that <table> <field> 

designation. Thus, if a “daily log” record is queued, but the “location” field is not 

acted upon by a SetField command, and the record is updated, the above rule would 

not be applicable, since there would be no binding for “daily log !ocation[A]” (i e, 

since the component cannot be bound, its truth value is FALSE, and consideration of 

the rule terminates). Further, any buffered field-values for a new record (i.e , using the 

SDBMS SetField function after use of the SDBMS NewRecord command) never 

associate with a A index reference, since the record is brand new, there can be no a 

priori field values.

Thus, the above rule functions wonderfully for tracking modifications to the 

“location” field value, since “daily log location[A]” may only be bound when the 

“location” field value actually changes. Further, we see that only 

modifications/updates are tracked (i.e., not inserts) since by definition of the A index 

reference, no A index bindings are possible when a new “daily log” record is bom 

(i e, NewRecord( daily Jog) Insert( daily log ) ) However, upon close inspection 

of the rule one may discover a fallacy in that the rule always assumes the existence of a
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“tracking” record for the “id” in question Indeed, for this type of tracking technique 

to operate successfully we must add the following committal rule to the semantic 

knowledge base for the “daily log” database:

{C} daily Jog location; A]( X ) a dailyjog. id( Y ) a ->( tracking.id( Y ) ) 

=> NewRecord( tracking ) a  tracking. id( Y )

a tracking.displacements( 1 ) a Insert; tracking )

This rule maintains that a “tracking” record should be inserted upon the first 

modification of the “location” field value in an existing “daily log” record in addition 

this new “tracking” record should contain a “displacements” field value of 1, since 

insertion of this record indicates the first time the “location” field was updated in an 

existing “daily log” record With the addition of this committal rule, our displacement 

tracking technique is sound.

It is important to note that the A index adheres to the closed world assumption 

Take the following component reference for example, assuming the variable X has 

been previously bound to a value

-,( planti productJd[A]( X ) )

This expression is true in two cases: (1) if “planti product id[A]” cannot be 

bound (i e , the value for field “product id” remains unchanged); or (2) if “plant I [A 

] product id” can be bound, but its value is not equal to X. Thus, we see evidence of 

the closed world assumption since the assertion is FALSE if a A index reference does 

not exist (i e , cannot be bound)
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4.0 IMPLEMENTATION OVERVIEW OF THE SDBMS SEMANTIC ENGINE

Having described the syntactic and rule-semantic aspects of the SDBMS 

logical rule-based language, it must be illustrated how such a system would function 

To accomplish this illustration, we must examine the basic functionality which is 

required by the SDBMS to facilitate its usage as a universal medium between many 

different database management system platforms (as depicted in figures 2 and 10) 

Although an explicit implementation of the semantic engine is beyond the scope of this 

dissertation, it is nonetheless important to describe the basis upon which such an 

implementation must conform

4.1 SEARCH-TEST-ACT Chain Reductions

Taking the rule-semantic constraints described in chapter 3 into consideration, 

one may assert the basic conclusion that all rules, regardless of classification, may be 

reduced to a SEARCH-TEST-SET chain. To explain this assertion let us consider the 

following committal rule:

{C} planti .chemical_id( X ) a chemicals. id( X ) a  

chemicals.volatile( ‘Y’ )

=> planti special_handling( 'Y' )

The astute reader will recognize this example rule as one presented earlier in 

chapter 3 Summarizing the SE’s consideration of this rule we have the following: ( 1 ) 

the reference “plant 1” is bound to the “plant!” record buffered in semantic context; (2) 

variable “X” is bound to the value of the buffered “planti” record’s “chemical id” 

field; (3) since the value of field “id” uniquely identifies a record in the “chemicals” 
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database (recall, “id” is the only field composing the primary key), the value bound to 

X” is used to SEARCH the “chemicals” database for a record with that “id” value, 

(4) should this record exist, (5) the “volatile” field value of the bound “chemicals” 

record is then TESTED for its equivalence to "Y, (6) if all components of the 

antecedent prove true the only component in the consequent SETs the value of the 

“special handling” field of the bound “plant 1 ” record to Y Thus, the rule may be 

reduced as follows:

SEARCH: chemicals, id = planti .chemicaljd

TEST e

TEST chemicals, volatile = Y'

SET planti special_handling = Y'

In this particular reduction we see four components in the SEARCH-TEST- 

SET chain: one SEARCH component, two TEST components, and one SET 

component. Looking back at the above summary for the SE s consideration of this 

rule, binding occurs in steps (1) and (2). Step (3) is carried out by the SEARCH 

component in the chain The SEARCH component is read as follows: the 

<table> <field> operand to the left of the equal sign (=) identifies the <table> to be 

searched and the first <field> to be constrained in the search The <table> <field> 

operand to the right of the equal sign (=) identifies the hound record (<table>) and 

field-value (<field>) in semantic context This second operand provides the constant 

required to complete the search The first TEST component accomplishes step (4) 

The e parameter is a Boolean variable, global to the SE, which is always set when a 

SEARCH occurs. This variable is set to true if the SEARCH was successful, false if 

unsuccessful Step (5) occurs during evaluation of the second TEST component 

Finally, if all TEST components prove true, the SET component executes step (6).
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The SET portion of the SEARCH-TEST-SET chain reduction should more 

explicitly be referred to as an ACT—i e , SEARCH-TEST-ACT. We say ACT because 

we may not only wish to have the ability to simply SET the field values of records 

queued in semantic context, but rather to perform powerful ACTIONS on them 

Several rules found in the preceding chapter have, within their consequents, special 

SDBMS function assertions which instruct the SE to perform various actions on the 

context record(s) queued within semantic context.

Thus, we should re-evaluate the above reduction chain to the following form;

SEARCH chemicals, id = plant 1 chemical_id

TEST e

TEST chemicals.volatile = Y

ACT Set( plantl special_handling = 'Y' )

One should also note that the SEARCH-TEST-ACT chain may be reduced 

further if and only if the database engine for the tablets) referenced within the 

antecedent are SQL-compatible. This further reduction would result in a slightly 

different chain as the second TEST portion of the above example could be 

incorporated into the SEARCH portion Given the rule listed above the reduction 

could be as follows:

SEARCH chemicals id = plantl chemicaHd

a chemicals.volatile = Y'

TEST e

ACT Set( plantl specialjnandling = Y )

And, the SQL interpretation of the SEARCH portion would be
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EXISTS

( SELECT *
FROM chemicals

WHERE id = X AND volatile = V );

Note: X = plant1.chemical_id (a buffered field value which would be 

constant at time of execution)

Some database engines, however, do not boast such powerful query 

capabilities. Borland International’s PARADOX™ ENGINE, for example, only 

allows record searches on subsequent composite key fields or a single non-key field 

in this case, since “id” is the only field in the primary key of the “chemicals” table, and 

“volatile” is not a key-field, the SE must make use of the SEARCH-TEST-TEST-ACT 

chain reduction, listed above, instead of the latter SEARCH-TEST-ACT chain 

reduction

Thus, it is the semantic engine’s duty to determine which database engine 

applies to the referenced databasefs) and hence which form of reduction is required 

For less powerful database engines, eg, those which only allow searching on keyed 

fields or any other single field value, the SEARCH-TEST-TEST-ACT reduction is 

necessary. However, as we have seen for more powerful database engines which 

allow detailed searching, the SEARCH-TEST-ACT chain reduction may be a better 

strategy—note, however, that the SEARCH-TEST-TEST-ACT chain reduction is still 

possible with more powerful engines, but may not represent the most efficient 

accessing technique for those database implementations

Some rules may simply require a TEST-ACT chain reduction as in the 

following inferable field-value, committal rule

{0} production 1 .intensity_level( 5 ) => production 1 reaction_time( 6 3 )
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Reduction:

TEST productionl. intensityjevel = 5

ACT: Set( productionl reaction_time = 6.3 )

One final piece of information which is paramount in rule reduction is the type 

of rule (i e, acquisition, committal, or removal) and the table database to which it 

applies By incorporating this information into the reduction construct the SE knows 

when to consider a rule and what buffered record within semantic context is under 

consideration.

The following lists the final reductions for the two sample rules in this section, 

respectively:

RULE C/plant1

SEARCH chemicals. id = plantl chemicaljd

TEST E

TEST chemicals.volatile = Y

ACT Set( plantl special_handling = Y' )

RULE C/production1

TEST productionl intensityjevel = 5

ACT Set( productionlreactionJime = 6 3 )

Hence, in the first reduction the RULE component dictates to the SE that this 

rule should be considered before a buffered “plant 1 ” record is committed to the 

“plant T database and that any “plant 1” references within the reduction should be 

bound to the field-values buffered in semantic context—thus, record and field-value 

binding may be accomplished Appendix A lists some sample rules and their 

SEARCH-TEST-ACT chain reductions.

Once again it must be stressed that SEARCH-TEST-ACT chain reductions 

require the SE s knowledge of the structures of the databases referenced within the 
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rule The above examples have dealt with single-key field databases and were reduced 

on that basis. However, not all databases conform to single-field keys and require a bit 

more work in reduction. Take the following rule, for example:

{A} order.type( ‘toxic’ ) a order.customer_id( X ) a order. Iocale( Y ) 

a customer. id( X ) a customer. Iocale( Y )

a customer.handling_level( 2 )

=> order.shipping( rail car" )

Let us say in this particular example that the table “order” has a composite key 

made up of fields “customer id” and “locale” respectively Similarly, let us say that 

the “customer” table has a similar composite key made up of the fields “id” and 

“locale” respectively Given this information the SE can reduce the rule as follows:

RULE A/order

TEST order, type = 'toxic'

SEARCH: customer, id = order. customer_id 

a customer.locale = order.locale

TEST e

TEST customer, handlingjevel = 2

ACT Set( order.shipping = Tail car’ )

Should the SE only have searched on “id,” we would not be guaranteed that 

the correct record was queued. Thus, we see the use of two search constraints instead 

of simply one, as the table in question requires two field-values (i e , “id” and “locale,” 

respectively) to uniquely identify a record

Not only does the structure of a database play an important role in rule 

reduction, but also the power of the database engine governing that database which 

will ultimately be used to consider (and, if necessary, fire) the rule Once again the 

preceding example assumes a low-level database engine which only allows searching 

on keyed fields Should a more powerful engine be available for the referenced 
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database(s) (eg, a SQL-compatible engine) the following reduction would most likely 

prove more efficient or at least somewhat more elegant:

RULE N/order

TEST order, type = ‘toxic’

SEARCH customer, id = order customerjd

a customer, locale = order, locale

a customer.handlingjevel = 2

TEST e
ACT Set( order.shipping = rail car’ )

It should be noted that rule-reduction is based not only on the format of the 

rule itself, but also on the structures of the database(s) referenced within the rule and 

the power of the database engine(s) applicable to those database(s)

4.2 Semantic Context

The term, semantic context, has been used somewhat loosely in the preceding 

chapters. To understand exactly how the SE would function, this term must be clearly 

defined. Perhaps the easiest analogy to semantic context is a working memory which 

maintains a dictionary of record and field-value bindings Two types of data 

references are held within this dictionary (1) explicit references—the buffered field­

values of records to be inserted, updated, or deleted in their respective databases, or 

the buffered field-values of records simply queued for reference via the SI; and (2) 

implicit references—buffered field-values of any other records queued during 

consideration of a particular rule The first type of references exist within the system 

(i.e., are non-volatile) until explicitly dumped by the system (as will be described in 

detail below) The second type of references exist only during consideration of the 
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rule in which they were queued (i e, are volatile immediately upon completed 

consideration and potential firing of a rule).

For example, let us examine the following database structures, a sample rule, 

and its SEARCH-TEST -ACT chain reduction:

TABLE: plant2

reactorjd : alpha-numeric field (only KEY)

override : alpha-numeric field

TABLE: reactor_schedule

id : alpha-numeric field (only KEY)

status : alpha-numeric field

{C} plant2. reactorjd( X ) a reactor_schedule id( X ) 

a reactor_schedule.status( to-be-cleaned’ ) 

=> plant2.override( shut down’ )

RULE C/plant2

SEARCH: reactor_schedule.id - plant2.reactorjd

TEST e
TEST reactor_schedule. status = to-be-cleaned’

ACT: Set( plant2.override = shut down’ )

Figure 4 depicts a visual account of this example. Prior to consideration of this 

rule the field-values of a new "plant2” record have been buffered within semantic 

context (part A of figure 4) Let us say ‘SAMI’ has been buffered as the value of 

“plant2.reactor id.” This indicates that semantic context has the value SAMI’ 

associated with the data reference “plant2.reactor id.” Substituting this value pulled 

from semantic context, the SEARCH portion of the reduction chain then reads: 

"reactor schedule id = SAMI,”’ and this record is searched-out Let us say the 
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record does exist (i e , e = TRUE) At this time, since a “reactor schedule” record has 

just been queued, its field values are loaded into semantic context (part B of figure 4). 

In particular let us say its “status” field does indeed equal ‘to-be-cleaned,’ causing the 

second TEST component to prove true. Since all TESTs prove true, the ACT is 

executed, associating the data reference “plant2.override” with the value shut down ’

The diagram visualizes SDBMS semantic context as a series of hash tables'. 

The first hash table is used to reference <table> entries (i e, the names of records 

which currently reside within semantic context). These <table> entries shall be 

deemed table cells and are depicted in the diagram as rectangles. Note that appended 

to each table cell identity is its index in the diagram all table identities are appended 

with “[1]’-recall that any <table> reference which does not explicitly display an index 

is assumed to be of index, 1. Each table cell points to a secondary hash table which is 

used to store the <field> references (and in turn the respective values) for that record 

<Field> entries shall be deemed field cells and are depicted as diamonds in the 

diagram. Each field cell subsequently points to a value cell (each depicted as an 

ellipse in the diagram) which holds the data-value currently associated with that 

<table> <field> designation. One should note that their exists two pointer references 

within each field cell The unlabeled pointer is used to identify the current value of 

that <table> <field> reference The pointer reference labeled “A” is used to identify 

the last value of that <table> <field> reference before modification (note that this 

example does not require knowledge of past field values and therefore the A-pointers 

contain null values

1 Note that the use of hash tables is certainly not a requirement for representations of this nature. 

The working memory model for semantic context could have as easily been described by way of 

linked lists or sorted arrays. The hash table scheme was simply selected for its undying efficiency and 

elegance in storing large amounts of referenced data.
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Each table cell within semantic context is tagged with either an lE’ or an I 

Table cells exhibiting an ‘E tag, indicate explicit references—cells which must remain 

non-volatile until such time as they are explicitly dumped by the system. Those cells 

which exhibit an T flag indicate implicit references—cells which become volatile as 

soon as the current rule has been fully considered and fired (if applicable) Upon 

completion of a rule’s consideration and firing (should the antecedent prove true), all 

T-designated table cells, including all cascading field/value cells which are linked to 

them, are purged from semantic context This purging accomplishes two tasks: first, 

working memory is free of “garbage” at all times; second, the SE cannot confuse like- 

references in differing rules

Explicit (E’-designated) table cells and their cascading field/value cells may 

remain within semantic context indefinitely There are only three ways explicit 

references may be purged from semantic context (1) if the record referenced by the 

table cell is deleted, (2) if the SDBMS NewRecord command is called on the same 

reference, or (3) if a different record of the same type is searched-out in the database. 

One should note that the last two procedures do not actually purge the reference per 

say, rather they change the field/value references associated with that record (table 

cell). Figure 5 gives a visual account of these three ways of purging semantic context 

Portion A of figure 5 shows the deletion of a “plant 1 ” record Portion B shows what 

happens when there exists a “plantl [1 ] ’ record in semantic context, but the SDBMS 

command “NewRecord( plant 1 [ 1 ] )” is called. Note that no field/value cells exist after 

the NewRecord command-call If a particular field cell does not exist in semantic 

context, the SE deduces that value to be null (i e , not yet acquired). Part C of figure 

5 demonstrates what occurs when an existing reference is re-used (i.e., the old 

reference is purged in favor of the new reference) via searching/queuing an existing 

record of the same type Note that when an existing record is queued via searching, 
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all field values which are not equal to null are loaded into semantic context (hence, the 

use of the ellipsis in the field cell hash table).

Why keep records in semantic context after inserts or updates? As new data 

cells are acquired for the buffered record (via the SDBMS SetField command), 

acquisition rules are considered and potentially fired, changing the state of the record 

buffered in semantic context Upon execution of the SDBMS Insert or Update 

command, all committal rules pertaining to that record are considered and fired (if 

applicable)—again changing the state of the buffered record Finally, when all rules 

have been fully considered and potentially fired, the record is physically inserted into 

its respective database via the database engine which governs it The record continues 

to remain in semantic context for two important reasons: first, should the insert/update 

operation succeed, the user may wish to access certain field values which may have 

been modified by the semantic constraints represented within the committal rules (e.g., 

inferable field-values)—or the user/program may simply wish to re-access the data 

within that record at a later time; second, should the insert/update operation be 

aborted for some reason, it is imperative that the record remain buffered within 

semantic context to allow the user/program, which communicated the new record via 

the SI, to salvage data values which were accepted by the committal rules and perhaps 

attempt to re insert/re-update the record This is important since semantic rules are 

capable of aborting insertion/modification of a record if, for example, a certain field 

value breaches semantic integrity. Should the system purge the buffered data 

references at the point of abortion, the user/program would lose all modifications 

made to that record even if insertion failed because of a single bad value Thus, failure 

of a routine of this nature should retain buffered references and allow the user/program 

to correct the problem at which point an attempt may be made to re-insert the record 

(if desired)
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4.3 Semantic Engine AGENDA

Given these potentially enormous rule-bases which manage the semantic 

integrity of particular databases, in what order (if any) should such a system consider 

each rule9 Obviously, overall consideration of a particular rule is directly associated 

with the rule category to which it belongs (i e, a removal rule for a certain type of 

record would not be considered during an insert action for that type of record). The 

acquisition rule category constrains consideration of rules even further to only those 

rules whose first component of the antecedent matches the field being acquired 

However, once a set of rules is identified for consideration by the semantic engine, is 

the order of consideration relevant? To answer this question consider the following 

generalized committal rules

1 {0} oq.Pi( X ) a ci2 Pl( X ) a  a.2 P2( Y2 ) 

=> «2 P3( 73 ) A Update( «2 )

2. {C} ai pz|( Y4 ) => Abort( ai )

Let us assume in this case that an aj record is about to be inserted Both 

committal rules in the example apply to an a % -type record (i e , records belonging to 

the table aj) Let us assume that the semantic engine considers each of these rules in 

the order in which they are listed above Further, let us assume that upon 

consideration of each rule the antecedent of that rule is found to be true and its 

consequent is duly carried out immediately one can see a serious flaw as rule 1 

implies the setting of an inferred field-value of another record («2) and its subsequent 

update When rule 2 is fired, the insert operation of the aj record is aborted 

indicating breach of semantic integrity and refusal to commit the record However, we 

45



have already updated another record in rule 1 with respect to the cq record, and now 

we find that the cq record is invalid. This flaw would result in inconsistent data in a 

very short period of time Thus, in this case it is important for the semantic engine to 

consider rule 2 before rule 1.

To further illustrate rule consideration anomalies let us examine an additional 

committal rule

3. {C} cq P5( Y5 ) a ai P6( Y6 ) => *1 ?4( Y4 )

Once again let us say that an cq record is awaiting insertion and rules 2 and 3 

(ignoring rule 1 for the moment) are considered respectively. Further, let us say that 

upon consideration of rule 2, -.cq 74 ) is true given the state of the cq record in 

question. Thus, rule 2 fails to fire Rule 3 is then considered and fires setting the 

value of cq P4 to 74 (i e., cq P4( 74 ) ). At this time rule 2 would imply abortion of 

committal of this record, but consideration of rule 2 has come and gone. Again we see 

the potential for inconsistent data due to erroneous ordering of consideration

To solve this problem the semantic engine incorporates an agenda scheme. 

The agenda scheme may be thought of as follows

Semantic Engine Primary Rule Consideration Agenda Scheme:

Given a set of rules which are relevant to the current context: 
( 1 ) consider all non-committal-inon-abort-consequent rules, 

(2) consider all abort-consequent rules, and finally, 

(3) consider all committal-consequent rules

A committal-consequent rule is one which contains a committal action (e.g.. 

Insert, Update, Delete, etc ) within its consequent. An abort-consequent rule is one 

which contains an Abort action within its consequent. Hence, non-committal-/non­
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abort-consequent rules identify all those rules which remain (i e, those rules which 

neither contain a committal action nor an abort action within their consequents) With 

( 1 ) the semantic engine ensures that any inference to extend the state of a record is 

carried out immediately so that (2) and (3) may act upon the maximally extended state 

of the record By maximally extended we mean that there exists no rule which may 

modify or add to the information state of a record The ordering of ( 1 ) and (2) ensure 

that anomalies such as the one presented in the above rule consideration example of 

rules 2 and 3 cannot occur. The ordering of (2) and (3) is necessary to abolish the 

problem caused by the rule consideration example of rules 1 and 2 above.

Within each step in the primary agenda, a secondary agenda must be 

maintained which manages the forward chaining process itself For instance, consider 

the following two non-committal/non-abortion rules:

4. {C} ai Pi( yi ) a ai p2( Y2 ) => a1 03( Y3 )

5 {0} a-| p-|( Y1 ) A ai P4( Y4 ) => a1-P2( Y2 )

At time of consideration within step (1) of the primary agenda (for committal 

of an a] record) the secondary agenda would contain rules 4 and 5. Let us assume 

that in a particular context -iCt|.P2( Y2 ) holds, causing rule 4 not to fire. However, if 

in the same context cq P^( Y4 ) holds true, rule 5 would fire (assuming, of course cq. 

p]( y] ) held true as well), bringing cq P2( Y2 ) into context Thus, we must have a 

way of bringing rule 4 back into the secondary agenda so it may be reconsidered Al 

literature often refers to forward-chaining rules as if-added rules, indicating that 

actions described in those rules should be taken when a value found within the 

antecedent of that rule becomes available. Within the semantic context of the SE the 

only way a value can “become available” is by the execution of the SDBMS SetField 
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command. Thus, the secondary agenda is driven by calls to the SetField command 

Each time the SetField command is called within a given primary agenda step the 

available rules within that primary agenda are tested for any occurrences of that 

particular field within the antecedent of the rule. Should a component within the 

antecedent of one of these rules correspond to the field being set, that rule is placed on 

the secondary agenda. When all rules within the secondary agenda have been 

considered, inference continues with the next step on the primary agenda

4.4 SDBMS Symbol Dictionary

Given that interpretation of the semantic rule base is based heavily on the 

knowledge about the structures of the tables referenced therein and the ability to 

identify which database engines govern which tables, the SE must be provided with a 

symbol dictionary (as depicted in figure 2). This dictionary links the various symbols 

used in the semantic rule-base which reference specific databases with information 

about the database engine, structure of the table (e g , key fields, non-key fields, field 

data types, etc.), and (if applicable) its logical location on some (potentially 

networked) storage device This symbol dictionary would be referred to continually 

by the SE when converting an SDBMS semantic rule to its corresponding SEARCH­

TEST-ACT chain, where information about the database’s structure and governing 

database engine are paramount issues (as detailed previously). Beyond the conversion 

of a given semantic rule to its SEARCH-TEST -ACT chain, identification of a 

particular table’s database engine is obviously important when executing the given 

components of SEARCH-TEST-ACT chains, as translation must occur from any of 
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the SDBMS manipulative commands (e g , Search, Insert, Delete, Update, etc ) to 

there implementation platform equivalent.

Many database engines provide the capability of querying the structure of their 

databases in this environment when the SE is presented with a semantic rule which 

references a new table (i e, one which has not already been incorporated into the 

symbol dictionary), it need only ask the user for its governing database engine (i e , the 

type of database) and logical location (if applicable). The SDBMS would then be able 

to fill in the required information itself by querying that table’s structure-given the 

database engines structural-query commands. Some database management systems, 

however, do not boast such powerful structural-query capabilities in such an 

environment when presented with a new table—one unknown to the SDBMS—the 

SDBMS would require the user to enter information about the database’s structure 

and engine directly into the symbol dictionary. As an alternative to this cumbersome 

need to enter structural information twice (i e , once when creating the database and 

once when linking it to the SDBMS), one might build additional SDBMS commands 

designed to control database creation For example, if a particular database engine 

was capable of allowing creation/structural-modification of databases, but did not 

allow querying about existing databases’ structures, the SDBMS might first acquire 

the information required for building the database via the SI, incorporate the necessary 

information about the new database’s structure into the symbol dictionary, and use the 

respective database engine commands to physically create the database in this manner 

structural description of new databases is only required once One must take care, 

however, that any creations of new databases or structural modifications to existing 

databases which are to be referenced by the SDBMS must be done so through the SI 

to avoid describing the structural information twice
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With knowledge about the databases-their structures and the database engines 

which regulate them—the SDBMS may oversee manipulative aspects in a seamless 

manner, accepting manipulative database commands from the user/program via the SI 

and interpreting any semantically defined repercussions of those actions through the 

SE Having discussed implementation aspects of the SDBMS which are global to all 

database engines, let us investigate specific implementation constraints posed by 

different types of database engines

4.5 Semantic Engine Interaction with Single-record Manipulative 

Database Engines

SE control of primitive, single-record manipulative database engines follows 

quite naturally from the way in which the SDBMS has been defined These types of 

database engines only allow users/programs to reference data one record at a time 

Often what must occur is first queuing a particular record and then acting upon it 

Multiple-record manipulations rely upon the user/program To accomplish a multiple­

record manipulation the user/program must initiate a loop, external of the database 

engine, where each single record is queued and manipulated

4.5.1 SDBMS Inserts with Single-record Manipulative Database Engines

The insertion of records into databases which support only single-record 

manipulations abides by the following template (again, we shall assume that SI 

communication takes the form of a simple procedure-like command language):
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NewRecord( T1 );

SetField( T1, Fj, Vj );

SetField( Fk, Vk ); 

lnsert( );

In this format, T ।  represents some table name which is under SDBMS control 

Fj and Fk represent valid field names for table T ; The reference Vj represents the 

value to be set for field Fj whereas Vk represents the same for field Fk The SDBMS 

NewRecord command sets up semantic context for the declaration of a new T ] 

record The reference for this record within semantic context is defined as T][l] (as 

was described in the preceding sections). If there was a previous T ] [ l ] record queued 

in semantic context its field and value cells are purged in favor of the new record 

which is assumed to initially have all null-value fields. The SDBMS command 

SetField is then used in a sequential manner to set the desired values of particular 

fields Upon execution of a SetField( Tj, Fj, Vj ) command any acquisition rules of the 

form “{A} Tj Fj( 9 ) ...” are considered and, should their antecedents prove true, their 

consequents are executed Should any of these consequents contain the SDBMS 

command RejectValue( Tj ) the value Vj for the field Fj of table Tj is not incorporated 

into semantic context and the user/program which initiated the SetField command is 

made aware of the rejection. A simple message may be compiled by interrogating the 

rule which caused the value rejection. For example, if we had a referential integrity 

acquisition rule of the form:

{A} Ti Fi( X ) a —1( T2.F2( X ) ) => RejectValue( T-| Fi )

A rejection message could be compiled as follows: “Value rejected because X 

does not exist in table T2 ” (‘X’, of course, would be displayed as the value bound to 

the variable X) Use of the SetField changes the field-value state of the new record 
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both by the field which is being set directly, and by any potential consequents inferred 

by the acquisition rules spawned from setting that particular field The new record 

continues to be defined in this manner until the Insert command is issued

Upon issue of an Insert command all committal rules are interrogated, once 

again changing the state of the buffered record Once consideration of all committal 

rules is concluded and no rules brought about the SDBMS Abort command, the record 

is inserted into its respective database using the technique appropriate to the database 

engine which governs it. At this time field cells which do not appear within semantic 

context for the record to be inserted are assumed to be of value null.

4.5.2 SDBMS Queuing of Records with Single-record Manipulative

Database Engines

In order to accomplish one of the other two SDBMS manipulative commands 

(i e, Delete and/or Update), a record must first be queued. Queuing usually would 

take the form of an SDBMS Search command However, other SDBMS queuing 

commands could be available to the user (assuming the database engine in question 

can handle such queuing commands): FirstRecord( <table> ), NextRecord( <table> ), 

PreviousRecord( <table> ), and LastRecord( <table> ) These additional commands 

are relatively straight forward. The SDBMS Search command, however, does require 

some discussion as it must be universally capable of covering a wide variety of search 

techniques (since many database engines have their own, usually different, ways of 

representing search criteria).

The SDBMS Search command is of the following format:

Search( T^, F, = Vj a Fj = Vj a ... F^ = V^, SCOPE );
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In this format Tj identifies some table i under SDBMS control which is to be 

searched Fx is some field x belonging to table / Vx is some valid value v for field x 

of table i. The conjunctive symbol ‘a ’ is used to specify additional search constraints. 

The reference SCOPE is used to indicate the scope of the search to be performed. 

The SCOPE parameter may not be applicable to some primitive forms of database 

engines. However, Borland International’s PARADOX™ ENGINE, for example, 

allows the scope of a search to be constrained in three different ways: (1) search 

begins at the first record in the database, (2) search begins at the currently queued 

record, or (3) search begins at the first record in the database and continues to the 

record which matches the criteria the closest. As will be seen in the succeeding 

section SQL-compatible systems always search from the first record in the database 

and therefore the SCOPE parameter is irrelevant.

The second parameter of the Search command identifies what criteria the 

search should constrain itself to This second parameter may have several different 

interpretations depending upon the complexity of the engine Once again let us use 

Borland International’s PARADOX™ ENGINE to illustrate differing interpretations 

The PARADOX™ ENGINE allows two techniques for searching The first 

technique—PXSrchKey—allows searching on one or more consecutive fields which 

belong to the primary key, starting with the first field of the primary key. For example, 

consider the table A which has fields ap a^, aj, 34, a$, a^, and ay Further, let us say 

that fields a; through 33 compose the primary key of table A We may then use the 

PXSrchKey command to search on just the field a; or we may use the same command 

to search on fields ai and a2 or on all fields of the primary key, a;, 32, and 33 A 

second technique which the PARADOX™ ENGINE supports is PXSrchFld, which 

shows 3 search on a single field value Thus, we could use the PXSrchFld command 

to search on field 34 or 35 or a^ or ay, but no combination there of it is the SE s 
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obligation to have knowledge of the various search techniques supported by the 

various database engines under its control and to know how and when to use them

Some simple translations from the SDBMS Search command to pseudo code 

for the PARADOX™ ENGINE might look as follows:

SDBMS: Search( A, a-j = Vj, FIRST );

PARADOX: PXSrchKey on table A with field ai =

SEARCHFIRST.

SDBMS: Search( A, a-j = a 32 = vg, NEXT );

PARADOX PXSrchKey on table A with fields ai = 32 = V2,

SEARCHNEXT.

SDBMS Search( A, ag = vg, FIRST );

PARADOX PXSrchFId on table A with field ag = vg,

SEARCHFIRST

The SE is capable of determining which type of PARADOX™ command to 

use based on its knowledge of the structure of the database in question in the second 

example the SE can infer the use of the PXSrchKey command since fields aj and a^ 

are consecutive fields in the primary key and field aj is the first field in the primary 

key Thus, the constraints for using the PXSrchKey command have been fulfilled and 

therefore may be used In the third example the SE can infer the use of the PXSrchFId 

command since field a^ is a non-key field of the table A.

4.5.2.1 SDBMS Enhanced Queuing of Records with Single-record 

Manipulative Database Engines

Indeed, the SE may use its knowledge of the workings of a particular database 

engine to provide enhanced querying capabilities, as the following PARADOX™ 

ENGINE interpretation demonstrates:
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SDBMS: Search( A, a-| = vi a a2 = V2 a ag = vg, FIRST );

PARADOX: if ( PXSrchKey on table A with fields a-| = vj, a2 = V2, 

SEARCHFIRST ) is successful, 

AND if ( ( field ag = vg ) OR

[ if ( PXSrchFId on table A with field ag = vg, 

SEARCHNEXT ) is successful,

AND if the current rec’s field value for ai is vi 

AND if the current rec’s field value for 32 is V2 ], 

THEN the search was successful;

ELSE the search was not successful.

In this example we see that since fields aj and a^ are consecutive fields 

belonging to the primary key of table A and since field a] is the first field of the 

primary key, the SE can make use of the PXSrchKey command to accomplish the 

initial portion of the search. Further, since field % is a simple field of table A the SE 

can use the PXSrchFId command to search from the record found with the 

PXSrchKey command, to the next record where % = v^ (if the record found in the 

initial search has % * v^) Note, however, that should this next record be found, its 

values for fields aj and a2 must be verified (since the next record where % = v^ may 

not have 3] = V] and a2 = V2) Note also that this technique assumes that the table’s 

records are sorted in an ascending manner relative to the primary key

Generalizing this technique one arrives at the following algorithm which the SE 

can use to enhance the querying capabilities of PARADOX-like database engines:

Algorithm for Enhanced Single-record Querying:

1. Given the command

Search( A, 3j = Vj a 3j = vj a ... a ax = vx, SCOPE );

2 Re-organize the criteria parameter to the form a; = Vj a aj = Vj a ... 

a ax = vx, where given the structure of the table A the logical 

ordering of field a, precedes field aj precedes ... precedes field ax

55



3. If a; is not the first field (given the structure) of table A or if table A 

has no primary key, then set the variable NEXTSCOPE = SCOPE 

and GOTO step 7.

4. Starting with field a,, strip off each consecutive field which belongs 

to the primary key of table A--call this the key criteria.

5. Use PXSrchKey to search on table A with key criteria acquired in 

step 4, starting the search from the record identified by SCOPE

6. If a record was found in step 5, then set the variable NEXTSCOPE 

= SEARCHNEXT and continue with algorithm,

If a record was not found in step 5, then exit algorithm with failure 

(i.e., no record found).

7. If the current record matches the remaining criteria, then exit the 

algorithm with success!

8 Use PXSrchFId to search on table A with single-field criteria equal 

to the first field remaining in the criteria, starting the search from 

the record identified by the variable NEXTSCOPE

9. If a record was found in step 8, then set the variable NEXTSCOPE 

=SEARCHNEXT

If a record was not found in step 8, then exit algorithm with failure.

10. If key criteria exists (i.e., step 4 was executed above) and the 

current record does not match that criteria, then exit algorithm with 

failure.

11 GOTO step 7.

Thus, one can see that the SDBMS Search command may be interpreted in 

several distinct ways depending upon (1) the abilities of the database engine which 

governs the table to be searched, and (2) the structure of the table With this 

comprehensive queuing strategy the SDBMS enhances existing technology, as was 

seen in the case of PARADOX™ ENGINE interpretations, while at the same time 

providing a universal medium for accomplishing the queuing of records over different 

types of single-record manipulative database engines
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4.5.3 SDBMS Deletes with Single-record Manipulative Database Engines

Having discussed the queuing process for single-record manipulative database 

engines, the idea of record deletions becomes trivial. Once a record belonging to a 

certain table T is queued (as described in the preceding section) a simple SDBMS 

command of the form Deletef T ) deletes the record from the table One must keep in 

mind, however, that before the physical deletion of the record from table T occurs, all 

SDBMS removal rules of the form “{R} T F|( ? ) ...” must be considered and fired 

should their antecedents prove true. Should an applicable removal rule fire which, 

within its consequent, contains the SDBMS command Abort( T ) the record is not 

deleted from the table and the initiator of the Delete command is made aware of the 

infraction which caused the abortion by way of the SI

Upon successful completion of an SDBMS Delete command the record which 

was just deleted is completely removed from semantic context (i e., removal spans not 

only all field and value cells which related to that record, but also the table cell which 

referenced the record at its highest level) Part A of figure 5 depicts this type of total 

removal from semantic context

4.5.4 SDBMS Updates with Single-record Manipulative Database 

Engines

The use of the SDBMS Update command to modify existing records follows 

the format detailed above for declaration of new records prior to insertion, except that 

the desired record would be queued instead of cleared via the NewRecord command. 

The SDBMS SetField command would then be used to modify field values of the 

queued record As the SetField command is invoked any SDBMS acquisition rules 
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which relate to that field are considered and fired (if applicable) as outlined above 

Note, however, that once an existing record has been queued, the SDBMS SetField 

command’s function is slightly different in that for each field a belonging to the queued 

record Afl] a A index reference of the form A/1],a/A] is incorporated into semantic 

context The value cell associated with this A index field cell contains the value of 

/4/7/.a just prior to modification by the SetField command. As was explained above A 

index references may be used in rules to semantically distinguish between inserts and 

updates

Once the desired field values have been modified for the queued record via the 

SetField command(s), the SDBMS Update command is used to commit the 

modifications to the database As with inserts all committal rules applicable to the 

type of record being updated are considered and potentially fired Should an Abort 

command be encountered during this interrogation, the update is aborted and the 

initiator of the Update command is informed. When all committal rules have been 

examined, and no Abort command was encountered, the modifications for the record 

are committed to the database.

4.6 Semantic Engine Interaction with Multiple-record Manipulative 

Database Engines

Multiple-record manipulative database engines (eg, SQL-compatible systems) 

do not allow single-record accesses per say and hence the SE must take a slightly 

different route to interact with such systems Whereas a command issued to a single­

record manipulative engine effects a specific, unique record, a single multiple-record 

engine command may result in the manipulation of several records However, any 

multiple-record manipulative system must ultimately access one record at a time
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Given this important factor SE interaction with such database engines follows naturally 

from the SE implementation as described in the previous section with few additions to 

the grand scheme

SE interaction with multiple-record database engines involves ( 1 ) interrogation 

of the command, (2) determination of which record(s) will be affected by the 

command, (3) determination of which SDBMS rules associate with the command, (4) 

application of those rules on each record affected by the command, and finally (5) 

execution of the original command itself on each record which did not result in a 

semantic infraction. SQL will be used in the remainder of this section to outline SE 

interaction with multiple-record manipulative systems. One should note, however, 

that the strategy described herein would apply to virtually any multiple-record 

manipulative environment

4.6.1 Internal and External Multiples

Given a multiple-record command the SE must break the command into 

sequential record accesses so it can be sure each record is acted upon appropriately by 

the semantic rule-base. This is accomplished by way of record cursors—common to 

embedded SQL Two types of cursors which reference multiple-records (henceforth 

referred to simply as “multiples”) are utilized within the SE externaI multiples and 

internal multiples. To understand the nuances of the first type of multiple let us 

consider the following generalized format of a multiple-record SQL command

[action ] WHERE [criteria]
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Here, [action .] denotes some multiple-record action such as update, insert, 

delete, etc The parameter [criteria] references the constraints which records must 

meet in order to be included in the multiple-record operation. If we take the [action ] 

portion of this command and replace it with a SELECT ... FROM operation we can 

precisely identify those records which will be affected by the [action. ..] operation (as 

dictated by the [criteria . ] parameter). To clarify let us consider the following SQL 

UPDATE command:

UPDATE production 1

SET production 1serial_required = ‘YES’

WHERE production 1 type = TOXIC;

Taking the WHERE clause into account we may produce the following 

SELECT statement which will identify all those records which would be effected by 

the UPDATE command:

SELECT *

FROM production)

WHERE production) type = 'TOXIC';

Using embedded SQL (our link from the SDBMS to the RDBMS) we may 

then acquire a cursor on this statement as follows:

EXEC SQL DECLARE X1 CURSOR FOR 

SELECT * 

FROM production)

WHERE production) type = TOXIC ;

The cursor Xj identifies the multiple-records external to the semantic rule-base 

(i e, external multiples) Using the embedded SQL command FETCH the SE may 

sequentially isolate each record and independently act upon that record (in this 
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example considering all committal rules relevant to a production 1 record), processing 

any semantic repercussions as represented by the rule-base. As each record is fetched 

from the cursor its field values are loaded into semantic context (as in the single­

record queuing strategy defined above) New field values are then set for that record 

using the SDBMS SetField command (if required as dictated by the [action ] portion 

of the original command). The SetField command spawns interrogation of relevant 

acquisition rules for that type of record. Should all new values pass interrogation of 

the acquisition rule-base (i e, no RejectValue-consequents arise), the rule-base 

relevant to the [action] is then considered (i e , committal rules or removal rules) and 

should no Abort-consequents arise, the [action] is finally performed on that unique 

record Exactly how each [action] is performed by the SDBMS is detailed in 

subsequent sections of this chapter Should a semantic infraction occur, a log is 

created outlining the infraction (this may be in the form of an immediate interface with 

the user, allowing him/her to correct the infraction in the middle of processing the 

original command, or it may be written out to a log file where the user/program could 

return to after all valid records have been acted upon) After each record is acted 

upon or rejected the SE then fetches the next external multiple and begins the process 

again Processing continues in this fashion until all records identified by the cursor 

have been acted upon

Internal Multiples are multiple records which arise from consideration of a 

single rule within the context of a single subject record To illustrate this type of 

multiple consider the following semantic removal rule:

{R} suppl ier.s#( X ) a shipments. s#( X )

a AcquireExistingValue( “Enter the supplier # for the 

supplier who will be taking over supplier |X|’s 

shipments: ", suppliers#, Y )

=> shipments.s#( Y ) a Update( shipments )
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This rule states that should a supplier be removed from the database any 

shipments which were assigned to him/her should now be taken over by another 

(remaining) supplier. In this case the record “supplier” would be bound to a single 

record in semantic context which is awaiting removal from the database. The 

reference “shipments" would then bind to several records (i.e., a single supplier may 

have many shipments assigned to him/her). Thus, “shipments” identifies multiple 

records internal to the consideration of this particular removal rule (i.e., internal 

multiples)—specifically, all shipment records assigned to supplier number, X The 

special SDBMS function AquireExistingValue is used to obtain a valid supplier 

number from the supplier database, which, in this example, identifies the supplier who 

will take over supplier number X s shipments

Hence, for each external multiple this particular rule may have to be applied to 

many internal multiples. Note that internal multiples not only apply to multiple-record 

manipulative database systems but also may apply to single-record manipulative 

systems as well For example, the above rule would be just as valid if the databases 

“supplier” and “shipments” were governed by a single-record manipulative database 

engine Because of this important point the SE must handle internal multiples in such 

a way as to provide generality among the different types of database engines which are 

overseen by the SDBMS

4.6.1.1 SDBMS Implementation Scheme for Internal Multiples

Recalling that each semantic rule which governs the manipulation of a given 

database may be reduced to a SEARCH-TEST-ACT chain, it is easy to see how such 

a chain may be invoked to manage internal multiples Take for example the following 
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rule (as detailed in the previous section) and its SEARCH-TEST-ACT chain 

reduction:

{R} supplier.s#( X ) a shipments.s#( X )

a  AcquireExistingValue( "Enter the supplier # for the 

supplier who will be taking over supplier |X|’s 

shipments:", suppliers#, Y )

=> shipments.s#( Y ) a Update( shipments )

RULE: R/supplier

SEARCH 1 : shipments, s# = suppliers#

TEST ! : e
ACT-) : AcquireExistingValue( “Enter the supplier # for the

supplier who will be taking over supplier 

|supplier.s#|’s shipments ", supplier[2].s# )

ACT2 Set( shipments.s# = supplier[2].s# )

ACT3 Updatef shipments )

In this particular example the SEARCH portion of the chain may potentially 

bind several different “shipments" records—each of which must be independently 

considered by the rule Thus, by thinking of the SEARCH portion as an iteration over 

one or more records found by the search we arrive the following flow:

Loop while SEARCH 1

Begin loop

TEST,

ACT,

ACT2
ACT3

End loop

For single-record manipulative systems the loop would be carried out by 

searching out the first record identified by SEARCH], iterating the loop once, 

searching for the next record under SEARCH], iterating once again, etc Multiple­

record manipulative systems (eg, SQL) would require obtaining a cursor on
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SEARCH] and fetching the next record identified by the cursor for each iteration. In 

this manner universality is achieved by simply providing an SDBMS Search procedure 

for each database engine which is controlled by the SDBMS The syntax for the 

Search procedure call would remain the same (as detailed in previous sections) while 

the functionality of the procedure would be dependent upon the database engine which 

governs the table in question.

4.6.1.2 SDBMS Implementation Scheme for External Multiples

Having implemented internal multiples by way of the SDBMS Search 

command, external multiples are handled quite easily in the same fashion. Indeed, 

since external multiples are acquired (as in SQL) by replacing the [action ] portion of 

an “[action .] WHERE [criteria. ]” command with a “SELECT ... FROM query, the 

SE, in effect, generates an SDBMS Search query which will identify those records 

which meet the [criteria . ] This “external” Search is handled in precisely the same 

manner as Searches within a given rule, except that during iteration the entire 

(relevant) rule-base is considered for each of those records queued by the Search and 

the [action] is independently performed for each of those records as well (assuming no 

semantic infractions occur, of course) To clarify this proposed flow let us consider 

the following multiple-record delete command and how the SE would go about 

implementing such a command

Initial Multiple-record Command:

DELETE

FROM supplier

WHERE supplier orders < 100;
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External Multiples Identified By Command:

EXEC SQL DECLARE Xq  CURSOR FOR

SELECT *

FROM supplier

WHERE supplier, orders < 100

(which implies the following SDBMS Search command:)

Searchg( supplier, orders < 100, N/A )

(Note: the “N/A” indicates scope is irrelevant to this database 

engine.)

Recalling the sample removal rule in the previous section, relevant to a 

“supplier” record, we would have the following SE flow:

Loop while SEARCHg (external multiples)

Begin loop
... <consideration of initial removal rules> ...

Loop while SEARCH-] (internal multiples) 

Begin loop

TEST1 

ACTi 

ACT2 

act 3
End loop 

... consideration of remaining removal rules> ... 

IF <NO SEMANTIC INFRACTIONS^

THEN Delete( supplier ) 

End loop

Let us say further that in the above flow SEARCHq  is governed by cursor Xq  

and that SEARCH] is governed by cursor X] Given these stipulations, ACT3 (i.e , 

Updatef shipments) ) may be carried out by the following SQL translation (assuming 

that supplier[2].s# was acquired in ACT ; as “Y22”) :
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EXEC SQL UPDATE shipments 

SET shipments.s# = ¥22’ 

WHERE CURRENT OF

Finally, should no semantic infractions occur in consideration of the removal 

rules for a “supplier” record, the Delete( supplier ) command is carried-out as follows:

EXEC SQL DELETE

FROM supplier

WHERE CURRENT OF Xq ;

Thus, by way of cursors we are able to control the iterative processes, both 

external and internal, of rule-base consideration. Once again cursors would not be 

required in single-record manipulative systems as actions are performed on the 

currently queued record (i e , that record which was iteratively queued by the most 

recent SDBMS Search command for that record type).

4.6.2 SDBMS Inserts with Multiple-record Manipulative Database

Engines

SQL allows two modes of insertion single-record inserts and multiple-record 

inserts Should the user/program wish to execute a single-record insert, two avenues 

are available. The first route would allow the user/program to initiate the insert as was 

described for single-record manipulative systems (section 4 3.1) via dialogue through 

the SI—ideal for systems where user-interface is of primary importance. This scheme 

provides two important advantages: first, the application controlling the interface need 

not concern itself with providing a buffering structure for the information as this is 

accomplished by the SDBMS semantic context. Second, as each value is set (via the 

SDBMS SetField command) acquisition rules can be applied immediately causing 
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feedback to the user of any inferred field values or value rejections resulting from 

those rules When the SDBMS Insert function is finally initiated, the committal rule­

base would be consulted and, should no abort consequent present itself, the SE would 

compile the necessary SQL command to insert the given record into its respective 

database. This insert command can be easily generated by taking into account all non­

null field-values within semantic context for the record being inserted

The second route of single-record insertion would be to send the (SQL) 

command directly to the SE This command would be of the following generalized 

format:

INSERT

INTO a ( ai, «2, , aj )

VALUES ( vi, V2..... vj ) ;

Given this command the SE would simply generate the following SDBMS 

function calls which would ensure semantic integrity and (assuming no breach of 

integrity) insert the record into its respective database (as described for single-record 

manipulative database engines in 4.3.1):

NewRecord( a );

SetField( a, cq, vi );

SetField( a, «2- v2 X

SetField( a, a;, vj ); 

lnsert( a );

Should, however, a multiple-record insertion be required, the corresponding 

SQL command would have to be sent to the SE, where it would be interrogated, 

identifying each record within the command. Each record is processed as an external 

multiple (see 4 4 1), involving (1) consultation of the acquisition rule-base for each 
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new field-value specified, (2) consultation of the committal rule-base (prior to 

insertion), and (3), should no semantic infractions occur, insertion of the single record 

into its respective database.

4.6.3 SDBMS Deletes with Multiple-record Manipulative Database 

Engines

Given the description of the SDBMS handling of external multiples, multiple­

record deletions become quite trivial To summarize, the DELETE operation is 

transformed into a SELECT. FROM operation, identifying those external multiples 

which will be deleted iteration continues for each external multiple, consulting the 

removal rule-base respective to the database from which the record is to be deleted, 

and should no semantic infractions occur the record is then physically removed from 

the database

4.6.4 SDBMS Updates with Multiple-record Manipulative Database 

Engines

Multiple-record updates are performed much in the same way as multiple­

record inserts Take the following generalized update command format:

UPDATE a

SET aj = vj, aj = vj, ...

WHERE ak = vk, ...

The SE would then obtain a cursor on the following query
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EXEC SQL DECLARE Xo CURSOR FOR 

SELECT * 

FROM a 

WHERE ak = vk, ...

Iteration would then take place over the records identified by Xg (as described 

for external multiples in 4 4 1) and for each record the following SDBMS function 

calls would be invoked:

SetField( a, cq, vj );

SetField( a, aj, vj );

Update( a );

Each call to SetField moves the old field-value into the field’s A slot, places the 

new field-value into the field’s current field-value slot, and considers any relevant 

acquisition rules (as described in 4 3.4) Upon execution of the SDBMS Update 

command the SE generates the following SQL command:

EXEC SQL UPDATE a

SET ay — Vy, tty — Vy, aZ — Vg, ...

WHERE CURRENT OF X0;

In this command, ax, ay, az, , refer to all field cells which contain values 

both in their current field-value slots and in their A slots; whereas vx, Vy, vz, ..., refer 

to the current field-values of field cells ax, ay, az, ..., respectively

5 .0 SDBMS REPRESENTATION OF SEMANTIC INFORMATION

Given a detailed account of how the SDBMS functions the following question 

presents itself “What kinds of semantic information can be represented in such a 
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system?” To demonstrate the types of representations possible with the SDBMS let us 

examine figure 6 This figure depicts the logical design and subsequent E/R model of 

a database system which is to keep track of the daily activities of a generic production 

plant Raw materials at the plant site consist of various chemicals which are produced 

by manufacturers and stored in a holding area prior to their consumption Products 

are then produced by merging the chemicals in a reactor Products are then stored in 

various types of storage containers awaiting transportation to customers The logical 

design in figure 6 is based on this description, providing a general overview of the 

plant’s daily throughput. Below the logical design is found a simple 

Entity/Relationship (E/R) model. The E/R model expands upon the logical design, 

displaying all relations required to implement the logical design. Bold lines represent a 

“many” relationship, whereas non-bold lines represent a “one” relationship For 

example, many chemicals may be found in the holding area at any given time, many 

products may be produced in a single reactor, etc. While this type of model details 

how the information will be stored, it does not go very far in promoting a semantic 

awareness of the information itself By this it is meant that although the E/R model 

yields a good definition of the structure of the tables required to represent the plant’s 

throughput, it does not provide any means for injecting complex semantic 

constraints/stipulations about what may be validly stored within those tables.

The succeeding chapters discuss various types of “semantic” information which 

pertain to the production plant system of figure 6, and how that information may be 

represented within the SDBMS.
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5.1 Semantic Restriction of Context-sensitive Values

Once a product has been processed in one of the plant’s reactors, it must be 

stored in one or more containers while awaiting shipment to the customers It would 

be ideal, for example, if the system “knew” that liquid products should only be stored 

in liquid-holding containers (eg, one would not store a liquid product in a cardboard 

box). The following SDBMS committal rule takes care of this:

{C} storage.product_id( X ) a product.id( X ) a product type( liquid ) 

a -,( storage, contained 'drum' )) 

a -,( storage.container( tank’ )) 

a -,( storage.contained tank truck’ ) )

=> Abort( storage )

This rule ensures that all liquid products must be stored within liquid­

compatible containers such as a drum, tank, or tank truck. This may seem to be a 

trivial type of semantic constraint and some database management systems do allow 

field value-constraining. However, examining this rule more closely one finds that the 

value-constraint posed herein is context-sensitive (i.e, the “container” field value is 

only constrained to “drum,” “tank,” or “tank truck,” when the value “product type” is 

equal to “liquid” ) Some database management systems allow one to constrain field­

values, but these constraints are always applied (i.e., global to all records within that 

table) As has been shown here the SDBMS promotes a semantic approach to value­

constraining, while at the same time centralizing the semantic information in the rule­

base Certain values may be semantically constrained based upon the context of other 

field values within that record. This notion of context need not be local to a single 

record of a single table. For instance, one could semantically define a context based 

on field value(s) of one or more records within a single table; one or more records 

71



within a different table; one or more records within multiple tables, or even one or 

more records within multiple tables governed by different relational database engines.

5.2 Cross-table Indexes (Cross-reference Tables)

When building reports it is often necessary to employ indexes to promote an 

efficient means of sortation. Further, should the desired sortation scheme bridge two 

or more tables, a standard database index is not possible (as indexes pertain to one or 

more fields within a single table) Using SQL’s GROUP BY function, for example, 

would allow one to arrive at the desired multi-table sortation. However, if access time 

is paramount this approach may be undesirable as large tables may cause execution of 

the GROUP BY command to take a considerable amount of time in this scenario one 

would ideally like to make use of a multi-table indexing scheme which was maintained 

in real-time in this manner an auxiliary table could be implemented, which would 

contain the multi-table items required by the sortation in its primary key This cross­

reference table would then have to be maintained in real-time in order to be 

synchronous with the modifications/additions of the multi-table items contained 

therein

This scheme is particularly useful when two tables are required to represent a 

single entity For example, let us say that for any given product there exists 

approximately two thousand field-values which are to be associated with that product 

Further, let us say that the database system which we have chosen to implement the 

representation of this product information allows a maximum of one thousand fields 

per table Thus, to accomplish this representation scheme at least two tables are 

required, each of which containing an identical primary key structure (eg, a single 
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field "product id" ), and splitting the two thousand or so fields between each of the 

tables (e.g., table “product 1 ” and table “product2”). Let us then say that a real-time 

maintainable cross-reference is required between one field of the “product I” table and 

another field of the “product2” table The following semantic rules accomplish this:

{C} producti product_id( X ) a product2.product_id( X )

a cross_reference1 product_id( X ) )

a producti field1( Y ) a product2.field2( Z )

=> NewRecord( cross_reference1 )

a cross_reference1 product_id( X )

a cross_reference1 fieldl ( Y )

a cross_reference1 field2( Z ) 

a lnsert( cross_reference1 )

{C} producti .fieldl [A]( X ) a producti fieldl ( Y )

a product 1 product_id( Z ) a cross_reference1 product_id( Z ) 

=> cross_reference1 fieldl ( Y )

a Update( cross_reference 1 )

{C} product2.field2[A]( X ) a product2.field2( Y )

a product2.product_id( Z ) a  cross_reference1 product_id( Z ) 

=> cross_reference1 field2( Y )

a Update( cross_reference1 )

{R} production 1 product_id( X ) a production2 product_id( X ) 

a cross_reference.product_id( X )

=> Delete( production2 ) a Delete( cross_reference )

The first rule listed above handles maintenance of the cross-reference table due 

to insertion of a new product. The next two rules handle maintenance of the cross­

reference table should one of the two field values which comprise the cross-reference 

be changed. The last rule applies to deletion of a product and the subsequent deletion 

of the secondary table extension and cross-reference table The interested reader may 

note that two additional rules have been left out, yet are nonetheless paramount to the 

maintenance of the cross-reference table These two rules would update the cross­
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reference table should the “product id” field of either the “product 1 " table or the 

“product2” table would change The rules themselves are left to the reader

5.3 Maintained Pool of Logged Values

Certain systems may require a memory feature for values entered by the user 

(i e, an encyclopedia of previously used values) This is especially important with 

today’s graphical user-interfaces (GUIs) where programmers wish to maximize the 

“point-and-click” feature for their applications. A system utilizing this type of 

environment might display a list of previously entered values for a given field and 

allow the user to select one of those values (if applicable) It should also allow the 

user to enter new values on-the-fly if the value required did not occur in the past

Let us say that in our production plant system it would be useful to have a pool 

of product types (e.g., a given product type might be “GASOUS10-3,” “GASOUS09- 

1,” “LIQUID21 T, etc ) Further, let us say that product types are often reused when 

new product information is acquired and that the list of product types grows at a slow 

rate This would be a prime candidate for a maintained pool of values, allowing the 

programmer to pull existing values from the pool to form a point-and-click list for the 

user The following simple rules maintain this pool quite well:

{C} product.type( X ) a -,( product_types.type( X ) )

=> NewRecord( product_types ) a product_types( X ) 

a lnsert( product_types )

{R} product type( X ) a -,( product[2].type( X ) ) 

a product_types.type( X )

=> Delete( product_types )
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{C} producttype[A]( X ) a -<( product[2].type( X ) ) 

a product_types. type( X )

=> Delete( product-types )

The first rule handles the instance where a new product type is incorporated 

into the pool The second two rules remove a product type from the pool when (as in 

the second rule) a “product” record is removed and there exist no other “product” 

records which share its “type” field value, and when (as in the last rule) a product’s 

type is changed and there exist no other “product” records which share that products 

old “type” field value

5.4 Constrained Field Value Acquisition

Conceivably one might want to constrain acquisition of certain field values 

upon preceding acquisition of other field values For instance, given the “schedule” 

database which is to keep track of when, where, and how certain raw materials are to 

be processed in what reactors to produce which products, it would not be practical to 

assign a load time for a batch unless a reactor was first chosen to load the materials 

into One might wish to capture this semantic notion in the form of an SDBMS rule 

and force the system to reject the acquisition of a schedule’s “load time” field value 

before its “reactor” field value has been assigned. Although this example may seem 

nonsensical, its analogy can be applied to the extraction of complex information in 

which the precedent value of X is absolutely required before value Y can be accepted 

and verified by the system The following type of semantic rule would suffice:

{A} schedule. Ioad_time( X ) a schedule. reactor( null )

=> RejectValue( schedule load-time )
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5.5 System Maintained Meta-Tables

Sometimes it is important to track the day-to-day user actions in regard to 

possible debugging of applications, report generations, or simply to maintain an audit 

trail for later reference. In such a scenario one might wish to make use of a table 

whose records relate which items have been acted upon at which times. It would be 

nice if one could then explain, semantically, to the system that it is to keep track of 

those actions and hence maintain the table without having to introduce or modify 

existing program code to effectuate this task For example, let us say that for 

whatever reason it is important for our plant managers to keep track of the number of 

chemicals deleted from the holding area on a daily basis Consider the following rules

{R} holding.chemical _id( X )

a -,( chemical_removals.chemical_id( X ) )

=> NewRecord( chemical_removals )

a chemical_removals.chemical_id( X )

a chemical_removals.instances( 1 ) 

a lnsert( chemical_removals )

{R} holding.chemical_id( X ) a chemical_removals chemical_id( X ) 

a chemical_removals.instances( Y )

=> chemical_removals. instances( Y+1 ) 

a Update( chemical_removals )

Both rules are sufficient in maintaining a log of how many chemicals were 

removed from the “holding" database

5.6 Inferable Field Values

Many systems often require the use of default values or inferred information 

Often this semantic knowledge must be hard coded into an application program or 
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expert system which interfaces with the storage medium (database management 

system) It would be nice if this semantic knowledge could be directly linked with the 

information itself without the cumbersome addition of customized interfaces.

Inferable field values can span simple context-dependent value acquisitions to 

maintenance of redundant data The incorporation of this semantic knowledge into the 

SDBMS gives it expert system-like capabilities It closely couples artificial intelligence 

techniques with the storage medium, centralizing both knowledge and data alike

5.6.1 Default Field Values

Often database systems require default information to minimize the time 

required by data entry and to add to the basic inferable information about a new item 

By “default” it is meant that those values are initially inferable, but may be overridden 

at some point in the future. SDBMS default values are implemented using the format 

of the following rules

{C} manufacturer.country( null ) => manufacturer country( ‘USA’ )

{C} container.type( ‘steel’ ) a container thickness( >5.0 ) 

a container.toxic_compatible( null )

=> container toxic_compatible( yes’ )

The first rule represents a globally defaulted value (i e , in all contexts of a new 

“manufacturer” record one can assume the value of field “country” to be “USA”). The 

second rule makes use of context-dependence, defaulting the field “toxic compatible” 

to “yes” only if the container’s type is “steel” and its thickness is greater than 5 0 

Hence, by utilizing the null parameter one may describe default values for any fields 

under SDBMS control.
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5.6.2 Standard Inferable Field Values

Standard inferable field value rules are those which relate the assignment of 

one field value with the acquisition of another field value. Take, for example, the 

following rule:

{C} holding.chemical_id( X ) a chemicals. id( X ) 

a  chemicals.volatile( 'yes' )

=> holding. special_handling( yes’ )

This rule ensures that any volatile chemical which is incorporated into the 

holding area should be flagged for “special handling.” The structure of these rules 

may become quite in-depth, allowing for a complex array of integrated semantic 

knowledge One should note that the above rule will set the “special handling” field 

only within a certain context (i e, when the given chemical is volatile). This does not 

prohibit the user from directly setting the “special handling” field to “yes” if the 

chemical is non-volatile Should this be the only constraint for special handling of 

chemicals, one might wish to incorporate the following rule, which would bullet-proof 

the inference of the “special handling” field:

{C} holding.chemical_id( X ) a chemicals.id( X ) 

a ->( chemicals.volatile( 'yes' ) )

=> holding.special_handling( no' )
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5.6.3 Maintenance of Redundant Data Via Inferable Field Values

Many implementations to date which require immensely large databases have 

abandoned much of the database “normal form” conventions in an attempt to 

maximize performance. This breach of convention often involves the integration of 

redundant data—long since considered a “dirty word” in database design and 

development However, redundant data can be extremely useful albeit cumbersome in 

large systems which attempt to minimize the total number of access operations. For 

instance, if our “chemical” database was absolutely immense and our “manufacturers" 

database was equally large, the designer might opt to eliminate the “chemicals" 

database which merges the unique keys of both tables to keep track of which 

manufacturers supply which chemicals. Instead the designer might wish to tack on the 

manufacturer ID to the “chemical” database which describes each chemical used by the 

plant Along these lines let us say that when a chemical is accessed it is important to 

know AS SOON AS POSSIBLE what the manufacturer’s name is and what country 

they are located in. Traditionally, the manufacturer’s name and country should be held 

within the “manufacturer” database, and would hence require a secondary access to 

move from the “chemical” database to the “manufacturer” database This same 

technique would actually involve three look-ups if we made use of a “chemicals 

database, as we would (1) access the “chemical" database, then (2) access the 

“chemicals” database to determine the manufacturer ID, and finally (3) access the 

“manufacturer" database to determine the manufacturer’s name and country By 

adding the manufacturer’s ID, name, and country to the “chemical database we 

reduce the number of required accesses from two or three down to a single access 

However, by doing so we introduce redundant data into the system. Since our 
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production plant has plenty of computer information space available, the vote is to 

increase performance at the expense of space, so our database designers must concern 

themselves with the maintenance of this redundant data, since failure to maintain 

redundant information would no doubt result in inconsistent and erroneous data The 

following rules allow maintenance to flow simply from the semantic model

{A} chemical.mfg_id( X ) a manufacturer.id( X )

a manufacturer. name( Y ) a manufacturer.country( Z )

=> chemical.mfg_name( Y ) a chemical.mfg_country( Z )

{A} chemical.mfg_id( X ) a ->( manufacturer.id( X ) )

=> RejectValue( chemical mfg_id )

{C} chemical.mfg_id( null )

=> chemical mfg_name( null ) a chemical.mfg_country( null )

Thus, we ensure that redundant data is maintained properly. However, 

examining this problem more closely one will see that the above rules handle the 

redundancies arising from the “chemical1' database to the “manufacturer” database, but 

not vice versa Taking note of the following SDBMS rules one will see why the above 

rules are necessary but not sufficient to handle redundancy maintenance

{C} manufacturer. id[A]( X ) => Abort( manufacturer )

{C} manufacturer.name[A]( X ) a manufacturer. name( Y )

a manufacturer. id( Z ) a chemical. mfg_id( Z )

=> chemical.mfg_name( Y ) a Update( chemical )

{C} manufacturer.country[A]( X ) a manufacturer.country( Y )

a manufacturer.id( Z ) a chemical.mfg_id( Z )

=> chemical.mfg_country( Y ) a Update( chemical )
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The first rule ensures that once a manufacturer has been assigned an ID it can 

never be reassigned. The second rule will modify all relevant “chemical” records in the 

event that the manufacturer’s “name” designation changes. The third rule functions in 

a similar capacity, maintaining “country” modifications.

With the integration of these simple SDBMS rules the database management 

system may boast an increase in performance brought forth by data redundancy while 

at the same time ensuring that no inconsistencies will arise because of such 

redundancy

5.6.4 Automatic Manipulative-assignment of Inferred Field Values

Certain applications may require the system to assign identification numbers to 

new entries, facilitating a unique identification scheme and tracking over the life time 

of those items Often for systems which boast a large amount of new item acquisitions 

and which operate under a multi-user environment, user-assignment of unique 

identification is not possible Rather it is left to the system to carry-out some form of 

automated ID assignment. Given the production plant scenario let us say that new 

customers are continually being associated with the plant, and that a unique ID is 

required for each customer to facilitate orders, shipping, billing, etc Further, since 

many different users may be entering new customers into the system it is not possible 

to rely on user-assignment of those unique IDs The following rules handle automatic 

assignment of customer IDs as they are acquired:

{0} customer. name( X ) a numbers.table( 'customer' ) 

a numbers field( 'id' ) a numbers number( Y )

=> customer. id( Y+1 ) a numbers.number( Y+1 ) 

a Update( numbers )
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{C} customer. id[A]( X ) => Abort( customer )

In this example the production plant database management system makes use 

of a “numbers” database which associates the last used ID number for a given 

“table”/“field” pair. Thus, as a new customer is entered the “number” field value of 

the “numbers” record identified by “customer”/“id” will yield the last used ID number. 

Adding one (1 ) to this number results (simply) in the next useable unique customer ID 

The first rule listed above accomplishes this quite well, assigning the new ID to the 

new “customer” record and updating the “numbers" database with the newly used 

value The second rule ensures that once an “id” has been assigned to a “customer” 

record it may never be altered—as we have given the system complete control over the 

numbering scheme

5.6.5 Indirect Automatic Manipulative-Assignment of Inferred Field 

Values Through Redundant Data

Given redundant data the system may allow users to define a new record in 

table A, as a repercussion of inserting a new record into table B Proceeding along the 

lines of required redundant data with the chemical/manufacturer relationship consider 

the following semantic rule

{C} chemical. mfg_name( X ) a ->( manufacturer name( X ) ) 

a numbers.table( ‘manufacturer’ ) a numbers.field( ‘id’ ) 

a numbers.number( Y )

o chemicals. mfg_id( Y+1 )

a NewRecord( manufacturer )

a manufacturer. id( Y+1 )

a manufacturer. name( X )

A ...

a lnsert( manufacturer )

82



a numbers.number( Y+1 ) 

a Update( numbers )

In this rule the system allows the user to define new manufacturers on-the-fly 

while inputting new chemical information. The rule tests the entry of the 

“chemical mfg name” field with its possible existence in the “manufacturer” table, and 

if it is not found there, inserts a new “manufacturer” record with automated ID 

assignment. One should be careful, however, with such rules since the manufacturer’s 

name may not be unique among manufacturers. Indeed, should the user miss-type the 

name of an existing manufacturer, the system would (by this rule) insert the miss-entry 

as a new manufacturer with a new unique ID—definitely not a desired side effect To 

combat this problem one could incorporate a new SDBMS function Confirm( Inique 

which would take a <table> <field> pair as one parameter and a value as a second 

parameter and display all close references to that value within the <table> The 

function would then request confirmation of the value versus the existing close values 

Confirmation of the value’s uniqueness (i.e., a TRUE result returning from the 

Confirm Unique function) should be sufficient to indicate firing of the above rule 

Syntactically the rule might be rewritten as follows (taking into account the 

requirement for user-confirmation):

{C} chemical mfg_name( X ) a manufacturer. name( X ) )

a ConfirmUnique( manufacturer.name, X )

a numbers table( manufacturer' ) a numbers field( id' ) 

a numbers number( Y )

chemicals.mfg_id( Y+1 )

a NewRecord( manufacturer )

a manufacturer id( Y+1 )

a manufacturer. name( X )

A ... A lnsert( manufacturer )

a numbers.number( Y+1 )

a Update( numbers )
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5.7 Semantic “Key” Violations

Designers of SDBMS database systems need not be content with the simple 

key violations of typical relational systems, but may rather describe semantic context­

dependent constraints which constitute rejection of committed records Perhaps 

certain combinations of field values for a given record would be impossible or 

undesired. By representing this knowledge in the form of semantic rules one gives the 

system the capability of rejecting unmeaningful, inconsistent, or impossible 

information The following semantic rule disallows the event of producing a toxic 

product directly after the production of a non-toxic product in the same reactor:

{0} schedule.type( ‘toxic’ ) a schedule. prior_serial_no( X )

a schedule^].serial_no( X ) a schedule[2].type( ‘toxic’ ) ) 

=> Abort( schedule )

By using semantic rules the SDBMS may extend the capabilities of more 

primitive database management systems. The following rule allows a database 

management system to disallow a null key entry, even though the DBMS would be 

incapable of such restrictions

{C} in process product_id( null ) => Abort( in_process )

Using the SDBMS Abort command allows the system designer to describe 

semantic or meaningful reasons for why certain combinations of values would be 

inappropriate It gives the designer the ability to define these constraints in a context­

dependent manner and centralizes this knowledge into a unified rule-base
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5.8 Built-in Referential Integrity

Many new database management systems boast the ability to control referential 

integrity from within the database system itself However, older or more primitive 

systems still rely on external means with which to manage referential integrity (see 

chapter 3 for a discussion of referential integrity). By defining referential integrity in 

the form of semantic rules one accomplishes two feats: (1) all database management 

systems under SDBMS control may now support referential integrity, (2) referential 

integrity is centralized into a readily accessible knowledge base and hence all database 

systems share the same representation scheme (i e , one need not concern oneself with 

the differences of how two databases engines would handle referential integrity). The 

following example depicts a referential integrity scenario and the semantic rules which 

would maintain such integrity:

Referential integrity:

schedule, productjd -> product, id

Insertion into the “schedule” database:

{A} schedule. product_id( X ) a ->( product. id( X ) ) 

=> RejectValue( schedule.product_id )

Deletion of “schedule" record--OK since deletes do not cascade 

upward to “product” database.

Insertion/modification of “product" record:

{C} product. id[A]( X ) a schedule. product_id( X ) 

a product. id( Y )

o schedule.product_id( Y ) a Update( schedule )

Deletion of “product” record:
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{R} product. id( X ) a schedule, product_id( X ) 

=> Delete( schedule )

Thus, with these few simple semantic rules we are able to maintain the 

referential integrity of schedule, product id —> product, id, providing any database 

management system under SDBMS control with the means to manage referential 

integrity.

5.9 Semantic Rejection of Values

Much in the same way one can define the semantic constraints under which 

records may be rejected, one may also define semantic constraints under which field 

values may be rejected Again field value rejection need not be defined globally (e g , 

in the case of "field F, may only contain the values A, B, or C, and no others”), but 

rather may be described in a context-dependent manner (eg, “field F] may normally 

contain the values A, B, or C, but may contain the field value D if the value of field F2 

is E,“ etc ) Take for instance the following:

{A} ^( storage contained 'drum' ) ) a ^( storage, contained tank' ) ) 

a -,( storage.container( tank truck' ) ) 

a  storage.contained ‘cardboard box' ) )

a -,( storage.container( ‘plastic bag' ) ) 

a -n( storage.contained paper bag ) )

A ...

=> RejectValue( storage.container )

{A} storage product_id( X ) a product. id( X ) a product.type( liquid' ) 

a -,( storage contained drum' ) ) 

a ^( storage.container( tank' ) ) 

a -n( storage.contained tank truck ) )

=> RejectValue( storage.container )
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In this example the first rule globally defines the valid values of field 

“storage container,” while the second rule constrains those values to a specific subset 

should the type of product to be stored be “liquid." This technique may also be used 

to define certain aspects of referential integrity (as described above) and to control 

redundant data (also mentioned above) as in the following:

{A} chemical.mfg_name( X ) a chemical.mfg_id( Y )

a manufacturer. id( Y ) a ->( manufacturer. name( X ) ) 

=> RejectValue( chemical.mfg_name )

Thus, we ensure that any change to the redundancy of the manufacturer’s name 

in the “chemical” table must jive with the manufacturer’s ID to be accepted by the 

SDBMS

5.10 Extended Referential Integrity

By using semantic rules the SDBMS is capable of handling extended 

referential integrity (as was described in chapter 3). To reiterate, extended referential 

integrity is similar to standard referential integrity except that constraints may be 

defined which do not insist upon specifically matching foreign keys, but rather may be 

dependent on the simple field values of other records, or even the existence of several 

other records The following rule insists that an “in_process” record may not contain 

the value 'toxic’ in the simple field “type” unless there exists at least one record in the 

“product” table whose simple field “type” contains the value toxic ’

{A} in_process.type( ‘toxic’ ) a -,( product.type( ‘toxic’ ) )

=> RejectValue( in_process.type )
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5.11 Context-dependent Forced Value-acquisition

Certain contexts may insist that specific field values be acquired from the user 

(or program interface). Take for example the following SDBMS rule:

{C} in_process.product_id( X ) a  product.id( X ) 

a product type( 'toxic' ) a in_process.handling_auth( null )

=> AcquireValue( in_process handling auth )

This semantic rule ensures that any production of a toxic product must be 

accompanied by a handling authorization number before proceeding Hence, with this 

type of rule we force the interfacing entity to obtain a handling authorization number 

before the record may be committed to the “in_process” database.

5.12 Concluding Remarks On SDBMS Representation of Database 

Semantics

One could continue to identify a potentially endless roster of semantic 

information representable by the SDBMS rule-based language The types of semantic 

information which regulate the manipulative aspects of a given database system may 

range anywhere from simple inferable field values to complex integrity maintenance. 

Rules need not only reference single types of database management systems, but may 

rather reference a host of differing databases, all of which requiring unique database 

engine interaction Thus, semantic knowledge may span many different database 

implementations, providing a means for universal data exchange and platform 

independence
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We have seen that complex semantic information can be easily represented 

with this rule-based language, providing a close coupling of knowledge and data This 

close coupling is important for both developer and user in that semantic information 

may be readily accessible to both The developer need no longer be concerned with 

producing complex customized programs to implement semantic knowledge as has 

been required with most of today’s database management systems. By adding a few 

simple semantic rules to the system the developer may accomplish complex tasks 

which in the past would have required integration of complex interfaces, customized 

programs, or even loosely coupled expert systems. Semantic rules which are added to 

the system may be done so by a host of developers, centralizing all semantic 

knowledge and making semantic changes readily available for all developers. Users 

may find the rule-base indispensable not only in the sense that the system itself would 

automate much unnecessary data entry and maintenance, but also in the sense that the 

rule-base itself may be used to inform them of semantic repercussions due to certain 

actions on the data By associating a documentation paragraph with each semantic 

rule an interested user would be able to browse through the semantic information 

embedded in the rule-base. This could be carried out by using backward-/forward- 

chaining methods to determine applicable rules to a <table> <field> pair requested by 

the user and displaying appropriate documentation associated with those rules

At best the SDBMS minimizes the often haphazard integration of independent 

customized applications required to implement semantic aspects of database 

manipulations, eliminating the problem of modification migration from customized 

program to customized program One gains a powerful means to semantically and 

universally centralize enormous amounts of shared data
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6 .0 THE SDBMS SEMANTIC INTERFACE (SI)

We finally concern ourselves with the basic requirements for how a user, 

developer, or even a program might interact with the SDBMS. The Si’s primary 

function is to provide a means for a user, developer, or program (henceforth referred 

to as the “operating entity”) to manipulate a universal array of relational data through 

a single interface. The SI shuttles the operating entity’s SDBMS command to the SE 

where it is interrogated by applicable rule-base(s), processing any semantic 

repercussions brought forth by the command. The SI itself may take different forms 

depending on the type of operating entity.

6.1 Semantic Interface to the User

The most notable database manipulative aspects concerning human operating 

entities (users) would lie in the areas of ( 1 ) finding the intended data to be modified, 

(2) acquiring a basic understanding of the intended data (if necessary), and finally (3) 

modifying said data Given the first point the user must have the capability of 

precisely identifying the database which he/she intends to modify (i e., the user must 

specify the correct database by matching it with an item in the SDBMS symbol 

dictionary). Once the database symbol is acquired from the symbol dictionary the 

SDBMS has an immediate understanding of the database’s type (i e., which database 

engine is required to manipulate it), its structure, and its location on some (potentially 

networked) storage device With this information the SDBMS is able to “open ” the 

specified database (i e, acquire the database as a resource), refer to the database’s 

semantic rule-base, and “open ” any databases which may be affected by the rules 
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regulating that database’s semantic integrity. However, identifying the correct 

database symbol could pose a substantial problem for the user as the SDBMS symbol 

dictionary may be quite large To combat this problem the SI could make use of a 

simplistic form of natural language processing (NLP) to assist the user in his/her 

navigation through the symbol dictionary.

Having the database administrator attach one or more descriptive sentences 

(documentation) to a database symbol during its creation would provide at least some 

form of natural language assistance during database navigation Applying the same 

scheme to a database’s structure (i e., attaching descriptions to field names) would 

provide an even more detailed synopsis on a given database’s purpose. The 

envisioned result would be a form of information browser which would take an initial 

list of keywords from the user, query those keywords against the descriptions of 

entries in the SDBMS symbol dictionary, and generate a list of descriptions to 

potential tables matching the user’s criteria The user could then browse through this 

list, perhaps issuing further keyword constraints, until the desired database is 

identified

The second aspect of user interaction concerns itself with the user acquiring a 

“basic understanding of the database ’ which he/she intends to manipulate By this it is 

meant that the user may be curious about repercussions of certain database 

manipulations. For example, if a user asks the question “if I update field on of table a, 

what tables (if any) will be affected by the action?” By consulting the given database’s 

semantic rule-base, an answer to this question may be automatically compiled by 

forward-chaining on the <table> <field> pair in question This ability to navigate 

through semantic repercussions constitutes a form of semantic browser in that the user 

may be made readily aware of semantic aspects concerning database manipulations
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The information and semantic browsers would prove especially indispensable 

with regard to database systems intended to train individuals in the workings of the 

particular domains which are represented by the database systems The same 

methodology could be applied to a user asking why a particular inferable field value 

came to be as the result of a certain database manipulation. In short, the same 

descriptive capabilities, previously boasted only by expert systems, are now possible 

with regard to database manipulations through use of the SDBMS.

Once the symbol for the desired database is made aware to the user he/she may 

manipulate the data as desired, issuing SDBMS commands to the SI, which then 

hands-off to the SE for processing. Certainly the use of today’s graphical user 

interfaces (GUIs) along with advanced NLP integration would be most useful in this 

type of interface. Whatever the interface the most important duties of the SI is to 

assist the user in navigating through the vast array of available information and provide 

a single interface capable of accessing multiple database engines and hence universally 

centralizing information.

6.2 Semantic Interface to the Designer/Developer/Database 

Administrator

SI aspects which apply to the general user would certainly assist a designer/ 

developer/database administrator Beyond the ability to browse through existing 

information (via the symbol dictionary) and the semantic links between them (via the 

rule-base) it would be nice to include some computer assisted software engineering 

(CASE) tools with respect to the acquisition of rules Some developers may find the 

logical language of the SDBMS complex and confusing. CASE tools could be 

developed to ease the generation of complex rules Referential integrity rules, for 
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example, could be generated quite easily by acquiring from the developer the two 

<table>.<field> pairs to be linked and having the system prompt the developer for 

specific actions pertaining to cascade effects. Take the following scenario for 

example:

Developer's requested referential integrity:

schedule productid -» product, id

SDBMS automatic generation of rule for insertion into the 

"schedule " database:

{A} schedule. product_id( X ) a -,( product.id( X ) ) 

=> RejectValue( schedule. product_id )

SDBMS automatic generation of rule for insertion/modification of 

"product " record:

{C} product. id[A]( X ) a schedule. product_id( X ) 

a product. id( Y )

=> schedule. product_id( Y ) a Update( schedule )

SDBMS:

"Should deletion of schedule record(s) remove the applicable 

product record(s)?"

Developer:

“No.”

SDBMS:

(Deletion of “schedule” record—OK since deletes do not 

cascade upward to “product” database.)

SDBMS:

“Should deletion of product record(s) remove the applicable 

schedule record(s)?”
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Developer:

Yes."

SDBMS automatic generation of rule for deletion of “product” 

record:

{R} product. id( X ) a schedule. product_id( X ) 

=> Delete( schedule )

These automations can be accomplished by making use of the following 

pseudo-code template for referential integrity rule acquisition

REFERENTIAL INTEGRITY a «i -> p.pi):

GENERATE

{A} a.ai( X ) A 4 p.pi(X)) 

=> RejectValue( a.ai )

GENERATE

{C} p.p^AK X ) a a.«i( X ) a p.p^ Y ) 

=> a.ai( Y ) a Update( a )

IF (“Should deletion of a record(s) remove the applicable /? 

recordfs)?" == YES) THEN GENERATE:

{R} a ai( X ) a p Pi( X ) Delete( p )

IF (“Should deletion of ft record(s) remove the applicable a 

record(s)?"-= YES) THEN GENERATE:

{R} p.pi( X ) a a.ai( X ) Delete( a )

Conceivably, additional templates could be configured for other types of 

semantic rules, thus easing the rule acquisition process With this approach developers 

can quickly embed complex semantics directly into the databases themselves without 

the need to integrate tedious customized programs.
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Attaching one or more sentences of documentation to each rule (much in the 

same way as described for the symbol dictionary) would provide the means for a 

semantic-rule browser. With the use of such a browser developers could quickly and 

intelligibly navigate through the vast array of semantic rules Given a database symbol 

acquired from the developer the SI could produce a visual map which would provide 

an overview of tables used by the given database (i e, those tables appearing within 

the antecedent of rules applicable to the database) and tables affected by the given 

database (i.e., those tables appearing within the consequent of rules applicable to the 

database). The visual map could then be extended by applying the same scheme to 

each of the tables linked to the originally queried database. Merging this type of 

browser with descriptions of each table and its fields can produce a highly detailed 

diagram of how the information is intended to interact—even cross-platform interaction 

(i.e, interaction between differing database engines). Once again the SDBMS has 

achieved centralization of information and a universal interface for both user and 

developer alike

6.3 Semantic Interface to Programs

Although the need for customized programs which interact with databases has 

been greatly minimized by the SDBMS (as has been previously noted), it may still be 

necessary from time to time to link database information to specific applications. This 

would most likely be the case for automated information acquisition, automated 

reporting, etc. The programmer would no doubt find the browsing capabilities of the 

SDBMS indispensable in developing such programs The browsers would be used 

during development of the applications to acquire the necessary database symbols 
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required for data manipulation through the SDBMS. Once the database symbols are 

known the programmer would embed the respective SDBMS commands directly into 

the application. The SDBMS would, in effect, function much in the same way as a 

typical database engine, requiring the program to first procure a linkage between itself 

and the SDBMS, and then send the desired SDBMS commands directly to the SE for 

processing. Thus, use of the SDBMS would provide application designers with a 

seamless linkage to many different types of databases, while maintaining a single type 

of programming interface for all engines

7 .0 SDBMS PROTOTYPE IMPLEMENTATION

An SDBMS prototype was developed for use under Microsoft™ Windows 

3. lx. The system was written in C using the Borland™ C++ 4.0 compiler and utilized 

Borland’s Paradox™ Engine as its database platform. The prototype was intended to 

demonstrate the basic functionality of the three categories of semantic rules— 

(A)quisition, (C)ommittal, and (R)emoval—and provide proof of concept for the 

methodologies presented in chapter 4.

The prototype consists of a main window which allows the user to view one of 

several Paradox databases by selecting the desired database from a drop-down 

combobox located in the upper left comer of the main window Once a database is 

selected the main window will display the valid fields of the chosen database and the 

field values of the first record in the database. Figure 11 depicts the main window 

when displaying a record in the “INPROC” database.

The button-bar located at the top of the main window allows the user to define 

a new record to be inserted into the current database; search for a particular record in 

the current database (see figure 12a); delete the currently displayed record; queue the 

96



next or prior record in the database (as sorted by the database’s primary key); quit the 

prototype; ask why the last semantic repercussion(s) occurred; or undo any changes 

made to the currently displayed record. To change a particular field’s value one 

simply moves the cursor to the appropriate edit box within the main window and 

enters the respective information

7.1 Implementation Model of the SDBMS Prototype

The chosen model for implementation is that which was described in section 

2.1 above. Figure 7 depicts the model and some of the databases used to represent the 

information of a fictitious production plant. Appendix B gives a listing of the semantic 

rules which were included in the prototype.

The prototype was designed to demonstrate the basic functionality of SDBMS 

semantic rules As was detailed in previous chapters, any semantic rule may be 

reduced to a SEARCH TEST-ACT chain, and it is the processing of these chains 

which has been directly implemented within the prototype. The rules themselves are 

stored within two databases The first database, "SE RULE, references the rule’s 

type (acquisition, committal, or removal); the <table> or <table> <field> to which the 

rule applies—facilitating forward-chaining; the rule’s id; and a natural language reason 

for why the rule would potentially fire The second database, “SE CHAIN,” 

references the SEARCH-TEST-ACT components of the rule. For any given rule there 

exists x number of records found within this table—one for each component in the 

rule’s SEARCH-TEST-ACT chain Each record contains the following: the rule’s id; 

the component’s sequence in the chain beginning with 1 ; the chain component’s 

command (eg, test, search, set, abort, reject Value, update, insert, etc.); and three sets
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of fields defining the two operands and the operator of the command (i.e., the 

command’s parameters). Take for instance the following rule, its SEARCH-TEST- 

ACT chain, and its representation within the two tables utilized by the prototype:

3300 {A} holding.chemical_id( X ) a chemical. id( X ) a  

chemical. name( Y )

=> holding.chemical_name( Y )

RULE A/holding.chemical_id

SEARCH: chemical.id = holding chemical_id

TEST e

ACT: Set( holding.chemical_name = chemical.name )

A chemical ID implies a specific chemical name "

SE_RULE:

RULE TYPE “A”

TABLE: “HOLDING.CHEMICAL ID"

RULE ID “3300”

REASON: “A chemical ID implies a specific chemical name "

SE_CHAIN:

RULE ID: “3300"

SEQUENCE "1 "

COMMAND: “SEARCH

LOP1 : CHEMICAL ID"

OP1:
«_ »

ROP1: HOLDING CHEMICAL ID”

RULE ID “3300"

SEQUENCE “2"

COMMAND TEST

LOP1 : 

OP1 

ROP1:

“<EXIST>”

“<TRUE>"
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RULE ID: "3300"

SEQUENCE “3”

COMMAND: "SET"

LOP1: “HOLDING.CHEMICAL NAME "

OP1:
«=»

ROP1 “CHEMICAL.NAME”

7.2 Core Semantic Engine Functions

The SE itself was written in C and uses several generic database functions to 

control semantic context and manipulate the Paradox databases The core SE 

functions are as follows:

SE_SetField( <tableName>, <LGIndex>, <fieldName>, <fieldValue> );

SE_lnsertRecord( <tableName>, <LGIndex> );

SE_UpdateRecord( <tableName>, <LGIndex> );

SE_DeleteRecord( <tableName>, <LGIndex> );

The SE SetField function is used to access semantic context Setting a field 

for a given <tableName> and <LGIndex> will associate that field value with the record 

buffer for <tableName>/<LGIndex>. The <LGIndex> parameter is used to keep track 

of two or more records of the same type-i e., one may wish to access the same table 

in two or more record locations, maintaining record buffers for each A call to the 

SE SetField function initiates a search of the “SE RULE” database for any 

acquisition-type rules applicable to the <tableName> <fieldName> which is to be set 

Should an applicable acquisition rule be found, its SEARCH-TEST-ACT chain is 

processed—each applicable record of the “SE CHAIN” database This command is 

called from the Windows interface each time a user enters a field value Any 

consequents which arise from a rule’s firing are stored within the SE’s reason chain 

The current reason chain may be accessed at any time by pressing the “Why9” button 
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located in the button bar on the main window. Figure 12c depicts a portion of a 

reason chain which would be presented to the user upon pressing the “WHY9" button 

Should a user enter a value which ultimately results in a RejectValue consequent, an 

audio alert sounds and the old value (if any) is reset Pressing the “Why?" button at 

this time allows the user to determine the reason for that particular value’s rejection.

The SE lnsertRecord command is called whenever a new record is entered 

from the interface. To enter a new record the user first presses the “New" button, 

enters the subsequent field values relative to the new record (causing the SE to 

consider any/all relevant acquisition rules), and commits (inserts) the record into the 

database Committal automatically occurs when the user presses any button in the 

button-bar or selects a new table to view When the SE InsertRecord command is 

called, the SE searches the “SE RULE" database for any relevant committal rules 

associated with the <tableName>. Any consequents which arise from fired committal 

rules are stored within the reason chain and may be accessed via the “Why?" button as 

described above Should a committal rule result in an Abort consequent, a message 

box appears (figure 12b), and the record continues to be displayed until the 

information is verified by a subsequent committal or the “Undo button is pressed 

Once all rules have been considered and no Abort-consequent is inferred, the record is 

inserted into the database.

The SE UpdateRecord command is called when a user commits new 

information for a pre-existing record The functionality is for the most part identical to 

SE InsertRecord. However, when all rules have been considered and no Abort­

consequent arises, the record is updated as opposed to inserted. Similarly the 

SE DeleteRecord command processes any removal rules associated with the 

<tableName>, and, should no Abort-consequent occur, removes the record from the 

database
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7.3 SEARCH-TEST-ACT Chain Processing

The SE incorporates a recursive strategy when processing rules. Whenever a 

SEARCH occurs, an internal multiple loop is initiated—as described in chapter 4 At 

this point, should the initial search succeed, the rest of that SEARCH-TEST-ACT 

chain is processed with respect to the binding of that searched-out record Upon 

completed processing of the chain, control returns recursively to search for the next 

valid record meeting the given criteria, and, should a “next” record be found, the 

remainder of the rule is again processed with respect to the new binding This internal 

multiple loop continues until no more records may be found This strategy is 

analogous to the notion of unification and exhaustive search mechanisms of Prolog.

The recursive nature is further employed during forward chaining. Take for 

example rule 2500 of Appendix B One of the consequents of this rule initiates an 

SE SetField for the “volatile” field of the currently queued “products” record Thus, 

by calling SE SetField any acquisition rules applicable to “products volatile” will be 

considered and potentially fire (in fact, rule 1700 of Appendix B would fire)—the firing 

of those consequents possibly chaining further in the rule-base. Similarly the Update 

consequent of rule 2500 would result in forward-chaining on any committal rules 

associated with “products.”

7.3.2 De-aliasing Within SEARCH-TEST-ACT Chain Processing

A de-aliasing strategy is used within SEARCH-TEST-ACT processing to yield 

specific bindings within the rule For example, the operand “<DELTA> products id” 

would be de-aliased to yield the delta (last) value of the “id” field for the currently 
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queued “products” record The operand “products.id” would be de-aliased to yield 

the current value of the “id” field of the currently queued “products” record The 

“<EXIST>” operand is de-aliased to be either “<TRUE>” or “<FALSE>” depending 

on whether the last SEARCH was successful. Once a particular parameter is de­

aliased it may be acted upon by the command. The SE’s de-aliasing of parameters is 

somewhat equivalent to the binding/unification which occurs in Prolog when moving 

from a variable-designation to a bound value or calculation.

7.4 Signature C™

Although the semantic engine currently links to only Paradox databases (i.e., 

the prototype is homogeneous with respect to a single database engine), the system 

was developed using a powerful database engine front-end—Signature C™ This 

front-end engine was developed over a two-year period by this author and co­

developed by Robert S Voros Signature C is a database engine CASE (computer- 

aided software engineering) tool which acts as a generic interface to the Paradox 

engine and eases program coding The SDBMS semantic engine was built as a front­

end to Signature C Take for example the following lines of code (Paradox engine vs 

Signature C)

PARADOX ENGINE...

char buffer[40];

TABLEHANDLE tbIHandle;

RECORDHANDLE recHandle;

PXTblOpen( “C:\KEY\DATABASE\se_rule”, &tblHandle, 0, 1 );

PXRecBufOpen( tbIHandle, &recHandle );

PXRecBufEmpty( recHandle );
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PXPutAlpha( recHandle, 1, “A” );

PXPutAlpha( recHandle, 2, “CHEMICAL” );

if ( PXSrchKey( tbIHandle, recHandle, 2, SEARCHFIRST ) == 

PXSUCCESS)

{
PXRecGet( tbIHandle, recHandle );

PXGetAlpha( recHandle, 3, 40, buffer );

}

SIGNATURE C:

LG_SetField( SE_RULE”, 1, “RULE TYPE”, “A" );

LG_SetField( “SE_RULE”, 1, “TABLE”, “CHEMICAL” );

if ( LG_Search( “SE_RULE", 1, “KEY”, 2, SEARCHFIRST ) )

{
LG_GetField( “SE_RULE", 1, “RULE ID”, buffer );

}

As one can easily see signature C considerably reduces the codification 

required for database integration. Signature C was designed on the premise that 

fundamental database operations are shared by every relational database system (e g , 

setting field values, retrieving field values, searching, inserting, deleting, etc ) 

Although the SDBMS prototype is admittedly homogeneous with regard to Paradox 

databases, it can be stated that it is heterogeneous-ready. By modifying Signature C 

routines to access other database engines one may gain a heterogeneous system. 

Hence, this heterogeneous system would be obtained by enhancing the database engine 

front-end while leaving domain-specific application code untouched (i e, one need 

only enhance Signature C not the semantic engine to gain a heterogeneous system)
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7.5 Execution of the Prototype

Let us examine a particularly complex operation (i.e., complex for the 

SDBMS—not the user) to understand how the prototype functions. Let us say the user 

enters a new record for the “ INPROC table as depicted in figure 11. Upon attempted 

committal of this new record rule 2700 is first considered. In essence this rule 

attempts to verify that all chemicals which are listed within the product’s recipe exist 

within a record of the “holding” database (recall the “recipe” records define which 

chemicals/quantities are required to produce a given product, while the “holding” 

database lists which chemicals and quantities thereof are currently available at the 

plant). Should there exist a particular chemical which is referenced in the product's 

recipe which does not exist within the “holding” database, the committal of the new 

record is aborted (i e, if no “holding” record exists for a given chemical, the system 

may infer zero quantity of that chemical, and if there exists zero quantity of a chemical 

which is required to make a product, then that product cannot be produced). If this 

particular rule does not fire, then one can be certain that all required chemicals are 

currently inventoried at the plant Note that this rule does not necessarily maintain 

that there is sufficient quantity of required chemicals at the plant, but simply that all 

required chemicals are present at the plant

Rule 2800 would be considered next. This rule is similar to rule 2700, except 

that it concerns itself with the actual quantities of chemicals currently inventoried at 

the plant For each chemical listed in the product's recipe there must be sufficient 

quantity of that chemical in holding Hence, should x quantity of chemical y be 

required to make product z and there exists <x quantity of chemical y currently at the 

plant, then product z cannot be produced and the committal of the new in-process 

record must be aborted.
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Rule 2900 would next be considered (provided an Abort has not already 

occurred). This rule performs two important tasks first, it updates the quantities of all 

chemicals in holding which are required to make the new product based on its recipe; 

second, it inserts a new record into the “INPRCHEM” (in-process chemical) table, 

which keeps track of which chemicals are in-process making which in-process 

products If there exists x z quantity of chemical y in holding and z quantity is 

required to produce product p, then the holding quantity of chemical y is modified to 

equal x-z. Note that setting the “quantity” field of the “holding” record for chemical y 

forces the consideration of any relevant acquisition rules Similarly, the update of the 

“holding” record forces the consideration of any relevant committal rules 

Subsequently setting the fields of a new “IMPRCHEM” record and inserting that 

record results in consideration of any respective acquisition and committal rules 

respectively. In particular, should the “INPRCHEM” chemical ID be set to one which 

references a volatile chemical, rule 900 ensures the proper “special handling” setting 

for that new chemical in-process

Thus one sees the power of the SDBMS as a simple insert of a record into a 

particular database can not only test the semantic validity of such an action (as 

depicted in the verification of proper chemical quantities based on a product's recipe), 

but may also cause a semantic repercussion which may affect one or more records of 

one or more differing tables—normally thought of as simple reservoirs of information, 

but now semantically linked by the SDBMS.

8 .0 CONCLUSION

Clearly, since the use of database management systems has saturated virtually 

every facet of commercial, scientific, and educational domains, it has become a 
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necessity to make this information more accessible to more users By directly 

incorporating high-level semantics into the basic functionality of today’s database 

systems through the use of the SDBMS one accomplishes many feats. The most 

important contribution of this work is perhaps the centralization of vast amounts of 

information stored within differing database platforms through a universal semantic 

interface. By themselves relational database systems have proven to be not much 

more than mere vessels of information, each having limited knowledge (if any) of the 

databases around them—and no knowledge of databases governed by different 

database management platforms. Integration of the SDBMS allows these “blind” 

databases the essential ability to communicate with one another Semantic knowledge 

may be coded into SDBMS rule-bases to connect two or more tables of potentially 

differing platforms, thus centralizing a vast amount of information For example, an 

employee database governed by database engine A may now be semantically linked to 

a payroll database governed by a different engine B which otherwise would have not 

been possible With the ability to unify many different database systems the global 

information exchange is increased considerably Companies need no longer create 

redundant databases to capture like-information in differing platforms as the 

information may flow seemlessly from system to system through the SDBMS.

Another important contribution of the SDBMS is the notion of linking a 

semantic knowledge-base with each database These knowledge-bases embody the 

complex semantics associated with the various databases—semantics capable, for 

example, of answering such questions as: “What is the underlying meaning of 

changing a product type from solid to liquid?” A transition of this type does not 

merely effect the superficial modification of a single field-value, but may in fact result 

in a causal chain of events required to maintain the semantic integrity of such a 

change; a change which could possibly effect multiple records in multiple tables 
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spanning multiple platforms (e g, storage container types for a liquid versus a solid 

may require modification as well-a bottle versus a cardboard box; reactor privileges 

required to make such a product might be dictated by its type—solid or liquid—and 

thus would require a change in scheduling the production of that product; etc ) 

Hence, the SDBMS rule-base is able to both represent and implement these data- 

manipulative semantics.

Throughout this dissertation it has become clear that the semantic aspects—the 

meaning—of a database extends far beyond the simplistic notion of a data structure 

(i e , keys, field data types, referential integrity, etc ). Data semantics span from the 

internal dependencies of a single record’s field-values to cross-table/cross-platform 

dependencies of other records. It has been shown that the context or state of a record 

can effect its causal relationship(s) with other field values, other tables, or even other 

platforms. Depending upon its field values simple generic rules may not always apply 

to records, but may rather require many rules describing the various states which may 

occur within that record which would cause data-manipulative repercussions 

elsewhere.

It has been shown in the preceding chapters of this dissertation that the 

SDBMS’s rule-based language is capable of overseeing such data-manipulative 

semantic aspects as integrity management, data consistency, forced-redundancy 

verification, field-value inferences, context-dependencies, data type checking, security, 

etc In a sense the SDBMS acts as an automated database administrator, overseeing 

much (if not all) of the operations which were previously only possible through human 

intervention or the tedious integration of customized programs With the fusion of 

rule-base technology with existing database technologies the SDBMS makes primitive 

database management systems far more powerful and makes powerful database 

management systems more flexible Database systems may be developed and 
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implemented on-the-fly, embedding complex semantic aspects which were previously 

only boasted by semantic modeling schemes, but which are now directly implementable 

through the SDBMS rule-based language Database systems themselves may be more 

readily understood by both developers and end-users alike given the extensive 

documentation-embedding techniques available to rule-bases associated with databases 

governed by the SDBMS. The browsing capabilities and proposed integration of 

simplistic natural language processing techniques boasts a more powerful, less- 

confusing interface for both users and developers alike.

Another crucial contribution of this work lies in substantially lessening the 

burden posed to programmers; those of whom in the past have had to expend a great 

deal of time and effort dedicated to coding complex applications that would be 

subsequently linked to a particular RDBMS to implement the otherwise lacking data- 

manipulative semantics. Semantics can be directly built-in to databases, minimizing (if 

not eliminating) the need for the introduction of ad hoc customized programs. The 

fundamental result is that databases may evolve at a greatly accelerated rate since 

complex, independent codification (external to the database) is no longer necessary 

Finally, database systems seem more “intelligent” as the database itself would “know” 

that a single command might infer the execution of several other commands— 

transparent to the user—based on the semantic knowledge represented within the 

SDBMS rule-bases

8.1 Extending the SDBMS; Future Investigations

Over the past decade considerable attention has been paid to the research and 

development of object-oriented database management systems (ODBMSs) These 
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systems have integrated the object-oriented paradigms, which resulted from past 

research in artificial intelligence, to provide a modular or encapsulated approach to 

data management The interested reader will note a commonality of purpose between 

existing ODBMSs and the SDBMS described herein. Both systems attempt to inject 

some degree of high-level semantics into database systems. Where the ODBMS uses 

an object-oriented approach to represent data semantics, the SDBMS adopts a 

knowledge-based approach. With the SDBMS, although semantic rule-bases are 

directly linked to a particular database, the rules are not encapsulated within the 

database and therefore promote a more shared approach to semantic representations. 

By not encapsulating the semantics the SDBMS is able to act in a front-end capacity 

This front-end aspect is what allows the SDBMS to interface with a wide variety of 

database engines.

Indeed, one could certainly expand the SDBMS to interface not only with 

single-record manipulative and multiple-record manipulative RDBMSs, but also with 

ODBMSs. Such an integration would not be as difficult as may be initially conceived. 

Rule-base translation would require little modification as the root commands Insert, 

Update, and Delete would still apply to ODBMSs The notion of inheritance could be 

taken care of through linkages of symbols in the semantic symbol dictionary in that the 

rules applicable to a parent class would also be applicable to the child class For 

example, if J is a child of (inherits from) B, then all semantic rules applicable to B 

would also apply to A (i e , any reference to B in those rules would be translated to 

reference A). Perhaps the most challenging enhancement would lie in modifying the 

working memory of semantic context to facilitate the unlimited array of user-defined 

types possible with ODBMSs Where most relational database management systems 

have only a handful of data types, ODBMSs allow users to define new data types by 

arranging core types in different configurations Thus, the working memory of 
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semantic context would have to be capable of generically handling a wide variety of 

data structures.

Another important enhancement might include extending the procedural nature 

of the SDBMS rule-language Some very complex semantic issues may require the 

integration of ftinctions/procedures not directly available through the SDBMS. It 

would be nice if developers could compile their own ftinctions/procedures and 

dynamically link them to the SDBMS, calling them from the rule-base itself

Further extensions to the semantic interface would be most useful. The areas 

of advanced natural language processing (NLP) and complex graphical user interfaces 

(GUIs) would increase the usefulness of such a universal interface. Merging advanced 

NLP with the extensive documentation included in the rule-bases would yield 

extremely powerful and user-friendly browsers for the full gambit of users and 

developers.

Another significant extension would include expanding the semantic rule-base 

to handle not only data-manipulative aspects of database management systems, but 

also data-utilization aspects (i e , querying) One could easily conceive additional rule 

categories beyond acquisition, committal, and removal, to handle such aspects as 

query optimization, rejection of meaningless queries, correction of unintentional 

queries, etc. The current composition of the SDBMS—its symbol dictionary, semantic 

context, universal linkage to a wide variety of database engines, etc —would no doubt 

prove quite useful in such an investigation

Whatever the extension, the SDBMS should prove an invaluable asset in 

unifying many different forms of database management systems and promote more 

“intelligent” and user-friendly systems accessible to users, developers, and programs 

alike The paramount result of such a semantic system would increase the access to 

shared information, while at the same time allowing more information to be acquired 
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at a much faster rate than was previously possible with more primitive systems. We 

may no longer be content with the vast array of differing database platforms and the ad 

hoc approaches to integrate them here and there. By directly merging the aspects of 

both rule-bases and databases into a single, unified force, we grow ever closer to the 

notion that information is knowledge As a result we promote more “intelligent” 

systems and thus make our own lives that much easier
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Appendix A

Advanced Sample Rule-Reduction Chains

1. {A} pantl product_id( X ) a -.( production 1 product_id( X ) ) 

=> RejectValue( plantl .productjd )

RULE A/plant1

SEARCH productionl product_id = plantl product_id

TEST —1£

ACT RejectValue( plantl.productjd )

2 {A} plant 1.product_id( X ) a production 1 .product_id( X ) 

a production1.name( Y )

=> plantl name( Y )

RULE A/plant1

SEARCH production L productJd = plantl.productjd

TEST E

ACT Set( plantl name = productionl name )

3. {C} plant2.reactor_id( X ) a reactor_schedule id( X ) 

a reactor_schedule.status( ‘to-be-cleaned’ )

=> plant2.override( ‘shut down’ )

RULE C/plant2

SEARCH reactor schedule, id = plant2 reactorjd

TEST E

TEST reactor_schedule. status = ‘to-be-cleaned’

ACT Set( plant2 override = shut down’ )

4. {C} reactors.chemical_id( X ) A -, ( chemicals id( X ) ) 

=> Abort( reactors )

RULE C/reactors

SEARCH 

TEST

chemicals id = reactors.chemical_id

—iE

ACT Abort( reactors )
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5. {C} plantl product_id( null ) => Abort( plantl )

RULE C/plant1

TEST plantl product_id = <NULL>

ACT: Abort( plantl ) 

6 {C} plantl product_id( X ) a productionl product_id( X ) a  

production! serial_required( Y' ) a plant! serial( null ) 

=> AcquireValue( plantl serial )

RULE C/plant1

SEARCH production 1.product_id = plantl.product_id

TEST 

TEST 

TEST 

ACT

e
productionl serial_required = Y' 

plantl.serial = <NULL> 

AcquireValue( plantl.serial )

7. {C} plantl chemical_id( X ) a chemicals. id( X ) a  

chemicals.volatile( Y )

=> plantl special_handling( Y' )

RULE 

SEARCH

C/plant1

chemicals.id = plantl chemicaljd

TEST

TEST

£

chemicals.volatile = Y

ACT Set( plantl special_handling = Y' )

8. {R} storage.chemical_id( X ) a chemical_removals.chemical_id( X ) 

a chemical_removals. instances( Y )

=> chemical_removals.instances( Y + 1 ) a  

Update( chemical_removals )

RULE D/storage

SEARCH chemical_removals.chemical_id = 

storage.chemicaljd

TEST £

ACT Set( chemical_removals.instances = 

chemical_removals. instances +1 )

ACT Update( chemical_removals )
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Appendix B

Advanced Sample Rule-Reduction Chains Used in SI) RMS Prototype

100. {A} chemical. name[A]( null ) a chemical.id( null ) a  

numbers.entity( 'chemical' ) a numbers.number( X )

=> chemical.id( X+1 ) a numbers.number( X+1 ) a

Update( numbers )

RULE: A/chemical.name

TEST:

TEST:

chemical.name[A] = null 

chemical, id = null

SEARCH: numbers entity = 'chemical'

TEST: E

ACT: 

ACT: 

ACT:

Set( chemical.id = numbers, number+1 )

Set( numbers number = numbers, number+1 )

Update( numbers )

“The ID of a new chemical is acquired automatically by the system."

200. {A} ->( chemical.id[A]( null ) )

=> RejectValue( chemical id )

RULE: A/chemical.id

TEST: chemical. id[A] * null

ACT: RejectValue( chemical, id )

“Once the chemical ID is set, it may never change. "

300 {A} chemical.id( X ) a chemical.name( null ) 

=> RejectValue( chemical.id )

RULE: A/chemical.id

TEST: 

ACT:

chemical name = null 

RejectValue( chemical id )

"A new chemical ID may not be set until the chemical NAME is set. The 

chemical ID is then automatically set by the system. "
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400 {A} chemical.type( ‘explosive’ ) 

=> chemical.volatile( Y )

“Explosive-type chemicals are volatile. "

RULE: A/chemical.type

TEST: 

ACT:

chemical.type = ‘explosive’ 

Set( chemical.volatile = Y’ )

450 {A} -^( inproc.product_id[A]( null ) ) 

=> RejectValue( inproc.productJd )

RULE: A/inproc.product_id

TEST: inproc. product_id[A] null

ACT: RejectValue( inproc product id )

“Once a product ID is assigned to an in-process record it may never 

change."

450. {A} -,( inproc.product_id[A]( null ) )

=> RejectValue( inproc, productjd )

RULE: A/inproc.product_id

TEST: inproc. product_id[A] * null

ACT: RejectValue( inproc.productjd )

“Once a product ID is assigned to an in-process record it may never 

change. ”

475 {A} inproc. product_name[A]( null ) )

=> RejectValue( inproc product_name )

RULE: A/inproc.product_name

TEST: inproc product_name[A] * null

ACT: RejectValue( inproc product_name )

“Once a product name is assigned to an in-process record it may 

never change. "
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500 {A} inproc. product_id( X ) a ->( products. id( X ) ) 

RejectValue( inproc.product_id )

RULE: A/inproc product_id

SEARCH: products, id = inproc product_id

TEST: —æ

ACT: RejectValue( inproc.product_id )

“A product ID which is referenced in the INPROC table must exist in 

the products table. "

600 {A} inproc, productJd( X ) a products. id( X ) a products.name( Y ) 

=> inproc product_name( Y )

RULE: A/inproc.productJd

SEARCH: products, id = inproc, productjd

TEST: 8

ACT: Set( inproc.product name = products, name )

“A product ID implies a specific product name ”

700 {C} inproc. product_id( null ) 

=> Abort( inproc )

RULE: C/inproc

TEST: inproc, productjd = null

ACT : Abort( inproc )

"The product ID field of an INPROC record must be non-null. "

800 {C} inproc product Jd( X ) a products. id( X ) a  

products.authorization_required( Y' ) a  

inproc.authorization_number( null )

=> Abort( inproc )

RULE: C/inproc

SEARCH: products, id = inproc. productjd

TEST: 8

TEST: 

TEST: 

ACT:

products authorization_required = Y' 

inproc. authorization_number = null 

Abort( inproc )

“The defined product requires a valid authorization number. "
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900 {A} inprchem.chemical_id( X ) a chemical.id( X ) a  

chemical volatile( Y" )

=> inprchem.special_handling( Y' )

RULE: A/inprchem.chemicalJd

SEARCH: chemical, id = inprchem.chemicaljd

TEST: chemical.volatile = Y

ACT: inprchem.special_handling = Y

“Volatile chemicals require special handling. "

1000 {C} inprchem.chemical_id( null ) 

=> Abort( inprchem )

RULE: C/inprchem

TEST: inprchem.chemicaljd = null

ACT: Abort( inprchem )

“The chemical ID Held of an INPRCHEM record must be non-null. "

1100. {C} inprchem.productJd( null ) 

=> Abort( inprchem )

RULE: C/inprchem

TEST: inprchem. productJd = null

ACT : Abort( inprchem )

“The product ID field of an INPRCHEM record must be non-null. "

1200. {C} inprchem.serial_number( null )

=> Abort( inprchem )

RULE: C/inprchem

TEST: inprchem.serial_number = null

ACT: Abort( inprchem )

“The serial number field of an INPRCHEM record must be non-null "
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1300 {A} products. name( X ) a products. name[A]( null ) a  

products id( null ) a numbers.entity( product' ) a  

numbers number( Y )

=> products. id( Y+1 ) a numbers. number( Y+1 ) a  

Update( numbers )

RULE: A/products name

TEST: products name[A] = null

TEST: products, id = null

SEARCH: numbers, entity = 'product'

TEST: £

ACT:

ACT: 

ACT:

Set( products, id = numbers, number+1 )

Set( numbers.number = numbers, number+1 )

Update( numbers )

"Upon entry of a new product name, a new product ID is assigned 

automatically by the system."

1400 {A} -.( products. id[A]( null ) )

=> RejectValue( products id )

RULE: A/products.id

TEST: products. id[A] * null

ACT: RejectValue( products, id )

"Once a product ID is assigned it may never change. "

1500. {A} products.id( X ) a products.name( null ) 

=> RejectValue( products id )

RULE: A/products.id

TEST: products, name = null

ACT: RejectValue( products.id )

“The product ID is assigned automatically by the system when the 

product name is entered. "
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1600 {A} products.type( explosive' ) 

=> products.volatile( Y )

RULE: 

TEST:

ACT:

A/products.type 

products.type = ‘explosive’ 

Set( products.volatile = "Y" )

“Explosive-type products are volatile. "

1700 {A} products. volatile( Y’ )

=> products authorization_required( Y’ )

RULE: A/products. volatile

TEST: products, volatile =‘Y’

ACT: Set( products authorization_required = Y' )

"Volatile products require authorization. "

1800 {C} inproc serial_number( null )

=> Abort( inproc )

RULE: C/inproc

TEST: inproc serial number = null

ACT: Abort( inprchem )

"The serial number must be specified for a new INPROC record. "

1850 {A} -J inprchem. productJd[A]( null ) )

=> RejectValue( inprchem. productjd )

RULE: A/inprchem.product_id

TEST: inprchem.product_id[A] * null

ACT: RejectValue( inprchem.productjd )

"Once a product ID is assigned to an in-process chemical record it may 

never change. "
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1860. {A} -.( inprchem.serial_number[A]( null ) )

=> RejectValue( inprchem. serial_number )

RULE: 

TEST: 

ACT:

A/inprchem.serial_number 

inprchem. serial_number[A] * null 

RejectValue( inprchem.serial_number )

"Once a serial number is assigned to an in-process chemical record it 

may never change. "

1870 {A} inprchem.chemical_id[A]( null ) )

=> RejectValue( inprchem chemical_id )

RULE: A/i nprchem. chemical_d

TEST: inprchem.chemical_id[A] * null

ACT: RejectValue( inprchem.chemical_id )

“Once a chemical ID is assigned to an in-process chemical record it 

may never change. "

1900 {A} inprchem.product_id( X ) a ->( products.id( X ) )

=> RejectValue( inprchem product_id )

RULE:

SEARCH:

TEST: 

ACT:

A/inprchem. product_id 

products, id = inprchem. productid

—iE

RejectValue( inprchem.product id )

“The product ID must exist in the products database. "

2000 {A} inprchem.chemical_id( X ) a ->( chemicals. id( X ) ) 

=> RejectValue( inprchem chemical id )

RULE: A/inprchem.chemical_id

SEARCH: chemical id = inprchem.chemical_id

TEST: —iE

ACT: RejectValue( inprchem.chemical_id )

“The chemical ID must exist in the chemical database. "
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2100 {A} recipe.product_id( X ) a -,( products. id( X ) ) 

=> RejectValue( recipe product_id )

RULE: 

SEARCH:

TEST: 

ACT:

A/recipe.product_id 

products, id = recipe. product_id

—e

RejectValue( recipe.product_id )

“A product ID which is referenced in the recipe database must exist in 

the products database. "

2200 {A} recipe.chemical_id( X ) A -,( chemical.id( X ) )

=> RejectValue( recipe chemical_id )

RULE: A/recipe.chemical_id

SEARCH: chemical, id = recipe.chemical_id

TEST: -is
ACT: RejectValue( recipe.chemicaljd )

“A chemical ID which is referenced in the recipe database must exist in 

the chemical database. "

2300 {C} recipe, productJd( null )

=> Abort( recipe )

RULE: C/recipe

TEST: recipe, productjd = null

ACT : Abort( recipe )

“The product ID field of a recipe record must be non-null."

2400 {C} recipe chemical_id( null )

=> Abort( recipe )

RULE: C/recipe

TEST: recipe.chemicaljd = null

ACT : Abort( recipe )

"The chemical ID field of a recipe record must be non-null.”
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2500. {C} recipe.chemical_id( X ) a chemical. id( X ) a  

chemical.volatile( Y' ) a recipe.product_id( Y ) a  

products. id( Y ) a -,( products.volatile( Y ) )

=> products.volatile( Y ) a Update( products )

RULE: C/recipe

SEARCH: chemical, id = recipe.chemical_id

TEST: £

TEST: chemical.volatile = Y'

SEARCH: products id = recipe product_id

TEST: £

TEST: 

ACT: 

ACT:

products volatile * Y 

Set( products.volatile = Y’ ) 

Update( products )

“The inclusion of one or more volatile chemicals in a product's recipe 

makes that product volatile. "

2600. {C} products.volatile( N ) a products. id( X ) a recipe.product_id( X ) a  

recipe chemical_id( Y ) a  chemical.id( Y ) a chemical.volatile( Y )

=> products volatile( Y' )

RULE: C/products

TEST: products volatile = N

SEARCH: recipe, productjd = products, id

TEST: £

SEARCH: chemical.id = recipe chemical_id

TEST: £

TEST: 

ACT:

chemical.volatile( Y' )

Set( products.volatile = Y’ )

“The inclusion of one or more volatile chemicals in a product’s recipe 

makes that product volatile. "
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2700. {C} inproc.product_id[A]( null ) a inproc.product_id( X ) a  

recipe. product_id( X ) a recipe.chemical_id( Y ) a  

->( holding.chemical_id( Y ) )

=> Abort( inproc )

RULE: C/inproc

TEST: inproc. productJd[ A] = null

SEARCH: recipe, productjd = inproc, product id

TEST: s

SEARCH: holding.chemicaljd = recipe chemical_id

TEST: —1£

ACT: Abort( inproc )

“One or more of the chemicals required by the product’s recipe is not 

in stock—product cannot be produced. Therefore, this product may not 

be dedicated to the in-process list at this time "

2800 {C} inproc, productJd[A]( null ) a inproc product_id( X ) a  

recipe.productJd( X ) a recipe.chemical Jd( Y ) a  

recipe.quantity( Z ) a holding chemical_id( Y ) a  

holding.quantity( <Z )

=> Abort( inproc )

RULE: C/inproc

TEST: inproc. product id[A] = null

SEARCH: recipe, productJd = inproc. productjd

TEST: e

SEARCH: holding, chemicaljd = recipe.chemicaljd

TEST: e

TEST: 

ACT:

holding, quantity < recipe quantity 

Abort( inproc )

“There is insufficient quantity of one or more of the chemicals required 

by the product’s recipe—product cannot be produced. Therefore, the 

product can not be dedicated to the in-process list at this time. "
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2900 {C} inproc.product_id[A]( null ) a inproc.product_id( X ) a  

recipe.product_id( X ) a recipe.chemical_id( Y ) a  

recipe quantity( Z ) a holding chemical_id( Y ) a  

holding.quantity( A ) a inproc.serial_number( B )

=> holding.quantity( A-Z ) a Update( holding ) a

NewRecord( inprchem ) a inprchem.productjd( X ) a  

inprchem.serial_number( B ) a  

inprchem chemical_id( Y ) a inprchem.quantity( Z ) a  

lnsert( inprchem )

RULE: C/inproc

TEST: inproc.product_id[A] = null

SEARCH: recipe. product_id = inproc. product_id

TEST: E

SEARCH: holding.chemicalid = recipe.chemicaljd

TEST: E

ACT: 

ACT: 

ACT: 

ACT: 

ACT: 

ACT:

Set( holding.quantity = holding.quantity-recipe.quantity )

Update( holding )

NewRecord( inprchem )

Set( inprchem product_id = inproc.product id )

Set( inprchem.serial_number = inproc.serial_number )

Set( inprchem.chemicaljd = recipe.chemicaljd )

ACT: 

ACT:

Set( inprchem.quantity = recipe quantity ) 

lnsert( inprchem )

“The inventory quantities of chemicals required by the product's recipe 

have been updated accordingly."

3000. {A} -,( holding.chemical_id[A]( null ) )

=> RejectValue( holding.chemicaljd )

“Once a chemical ID is assigned it may never change. "

RULE: A/holding. chemicaljd

TEST: 

ACT:

holding.chemicalJd[A] * null 

RejectValue( holding chemical id )
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3100 {A} holding.chemical_id( X ) a ->( chemicals. id( X ) ) 

=> RejectValue( holding.chemicaljd )

RULE: 

SEARCH:

TEST: 

ACT:

A/holding chemicaljd 

chemical id = holding.chemical_id

—iE

RejectValue( holding.chemicaljd )

"The chemical ID must exist in the chemical database "

3200. {A} ->( holding.chemical_name[A]( null ) ) 

=> RejectValue( holding.chemical_name )

RULE: A/holding.chemical_name

TEST: 

ACT:

holding chemical_name[A] * null 

RejectValue( holding.chemical_name )

“Once a chemical name is assigned to a holding record it may never

change."

3300 {A} holding chemical_id( X ) a chemical.id( X ) a chemical.name( Y ) 

=> holding.chemical_name( Y )

RULE: A/holding.chemicaljd

SEARCH: chemical, id = holding.chemicaljd

TEST: e
ACT: Set( holding chemicaljiame = chemical.name )

“A chemical ID implies a specific chemical name. "

3400 {C} holding chemical_id( null )

=> Abort( holding )

RULE: C/holding

TEST: holding.chemicaljd = null

ACT: Abort( holding )

“The chemical ID field of a HOLDING record must be non-null. "
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3500 {C} holding.quantity( null ) 

=> Abort( holding )

RULE: C/holding

TEST: holding.quantity = null

ACT: Abort( holding )

"The quantity field of a HOLDING record must be a real number "

3600 {A} ->( inproc.serial_number[A]( null ) ) 

=> RejectValue( inproc. serial_number )

RULE: A/ inproc. serial_number

TEST: 

ACT:

inproc, séria l_number[A] / null 

RejectValue( inproc.serial_number )

“Once a serial number is assigned it may never change. ”
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