
The Preserve: Lehigh Library Digital Collections

Knowledge-/rule-based Semantics
For Large Database Systems.

Citation
Yurchak, Kirk Elliott. Knowledge-/Rule-Based/Semantics/For/Large/Database/Systems.
1994, https://preserve.lehigh.edu/lehigh-scholarship/graduate-publication
s-theses-dissertations/theses-dissertations/knowledge/rule.

Find more at https://preserve.lehigh.edu/

This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for
inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.

https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/knowledge/rule
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/knowledge/rule
https://preserve.lehigh.edu/
mailto:preserve@lehigh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

UMI
University Microfilms international

A Beu & Howeii Information Company

300 North ZeeD Road Ann Arbor Mi 48106-1346 USA

313 761-4700 800 521-0600

Order Number 9513145

Knowledge-/rule-based semantics for large database systems

Yurchak, Kirk Elliott, Ph.D.

Lehigh University, 1994

Copyright ©1995 by Yurchak, Kirk Elliott. All rights reserved.

UMI
300 N. Zeeb Rd.
Ann Arbor. MI 4X106

Knowledge-/Rule-based Semantics for Large Database Systems

by

Kirk E Yurchak

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

October, 1994

Approved and recommended for acceptance as a dissertation in partial

fulfillment of the requirements for the degree of Doctor of Philosophy:

f __ L^v-
0 Date

Lili

Ana Lt\ p io y
Accepted Date

Committee Members:

Dr Donald! Hillman

Dr Glenn D Blank

Dr Laura I Burke

Dr Edwin J/ Kay

For my Mother, Joleita, my Father, Russell,
and especially my wife, Patricia.

Thank you for your love and support throughout this endeavor.

Acknowledgments

Foremost, I wish to thank Dr. Donald J Hillman for his invaluable advisement

in both my academic and commercial pursuits throughout my graduate years The

various meetings and seminars with him greatly helped to inspire and focus the work

herein, and for that I am truly grateful. I thank Dr Glenn D Blank, Dr Laura I
Burke, and Dr Edwin J Kay for their interest, advisement, and support in this effort.

Gratitude is extended to the Ben Franklin Technology Center and Valley Foundation

Consultants Group, Inc, for my initial graduate funding and setting the stage for the

slow, primitive budding of these ideas I wish to thank Rx Returns, Inc, and

Origination Alternatives, Inc , not only for their financial assistance throughout the
latter part of my graduate career, but also for providing a practical environment in

which much of these concepts were put to the test of cold, hard implementation I
thank these companies for opening their commercial doors to a young, eager, and
ambitious computer scientist and trusting him to help guide their paramount technical

paths
Appreciation is also extended to Robert S. Voros and William C Voros for

introducing me into many of the academic and commercial pursuits with which I have
been engaged throughout my graduate career Special thanks is noted to Robert
Voros for co-developing the Signature C generic database interface to which the

SDBMS semantic engine prototype was linked.
Finally, I thank my family without whose grateful patience and undying support

would surely have proven to make this endeavor impossible

Table of Contents

ABSTRACT 1

1 0 INTRODUCTION AND BACKGROUND..2

2 .0 SEMANTIC MODELING AND THE ENTITY/RELATIONSHIP

MODEL.. 4

2.1 WHAT EXACTLY IS MEANT BY “DATABASE

SEMANTICS?”...8

3 .0 LOGICAL RULE-BASED SEMANTICS..11

3.1 Semantic Rule Syntax... 15

3.2 Semantic Rule Categories and Rule-semantics..17

3 2 1 Acquisition Rules...18

3 2.1.1 Buffering New Database Records..................................... 21

3 .2.2 Committal Rules...22

3 2 3 Removal Rules... 27

3.3 Use of the Index Constraint in Rule-semantics...28

3.3.1 Use of the A Index..31

4 0 IMPLEMENTATION OVERVIEW OF THE SDBMS SEMANTIC
ENGINE... 34

4 1 SEARCH-TEST-ACT Chain Reductions... 34

4.2 Semantic Context...40

4 3 Semantic Engine AGENDA..45

4 4 SDBMS Symbol Dictionary..48

4 5 Semantic Engine Interaction with Single-record Manipulative

Database Engines..50

4.5 1 SDBMS Inserts with Single-record Manipulative

Database Engines..50

4 5 2 SDBMS Queuing of Records with Single-record

Manipulative Database Engines..52

4.5 2.1 SDBMS Enhanced Queuing of Records with

Single-record Manipulative Database Engines.....54

4 5 3 SDBMS Deletes with Single-record Manipulative

Database Engines..57

v

4.5.4 SDBMS Updates with Single-record Manipulative

Database Engines...57

4 6 Semantic Engine Interaction with Multiple-record Manipulative

Database Engines.. 58

4 6 1 Internal and External Multiples...59

4 6 1.1 SDBMS Implementation Scheme for Internal

Multiples...62

4 6.1.2 SDBMS Implementation Scheme for External

Multiples..64

4.6.2 SDBMS Inserts with Multiple-record Manipulative

Database Engines..66

4.6 3 SDBMS Deletes with Multiple-record Manipulative

Database Engines.. 68

4 6 4 SDBMS Updates with Multiple-record Manipulative

Database Engines.. 68

5 0 SDBMS REPRESENTATION OF SEMANTIC INFORMATION........................... 69

5.1 Semantic Restriction of Context-sensitive Values...71

5.2 Cross-table Indexes (Cross-reference Tables).. 72

5 3 Maintained Pool of Logged Values... 74

5 4 Constrained Field Value Acquisition..75

5 5 System Maintained Meta- Tables..76

5 6 Inferable Field Values... 76

5 6 1 Default Field Values..77

5.6 2 Standard Inferable Field Values..78

5 6.3 Maintenance of Redundant Data Via Inferable Field
Values... 79

5 6.4 Automatic Manipulative-assignment of Inferred Field

Values..81

5 6.5 Indirect Automatic Manipulative-Assignment of Inferred

Field Values Through Redundant Data.................................82

5 7 Semantic “Key” Violations..84

5 8 Built-in Referential Integrity... 85

5 9 Semantic Rejection of Values... 86

5 10 Extended Referential Integrity...87

VI

5 11 Context-dependent Forced Value-acquisition.. 88

5 .12 Concluding Remarks On SDBMS Representation of Database

Semantics..88

6 0 THE SDBMS SEMANTIC INTERFACE (SI)... 90

6 1 Semantic Interface to the User..90

6 2 Semantic Interface to the Designer/Developer/Database
Administrator..92

6.3 Semantic Interface to Programs.. 95

7 0 SDBMS PROTOTYPE IMPLEMENTATION...96

7 1 Implementation Model of the SDBMS Prototype...97

7.2 Core Semantic Engine Functions..99

7 3 SEARCH-TEST-ACT Chain Processing.. 101

7.3.2 De-aliasing Within SEARCH-TEST-ACT Chain

Processing..101

7.4 Signature C ™...102

7 5 Execution of the Prototype..104

8.0 CONCLUSION... 105

8 1 Extending the SDBMS; Future Investigations... 108

VITA 141

vii

List of Figures

(Figures may be found directly succeeding the straight text of this dissertation

beginning on page 112.)

Figure 1. Design-implementation-normalization-customization Cycle...............1 0

Figure 2. Front-end Universal Medium Diagram... 1.0
4.0

4.4

Figure 3. Extensional and Intensional Paradigms... 3 1

Figure 4 Example of Semantic Context Interaction.. 4.2

Figure 5. Example of Purging Explicit References Within Semantic
Context..4.2

4.3.3

Figure 6. Sample Logical Design and E/R Diagram.. 5.0

Figure 7. Logical Design Used By SDBMS Prototype....................................... 2.1
7.1

Figure 8. Traditional Database Integration—Homogeneous................................. 2.1

Figure 9 Traditional Database Integration—Heterogeneous.................................2.1

Figure 10. Database Integration Via SDBMS—Heterogeneous..........................4 0

Figure 11 SDBMS Prototype—Main Window..7.0

Figure 12. SDBMS Prototype—Miscellaneous Windows.................................... 7.0
7.2

viii

Abstract

Since their dawn, database management systems have saturated virtually every

area of academic and commercial domains They have proven to be as indispensable

as the paper and pencil. Yet while relational database management systems
(RDBMSs) have been made so readily available, most are still quite primitive with
regard to semantic abstraction. It may be argued that these RDBMSs are not much

more than mere vessels of information having little knowledge of the semantics—the

underlying, meaningful aspects—which apply to the data they represent. Few systems

allow tables to “know” about other tables around them, and almost no systems allow

knowledge of tables governed by different types of RDBMSs. The notion of data
semantics spans a single record’s relation to itself (cross-field semantics), a record’s
relation to other records in the same table (cross-record semantics), a record’s relation

to records of other tables (cross-table semantics), and even a record’s relation to
records of other tables governed by other RDBMSs (cross-platform semantics). It

suggests the concept of inferring certain data-manipulative actions based on other

committal actions performed on a given database.
This dissertation proposes a knowledge-/rule-based approach to inject high-

level semantics into today’s various RDBMSs The system has been dubbed the
Semantic Database Management System (SDBMS) and uses rule-bases associated

with each database under its control to represent semantic repercussions relative to

data-manipulations (inserts, updates, deletes, and the like) The databases governed by
the SDBMS may be of potentially differing RDBMSs A semantic engine (SE) is used

to control inferences within the rule-bases and translate manipulative consequents to
respective RDBMS engines Users, developers, and programs alike access data

governed by the SDBMS through a semantic interface (SI)
The goal of this work is to provide centralized access of many forms of data

through a universal medium, making primitive database engines more powerful and

powerful database engines more flexible It provides a means for communication
between RDBMSs and promotes more “intelligent” systems Most importantly it

lessens the burden previously posed on producing a myriad of ad hoc customized

programs subsequently requiring linkage to RDBMSs to inject the otherwise lacking

semantic knowledge.

1

1 .0 INTRODUCTION AND BACKGROUND

The use of database systems has become as common as the paper and pencil in

today’s business and scientific communities. Database technology has literally worked

its way into every facet of commercial development. Yet while database systems,

especially large ones, have proven themselves extremely useful, their creation remains

somewhat tedious. To combat the problem of designing these large systems

researchers have derived several semantic modeling paradigms. These paradigms

allow the database creator to produce a detailed model of the domain which the

databases will represent

Often, however, the power of these models does not extend much beyond the

design phase of large database systems As the systems pass from design to

implementation much of the semantic information is lost due to the implementation

platform’s inability to integrate the information. Figure 1 depicts the standard

evolution of a large database system

in phase one of this cycle a requirements analysis is conducted which sketches

the domain which the database system is meant to represent This involves analyzing

the system as a whole and determining what parameters dictate the formation of the

system Phase two traditionally involves some form of modeling—usually a semantic

model-which is generated to define the global scope of such a system This phase

solidifies work done in the requirements analysis, outlining the entities, objects,

classes, and relationships required to represent the system’s domain in phase three

the entities, objects, classes, and relationships outlined in phase two are translated

(mapped) to implementation platform representations This is most often necessary

since the implementation platform is not entirely capable of representing all

information within the semantic model of phase two and hence a one-to-one mapping

2

of representations is not possible It is at this time that much of the useful semantic

information is lost. Phase four occurs mainly in relational database system

implementations and involves “cleaning up" the relations derived in phase three This

encompasses such aspects as the removal of redundant relations, reduction to more

efficient relations, etc The design/implementation cycle is now complete. Often,

however, this resulting implementation is not powerful enough to fully administrate its

use among multitudes of non-expert end users. Therefore, a fifth phase is commonly

required to combat this problem The fifth phase involves the creation of a customized

user-interface which replaces semantic information lost during the mapping of phase

three This is an arduous process requiring low-level codification of the lost semantic

information, information which was implicitly included in semantic design, but must

now be explicitly integrated into the final implementation Hence, integration of

semantic database information is performed twice with today’s technology—once

during design and once again in implementation.

The thrust of this dissertation is, therefore, to develop a formal system for

integrating high-level semantics into the design and implementation of large database

systems. Such a system shall be deemed the semantic engine (SE) and shall be

accessed by users and programs alike via a semantic interface (SI) Semantic

information associated with databases shall be incorporated immediately during the

design and implementation phases and continue to evolve throughout the system’s life

span Figure 2 depicts how such a semantic system would be integrated as a front end

to today’s database management systems Users, designers, database administrators,

and programs communicate with the SE through the SI The SE accepts special

semantic commands from the SI which are translated into the appropriate database

engine commands which, in turn, physically access the data in this manner

universality of representation and access is achieved as the SE may be generically

3

programmed with knowledge of how to communicate with multiple database engines.

The balance of this dissertation details the power required by such a semantic system

and how it can be integrated into today’s database technologies.

2 .0 SEMANTIC MODELING AND THE ENTITY/RELATIONSHIP MODEL

“The motivation for [semantic modeling] research.. [is] as follows: Database

systems generally—relational or otherwise—really have only a very limited
understanding of what the data in the database means; they typically

“understand” certain simple atomic data values, and perhaps certain many-to-

one relationships among those values, but very little else...”

— Date, 1990

It may be said that existing relational database management systems

(RDBMSs) are merely an amalgamation of data types, data values, fields, and records,

and that these systems do not generally “understand” what meaningful constraints exist

between them, nor do they “understand” how they function together to form a

cohesive representation of a particular domain It may be unfair, however, to state

that existing DBMSs are totally lacking in semantic aspects The use of domains,

primary keys, and foreign keys indeed brush the edge of “semantics,” yet they

represent a mere fraction of the true semantics which may apply to the DBMS as a

whole

There has been a continuing effort to integrate more semantics into database

paradigms To date, however, semantic integration has mainly profited the design

phase of database systems, leaving much of the implementation aspects to customized

program interfaces. Researchers have proposed several different “semantic modeling”

techniques which may be adhered to during the design phase of a given database

4

system These modeling approaches inject a certain degree of data semantics by

splitting representations into entities, types, properties, identities, and relationships.

Using these generic semantic concepts one may maintain that the world is made up of

entities which represent conceptual and/or physical objects (eg, Daniel, container-25,

equation-45, etc) Each entity has associated with it one or more properties

describing the characteristics, attributes, etc, commonly associated with the given

object (e g , hair color, volume, number of parameters, etc) Types are used to define

the various classifications of entities (e g , a person, a storage container, a

mathematical equation, etc.). A type defines which properties an entity has when

belonging to that type. Every entity has an identity which uniquely differentiates that

entity from other entities of the same type (eg, Dan’s full name: “Daniel John Smith,”

etc) The semantic notion of identity is similar to the relational concept of the primary

key—as an identity uniquely distinguishes an entity, a key uniquely identifies a record

Finally, relationships describe the interactions between entities—how one entity relates

to another

In 1976, Chen formalized these generic terms into the Entity/Relationship

(E/R) Model In this model entities are split into two categories: weak entities and

regular entities Weak entities are those whose existence is dependent on the existence

of another entity Regular entities are those which are not weak (i e , those entities

which exist independent of any other entities). Properties were divided into several

categories: simple, composite (formed by the concatenation of two or more

properties), key (a uniquely-identifying property), single-/multi-valued, missing

(properties representing “unknown” or “not applicable” aspects), and base or derived

(those which derive their values from some calculation of other property values). Two

categories represent possible relationships: type relationships (those which form

relationships between types/classifications—e.g., a human “is a” mammal) and token

5

relationships (those relationships which simply link one entity to another entity—e g ,

Dan “loves” Sue). Types, in turn, are made up of two classifications: subtypes and

supertypes. Subtypes are said to inherit the properties from their supertypes

Generalizations are formed by working one’s way from subtype to supertype, while

specializations are derived from supertype to subtype.

Using these terms one may depict E/R Diagrams which map the various

features of the E/R Model onto a particular domain representation. Using this

diagram, one may then translate the design to the implementation platform by using

some of the following rules of thumb

A Transformation of entity types

1 . each entity type is a base-relationship

2 the key of this base-relationship is the key property of the entity

type

3 all other properties are mapped to simple fields in the base

relationship

B Transformation of binary relationships

1. mandatory membership classes

a if an entity type E2 is a mandatory member of a many-to-one

relationship with entity Ei, then the relation scheme for E2

contains the prime attributes of E,

b a key posted to another relation is called a foreign key

2. optional membership classes

a if entity type E2 is an optional member of a many-to-one

relationship with entity type E^ then the relationship is

usually represented by a separate relation scheme

containing the prime attributes of E, and E2, along with any

attributes of the relation

3 many-to-many binary relationships

a always represented by a separate relation consisting of

prime attributes of each of the participating entities, along

with any attributes of the relation itself

C. Transformation of n-ary relationships

6

1, represented by a separate relation consisting of prime attributes

of each of the n participating entities, along with any attributes

of the relation

D Transformation of subtypes

1, represented by a separate relation containing the prime

attributes of the supertype, along with any additional attributes

of the relation

It is during this mapping stage from the design to the implementation where

much of the useful semantic aspects are lost The diagram is in essence broken into its

constituent parts, losing the global cohesion of the system as a whole (i e, one is left

with many independent tables—each of which having a limited “understanding” of the

tables around them). Thus, in the mapping to an implementation database

management system one loses semantic abstraction. Beyond this most notable

problem it can be stated that while the E/R Model promotes a solid ground for the

semantics behind the structure of the database system—superficial semantics—it does

not, however, prove to be as useful in describing what the data actually represents.

The modeling scheme seems to be deficient in several areas. Among these

deficiencies a lack of context-sensitive restriction of values (e.g., a T; F,—the value of

field Fi of table T|— may only contain values a, ft, or y if T; F2 is equal to 5),

constrained field-value acquisitions, inferable field values (e g , the value of Ti F2 may

be inferable from the combined values of T; F; and T2.F4), semantic “key” violations

(e g , the key for table T; may not be valid given other field values of the same record

or its relationship with records from other tables—i.e., the key may be syntactically

valid, but semantically invalid), etc A more detailed discussion of these semantic

requirements missing from existing modeling schemes is left to the subsequent

chapters of this dissertation

7

Given the drawbacks of existing semantic modeling approaches—profitability

only in the design phase, degradation of semantics in implementation, requirement for

reintegration of semantics through customized program front-ends, the inherent lack

of complex semantic representations—it is clear that a viable solution to the integration

of complex data semantics must inject new, more powerful semantic aspects, while at

the same time allowing a seamless translation to existing database platforms without

the loss of semantic information.

Other semantic modeling approaches have been presented over the years, but

most bear much resemblance to the E/R Model and shall, therefore, be dispensed with

The advent of object-oriented database management systems (ODBMSs) has re­

injected much of the semantic aspects which were traditionally lost by their relational

counterparts. However, the codification of object-oriented databases remains

somewhat tedious, often relying on heavily trained “object engineers” to write the

complex methods required to embed semantic aspects Further, although the use of

ODBMSs is growing in industry, it still has yet to prove itself as a domineering force

in data management. RDBMSs currently dominate the global information pool and it

is this dissertation’s focus to present a means for complex semantic support for these

systems, while at the same time centralizing many different types of RDBMSs with a

universal data interface

2.1 WHAT EXACTLY IS MEANT BY “DATABASE SEMANTICS?”

To more clearly understand the terminology of “database semantics” let us

examine the model posed in figure 7 This design represents a very simplistic

production plant environment were raw materials are used to create products

8

Chemicals (the raw materials) are brought into a plant site and placed in a holding area

until they are processed in a reactor to produce a particular product in this example

the state of the production plant may be represented by a handful of relational

databases. A chemical database is used to store the dictionary of chemicals utilized by

the plant A holding database is used to keep track of which of those chemicals are

currently available at the plant site and what their quantities are. A products database

is required to hold the dictionary of products which may be produced by the plant’s

reactors. Since the production of a given product may require particular quantities of

more than one chemical, a recipe database is integrated to describe which chemicals

and quantities thereof are required to produce a given product Finally, an in-process

database is required to keep track of which products will be in-process at what times

and in which reactors (an in-process chemical database similarly keeps track of which

chemicals will be “in-process” to produce a given “in-process” product).

Having created these databases, we are confronted with the reality that the

databases by themselves are not much more than mere vessels of information But

what of the underlying semantic issues of this representation scheme? Indeed, what

does one mean by “semantics" in this context9 Consider the following “semantic”

assertions about the fictitious production plant

a “The ID of a new chemical record should be automatically assigned by the

system—never by the user."

b. “Once a chemical ID is assigned it may never change ”

c “The ID field of a new chemical record should not be assigned until the

chemical name is known.”

d “Explosive-type chemicals are volatile by nature ”

e. “A product which is assigned to the in-process table must exist in the

products database ”

9

f “An in-process record which references a product that requires an

authorization number must itself identify a valid authorization number.”

g “Product IDs referenced in the in-process table must exist in the products

table ”

h “The value of the special handling field of a chemical record must be either

Y’ or‘N’”

i. “Volatile chemicals require special handling.”

j. “Volatile products require authorization numbers.”

k “The inclusion of one or more volatile chemicals in a product’s recipe

makes that product volatile ”

1. “Should insufficient quantity of a given chemical be present in the holding

area, any product which requires that chemical based on its recipe may not

be produced (i e , may not be assigned to the in-process list) ”

m

Admittedly a few of the assertions above may be implicitly handled by the

database management system chosen for implementation However, most of the above

items cannot be implicitly handled by existing RDBMSs. Further, one should plainly

see that most of these semantic assertions do not lend themselves to the E/R Model as

described above These types of semantics proceed far beyond the notion of entities,

properties, and types. As a result semantic issues such as these must at present be

handled by customized front-end applications which control the semantics of the data

before they reach their respective database destinations Figure 8 depicts this scheme

of front-end semantic integration Procedural semantics must be codified in a

particular programming language for every application This code must then be cloned

and included into each application which need make use of it Changing one set of

semantics may require changes to program code in multiple applications. As one can

10

readily see semantic integration in this manner is highly decentralized, unconnected,

and unorganized. Indeed, a full overview of semantics encompassing the entire system

may not be possible due to the hodgepodge sprinkling of semantics between multiple

applications One must take all program code from all applications into account when

referencing system-wide semantics. For every new application developed to be

integrated with the databases, program code representing semantic aspects must first

be identified in other applications and reproduced in the new application—a nightmare

for both designer and developer alike. These problems are further compounded when

a heterogeneous system is developed as depicted in figure 9 Multiple database

engines and multiple programming environments can cause severe organizational

problems Imagine not only reproducing procedural code intended to control

semantics, but having to then translate it from one programming language to another

A simple, problematic pattern results the larger such a system becomes, the more

confusing and unwieldy.

3.0 LOGICAL RULE-BASED SEMANTICS

Research into several semantic modeling methodologies has led this researcher

to settle on a logic/rule-based representation. By incorporating rule-based technology

into its representation scheme database systems can be closely coupled with the power

of artificial intelligence/expert systems instead of the traditional database

management system with an expert system front-end, this research strives to merge the

two into one autonomous unit, eliminating the often tedious task of codifying complex

linkages between the two The expert system portion of this marriage would inject

semantic control into an otherwise lacking database management system

11

This representation must not be confused with other existing forms of database

representation schemes such as relational algebra, relational calculus, or SQL Each of

these existing representations boast pros (and cons) of their own, yet all seem to share

a mutual absence of higher level abstraction as was mentioned in the preceding

chapter—that of semantic abstraction

Research into the merging of rule-base and database technologies is currently

dominated by the object-oriented community Systems such as POSTGRES

(Stonebraker, et al, 1991] and STARBURST [Lohman, et al, 1991] have attempted to

integrate rule-bases with various object-oriented data management techniques to

promote the concept of “active” databases—databases which allow the invocation of

rules to perform automated processing in response to specific changes made to the

data, regardless of what entity made those changes. Take for example the following

POSTGRES and STARBURST rule examples:

POSTGRES:

ON event (TO) object WHERE

POSTQUEL-qualification

THEN DO [instead]

POSTQUEL-command(s)

STARBURST:

CREATE RULE non_empty_dept ON Departments

WHEN DELETED

IF SELECT *

FROM Employees

WHERE deptno IN

(SELECT dno

FROM dd AS (DELETED()))’,

THEN 'SELECT d dno, 'non-empty'

FROM d as (DELETED())

WHERE d.dno IN

(SELECT deptno

12

FROM Employees)’,

ROLLBACK WORK);

Rule systems such as these use trigger mechanisms to control rule processing

The POSTGRES syntax listed above allows users to define rules which trigger on

specific events (e g , insert, update, retrieve, etc) The majority of these systems,

however, embed the inference engines required for rule processing deep within the

database management system itself As a result, only databases explicitly dedicated to

those systems may reap the benefits of rule-based semantics (i e , semantic integration

is homogeneous with respect to POSTGRES-compatible implementations). Little

research has thus far been dedicated to relational systems—those systems which

continue to dominate academic and commercial domains. STARBURST does share a

fundamental link with the research proposed herein as it attempts to extend the

existing relational model to include objects and rules. However, STARBURST’s rules

are beneficial only to SQL-compatible RDBMSs (i.e, STARBURST may be

considered heterogeneous only among SQL-based implementations). Single record-

manipulative database systems which are not SQL-compatible may not benefit from

this set-based, query extension approach Further, the declaration of rules in this

manner may be very difficult for those who understand the “semantics” of the rules

they wish to employ, but who may not be fluent in the pragmatics of complex, nested

SQL representations. The rule-based approach proposed herein dwells on a logic­

based representation scheme which is not dependent on SQL compatibilities and is

intended to provide a heterogeneous linkage to any relational system—both single­

record manipulative and multi-record manipulative systems alike.

Indeed, there does exist a commonality of purpose between the research

presented in this dissertation and existing object-oriented rule-based semantics. The

focus of this research, however, is to provide a means for the integration of high-level

13

rule-based semantics with existing relational database management systems, and that

this approach should act in & front-end capacity to allow a universal bridge to many

different types of RDBMSs Instead of modifying each individual database engine to

embed rule-based control deep within, this research proposes to create a single

semantic engine which then interacts universally with existing database engines to

control rule-based semantics without explicit modifications to the database engines

themselves (figure 10). By controlling rule processing at the front-end one is able to

unify many types of database systems, which would not have been possible through

currently proposed embedded approaches.

It is important to note here that the bulk of this research centers itself around

the semantics of data definition and manipulation. Semantic issues described herein

concern themselves primarily with the semantic constraints of a database’s existence—

row/column constraints—and how its existence relates to other databases—table/table

constraints This dissertation is therefore concerned with the creation (data definition)

of large database systems and their functionality—inserts, deletes, updates, and the like

{data manipulation) The investigation into semantic repercussions of queries {data

utilization) is somewhat beyond the scope of this paper Nevertheless, semantic

details of data definition and manipulation would definitely play a role in such an

investigation.

Definition and manipulation aspects of database semantics play a crucial role in

large database systems—especially systems which are designed to function in a

processing environment. These types of systems do not concern themselves so much

with large amounts of querying responsibilities (although they certainly can), but are

more concerned with keeping track of the state of some process (e.g., a warehouse, a

plant-site, a tracking system, etc) Often these types of large databases are tied-in

with some form of automation processing system with little (sometimes even no)

14

human intervention. Thus, it becomes important for such systems to understand the

semantics of the structures and global interactions of the databases they employ.

The succeeding chapters detail a logical rule-based approach for representing

and implementing higher-level database semantics Later it will be shown how this

approach may be integrated into both single-record manipulative RDBMSs and multi­

record manipulative RDBMSs alike, providing a universal medium for centralized

access of many different types of database systems.

3.1 Semantic Rule Syntax

Before proceeding with a formal declaration of the logical rule-based semantics

an overview of the rule’s syntactical conventions is necessary. Rules within the

Semantic Database Management System (SDBMS) abide by the syntactical

restrictions of the following extended Backus-Naur form (BNF) grammar (note: BNT

operators are distinguished in bold-face, and should not be confused with valid

SDBMS operators which are not in hold-face).

<rule>

<lhs>

<rhs>

<operator>

<test-comp>

<set-comp>

<t-binding>

<s-binding>

<t-oper>

<s-oper>

<category>

<function>

<index>

- {<category>} <lhs> => <rhs>
= <test-comp> [<operator> <lhs>] I -^ (<lhs>)

= <rhs> a <rhs> I <set-comp> I <function>
= A | V

= <table> [[<index>]] <field> [[A]] (<t-binding>)

= <table> [[<index>]] <field>(<s-binding>)
= <t-oper> <t-binding> | <variable> I <constant>

= <s-binding> <s-oper> <s-binding> I <variable> I

<constant>
= > < I ...
= + - | 4- | X

= A C I R

= <any valid SDBMS function/operation>

= <a number greater than 1 (i e , 2, 3, 4, ...)>

15

<variable> ::= <an upper case letter (i.e., A, B, C, , Z)>

<constant> ::= <a constant expression (e g., 12, 32.4, ‘Dark’, etc)>

<table> ::= <any database name within the semantic domain>

<field> ::= <any valid field name for the given table>

Some valid syntactic examples of SDBMS rules are as follows:

1 {C} plant2.reactor_id(X) a reactor_schedule.id(X)

a reactor_schedule.status(‘to-be-cleaned’)

=> plant2.override(shut down')

2 {C} reactors.chemical_id(X) a -, (chemicals id(X))

=> Abort(reactors)

3 {C} chemicals.chemical_id[A](X)

a reactors.chemical_id(X) a chemicals chemical_id(Y)

=> reactors.chemical_id(Y) a Update(reactors)

We can see in the first example—a committal rule, as distinguished with the

“{C}” prefix-that “pl ant2” and “reactor schedule” denote table names, while

“reactor id,” “id,” “status,” and “override” reference field names. The binding X

indicates a variable while the binding ‘shut down’ is a constant. In the second rule

example—also a committal rule—we see the use of the negation operator (—,, or NOT)

and the use of an SDBMS function, namely “Abort.” The convention has been

adopted to note <table>s and <field>s in all lower case (e.g., plant! reactorjd)

String constants are always shown within single quotes (e.g., ‘Yes’, ‘No’, ‘Y’, Fred’,

etc), while numeric constants simply appear as numbers (e g , 1, 15, 32 43, etc).

Variables are distinguished as a single upper case letter (e g , X, Y, etc) Finally,

SDBMS functions are customarily denoted with the first letter of the function name

capitalized (e g , Abort, Delete, Update, etc).

Having detailed the syntactic constraints of such a language it is important to

distinguish between two types of semantics which will be discussed in the succeeding

16

chapters of this dissertation. The first type shall be deemed rule-semantics and is

intended to indicate the semantics of the SDBMS’s rule-based language itself (i.e , the

meaning behind the rule-language represented by the BNF grammar above as

understood by the semantic engine). The second type shall be deemed data-semantics

and is meant to reference the semantic knowledge represented by the rules (i e , the

actual semantics which pertain to the databases as represented by the SDBMS rules)

Data-semantics can be further broken down into two subtypes: extensional semantics

and intensional semantics. Extensional semantics are defined herein to refer to the

semantics of the tuples of the base relations or inter-table relations With extensional

semantics one may define the relations between tables on a global scale Intensional

semantics are defined herein to refer to the meaning within a given table or intra-table

relations. Where extensional semantics concerns itself with table to table contentions,

intensional semantics concerns itself with row-to-row and column-to-column

constraints and other repercussions within a single table on a more local scale. Figure

3 depicts the differences between the extensional and intensional paradigms.

The next section illustrates the rule-semantics of the SDBMS logical language.

The various types of semantic database information which are capable of being stored

within SDBMS rules—extensional and intensional data-semantics—are detailed in

succeeding chapters)

3.2 Semantic Rule Categories and Rule-semantics

Within this proposed semantic representation each database system has

associated with it a semantic knowledge base, a set of logical rules, which govern its

integrity constraints, consistency, redundancy verification/elimination, inferable field

17

values, type checking, security, etc Rules described within each semantic knowledge

base are divided into four categories: acquisition rules, committal rules, and removal

rules Acquisition rules are referenced during buffering of a new database record prior

to insertion of the record into the database. This represents a slightly new approach to

database technology as the SDBMS has access to new data before it is actually

committed to the database itself Committal rules govern semantic functionality after a

new record has been sufficiently buffered just prior to insertion and committal to the

database. Committal rules also govern semantic functionality just prior to

modification of an existing record (i.e., record updates). Removal rules are referenced

just prior to a queued record’s deletion from the database.

3.2.1 Acquisition Rules

The main premise for the acquisition rule category was to increase user­

interface performance. By adding a built-in buffering capacity for a new record’s field

values the SDBMS becomes a powerful tool since real-time semantics may be

enforced as each field value is independently acquired—before the actual insertion of

the entire record into its respective database Field values for a new record are

acquired through the SDBMS Semantic Interface (SI). As each new field value is

acquired by the SI it is immediately conveyed to the SDBMS semantic engine (SE)

where any semantic rules pertaining to that new field value are considered

Results/consequences of those rules are immediately returned to the semantic

interface. Thus, semantic constraints may be enforced on data before it is actually

committed to the storage medium

Take for example the following acquisition rule

18

{A} plantl product_id(X) a ->(productionl product_id(X))

=> RejectValue(plantl product_id)

Here, the “{A}” prefix denotes an acquisition rule The atoms “plantl” and

“productionI” refer to tables within the semantic domain. The atom “product id”

denotes a field belonging to those tables “X” represents a variable which is to be

bound with a field value Semantically, this rule maintains that any newly acquired

product identification number for a record which is to be inserted into the “plant 1”

database must currently exist in the “productionl” database. This particular example

pertains directly to the referential integrity rule:

“The database must not contain any unmatched foreign key values ”

— Date, 1990

In this example we may think of “plantl product id” as a foreign key to the

“production 1 ” table Since some forms of database implementation platforms allow

for referential integrity it may seem unclear why such a semantic system should

redundantly accomplish the same task. The SDBMS’s ability to handle referential

integrity provides several benefits over simple foreign key verification First, should a

database implementation platform be incapable of handling referential integrity the

SDBMS may enforce this integrity itself Hence, all database implementation

platforms governed by the SDBMS are now capable of handling referential integrity

Second, should the database platform be capable of enforcing referential integrity the

SDBMS offers an alternate approach (i e, instead of traditionally declaring foreign

keys one may simply represent referential integrity constraints by way of logical rules).

Third, since acquisition rules are processed immediately as field values are acquired

19

the user/program can be made aware of a referential integrity breach immediately

before other field values are declared and the record is inserted (or updated) in the

table Fourth, by defining referential integrity constraints with logical rules we are not

limited with foreign key constraints The referential integrity rule insists that foreign

keys must match, very specifically, primary keys, not alternate keys of other tables

By using logical rules the SDBMS is capable of handling extended referential

integrity. This is similar to referential integrity (as was seen in the above example),

however, we may define referential integrity constraints which do not insist upon

specifically matching foreign keys Take for example the following rule:

{A} planti type('toxic') a -,(production 1 type('toxic'))

=> RejectValue(planti type)

In this example, assuming that the "product id" field is the primary key in both

the “plant!” and “production!” tables, and the “type” field is a simple field in those

tables, the SDBMS is able to extend the notion of referential integrity without the use

of foreign keys Here a “plant I ” record may not contain the value 'toxic' in the simple

field “type” unless there exists at least one record in the “production!” table whose

simple field “type” contains the value 'toxic '

Acquisition rules always fire in a forward-chaining fashion matching the first

component of the antecedent of the rule to the newly acquired field value The first

component of the antecedent of an acquisition rule always pertains to a newly acquired

field value in the original sample rule shown above the variable X is bound to the

new value of the "product id” field from the “planti” database This bound variable is

then used in the second component of the rule’s antecedent to test (search) for its

existence in the “production!” database Since the second component is surrounded

by the negation operator (-.), should there not exist a “production!” record where the

20

“product-id” field value equals X (i.e., a failed search for a record where

production! product id = X) the rule’s consequent is executed. Here the only

component of the consequent states that the newly acquired field value must be

rejected Exactly how the SE goes about considering a given SDBMS rule will be

discussed in subsequent sections of this chapter

The interested reader will note that this semantic rule exhibits what is known as

the closed world assumption

“(The closed world assumption] states that omission of a certain tuple from a

given relation implies that the assertion corresponding to that tuple is false ”

— Date, 1990

Thus, if we think of each row (tuple) in a given table as a logical assertion

about the existence of something in the world, the absence of such a row (and hence

the absence of the assertion) indicates that that ‘thing’ does not exist.

3.2.1.1 Buffering New Database Records

In order to make use of the SDBMS acquisition rules a dialogue must ensue

between the user and the SE by way of the SI A sample dialogue might look as

follows: (For now SI communication will take the form of a simple procedure-like

command language. Later it will be described how the SI can be integrated into both

single-record manipulative and multi-record manipulative relational database

frameworks and how basic natural language techniques may be incorporated to create

a powerful interface)

NewRecord(“plant!”);

21

SetField(“plantT’, "product_id”, “A123B920”);

The first command issued to the SE, NewRecord, functions in two capacities.

First, it creates a context for the semantic dialogue—namely, that the “plant 1 ” database

will be used in the succeeding dialogue and hence its semantic knowledge base must

now be loaded into working memory if it has not been previously Second, a buffer

must be created for the new record’s data values to be stored before the record is

committed to the database by an insertion command As each field value is

independently acquired via the Set Fie Id command the value is incorporated into the

buffered data structure and any acquisition rules which contain the field name in the

first component of its antecedent are considered Once an antecedent is proven true

the resulting consequent of the acquisition rule is then executed Should the SetField

command fail (because of a breach in semantic integrity as dictated by the acquisition

rules), the user/program is made aware of this breach immediately and the field’s value

is not set

3.2.2 Committal Rules

The second category of semantic rules is the committal rule These rules like

the acquisition rules are forward-chaining. However, unlike semantic acquisition rules,

committal rules are considered in bulk Given an acquisition rule, it is only considered

if and when the field value of the first component in its antecedent is acquired—during

this time all other non-conforming acquisition rules are ignored Alternately,

committal rules may be considered en mass by the SE as each rule must be verified

before the actual insertion or update of the buffered record into its respective database

occurs Take the following committal rules for example:

22

1 {C} plantl product_id(null) Abort(plantl)

2 {C} plantl .product_id(X) a production! product_id(X) a

production! serial_required(Y') a plant! serial(null)

=> AcquireValue(plant! serial)

3 {C} plant! chemical_id(X) a chemicals.id(X) a

chemicals volatile(Y')

=> plant! special_handling(Y')

The prefix "{C}” denotes the committal rule category. The first rule maintains

that the "product id” must be non-null for insertion/update to succeed This form of

semantic representation may not be required in most database management

implementations as they implicitly test for non-null values—usually reserved for key

fields However, some lower-level database platforms do not allow implicit non-null

checking and hence can be made more powerful by the SDBMS The interested

reader will note that this particular rule could not be classified as an acquisition rule

since the component in its antecedent binds to null. The reason for this is obvious

since a field value is null until it is acquired. Further, since acquisition rules are

considered only as a field-value is acquired, this type of rule would never be

considered if the “product id” field value was never acquired and hence was null

The second committal rule states that if a product is to be inserted/updated in

the “plantl” database and the product is listed as requiring a serial number in the

"production 1” database, then the field “serial” for “plant 1 ” must be non-null Here we

begin to see the power of the SDBMS as a field can be semantically defined as non­

null within a specific context in one context the “plantl” record’s "serial” field is

defined as non-null (i e, when the “production!” database dictates that the product

requires a serial number) In another context the “plant 1 ” record’s “serial” field is

23

allowed to be null (i.e, when the “production!” database dictates that the product

does not require a serial number).

In the third example the rule states that if the “plantI” record to be

insert ed/updated is listed as a volatile chemical, then the “special handling” field of the

“plant 1” record should be automatically set to 'Y’ This type of rule implies an

inferable field value since the value of the “special handling” field of a “plant 1”

record may be (indirectly) inferred from the “chemical id” field value

Semantic committal rules conform to several rule-semantic constraints. The

first component of the antecedent is always a “<table> <field>(<binding>)”

designation, where the <table> denotes the type of record which is currently under

consideration for insertion or update and the <field> denotes a valid field name for a

record in that table The <table> portion of this component references the record

which has been previously buffered in semantic context (as described above)—either a

new record which awaits insertion or an existing record which has been modified and

now awaits update and committal to its respective database. Any reference to this

<table> in the remainder of the rule will access the buffered data for that record in

semantic context The <binding> of the <table> <field> pair represents the currently

buffered field value for that record in semantic context. The <binding> itself may

denote either a variable or a constant in the case of a variable binding the current

value of the designated field is immediately pulled from the buffered record currently

in semantic context and bound to the variable. Once the variable is bound

consideration of the rule’s antecedent continues—that variable may not be re-bound in

the remainder of the rule’s consideration in the case of a constant binding the field

value which has been buffered within the semantic context is tested against the

constant If the test succeeds the remainder of the rule’s antecedent is then

24

considered. Should the test fail, consideration of the rule ends and the next applicable

committal rule is considered.

It is important to note that all committal rules begin with a

“<table>.<field>(<binding>)” component and that the <table> atom of this component

defines which type of record the rule is to be applied By this convention the SE can

immediately discern that the three sample rules listed above apply to a “plant 1" record

to be committed to the “plant 1” database, as all rules begin with a component which

references the “plant 1” table Hence, the <table> atom of the first component in an

committal rule references the record which has just been buffered in semantic context.

Any further references to that <table> in the remainder of the committal rule will

access the buffered field values of that record

Two types of binding are applied during rule consideration record binding and

field-value binding Within field-value binding there exist two subtypes of binding:

variable binding and constant binding (described above). To illustrate the

functionality of these two types of bindings—namely, record binding and field-value

binding—let us examine exactly how the SE considers the third rule in the example

shown above

As previously declared the first component defines the type of record which is

under consideration for committal: “plant 1.” The “plant 1” reference is immediately

bound to the “plant 1 “ record which has been buffered in semantic context Field­

binding occurs as the variable “X" is bound to the buffered “chemical id" field value

of the “plant 1 " record The <table> atom of the second component of the antecedent

references the “chemicals" database At this time the record which is referenced by the

“chemicals” atom of the component is unbound. Implicit in the interpretation of this

second component is the SE’s knowledge about the “chemicals" table’s structure—

how many fields make up the table’s primary key, what fields belong to the composite

25

key, etc. In this example let us say that the “chemicals" database consists of a single­

field primary key “id.” Since (1) the “chemicals” record is unbound, (2) the variable

“X” is bound, and (3) the “id” field uniquely identifies a “chemicals” record (since it is

the only field composing the primary key), the SE interprets the “chemicals id(X)”

component as follows: “search for the record in the ‘chemicals’ database where the

value of field id’ is equal to ‘X.’”

Should this search fail, the “chemicals” record cannot be bound and hence

consideration of the rule ceases since its antecedent cannot be proven true. Upon a

successful search the “chemicals” record is bound to the record resulting from the

search The bound record now becomes part of semantic context and any further

references to fields of the “chemicals” database will access the bound record’s field

values Since the “chemicals” record is now bound, the “’Y’” in the third component

instructs the SE to test whether or not the “volatile” field value of the “chemicals”

record, which was bound in the previous step, is equal to Y Should the third

component hold true, the consequent of the rule is carried out

As noted above, “plant I ” was bound to the new-record which was previously

buffered in semantic context. Thus, the only component of rule three’s consequent—

“plant I special_handling(Y)”—instructs the SE to act on the buffered record for

“plant 1 ” The component is fully translated by the SE to mean: set the value of the

field “special handling” of the buffered record for the “plant 1” table to Y (note the

single quotes around the Y making it a constant value and not the variable Y)

In general, bindings of components found within the antecedent of an SDBMS

rule instruct the engine to variably bind or test the existing field value of a record

within semantic context Bindings found within the consequent of an SDBMS rule

always instruct the SE to set the value of a field This set operation will override any

existing value for that field in favor of the value inferred by the rule. Special semantic

26

functions are also available for use within the consequent of an SDBMS rule The first

rule in the above example uses the “Abort” function which instructs the SE to cease all

remaining committal rule considerations and abort the insertion/update operation of

the buffered record into its respective database Additional SDBMS functions will be

discussed in subsequent chapters

3.2 3 Removal Rules

Removal rules are similar in format to committal rules However, removal

rules are considered just prior to deletion of a record from a database. Take the

following removal rule for example

{R} storage.chemical_id(X) a chemical_removals chemicalJd(X) a

chemical_removals.instances(Y)

=> chemical_removals.instances(Y + 1) a

Update(chemical_removals)

The prefix “{R}” denotes a removal rule As in the case of the SDBMS

committal rules, the first component of the antecedent in a removal rule identifies what

type of record the rule is to be applied before a deletion occurs Hence, the <table>

atom of the first component in the rule’s antecedent is always bound to the record

which is to be deleted More accurately, this <table> atom is bound to the <table>’s

current record within the semantic context The sample removal rule above, therefore,

pertains to a “storage” record which is to be deleted Upon consideration of the rule

by the SE the reference “storage” is immediately bound to the “storage” record which

is about to be deleted By the same token the variable X is bound to the value of the

“chemical id" field of the bound “storage” record The <table> atom of the second

27

component in the antecedent "chemical removals" is currently unbound and,

therefore, requires a search to bind its record. The SE carries out the search for the

"chemical removals" record where the field "chemical id" is equal to the variable X.

Should this record be found it is bound to the "chemical removals" reference and

consideration of the rule’s antecedent continues. Since "chemical removals" record is

now bound, the third component of the antecedent binds the variable Y to the

“instances” field value of that record.

The first component of the consequent makes use of a semantic <operation>

(as syntactically outlined in the BNF grammar above)—namely, the “+ operation.

This component causes the SE to set the "instances” field value of the previously

bound "chemical removals” record to Y + 1 (eg, if Y=1, then Y+l=2). The SE s

translation of the “+” operation makes use of the operator overloading paradigm,

controlled by the SE. If the operands of the “+” operation are character strings, the

result of the operation is the concatenation of those strings If the operands of the “+

operation are numbers, the result is the numerical addition of those numbers

The second and final component in the rule’s consequent makes use of another

SDBMS function “Update ” This function instructs the SE to update the current

record in semantic context for the "chemical removals’ table—the record bound by the

search which had taken place during consideration of the second component of the

antecedent

3.3 Use of the Index Constraint in Rule-semantics

In the preceding section many rule-semantic repercussions of the SDBMS BNF

grammar have been touched on. One aspect, however, has been left unattended the

28

use of the <index> constraint on record bindings. Consider the following portions of

the BNF grammar listed above

<test-comp> <table> [[<index>]] <field>(<t-binding>)

<set-comp> <table> [[<index>]] <field>(<s-binding>)
<index> ::= <a number greater than 1 (i.e., 2, 3, 4, ...)> I A

To fully understand how the <index> constraint is utilized within the SDBMS,

let us examine the following removal rule

{R} storage, productJd(X) a -,(storage[2], productJd(X))

a storage.type(Y) a type_log.type(Y) => Delete(typejog)

This rule maintains that should a certain product record be removed from the

“storage” database and no other records of that product exist in the “storage”

database, and there exists a “type log” record for that product’s type, then remove

that “type log” record from the “typejog" database The first component of the

antecedent binds the reference “storage” to the record which is to be deleted The

variable “X” is then bound to that record’s “product id” field value The second

component makes use of the negation operator (->) which indicates that the result of

the second component should be negated The <index> constraint is used in the

second component (“storage[2]”) to indicate that, although it is to be bound to a

“storage” record, it must be a different record than the “storage” record bound in the

first component of the antecedent The “storage[2]” reference at this point is,

therefore, unbound—implying a search, since it lies within the rules antecedent (as

noted in the previous sections) Based on the remaining atoms of the second

component in the antecedent the SE executes a search of the “storage” database where

the value of the “product id” field is equal to “X.” This is a somewhat complex

29

search since the SE must ensure that any record found during this search is not

identical to the record bound to the original “storage” reference—recall that the

originally bound “storage” record has not yet been deleted from the database and

therefore still resides within it The SE accomplishes this task by performing a basic

search and then, in the case of a keyed database, comparing each (possibly composite)

key field value of the record resulting from the search with the respective field values

of the previously bound “storage” record. If the similarity check fails, the record

resulting from the search is bound to the “storage[2] reference. If the similarity check

succeeds, the search continues until a differing record is found or further searching is

not possible Should the “storage” database be non-keyed (i e , more than one

identical record may exist) the SE must employ some other form of similarity check

(perhaps checking the literal record number as identified by the database file).

Continuing with consideration of the rule, should the search prove successful, the

negation operator halts consideration of the antecedent and the next applicable

removal rule is then considered However, should the search fail, the negation

operator causes continued consideration of the remainder of the rule’s antecedent.

The third antecedent binds the variable Y to the value of the “type” field for the

buffered “storage” record bound by the first component. The fourth component of the

antecedent searches out the “type log” database for a record whose “type field is

equal to “Y” and, if found, binds this record to the “type log” reference. The rule’s

consequent makes use of yet another SDBMS function “Delete” which performs a

removal action on the “type log” record which was bound during consideration of the

fourth component in the antecedent. Note that this removal action, in turn, spawns

consideration of all removal rules which apply to a “type log ” record

30

It may be stated that any reference to a <table> atom of a component which

does not make use of an <index> atom is implied to be of index, 1 For example, the

above rule may be thought of as follows:

{R} storage! 1] product_id(X) a -i(storage[2], product_id(X))

a storage[1].type(Y) a type_log[1].type(Y)

=> Delete(type_log[1])

Further, any use of a <tablep[<index]>] component implies uniqueness of

that bound record to all other <tablej>[<index;>] references within that SDBMS rule

where i*l. The use of the <index> atom gives great power to the SDBMS as rules

may be written which define semantic repercussions of one record within the context

of other record(s) of the same type.

3.3.1 Use of the A Index

Careful examination of the committal rule category might lead one to the

question: “What if a particular system requires a certain committal rule to fire for an

update of a record, but not for an insert of that record—how can this be accomplished

when both update and insert manipulations are governed by the same rule category?”

For example, let us say we had a database system which required the tracking of

various user updates in particular let us say there exists a “daily log” database, and

we wish to keep track of how many times the value of the field “location” is modified

within this record More specifically, we are not interested in how many times the

record (as a whole) was updated, but rather how many times a specific field value was

modified This type of rule may be represented as follows;

31

{C} dailyjog. location[A](X) a daily Jog. id(Y)

a tracking.id(Y) a tracking.displacements(Z)

=> tracking.displacements(Z + 1)

a Update(tracking)

The A index is used to reference differing field values from the time an existing

record is queued to the time the record is to be re committed to its respective

database. In this example, should a particular “daily Jog” record be queued with an

original “location” value of L], and during the time of buffering this value changes to

L2 (via the SDBMS command SetField), the binding of “dailyJog.location” would

equal L2, and the binding of “daily log.location[A]” would equal L%

A <table> <field>[A] binding is only valid (i e , can be bound) when an existing

record is queued and the SDBMS SetField command is used on that <table> <field>

designation. Thus, if a “daily log” record is queued, but the “location” field is not

acted upon by a SetField command, and the record is updated, the above rule would

not be applicable, since there would be no binding for “daily log !ocation[A]” (i e,

since the component cannot be bound, its truth value is FALSE, and consideration of

the rule terminates). Further, any buffered field-values for a new record (i.e , using the

SDBMS SetField function after use of the SDBMS NewRecord command) never

associate with a A index reference, since the record is brand new, there can be no a

priori field values.

Thus, the above rule functions wonderfully for tracking modifications to the

“location” field value, since “daily log location[A]” may only be bound when the

“location” field value actually changes. Further, we see that only

modifications/updates are tracked (i.e., not inserts) since by definition of the A index

reference, no A index bindings are possible when a new “daily log” record is bom

(i e, NewRecord(daily Jog) Insert(daily log)) However, upon close inspection

of the rule one may discover a fallacy in that the rule always assumes the existence of a

32

“tracking” record for the “id” in question Indeed, for this type of tracking technique

to operate successfully we must add the following committal rule to the semantic

knowledge base for the “daily log” database:

{C} daily Jog location; A](X) a dailyjog. id(Y) a ->(tracking.id(Y))

=> NewRecord(tracking) a tracking. id(Y)

a tracking.displacements(1) a Insert; tracking)

This rule maintains that a “tracking” record should be inserted upon the first

modification of the “location” field value in an existing “daily log” record in addition

this new “tracking” record should contain a “displacements” field value of 1, since

insertion of this record indicates the first time the “location” field was updated in an

existing “daily log” record With the addition of this committal rule, our displacement

tracking technique is sound.

It is important to note that the A index adheres to the closed world assumption

Take the following component reference for example, assuming the variable X has

been previously bound to a value

-,(planti productJd[A](X))

This expression is true in two cases: (1) if “planti product id[A]” cannot be

bound (i e , the value for field “product id” remains unchanged); or (2) if “plant I [A

] product id” can be bound, but its value is not equal to X. Thus, we see evidence of

the closed world assumption since the assertion is FALSE if a A index reference does

not exist (i e , cannot be bound)

33

4.0 IMPLEMENTATION OVERVIEW OF THE SDBMS SEMANTIC ENGINE

Having described the syntactic and rule-semantic aspects of the SDBMS

logical rule-based language, it must be illustrated how such a system would function

To accomplish this illustration, we must examine the basic functionality which is

required by the SDBMS to facilitate its usage as a universal medium between many

different database management system platforms (as depicted in figures 2 and 10)

Although an explicit implementation of the semantic engine is beyond the scope of this

dissertation, it is nonetheless important to describe the basis upon which such an

implementation must conform

4.1 SEARCH-TEST-ACT Chain Reductions

Taking the rule-semantic constraints described in chapter 3 into consideration,

one may assert the basic conclusion that all rules, regardless of classification, may be

reduced to a SEARCH-TEST-SET chain. To explain this assertion let us consider the

following committal rule:

{C} planti .chemical_id(X) a chemicals. id(X) a

chemicals.volatile(‘Y’)

=> planti special_handling('Y')

The astute reader will recognize this example rule as one presented earlier in

chapter 3 Summarizing the SE’s consideration of this rule we have the following: (1)

the reference “plant 1” is bound to the “plant!” record buffered in semantic context; (2)

variable “X” is bound to the value of the buffered “planti” record’s “chemical id”

field; (3) since the value of field “id” uniquely identifies a record in the “chemicals”

34

database (recall, “id” is the only field composing the primary key), the value bound to

X” is used to SEARCH the “chemicals” database for a record with that “id” value,

(4) should this record exist, (5) the “volatile” field value of the bound “chemicals”

record is then TESTED for its equivalence to "Y, (6) if all components of the

antecedent prove true the only component in the consequent SETs the value of the

“special handling” field of the bound “plant 1 ” record to Y Thus, the rule may be

reduced as follows:

SEARCH: chemicals, id = planti .chemicaljd

TEST e

TEST chemicals, volatile = Y'

SET planti special_handling = Y'

In this particular reduction we see four components in the SEARCH-TEST-

SET chain: one SEARCH component, two TEST components, and one SET

component. Looking back at the above summary for the SE s consideration of this

rule, binding occurs in steps (1) and (2). Step (3) is carried out by the SEARCH

component in the chain The SEARCH component is read as follows: the

<table> <field> operand to the left of the equal sign (=) identifies the <table> to be

searched and the first <field> to be constrained in the search The <table> <field>

operand to the right of the equal sign (=) identifies the hound record (<table>) and

field-value (<field>) in semantic context This second operand provides the constant

required to complete the search The first TEST component accomplishes step (4)

The e parameter is a Boolean variable, global to the SE, which is always set when a

SEARCH occurs. This variable is set to true if the SEARCH was successful, false if

unsuccessful Step (5) occurs during evaluation of the second TEST component

Finally, if all TEST components prove true, the SET component executes step (6).

35

The SET portion of the SEARCH-TEST-SET chain reduction should more

explicitly be referred to as an ACT—i e , SEARCH-TEST-ACT. We say ACT because

we may not only wish to have the ability to simply SET the field values of records

queued in semantic context, but rather to perform powerful ACTIONS on them

Several rules found in the preceding chapter have, within their consequents, special

SDBMS function assertions which instruct the SE to perform various actions on the

context record(s) queued within semantic context.

Thus, we should re-evaluate the above reduction chain to the following form;

SEARCH chemicals, id = plant 1 chemical_id

TEST e

TEST chemicals.volatile = Y

ACT Set(plantl special_handling = 'Y')

One should also note that the SEARCH-TEST-ACT chain may be reduced

further if and only if the database engine for the tablets) referenced within the

antecedent are SQL-compatible. This further reduction would result in a slightly

different chain as the second TEST portion of the above example could be

incorporated into the SEARCH portion Given the rule listed above the reduction

could be as follows:

SEARCH chemicals id = plantl chemicaHd

a chemicals.volatile = Y'

TEST e

ACT Set(plantl specialjnandling = Y)

And, the SQL interpretation of the SEARCH portion would be

36

EXISTS

(SELECT *
FROM chemicals

WHERE id = X AND volatile = V);

Note: X = plant1.chemical_id (a buffered field value which would be

constant at time of execution)

Some database engines, however, do not boast such powerful query

capabilities. Borland International’s PARADOX™ ENGINE, for example, only

allows record searches on subsequent composite key fields or a single non-key field

in this case, since “id” is the only field in the primary key of the “chemicals” table, and

“volatile” is not a key-field, the SE must make use of the SEARCH-TEST-TEST-ACT

chain reduction, listed above, instead of the latter SEARCH-TEST-ACT chain

reduction

Thus, it is the semantic engine’s duty to determine which database engine

applies to the referenced databasefs) and hence which form of reduction is required

For less powerful database engines, eg, those which only allow searching on keyed

fields or any other single field value, the SEARCH-TEST-TEST-ACT reduction is

necessary. However, as we have seen for more powerful database engines which

allow detailed searching, the SEARCH-TEST-ACT chain reduction may be a better

strategy—note, however, that the SEARCH-TEST-TEST-ACT chain reduction is still

possible with more powerful engines, but may not represent the most efficient

accessing technique for those database implementations

Some rules may simply require a TEST-ACT chain reduction as in the

following inferable field-value, committal rule

{0} production 1 .intensity_level(5) => production 1 reaction_time(6 3)

37

Reduction:

TEST productionl. intensityjevel = 5

ACT: Set(productionl reaction_time = 6.3)

One final piece of information which is paramount in rule reduction is the type

of rule (i e, acquisition, committal, or removal) and the table database to which it

applies By incorporating this information into the reduction construct the SE knows

when to consider a rule and what buffered record within semantic context is under

consideration.

The following lists the final reductions for the two sample rules in this section,

respectively:

RULE C/plant1

SEARCH chemicals. id = plantl chemicaljd

TEST E

TEST chemicals.volatile = Y

ACT Set(plantl special_handling = Y')

RULE C/production1

TEST productionl intensityjevel = 5

ACT Set(productionlreactionJime = 6 3)

Hence, in the first reduction the RULE component dictates to the SE that this

rule should be considered before a buffered “plant 1 ” record is committed to the

“plant T database and that any “plant 1” references within the reduction should be

bound to the field-values buffered in semantic context—thus, record and field-value

binding may be accomplished Appendix A lists some sample rules and their

SEARCH-TEST-ACT chain reductions.

Once again it must be stressed that SEARCH-TEST-ACT chain reductions

require the SE s knowledge of the structures of the databases referenced within the

38

rule The above examples have dealt with single-key field databases and were reduced

on that basis. However, not all databases conform to single-field keys and require a bit

more work in reduction. Take the following rule, for example:

{A} order.type(‘toxic’) a order.customer_id(X) a order. Iocale(Y)

a customer. id(X) a customer. Iocale(Y)

a customer.handling_level(2)

=> order.shipping(rail car")

Let us say in this particular example that the table “order” has a composite key

made up of fields “customer id” and “locale” respectively Similarly, let us say that

the “customer” table has a similar composite key made up of the fields “id” and

“locale” respectively Given this information the SE can reduce the rule as follows:

RULE A/order

TEST order, type = 'toxic'

SEARCH: customer, id = order. customer_id

a customer.locale = order.locale

TEST e

TEST customer, handlingjevel = 2

ACT Set(order.shipping = Tail car’)

Should the SE only have searched on “id,” we would not be guaranteed that

the correct record was queued. Thus, we see the use of two search constraints instead

of simply one, as the table in question requires two field-values (i e , “id” and “locale,”

respectively) to uniquely identify a record

Not only does the structure of a database play an important role in rule

reduction, but also the power of the database engine governing that database which

will ultimately be used to consider (and, if necessary, fire) the rule Once again the

preceding example assumes a low-level database engine which only allows searching

on keyed fields Should a more powerful engine be available for the referenced

39

database(s) (eg, a SQL-compatible engine) the following reduction would most likely

prove more efficient or at least somewhat more elegant:

RULE N/order

TEST order, type = ‘toxic’

SEARCH customer, id = order customerjd

a customer, locale = order, locale

a customer.handlingjevel = 2

TEST e
ACT Set(order.shipping = rail car’)

It should be noted that rule-reduction is based not only on the format of the

rule itself, but also on the structures of the database(s) referenced within the rule and

the power of the database engine(s) applicable to those database(s)

4.2 Semantic Context

The term, semantic context, has been used somewhat loosely in the preceding

chapters. To understand exactly how the SE would function, this term must be clearly

defined. Perhaps the easiest analogy to semantic context is a working memory which

maintains a dictionary of record and field-value bindings Two types of data

references are held within this dictionary (1) explicit references—the buffered field­

values of records to be inserted, updated, or deleted in their respective databases, or

the buffered field-values of records simply queued for reference via the SI; and (2)

implicit references—buffered field-values of any other records queued during

consideration of a particular rule The first type of references exist within the system

(i.e., are non-volatile) until explicitly dumped by the system (as will be described in

detail below) The second type of references exist only during consideration of the

40

rule in which they were queued (i e, are volatile immediately upon completed

consideration and potential firing of a rule).

For example, let us examine the following database structures, a sample rule,

and its SEARCH-TEST -ACT chain reduction:

TABLE: plant2

reactorjd : alpha-numeric field (only KEY)

override : alpha-numeric field

TABLE: reactor_schedule

id : alpha-numeric field (only KEY)

status : alpha-numeric field

{C} plant2. reactorjd(X) a reactor_schedule id(X)

a reactor_schedule.status(to-be-cleaned’)

=> plant2.override(shut down’)

RULE C/plant2

SEARCH: reactor_schedule.id - plant2.reactorjd

TEST e
TEST reactor_schedule. status = to-be-cleaned’

ACT: Set(plant2.override = shut down’)

Figure 4 depicts a visual account of this example. Prior to consideration of this

rule the field-values of a new "plant2” record have been buffered within semantic

context (part A of figure 4) Let us say ‘SAMI’ has been buffered as the value of

“plant2.reactor id.” This indicates that semantic context has the value SAMI’

associated with the data reference “plant2.reactor id.” Substituting this value pulled

from semantic context, the SEARCH portion of the reduction chain then reads:

"reactor schedule id = SAMI,”’ and this record is searched-out Let us say the

41

record does exist (i e , e = TRUE) At this time, since a “reactor schedule” record has

just been queued, its field values are loaded into semantic context (part B of figure 4).

In particular let us say its “status” field does indeed equal ‘to-be-cleaned,’ causing the

second TEST component to prove true. Since all TESTs prove true, the ACT is

executed, associating the data reference “plant2.override” with the value shut down ’

The diagram visualizes SDBMS semantic context as a series of hash tables'.

The first hash table is used to reference <table> entries (i e, the names of records

which currently reside within semantic context). These <table> entries shall be

deemed table cells and are depicted in the diagram as rectangles. Note that appended

to each table cell identity is its index in the diagram all table identities are appended

with “[1]’-recall that any <table> reference which does not explicitly display an index

is assumed to be of index, 1. Each table cell points to a secondary hash table which is

used to store the <field> references (and in turn the respective values) for that record

<Field> entries shall be deemed field cells and are depicted as diamonds in the

diagram. Each field cell subsequently points to a value cell (each depicted as an

ellipse in the diagram) which holds the data-value currently associated with that

<table> <field> designation. One should note that their exists two pointer references

within each field cell The unlabeled pointer is used to identify the current value of

that <table> <field> reference The pointer reference labeled “A” is used to identify

the last value of that <table> <field> reference before modification (note that this

example does not require knowledge of past field values and therefore the A-pointers

contain null values

1 Note that the use of hash tables is certainly not a requirement for representations of this nature.

The working memory model for semantic context could have as easily been described by way of

linked lists or sorted arrays. The hash table scheme was simply selected for its undying efficiency and

elegance in storing large amounts of referenced data.

42

Each table cell within semantic context is tagged with either an lE’ or an I

Table cells exhibiting an ‘E tag, indicate explicit references—cells which must remain

non-volatile until such time as they are explicitly dumped by the system. Those cells

which exhibit an T flag indicate implicit references—cells which become volatile as

soon as the current rule has been fully considered and fired (if applicable) Upon

completion of a rule’s consideration and firing (should the antecedent prove true), all

T-designated table cells, including all cascading field/value cells which are linked to

them, are purged from semantic context This purging accomplishes two tasks: first,

working memory is free of “garbage” at all times; second, the SE cannot confuse like-

references in differing rules

Explicit (E’-designated) table cells and their cascading field/value cells may

remain within semantic context indefinitely There are only three ways explicit

references may be purged from semantic context (1) if the record referenced by the

table cell is deleted, (2) if the SDBMS NewRecord command is called on the same

reference, or (3) if a different record of the same type is searched-out in the database.

One should note that the last two procedures do not actually purge the reference per

say, rather they change the field/value references associated with that record (table

cell). Figure 5 gives a visual account of these three ways of purging semantic context

Portion A of figure 5 shows the deletion of a “plant 1 ” record Portion B shows what

happens when there exists a “plantl [1] ’ record in semantic context, but the SDBMS

command “NewRecord(plant 1 [1])” is called. Note that no field/value cells exist after

the NewRecord command-call If a particular field cell does not exist in semantic

context, the SE deduces that value to be null (i e , not yet acquired). Part C of figure

5 demonstrates what occurs when an existing reference is re-used (i.e., the old

reference is purged in favor of the new reference) via searching/queuing an existing

record of the same type Note that when an existing record is queued via searching,

43

all field values which are not equal to null are loaded into semantic context (hence, the

use of the ellipsis in the field cell hash table).

Why keep records in semantic context after inserts or updates? As new data

cells are acquired for the buffered record (via the SDBMS SetField command),

acquisition rules are considered and potentially fired, changing the state of the record

buffered in semantic context Upon execution of the SDBMS Insert or Update

command, all committal rules pertaining to that record are considered and fired (if

applicable)—again changing the state of the buffered record Finally, when all rules

have been fully considered and potentially fired, the record is physically inserted into

its respective database via the database engine which governs it The record continues

to remain in semantic context for two important reasons: first, should the insert/update

operation succeed, the user may wish to access certain field values which may have

been modified by the semantic constraints represented within the committal rules (e.g.,

inferable field-values)—or the user/program may simply wish to re-access the data

within that record at a later time; second, should the insert/update operation be

aborted for some reason, it is imperative that the record remain buffered within

semantic context to allow the user/program, which communicated the new record via

the SI, to salvage data values which were accepted by the committal rules and perhaps

attempt to re insert/re-update the record This is important since semantic rules are

capable of aborting insertion/modification of a record if, for example, a certain field

value breaches semantic integrity. Should the system purge the buffered data

references at the point of abortion, the user/program would lose all modifications

made to that record even if insertion failed because of a single bad value Thus, failure

of a routine of this nature should retain buffered references and allow the user/program

to correct the problem at which point an attempt may be made to re-insert the record

(if desired)

44

4.3 Semantic Engine AGENDA

Given these potentially enormous rule-bases which manage the semantic

integrity of particular databases, in what order (if any) should such a system consider

each rule9 Obviously, overall consideration of a particular rule is directly associated

with the rule category to which it belongs (i e, a removal rule for a certain type of

record would not be considered during an insert action for that type of record). The

acquisition rule category constrains consideration of rules even further to only those

rules whose first component of the antecedent matches the field being acquired

However, once a set of rules is identified for consideration by the semantic engine, is

the order of consideration relevant? To answer this question consider the following

generalized committal rules

1 {0} oq.Pi(X) a ci2 Pl(X) a a.2 P2(Y2)

=> «2 P3(73) A Update(«2)

2. {C} ai pz|(Y4) => Abort(ai)

Let us assume in this case that an aj record is about to be inserted Both

committal rules in the example apply to an a % -type record (i e , records belonging to

the table aj) Let us assume that the semantic engine considers each of these rules in

the order in which they are listed above Further, let us assume that upon

consideration of each rule the antecedent of that rule is found to be true and its

consequent is duly carried out immediately one can see a serious flaw as rule 1

implies the setting of an inferred field-value of another record («2) and its subsequent

update When rule 2 is fired, the insert operation of the aj record is aborted

indicating breach of semantic integrity and refusal to commit the record However, we

45

have already updated another record in rule 1 with respect to the cq record, and now

we find that the cq record is invalid. This flaw would result in inconsistent data in a

very short period of time Thus, in this case it is important for the semantic engine to

consider rule 2 before rule 1.

To further illustrate rule consideration anomalies let us examine an additional

committal rule

3. {C} cq P5(Y5) a ai P6(Y6) => *1 ?4(Y4)

Once again let us say that an cq record is awaiting insertion and rules 2 and 3

(ignoring rule 1 for the moment) are considered respectively. Further, let us say that

upon consideration of rule 2, -.cq 74) is true given the state of the cq record in

question. Thus, rule 2 fails to fire Rule 3 is then considered and fires setting the

value of cq P4 to 74 (i e., cq P4(74)). At this time rule 2 would imply abortion of

committal of this record, but consideration of rule 2 has come and gone. Again we see

the potential for inconsistent data due to erroneous ordering of consideration

To solve this problem the semantic engine incorporates an agenda scheme.

The agenda scheme may be thought of as follows

Semantic Engine Primary Rule Consideration Agenda Scheme:

Given a set of rules which are relevant to the current context:
(1) consider all non-committal-inon-abort-consequent rules,

(2) consider all abort-consequent rules, and finally,

(3) consider all committal-consequent rules

A committal-consequent rule is one which contains a committal action (e.g..

Insert, Update, Delete, etc) within its consequent. An abort-consequent rule is one

which contains an Abort action within its consequent. Hence, non-committal-/non­

46

abort-consequent rules identify all those rules which remain (i e, those rules which

neither contain a committal action nor an abort action within their consequents) With

(1) the semantic engine ensures that any inference to extend the state of a record is

carried out immediately so that (2) and (3) may act upon the maximally extended state

of the record By maximally extended we mean that there exists no rule which may

modify or add to the information state of a record The ordering of (1) and (2) ensure

that anomalies such as the one presented in the above rule consideration example of

rules 2 and 3 cannot occur. The ordering of (2) and (3) is necessary to abolish the

problem caused by the rule consideration example of rules 1 and 2 above.

Within each step in the primary agenda, a secondary agenda must be

maintained which manages the forward chaining process itself For instance, consider

the following two non-committal/non-abortion rules:

4. {C} ai Pi(yi) a ai p2(Y2) => a1 03(Y3)

5 {0} a-| p-|(Y1) A ai P4(Y4) => a1-P2(Y2)

At time of consideration within step (1) of the primary agenda (for committal

of an a] record) the secondary agenda would contain rules 4 and 5. Let us assume

that in a particular context -iCt|.P2(Y2) holds, causing rule 4 not to fire. However, if

in the same context cq P^(Y4) holds true, rule 5 would fire (assuming, of course cq.

p](y]) held true as well), bringing cq P2(Y2) into context Thus, we must have a

way of bringing rule 4 back into the secondary agenda so it may be reconsidered Al

literature often refers to forward-chaining rules as if-added rules, indicating that

actions described in those rules should be taken when a value found within the

antecedent of that rule becomes available. Within the semantic context of the SE the

only way a value can “become available” is by the execution of the SDBMS SetField

47

command. Thus, the secondary agenda is driven by calls to the SetField command

Each time the SetField command is called within a given primary agenda step the

available rules within that primary agenda are tested for any occurrences of that

particular field within the antecedent of the rule. Should a component within the

antecedent of one of these rules correspond to the field being set, that rule is placed on

the secondary agenda. When all rules within the secondary agenda have been

considered, inference continues with the next step on the primary agenda

4.4 SDBMS Symbol Dictionary

Given that interpretation of the semantic rule base is based heavily on the

knowledge about the structures of the tables referenced therein and the ability to

identify which database engines govern which tables, the SE must be provided with a

symbol dictionary (as depicted in figure 2). This dictionary links the various symbols

used in the semantic rule-base which reference specific databases with information

about the database engine, structure of the table (e g , key fields, non-key fields, field

data types, etc.), and (if applicable) its logical location on some (potentially

networked) storage device This symbol dictionary would be referred to continually

by the SE when converting an SDBMS semantic rule to its corresponding SEARCH­

TEST-ACT chain, where information about the database’s structure and governing

database engine are paramount issues (as detailed previously). Beyond the conversion

of a given semantic rule to its SEARCH-TEST -ACT chain, identification of a

particular table’s database engine is obviously important when executing the given

components of SEARCH-TEST-ACT chains, as translation must occur from any of

48

the SDBMS manipulative commands (e g , Search, Insert, Delete, Update, etc) to

there implementation platform equivalent.

Many database engines provide the capability of querying the structure of their

databases in this environment when the SE is presented with a semantic rule which

references a new table (i e, one which has not already been incorporated into the

symbol dictionary), it need only ask the user for its governing database engine (i e , the

type of database) and logical location (if applicable). The SDBMS would then be able

to fill in the required information itself by querying that table’s structure-given the

database engines structural-query commands. Some database management systems,

however, do not boast such powerful structural-query capabilities in such an

environment when presented with a new table—one unknown to the SDBMS—the

SDBMS would require the user to enter information about the database’s structure

and engine directly into the symbol dictionary. As an alternative to this cumbersome

need to enter structural information twice (i e , once when creating the database and

once when linking it to the SDBMS), one might build additional SDBMS commands

designed to control database creation For example, if a particular database engine

was capable of allowing creation/structural-modification of databases, but did not

allow querying about existing databases’ structures, the SDBMS might first acquire

the information required for building the database via the SI, incorporate the necessary

information about the new database’s structure into the symbol dictionary, and use the

respective database engine commands to physically create the database in this manner

structural description of new databases is only required once One must take care,

however, that any creations of new databases or structural modifications to existing

databases which are to be referenced by the SDBMS must be done so through the SI

to avoid describing the structural information twice

49

With knowledge about the databases-their structures and the database engines

which regulate them—the SDBMS may oversee manipulative aspects in a seamless

manner, accepting manipulative database commands from the user/program via the SI

and interpreting any semantically defined repercussions of those actions through the

SE Having discussed implementation aspects of the SDBMS which are global to all

database engines, let us investigate specific implementation constraints posed by

different types of database engines

4.5 Semantic Engine Interaction with Single-record Manipulative

Database Engines

SE control of primitive, single-record manipulative database engines follows

quite naturally from the way in which the SDBMS has been defined These types of

database engines only allow users/programs to reference data one record at a time

Often what must occur is first queuing a particular record and then acting upon it

Multiple-record manipulations rely upon the user/program To accomplish a multiple­

record manipulation the user/program must initiate a loop, external of the database

engine, where each single record is queued and manipulated

4.5.1 SDBMS Inserts with Single-record Manipulative Database Engines

The insertion of records into databases which support only single-record

manipulations abides by the following template (again, we shall assume that SI

communication takes the form of a simple procedure-like command language):

50

NewRecord(T1);

SetField(T1, Fj, Vj);

SetField(Fk, Vk);

lnsert();

In this format, T । represents some table name which is under SDBMS control

Fj and Fk represent valid field names for table T ; The reference Vj represents the

value to be set for field Fj whereas Vk represents the same for field Fk The SDBMS

NewRecord command sets up semantic context for the declaration of a new T]

record The reference for this record within semantic context is defined as T][l] (as

was described in the preceding sections). If there was a previous T] [l] record queued

in semantic context its field and value cells are purged in favor of the new record

which is assumed to initially have all null-value fields. The SDBMS command

SetField is then used in a sequential manner to set the desired values of particular

fields Upon execution of a SetField(Tj, Fj, Vj) command any acquisition rules of the

form “{A} Tj Fj(9) ...” are considered and, should their antecedents prove true, their

consequents are executed Should any of these consequents contain the SDBMS

command RejectValue(Tj) the value Vj for the field Fj of table Tj is not incorporated

into semantic context and the user/program which initiated the SetField command is

made aware of the rejection. A simple message may be compiled by interrogating the

rule which caused the value rejection. For example, if we had a referential integrity

acquisition rule of the form:

{A} Ti Fi(X) a —1(T2.F2(X)) => RejectValue(T-| Fi)

A rejection message could be compiled as follows: “Value rejected because X

does not exist in table T2 ” (‘X’, of course, would be displayed as the value bound to

the variable X) Use of the SetField changes the field-value state of the new record

51

both by the field which is being set directly, and by any potential consequents inferred

by the acquisition rules spawned from setting that particular field The new record

continues to be defined in this manner until the Insert command is issued

Upon issue of an Insert command all committal rules are interrogated, once

again changing the state of the buffered record Once consideration of all committal

rules is concluded and no rules brought about the SDBMS Abort command, the record

is inserted into its respective database using the technique appropriate to the database

engine which governs it. At this time field cells which do not appear within semantic

context for the record to be inserted are assumed to be of value null.

4.5.2 SDBMS Queuing of Records with Single-record Manipulative

Database Engines

In order to accomplish one of the other two SDBMS manipulative commands

(i e, Delete and/or Update), a record must first be queued. Queuing usually would

take the form of an SDBMS Search command However, other SDBMS queuing

commands could be available to the user (assuming the database engine in question

can handle such queuing commands): FirstRecord(<table>), NextRecord(<table>),

PreviousRecord(<table>), and LastRecord(<table>) These additional commands

are relatively straight forward. The SDBMS Search command, however, does require

some discussion as it must be universally capable of covering a wide variety of search

techniques (since many database engines have their own, usually different, ways of

representing search criteria).

The SDBMS Search command is of the following format:

Search(T^, F, = Vj a Fj = Vj a ... F^ = V^, SCOPE);

52

In this format Tj identifies some table i under SDBMS control which is to be

searched Fx is some field x belonging to table / Vx is some valid value v for field x

of table i. The conjunctive symbol ‘a ’ is used to specify additional search constraints.

The reference SCOPE is used to indicate the scope of the search to be performed.

The SCOPE parameter may not be applicable to some primitive forms of database

engines. However, Borland International’s PARADOX™ ENGINE, for example,

allows the scope of a search to be constrained in three different ways: (1) search

begins at the first record in the database, (2) search begins at the currently queued

record, or (3) search begins at the first record in the database and continues to the

record which matches the criteria the closest. As will be seen in the succeeding

section SQL-compatible systems always search from the first record in the database

and therefore the SCOPE parameter is irrelevant.

The second parameter of the Search command identifies what criteria the

search should constrain itself to This second parameter may have several different

interpretations depending upon the complexity of the engine Once again let us use

Borland International’s PARADOX™ ENGINE to illustrate differing interpretations

The PARADOX™ ENGINE allows two techniques for searching The first

technique—PXSrchKey—allows searching on one or more consecutive fields which

belong to the primary key, starting with the first field of the primary key. For example,

consider the table A which has fields ap a^, aj, 34, a$, a^, and ay Further, let us say

that fields a; through 33 compose the primary key of table A We may then use the

PXSrchKey command to search on just the field a; or we may use the same command

to search on fields ai and a2 or on all fields of the primary key, a;, 32, and 33 A

second technique which the PARADOX™ ENGINE supports is PXSrchFld, which

shows 3 search on a single field value Thus, we could use the PXSrchFld command

to search on field 34 or 35 or a^ or ay, but no combination there of it is the SE s

53

obligation to have knowledge of the various search techniques supported by the

various database engines under its control and to know how and when to use them

Some simple translations from the SDBMS Search command to pseudo code

for the PARADOX™ ENGINE might look as follows:

SDBMS: Search(A, a-j = Vj, FIRST);

PARADOX: PXSrchKey on table A with field ai =

SEARCHFIRST.

SDBMS: Search(A, a-j = a 32 = vg, NEXT);

PARADOX PXSrchKey on table A with fields ai = 32 = V2,

SEARCHNEXT.

SDBMS Search(A, ag = vg, FIRST);

PARADOX PXSrchFId on table A with field ag = vg,

SEARCHFIRST

The SE is capable of determining which type of PARADOX™ command to

use based on its knowledge of the structure of the database in question in the second

example the SE can infer the use of the PXSrchKey command since fields aj and a^

are consecutive fields in the primary key and field aj is the first field in the primary

key Thus, the constraints for using the PXSrchKey command have been fulfilled and

therefore may be used In the third example the SE can infer the use of the PXSrchFId

command since field a^ is a non-key field of the table A.

4.5.2.1 SDBMS Enhanced Queuing of Records with Single-record

Manipulative Database Engines

Indeed, the SE may use its knowledge of the workings of a particular database

engine to provide enhanced querying capabilities, as the following PARADOX™

ENGINE interpretation demonstrates:

54

SDBMS: Search(A, a-| = vi a a2 = V2 a ag = vg, FIRST);

PARADOX: if (PXSrchKey on table A with fields a-| = vj, a2 = V2,

SEARCHFIRST) is successful,

AND if ((field ag = vg) OR

[if (PXSrchFId on table A with field ag = vg,

SEARCHNEXT) is successful,

AND if the current rec’s field value for ai is vi

AND if the current rec’s field value for 32 is V2],

THEN the search was successful;

ELSE the search was not successful.

In this example we see that since fields aj and a^ are consecutive fields

belonging to the primary key of table A and since field a] is the first field of the

primary key, the SE can make use of the PXSrchKey command to accomplish the

initial portion of the search. Further, since field % is a simple field of table A the SE

can use the PXSrchFId command to search from the record found with the

PXSrchKey command, to the next record where % = v^ (if the record found in the

initial search has % * v^) Note, however, that should this next record be found, its

values for fields aj and a2 must be verified (since the next record where % = v^ may

not have 3] = V] and a2 = V2) Note also that this technique assumes that the table’s

records are sorted in an ascending manner relative to the primary key

Generalizing this technique one arrives at the following algorithm which the SE

can use to enhance the querying capabilities of PARADOX-like database engines:

Algorithm for Enhanced Single-record Querying:

1. Given the command

Search(A, 3j = Vj a 3j = vj a ... a ax = vx, SCOPE);

2 Re-organize the criteria parameter to the form a; = Vj a aj = Vj a ...

a ax = vx, where given the structure of the table A the logical

ordering of field a, precedes field aj precedes ... precedes field ax

55

3. If a; is not the first field (given the structure) of table A or if table A

has no primary key, then set the variable NEXTSCOPE = SCOPE

and GOTO step 7.

4. Starting with field a,, strip off each consecutive field which belongs

to the primary key of table A--call this the key criteria.

5. Use PXSrchKey to search on table A with key criteria acquired in

step 4, starting the search from the record identified by SCOPE

6. If a record was found in step 5, then set the variable NEXTSCOPE

= SEARCHNEXT and continue with algorithm,

If a record was not found in step 5, then exit algorithm with failure

(i.e., no record found).

7. If the current record matches the remaining criteria, then exit the

algorithm with success!

8 Use PXSrchFId to search on table A with single-field criteria equal

to the first field remaining in the criteria, starting the search from

the record identified by the variable NEXTSCOPE

9. If a record was found in step 8, then set the variable NEXTSCOPE

=SEARCHNEXT

If a record was not found in step 8, then exit algorithm with failure.

10. If key criteria exists (i.e., step 4 was executed above) and the

current record does not match that criteria, then exit algorithm with

failure.

11 GOTO step 7.

Thus, one can see that the SDBMS Search command may be interpreted in

several distinct ways depending upon (1) the abilities of the database engine which

governs the table to be searched, and (2) the structure of the table With this

comprehensive queuing strategy the SDBMS enhances existing technology, as was

seen in the case of PARADOX™ ENGINE interpretations, while at the same time

providing a universal medium for accomplishing the queuing of records over different

types of single-record manipulative database engines

56

4.5.3 SDBMS Deletes with Single-record Manipulative Database Engines

Having discussed the queuing process for single-record manipulative database

engines, the idea of record deletions becomes trivial. Once a record belonging to a

certain table T is queued (as described in the preceding section) a simple SDBMS

command of the form Deletef T) deletes the record from the table One must keep in

mind, however, that before the physical deletion of the record from table T occurs, all

SDBMS removal rules of the form “{R} T F|(?) ...” must be considered and fired

should their antecedents prove true. Should an applicable removal rule fire which,

within its consequent, contains the SDBMS command Abort(T) the record is not

deleted from the table and the initiator of the Delete command is made aware of the

infraction which caused the abortion by way of the SI

Upon successful completion of an SDBMS Delete command the record which

was just deleted is completely removed from semantic context (i e., removal spans not

only all field and value cells which related to that record, but also the table cell which

referenced the record at its highest level) Part A of figure 5 depicts this type of total

removal from semantic context

4.5.4 SDBMS Updates with Single-record Manipulative Database

Engines

The use of the SDBMS Update command to modify existing records follows

the format detailed above for declaration of new records prior to insertion, except that

the desired record would be queued instead of cleared via the NewRecord command.

The SDBMS SetField command would then be used to modify field values of the

queued record As the SetField command is invoked any SDBMS acquisition rules

57

which relate to that field are considered and fired (if applicable) as outlined above

Note, however, that once an existing record has been queued, the SDBMS SetField

command’s function is slightly different in that for each field a belonging to the queued

record Afl] a A index reference of the form A/1],a/A] is incorporated into semantic

context The value cell associated with this A index field cell contains the value of

/4/7/.a just prior to modification by the SetField command. As was explained above A

index references may be used in rules to semantically distinguish between inserts and

updates

Once the desired field values have been modified for the queued record via the

SetField command(s), the SDBMS Update command is used to commit the

modifications to the database As with inserts all committal rules applicable to the

type of record being updated are considered and potentially fired Should an Abort

command be encountered during this interrogation, the update is aborted and the

initiator of the Update command is informed. When all committal rules have been

examined, and no Abort command was encountered, the modifications for the record

are committed to the database.

4.6 Semantic Engine Interaction with Multiple-record Manipulative

Database Engines

Multiple-record manipulative database engines (eg, SQL-compatible systems)

do not allow single-record accesses per say and hence the SE must take a slightly

different route to interact with such systems Whereas a command issued to a single­

record manipulative engine effects a specific, unique record, a single multiple-record

engine command may result in the manipulation of several records However, any

multiple-record manipulative system must ultimately access one record at a time

58

Given this important factor SE interaction with such database engines follows naturally

from the SE implementation as described in the previous section with few additions to

the grand scheme

SE interaction with multiple-record database engines involves (1) interrogation

of the command, (2) determination of which record(s) will be affected by the

command, (3) determination of which SDBMS rules associate with the command, (4)

application of those rules on each record affected by the command, and finally (5)

execution of the original command itself on each record which did not result in a

semantic infraction. SQL will be used in the remainder of this section to outline SE

interaction with multiple-record manipulative systems. One should note, however,

that the strategy described herein would apply to virtually any multiple-record

manipulative environment

4.6.1 Internal and External Multiples

Given a multiple-record command the SE must break the command into

sequential record accesses so it can be sure each record is acted upon appropriately by

the semantic rule-base. This is accomplished by way of record cursors—common to

embedded SQL Two types of cursors which reference multiple-records (henceforth

referred to simply as “multiples”) are utilized within the SE externaI multiples and

internal multiples. To understand the nuances of the first type of multiple let us

consider the following generalized format of a multiple-record SQL command

[action] WHERE [criteria]

59

Here, [action .] denotes some multiple-record action such as update, insert,

delete, etc The parameter [criteria] references the constraints which records must

meet in order to be included in the multiple-record operation. If we take the [action]

portion of this command and replace it with a SELECT ... FROM operation we can

precisely identify those records which will be affected by the [action. ..] operation (as

dictated by the [criteria .] parameter). To clarify let us consider the following SQL

UPDATE command:

UPDATE production 1

SET production 1serial_required = ‘YES’

WHERE production 1 type = TOXIC;

Taking the WHERE clause into account we may produce the following

SELECT statement which will identify all those records which would be effected by

the UPDATE command:

SELECT *

FROM production)

WHERE production) type = 'TOXIC';

Using embedded SQL (our link from the SDBMS to the RDBMS) we may

then acquire a cursor on this statement as follows:

EXEC SQL DECLARE X1 CURSOR FOR

SELECT *

FROM production)

WHERE production) type = TOXIC ;

The cursor Xj identifies the multiple-records external to the semantic rule-base

(i e, external multiples) Using the embedded SQL command FETCH the SE may

sequentially isolate each record and independently act upon that record (in this

60

example considering all committal rules relevant to a production 1 record), processing

any semantic repercussions as represented by the rule-base. As each record is fetched

from the cursor its field values are loaded into semantic context (as in the single­

record queuing strategy defined above) New field values are then set for that record

using the SDBMS SetField command (if required as dictated by the [action] portion

of the original command). The SetField command spawns interrogation of relevant

acquisition rules for that type of record. Should all new values pass interrogation of

the acquisition rule-base (i e, no RejectValue-consequents arise), the rule-base

relevant to the [action] is then considered (i e , committal rules or removal rules) and

should no Abort-consequents arise, the [action] is finally performed on that unique

record Exactly how each [action] is performed by the SDBMS is detailed in

subsequent sections of this chapter Should a semantic infraction occur, a log is

created outlining the infraction (this may be in the form of an immediate interface with

the user, allowing him/her to correct the infraction in the middle of processing the

original command, or it may be written out to a log file where the user/program could

return to after all valid records have been acted upon) After each record is acted

upon or rejected the SE then fetches the next external multiple and begins the process

again Processing continues in this fashion until all records identified by the cursor

have been acted upon

Internal Multiples are multiple records which arise from consideration of a

single rule within the context of a single subject record To illustrate this type of

multiple consider the following semantic removal rule:

{R} suppl ier.s#(X) a shipments. s#(X)

a AcquireExistingValue(“Enter the supplier # for the

supplier who will be taking over supplier |X|’s

shipments: ", suppliers#, Y)

=> shipments.s#(Y) a Update(shipments)

61

This rule states that should a supplier be removed from the database any

shipments which were assigned to him/her should now be taken over by another

(remaining) supplier. In this case the record “supplier” would be bound to a single

record in semantic context which is awaiting removal from the database. The

reference “shipments" would then bind to several records (i.e., a single supplier may

have many shipments assigned to him/her). Thus, “shipments” identifies multiple

records internal to the consideration of this particular removal rule (i.e., internal

multiples)—specifically, all shipment records assigned to supplier number, X The

special SDBMS function AquireExistingValue is used to obtain a valid supplier

number from the supplier database, which, in this example, identifies the supplier who

will take over supplier number X s shipments

Hence, for each external multiple this particular rule may have to be applied to

many internal multiples. Note that internal multiples not only apply to multiple-record

manipulative database systems but also may apply to single-record manipulative

systems as well For example, the above rule would be just as valid if the databases

“supplier” and “shipments” were governed by a single-record manipulative database

engine Because of this important point the SE must handle internal multiples in such

a way as to provide generality among the different types of database engines which are

overseen by the SDBMS

4.6.1.1 SDBMS Implementation Scheme for Internal Multiples

Recalling that each semantic rule which governs the manipulation of a given

database may be reduced to a SEARCH-TEST-ACT chain, it is easy to see how such

a chain may be invoked to manage internal multiples Take for example the following

62

rule (as detailed in the previous section) and its SEARCH-TEST-ACT chain

reduction:

{R} supplier.s#(X) a shipments.s#(X)

a AcquireExistingValue("Enter the supplier # for the

supplier who will be taking over supplier |X|’s

shipments:", suppliers#, Y)

=> shipments.s#(Y) a Update(shipments)

RULE: R/supplier

SEARCH 1 : shipments, s# = suppliers#

TEST ! : e
ACT-) : AcquireExistingValue(“Enter the supplier # for the

supplier who will be taking over supplier

|supplier.s#|’s shipments ", supplier[2].s#)

ACT2 Set(shipments.s# = supplier[2].s#)

ACT3 Updatef shipments)

In this particular example the SEARCH portion of the chain may potentially

bind several different “shipments" records—each of which must be independently

considered by the rule Thus, by thinking of the SEARCH portion as an iteration over

one or more records found by the search we arrive the following flow:

Loop while SEARCH 1

Begin loop

TEST,

ACT,

ACT2
ACT3

End loop

For single-record manipulative systems the loop would be carried out by

searching out the first record identified by SEARCH], iterating the loop once,

searching for the next record under SEARCH], iterating once again, etc Multiple­

record manipulative systems (eg, SQL) would require obtaining a cursor on

63

SEARCH] and fetching the next record identified by the cursor for each iteration. In

this manner universality is achieved by simply providing an SDBMS Search procedure

for each database engine which is controlled by the SDBMS The syntax for the

Search procedure call would remain the same (as detailed in previous sections) while

the functionality of the procedure would be dependent upon the database engine which

governs the table in question.

4.6.1.2 SDBMS Implementation Scheme for External Multiples

Having implemented internal multiples by way of the SDBMS Search

command, external multiples are handled quite easily in the same fashion. Indeed,

since external multiples are acquired (as in SQL) by replacing the [action] portion of

an “[action .] WHERE [criteria.]” command with a “SELECT ... FROM query, the

SE, in effect, generates an SDBMS Search query which will identify those records

which meet the [criteria .] This “external” Search is handled in precisely the same

manner as Searches within a given rule, except that during iteration the entire

(relevant) rule-base is considered for each of those records queued by the Search and

the [action] is independently performed for each of those records as well (assuming no

semantic infractions occur, of course) To clarify this proposed flow let us consider

the following multiple-record delete command and how the SE would go about

implementing such a command

Initial Multiple-record Command:

DELETE

FROM supplier

WHERE supplier orders < 100;

64

External Multiples Identified By Command:

EXEC SQL DECLARE Xq CURSOR FOR

SELECT *

FROM supplier

WHERE supplier, orders < 100

(which implies the following SDBMS Search command:)

Searchg(supplier, orders < 100, N/A)

(Note: the “N/A” indicates scope is irrelevant to this database

engine.)

Recalling the sample removal rule in the previous section, relevant to a

“supplier” record, we would have the following SE flow:

Loop while SEARCHg (external multiples)

Begin loop
... <consideration of initial removal rules> ...

Loop while SEARCH-] (internal multiples)

Begin loop

TEST1

ACTi

ACT2

act 3
End loop

... consideration of remaining removal rules> ...

IF <NO SEMANTIC INFRACTIONS^

THEN Delete(supplier)

End loop

Let us say further that in the above flow SEARCHq is governed by cursor Xq

and that SEARCH] is governed by cursor X] Given these stipulations, ACT3 (i.e ,

Updatef shipments)) may be carried out by the following SQL translation (assuming

that supplier[2].s# was acquired in ACT ; as “Y22”) :

65

EXEC SQL UPDATE shipments

SET shipments.s# = ¥22’

WHERE CURRENT OF

Finally, should no semantic infractions occur in consideration of the removal

rules for a “supplier” record, the Delete(supplier) command is carried-out as follows:

EXEC SQL DELETE

FROM supplier

WHERE CURRENT OF Xq ;

Thus, by way of cursors we are able to control the iterative processes, both

external and internal, of rule-base consideration. Once again cursors would not be

required in single-record manipulative systems as actions are performed on the

currently queued record (i e , that record which was iteratively queued by the most

recent SDBMS Search command for that record type).

4.6.2 SDBMS Inserts with Multiple-record Manipulative Database

Engines

SQL allows two modes of insertion single-record inserts and multiple-record

inserts Should the user/program wish to execute a single-record insert, two avenues

are available. The first route would allow the user/program to initiate the insert as was

described for single-record manipulative systems (section 4 3.1) via dialogue through

the SI—ideal for systems where user-interface is of primary importance. This scheme

provides two important advantages: first, the application controlling the interface need

not concern itself with providing a buffering structure for the information as this is

accomplished by the SDBMS semantic context. Second, as each value is set (via the

SDBMS SetField command) acquisition rules can be applied immediately causing

66

feedback to the user of any inferred field values or value rejections resulting from

those rules When the SDBMS Insert function is finally initiated, the committal rule­

base would be consulted and, should no abort consequent present itself, the SE would

compile the necessary SQL command to insert the given record into its respective

database. This insert command can be easily generated by taking into account all non­

null field-values within semantic context for the record being inserted

The second route of single-record insertion would be to send the (SQL)

command directly to the SE This command would be of the following generalized

format:

INSERT

INTO a (ai, «2, , aj)

VALUES (vi, V2..... vj) ;

Given this command the SE would simply generate the following SDBMS

function calls which would ensure semantic integrity and (assuming no breach of

integrity) insert the record into its respective database (as described for single-record

manipulative database engines in 4.3.1):

NewRecord(a);

SetField(a, cq, vi);

SetField(a, «2- v2 X

SetField(a, a;, vj);

lnsert(a);

Should, however, a multiple-record insertion be required, the corresponding

SQL command would have to be sent to the SE, where it would be interrogated,

identifying each record within the command. Each record is processed as an external

multiple (see 4 4 1), involving (1) consultation of the acquisition rule-base for each

67

new field-value specified, (2) consultation of the committal rule-base (prior to

insertion), and (3), should no semantic infractions occur, insertion of the single record

into its respective database.

4.6.3 SDBMS Deletes with Multiple-record Manipulative Database

Engines

Given the description of the SDBMS handling of external multiples, multiple­

record deletions become quite trivial To summarize, the DELETE operation is

transformed into a SELECT. FROM operation, identifying those external multiples

which will be deleted iteration continues for each external multiple, consulting the

removal rule-base respective to the database from which the record is to be deleted,

and should no semantic infractions occur the record is then physically removed from

the database

4.6.4 SDBMS Updates with Multiple-record Manipulative Database

Engines

Multiple-record updates are performed much in the same way as multiple­

record inserts Take the following generalized update command format:

UPDATE a

SET aj = vj, aj = vj, ...

WHERE ak = vk, ...

The SE would then obtain a cursor on the following query

68

EXEC SQL DECLARE Xo CURSOR FOR

SELECT *

FROM a

WHERE ak = vk, ...

Iteration would then take place over the records identified by Xg (as described

for external multiples in 4 4 1) and for each record the following SDBMS function

calls would be invoked:

SetField(a, cq, vj);

SetField(a, aj, vj);

Update(a);

Each call to SetField moves the old field-value into the field’s A slot, places the

new field-value into the field’s current field-value slot, and considers any relevant

acquisition rules (as described in 4 3.4) Upon execution of the SDBMS Update

command the SE generates the following SQL command:

EXEC SQL UPDATE a

SET ay — Vy, tty — Vy, aZ — Vg, ...

WHERE CURRENT OF X0;

In this command, ax, ay, az, , refer to all field cells which contain values

both in their current field-value slots and in their A slots; whereas vx, Vy, vz, ..., refer

to the current field-values of field cells ax, ay, az, ..., respectively

5 .0 SDBMS REPRESENTATION OF SEMANTIC INFORMATION

Given a detailed account of how the SDBMS functions the following question

presents itself “What kinds of semantic information can be represented in such a

69

system?” To demonstrate the types of representations possible with the SDBMS let us

examine figure 6 This figure depicts the logical design and subsequent E/R model of

a database system which is to keep track of the daily activities of a generic production

plant Raw materials at the plant site consist of various chemicals which are produced

by manufacturers and stored in a holding area prior to their consumption Products

are then produced by merging the chemicals in a reactor Products are then stored in

various types of storage containers awaiting transportation to customers The logical

design in figure 6 is based on this description, providing a general overview of the

plant’s daily throughput. Below the logical design is found a simple

Entity/Relationship (E/R) model. The E/R model expands upon the logical design,

displaying all relations required to implement the logical design. Bold lines represent a

“many” relationship, whereas non-bold lines represent a “one” relationship For

example, many chemicals may be found in the holding area at any given time, many

products may be produced in a single reactor, etc. While this type of model details

how the information will be stored, it does not go very far in promoting a semantic

awareness of the information itself By this it is meant that although the E/R model

yields a good definition of the structure of the tables required to represent the plant’s

throughput, it does not provide any means for injecting complex semantic

constraints/stipulations about what may be validly stored within those tables.

The succeeding chapters discuss various types of “semantic” information which

pertain to the production plant system of figure 6, and how that information may be

represented within the SDBMS.

70

5.1 Semantic Restriction of Context-sensitive Values

Once a product has been processed in one of the plant’s reactors, it must be

stored in one or more containers while awaiting shipment to the customers It would

be ideal, for example, if the system “knew” that liquid products should only be stored

in liquid-holding containers (eg, one would not store a liquid product in a cardboard

box). The following SDBMS committal rule takes care of this:

{C} storage.product_id(X) a product.id(X) a product type(liquid)

a -,(storage, contained 'drum'))

a -,(storage.container(tank’))

a -,(storage.contained tank truck’))

=> Abort(storage)

This rule ensures that all liquid products must be stored within liquid­

compatible containers such as a drum, tank, or tank truck. This may seem to be a

trivial type of semantic constraint and some database management systems do allow

field value-constraining. However, examining this rule more closely one finds that the

value-constraint posed herein is context-sensitive (i.e, the “container” field value is

only constrained to “drum,” “tank,” or “tank truck,” when the value “product type” is

equal to “liquid”) Some database management systems allow one to constrain field­

values, but these constraints are always applied (i.e., global to all records within that

table) As has been shown here the SDBMS promotes a semantic approach to value­

constraining, while at the same time centralizing the semantic information in the rule­

base Certain values may be semantically constrained based upon the context of other

field values within that record. This notion of context need not be local to a single

record of a single table. For instance, one could semantically define a context based

on field value(s) of one or more records within a single table; one or more records

71

within a different table; one or more records within multiple tables, or even one or

more records within multiple tables governed by different relational database engines.

5.2 Cross-table Indexes (Cross-reference Tables)

When building reports it is often necessary to employ indexes to promote an

efficient means of sortation. Further, should the desired sortation scheme bridge two

or more tables, a standard database index is not possible (as indexes pertain to one or

more fields within a single table) Using SQL’s GROUP BY function, for example,

would allow one to arrive at the desired multi-table sortation. However, if access time

is paramount this approach may be undesirable as large tables may cause execution of

the GROUP BY command to take a considerable amount of time in this scenario one

would ideally like to make use of a multi-table indexing scheme which was maintained

in real-time in this manner an auxiliary table could be implemented, which would

contain the multi-table items required by the sortation in its primary key This cross­

reference table would then have to be maintained in real-time in order to be

synchronous with the modifications/additions of the multi-table items contained

therein

This scheme is particularly useful when two tables are required to represent a

single entity For example, let us say that for any given product there exists

approximately two thousand field-values which are to be associated with that product

Further, let us say that the database system which we have chosen to implement the

representation of this product information allows a maximum of one thousand fields

per table Thus, to accomplish this representation scheme at least two tables are

required, each of which containing an identical primary key structure (eg, a single

72

field "product id"), and splitting the two thousand or so fields between each of the

tables (e.g., table “product 1 ” and table “product2”). Let us then say that a real-time

maintainable cross-reference is required between one field of the “product I” table and

another field of the “product2” table The following semantic rules accomplish this:

{C} producti product_id(X) a product2.product_id(X)

a cross_reference1 product_id(X))

a producti field1(Y) a product2.field2(Z)

=> NewRecord(cross_reference1)

a cross_reference1 product_id(X)

a cross_reference1 fieldl (Y)

a cross_reference1 field2(Z)

a lnsert(cross_reference1)

{C} producti .fieldl [A](X) a producti fieldl (Y)

a product 1 product_id(Z) a cross_reference1 product_id(Z)

=> cross_reference1 fieldl (Y)

a Update(cross_reference 1)

{C} product2.field2[A](X) a product2.field2(Y)

a product2.product_id(Z) a cross_reference1 product_id(Z)

=> cross_reference1 field2(Y)

a Update(cross_reference1)

{R} production 1 product_id(X) a production2 product_id(X)

a cross_reference.product_id(X)

=> Delete(production2) a Delete(cross_reference)

The first rule listed above handles maintenance of the cross-reference table due

to insertion of a new product. The next two rules handle maintenance of the cross­

reference table should one of the two field values which comprise the cross-reference

be changed. The last rule applies to deletion of a product and the subsequent deletion

of the secondary table extension and cross-reference table The interested reader may

note that two additional rules have been left out, yet are nonetheless paramount to the

maintenance of the cross-reference table These two rules would update the cross­

73

reference table should the “product id” field of either the “product 1 " table or the

“product2” table would change The rules themselves are left to the reader

5.3 Maintained Pool of Logged Values

Certain systems may require a memory feature for values entered by the user

(i e, an encyclopedia of previously used values) This is especially important with

today’s graphical user-interfaces (GUIs) where programmers wish to maximize the

“point-and-click” feature for their applications. A system utilizing this type of

environment might display a list of previously entered values for a given field and

allow the user to select one of those values (if applicable) It should also allow the

user to enter new values on-the-fly if the value required did not occur in the past

Let us say that in our production plant system it would be useful to have a pool

of product types (e.g., a given product type might be “GASOUS10-3,” “GASOUS09-

1,” “LIQUID21 T, etc) Further, let us say that product types are often reused when

new product information is acquired and that the list of product types grows at a slow

rate This would be a prime candidate for a maintained pool of values, allowing the

programmer to pull existing values from the pool to form a point-and-click list for the

user The following simple rules maintain this pool quite well:

{C} product.type(X) a -,(product_types.type(X))

=> NewRecord(product_types) a product_types(X)

a lnsert(product_types)

{R} product type(X) a -,(product[2].type(X))

a product_types.type(X)

=> Delete(product_types)

74

{C} producttype[A](X) a -<(product[2].type(X))

a product_types. type(X)

=> Delete(product-types)

The first rule handles the instance where a new product type is incorporated

into the pool The second two rules remove a product type from the pool when (as in

the second rule) a “product” record is removed and there exist no other “product”

records which share its “type” field value, and when (as in the last rule) a product’s

type is changed and there exist no other “product” records which share that products

old “type” field value

5.4 Constrained Field Value Acquisition

Conceivably one might want to constrain acquisition of certain field values

upon preceding acquisition of other field values For instance, given the “schedule”

database which is to keep track of when, where, and how certain raw materials are to

be processed in what reactors to produce which products, it would not be practical to

assign a load time for a batch unless a reactor was first chosen to load the materials

into One might wish to capture this semantic notion in the form of an SDBMS rule

and force the system to reject the acquisition of a schedule’s “load time” field value

before its “reactor” field value has been assigned. Although this example may seem

nonsensical, its analogy can be applied to the extraction of complex information in

which the precedent value of X is absolutely required before value Y can be accepted

and verified by the system The following type of semantic rule would suffice:

{A} schedule. Ioad_time(X) a schedule. reactor(null)

=> RejectValue(schedule load-time)

75

5.5 System Maintained Meta-Tables

Sometimes it is important to track the day-to-day user actions in regard to

possible debugging of applications, report generations, or simply to maintain an audit

trail for later reference. In such a scenario one might wish to make use of a table

whose records relate which items have been acted upon at which times. It would be

nice if one could then explain, semantically, to the system that it is to keep track of

those actions and hence maintain the table without having to introduce or modify

existing program code to effectuate this task For example, let us say that for

whatever reason it is important for our plant managers to keep track of the number of

chemicals deleted from the holding area on a daily basis Consider the following rules

{R} holding.chemical _id(X)

a -,(chemical_removals.chemical_id(X))

=> NewRecord(chemical_removals)

a chemical_removals.chemical_id(X)

a chemical_removals.instances(1)

a lnsert(chemical_removals)

{R} holding.chemical_id(X) a chemical_removals chemical_id(X)

a chemical_removals.instances(Y)

=> chemical_removals. instances(Y+1)

a Update(chemical_removals)

Both rules are sufficient in maintaining a log of how many chemicals were

removed from the “holding" database

5.6 Inferable Field Values

Many systems often require the use of default values or inferred information

Often this semantic knowledge must be hard coded into an application program or

76

expert system which interfaces with the storage medium (database management

system) It would be nice if this semantic knowledge could be directly linked with the

information itself without the cumbersome addition of customized interfaces.

Inferable field values can span simple context-dependent value acquisitions to

maintenance of redundant data The incorporation of this semantic knowledge into the

SDBMS gives it expert system-like capabilities It closely couples artificial intelligence

techniques with the storage medium, centralizing both knowledge and data alike

5.6.1 Default Field Values

Often database systems require default information to minimize the time

required by data entry and to add to the basic inferable information about a new item

By “default” it is meant that those values are initially inferable, but may be overridden

at some point in the future. SDBMS default values are implemented using the format

of the following rules

{C} manufacturer.country(null) => manufacturer country(‘USA’)

{C} container.type(‘steel’) a container thickness(>5.0)

a container.toxic_compatible(null)

=> container toxic_compatible(yes’)

The first rule represents a globally defaulted value (i e , in all contexts of a new

“manufacturer” record one can assume the value of field “country” to be “USA”). The

second rule makes use of context-dependence, defaulting the field “toxic compatible”

to “yes” only if the container’s type is “steel” and its thickness is greater than 5 0

Hence, by utilizing the null parameter one may describe default values for any fields

under SDBMS control.

77

5.6.2 Standard Inferable Field Values

Standard inferable field value rules are those which relate the assignment of

one field value with the acquisition of another field value. Take, for example, the

following rule:

{C} holding.chemical_id(X) a chemicals. id(X)

a chemicals.volatile('yes')

=> holding. special_handling(yes’)

This rule ensures that any volatile chemical which is incorporated into the

holding area should be flagged for “special handling.” The structure of these rules

may become quite in-depth, allowing for a complex array of integrated semantic

knowledge One should note that the above rule will set the “special handling” field

only within a certain context (i e, when the given chemical is volatile). This does not

prohibit the user from directly setting the “special handling” field to “yes” if the

chemical is non-volatile Should this be the only constraint for special handling of

chemicals, one might wish to incorporate the following rule, which would bullet-proof

the inference of the “special handling” field:

{C} holding.chemical_id(X) a chemicals.id(X)

a ->(chemicals.volatile('yes'))

=> holding.special_handling(no')

78

5.6.3 Maintenance of Redundant Data Via Inferable Field Values

Many implementations to date which require immensely large databases have

abandoned much of the database “normal form” conventions in an attempt to

maximize performance. This breach of convention often involves the integration of

redundant data—long since considered a “dirty word” in database design and

development However, redundant data can be extremely useful albeit cumbersome in

large systems which attempt to minimize the total number of access operations. For

instance, if our “chemical” database was absolutely immense and our “manufacturers"

database was equally large, the designer might opt to eliminate the “chemicals"

database which merges the unique keys of both tables to keep track of which

manufacturers supply which chemicals. Instead the designer might wish to tack on the

manufacturer ID to the “chemical” database which describes each chemical used by the

plant Along these lines let us say that when a chemical is accessed it is important to

know AS SOON AS POSSIBLE what the manufacturer’s name is and what country

they are located in. Traditionally, the manufacturer’s name and country should be held

within the “manufacturer” database, and would hence require a secondary access to

move from the “chemical” database to the “manufacturer” database This same

technique would actually involve three look-ups if we made use of a “chemicals

database, as we would (1) access the “chemical" database, then (2) access the

“chemicals” database to determine the manufacturer ID, and finally (3) access the

“manufacturer" database to determine the manufacturer’s name and country By

adding the manufacturer’s ID, name, and country to the “chemical database we

reduce the number of required accesses from two or three down to a single access

However, by doing so we introduce redundant data into the system. Since our

79

production plant has plenty of computer information space available, the vote is to

increase performance at the expense of space, so our database designers must concern

themselves with the maintenance of this redundant data, since failure to maintain

redundant information would no doubt result in inconsistent and erroneous data The

following rules allow maintenance to flow simply from the semantic model

{A} chemical.mfg_id(X) a manufacturer.id(X)

a manufacturer. name(Y) a manufacturer.country(Z)

=> chemical.mfg_name(Y) a chemical.mfg_country(Z)

{A} chemical.mfg_id(X) a ->(manufacturer.id(X))

=> RejectValue(chemical mfg_id)

{C} chemical.mfg_id(null)

=> chemical mfg_name(null) a chemical.mfg_country(null)

Thus, we ensure that redundant data is maintained properly. However,

examining this problem more closely one will see that the above rules handle the

redundancies arising from the “chemical1' database to the “manufacturer” database, but

not vice versa Taking note of the following SDBMS rules one will see why the above

rules are necessary but not sufficient to handle redundancy maintenance

{C} manufacturer. id[A](X) => Abort(manufacturer)

{C} manufacturer.name[A](X) a manufacturer. name(Y)

a manufacturer. id(Z) a chemical. mfg_id(Z)

=> chemical.mfg_name(Y) a Update(chemical)

{C} manufacturer.country[A](X) a manufacturer.country(Y)

a manufacturer.id(Z) a chemical.mfg_id(Z)

=> chemical.mfg_country(Y) a Update(chemical)

80

The first rule ensures that once a manufacturer has been assigned an ID it can

never be reassigned. The second rule will modify all relevant “chemical” records in the

event that the manufacturer’s “name” designation changes. The third rule functions in

a similar capacity, maintaining “country” modifications.

With the integration of these simple SDBMS rules the database management

system may boast an increase in performance brought forth by data redundancy while

at the same time ensuring that no inconsistencies will arise because of such

redundancy

5.6.4 Automatic Manipulative-assignment of Inferred Field Values

Certain applications may require the system to assign identification numbers to

new entries, facilitating a unique identification scheme and tracking over the life time

of those items Often for systems which boast a large amount of new item acquisitions

and which operate under a multi-user environment, user-assignment of unique

identification is not possible Rather it is left to the system to carry-out some form of

automated ID assignment. Given the production plant scenario let us say that new

customers are continually being associated with the plant, and that a unique ID is

required for each customer to facilitate orders, shipping, billing, etc Further, since

many different users may be entering new customers into the system it is not possible

to rely on user-assignment of those unique IDs The following rules handle automatic

assignment of customer IDs as they are acquired:

{0} customer. name(X) a numbers.table('customer')

a numbers field('id') a numbers number(Y)

=> customer. id(Y+1) a numbers.number(Y+1)

a Update(numbers)

81

{C} customer. id[A](X) => Abort(customer)

In this example the production plant database management system makes use

of a “numbers” database which associates the last used ID number for a given

“table”/“field” pair. Thus, as a new customer is entered the “number” field value of

the “numbers” record identified by “customer”/“id” will yield the last used ID number.

Adding one (1) to this number results (simply) in the next useable unique customer ID

The first rule listed above accomplishes this quite well, assigning the new ID to the

new “customer” record and updating the “numbers" database with the newly used

value The second rule ensures that once an “id” has been assigned to a “customer”

record it may never be altered—as we have given the system complete control over the

numbering scheme

5.6.5 Indirect Automatic Manipulative-Assignment of Inferred Field

Values Through Redundant Data

Given redundant data the system may allow users to define a new record in

table A, as a repercussion of inserting a new record into table B Proceeding along the

lines of required redundant data with the chemical/manufacturer relationship consider

the following semantic rule

{C} chemical. mfg_name(X) a ->(manufacturer name(X))

a numbers.table(‘manufacturer’) a numbers.field(‘id’)

a numbers.number(Y)

o chemicals. mfg_id(Y+1)

a NewRecord(manufacturer)

a manufacturer. id(Y+1)

a manufacturer. name(X)

A ...

a lnsert(manufacturer)

82

a numbers.number(Y+1)

a Update(numbers)

In this rule the system allows the user to define new manufacturers on-the-fly

while inputting new chemical information. The rule tests the entry of the

“chemical mfg name” field with its possible existence in the “manufacturer” table, and

if it is not found there, inserts a new “manufacturer” record with automated ID

assignment. One should be careful, however, with such rules since the manufacturer’s

name may not be unique among manufacturers. Indeed, should the user miss-type the

name of an existing manufacturer, the system would (by this rule) insert the miss-entry

as a new manufacturer with a new unique ID—definitely not a desired side effect To

combat this problem one could incorporate a new SDBMS function Confirm(Inique

which would take a <table> <field> pair as one parameter and a value as a second

parameter and display all close references to that value within the <table> The

function would then request confirmation of the value versus the existing close values

Confirmation of the value’s uniqueness (i.e., a TRUE result returning from the

Confirm Unique function) should be sufficient to indicate firing of the above rule

Syntactically the rule might be rewritten as follows (taking into account the

requirement for user-confirmation):

{C} chemical mfg_name(X) a manufacturer. name(X))

a ConfirmUnique(manufacturer.name, X)

a numbers table(manufacturer') a numbers field(id')

a numbers number(Y)

chemicals.mfg_id(Y+1)

a NewRecord(manufacturer)

a manufacturer id(Y+1)

a manufacturer. name(X)

A ... A lnsert(manufacturer)

a numbers.number(Y+1)

a Update(numbers)

83

5.7 Semantic “Key” Violations

Designers of SDBMS database systems need not be content with the simple

key violations of typical relational systems, but may rather describe semantic context­

dependent constraints which constitute rejection of committed records Perhaps

certain combinations of field values for a given record would be impossible or

undesired. By representing this knowledge in the form of semantic rules one gives the

system the capability of rejecting unmeaningful, inconsistent, or impossible

information The following semantic rule disallows the event of producing a toxic

product directly after the production of a non-toxic product in the same reactor:

{0} schedule.type(‘toxic’) a schedule. prior_serial_no(X)

a schedule^].serial_no(X) a schedule[2].type(‘toxic’))

=> Abort(schedule)

By using semantic rules the SDBMS may extend the capabilities of more

primitive database management systems. The following rule allows a database

management system to disallow a null key entry, even though the DBMS would be

incapable of such restrictions

{C} in process product_id(null) => Abort(in_process)

Using the SDBMS Abort command allows the system designer to describe

semantic or meaningful reasons for why certain combinations of values would be

inappropriate It gives the designer the ability to define these constraints in a context­

dependent manner and centralizes this knowledge into a unified rule-base

84

5.8 Built-in Referential Integrity

Many new database management systems boast the ability to control referential

integrity from within the database system itself However, older or more primitive

systems still rely on external means with which to manage referential integrity (see

chapter 3 for a discussion of referential integrity). By defining referential integrity in

the form of semantic rules one accomplishes two feats: (1) all database management

systems under SDBMS control may now support referential integrity, (2) referential

integrity is centralized into a readily accessible knowledge base and hence all database

systems share the same representation scheme (i e , one need not concern oneself with

the differences of how two databases engines would handle referential integrity). The

following example depicts a referential integrity scenario and the semantic rules which

would maintain such integrity:

Referential integrity:

schedule, productjd -> product, id

Insertion into the “schedule” database:

{A} schedule. product_id(X) a ->(product. id(X))

=> RejectValue(schedule.product_id)

Deletion of “schedule" record--OK since deletes do not cascade

upward to “product” database.

Insertion/modification of “product" record:

{C} product. id[A](X) a schedule. product_id(X)

a product. id(Y)

o schedule.product_id(Y) a Update(schedule)

Deletion of “product” record:

85

{R} product. id(X) a schedule, product_id(X)

=> Delete(schedule)

Thus, with these few simple semantic rules we are able to maintain the

referential integrity of schedule, product id —> product, id, providing any database

management system under SDBMS control with the means to manage referential

integrity.

5.9 Semantic Rejection of Values

Much in the same way one can define the semantic constraints under which

records may be rejected, one may also define semantic constraints under which field

values may be rejected Again field value rejection need not be defined globally (e g ,

in the case of "field F, may only contain the values A, B, or C, and no others”), but

rather may be described in a context-dependent manner (eg, “field F] may normally

contain the values A, B, or C, but may contain the field value D if the value of field F2

is E,“ etc) Take for instance the following:

{A} ^(storage contained 'drum')) a ^(storage, contained tank'))

a -,(storage.container(tank truck'))

a storage.contained ‘cardboard box'))

a -,(storage.container(‘plastic bag'))

a -n(storage.contained paper bag))

A ...

=> RejectValue(storage.container)

{A} storage product_id(X) a product. id(X) a product.type(liquid')

a -,(storage contained drum'))

a ^(storage.container(tank'))

a -n(storage.contained tank truck))

=> RejectValue(storage.container)

86

In this example the first rule globally defines the valid values of field

“storage container,” while the second rule constrains those values to a specific subset

should the type of product to be stored be “liquid." This technique may also be used

to define certain aspects of referential integrity (as described above) and to control

redundant data (also mentioned above) as in the following:

{A} chemical.mfg_name(X) a chemical.mfg_id(Y)

a manufacturer. id(Y) a ->(manufacturer. name(X))

=> RejectValue(chemical.mfg_name)

Thus, we ensure that any change to the redundancy of the manufacturer’s name

in the “chemical” table must jive with the manufacturer’s ID to be accepted by the

SDBMS

5.10 Extended Referential Integrity

By using semantic rules the SDBMS is capable of handling extended

referential integrity (as was described in chapter 3). To reiterate, extended referential

integrity is similar to standard referential integrity except that constraints may be

defined which do not insist upon specifically matching foreign keys, but rather may be

dependent on the simple field values of other records, or even the existence of several

other records The following rule insists that an “in_process” record may not contain

the value 'toxic’ in the simple field “type” unless there exists at least one record in the

“product” table whose simple field “type” contains the value toxic ’

{A} in_process.type(‘toxic’) a -,(product.type(‘toxic’))

=> RejectValue(in_process.type)

87

5.11 Context-dependent Forced Value-acquisition

Certain contexts may insist that specific field values be acquired from the user

(or program interface). Take for example the following SDBMS rule:

{C} in_process.product_id(X) a product.id(X)

a product type('toxic') a in_process.handling_auth(null)

=> AcquireValue(in_process handling auth)

This semantic rule ensures that any production of a toxic product must be

accompanied by a handling authorization number before proceeding Hence, with this

type of rule we force the interfacing entity to obtain a handling authorization number

before the record may be committed to the “in_process” database.

5.12 Concluding Remarks On SDBMS Representation of Database

Semantics

One could continue to identify a potentially endless roster of semantic

information representable by the SDBMS rule-based language The types of semantic

information which regulate the manipulative aspects of a given database system may

range anywhere from simple inferable field values to complex integrity maintenance.

Rules need not only reference single types of database management systems, but may

rather reference a host of differing databases, all of which requiring unique database

engine interaction Thus, semantic knowledge may span many different database

implementations, providing a means for universal data exchange and platform

independence

88

We have seen that complex semantic information can be easily represented

with this rule-based language, providing a close coupling of knowledge and data This

close coupling is important for both developer and user in that semantic information

may be readily accessible to both The developer need no longer be concerned with

producing complex customized programs to implement semantic knowledge as has

been required with most of today’s database management systems. By adding a few

simple semantic rules to the system the developer may accomplish complex tasks

which in the past would have required integration of complex interfaces, customized

programs, or even loosely coupled expert systems. Semantic rules which are added to

the system may be done so by a host of developers, centralizing all semantic

knowledge and making semantic changes readily available for all developers. Users

may find the rule-base indispensable not only in the sense that the system itself would

automate much unnecessary data entry and maintenance, but also in the sense that the

rule-base itself may be used to inform them of semantic repercussions due to certain

actions on the data By associating a documentation paragraph with each semantic

rule an interested user would be able to browse through the semantic information

embedded in the rule-base. This could be carried out by using backward-/forward-

chaining methods to determine applicable rules to a <table> <field> pair requested by

the user and displaying appropriate documentation associated with those rules

At best the SDBMS minimizes the often haphazard integration of independent

customized applications required to implement semantic aspects of database

manipulations, eliminating the problem of modification migration from customized

program to customized program One gains a powerful means to semantically and

universally centralize enormous amounts of shared data

89

6 .0 THE SDBMS SEMANTIC INTERFACE (SI)

We finally concern ourselves with the basic requirements for how a user,

developer, or even a program might interact with the SDBMS. The Si’s primary

function is to provide a means for a user, developer, or program (henceforth referred

to as the “operating entity”) to manipulate a universal array of relational data through

a single interface. The SI shuttles the operating entity’s SDBMS command to the SE

where it is interrogated by applicable rule-base(s), processing any semantic

repercussions brought forth by the command. The SI itself may take different forms

depending on the type of operating entity.

6.1 Semantic Interface to the User

The most notable database manipulative aspects concerning human operating

entities (users) would lie in the areas of (1) finding the intended data to be modified,

(2) acquiring a basic understanding of the intended data (if necessary), and finally (3)

modifying said data Given the first point the user must have the capability of

precisely identifying the database which he/she intends to modify (i e., the user must

specify the correct database by matching it with an item in the SDBMS symbol

dictionary). Once the database symbol is acquired from the symbol dictionary the

SDBMS has an immediate understanding of the database’s type (i e., which database

engine is required to manipulate it), its structure, and its location on some (potentially

networked) storage device With this information the SDBMS is able to “open ” the

specified database (i e, acquire the database as a resource), refer to the database’s

semantic rule-base, and “open ” any databases which may be affected by the rules

90

regulating that database’s semantic integrity. However, identifying the correct

database symbol could pose a substantial problem for the user as the SDBMS symbol

dictionary may be quite large To combat this problem the SI could make use of a

simplistic form of natural language processing (NLP) to assist the user in his/her

navigation through the symbol dictionary.

Having the database administrator attach one or more descriptive sentences

(documentation) to a database symbol during its creation would provide at least some

form of natural language assistance during database navigation Applying the same

scheme to a database’s structure (i e., attaching descriptions to field names) would

provide an even more detailed synopsis on a given database’s purpose. The

envisioned result would be a form of information browser which would take an initial

list of keywords from the user, query those keywords against the descriptions of

entries in the SDBMS symbol dictionary, and generate a list of descriptions to

potential tables matching the user’s criteria The user could then browse through this

list, perhaps issuing further keyword constraints, until the desired database is

identified

The second aspect of user interaction concerns itself with the user acquiring a

“basic understanding of the database ’ which he/she intends to manipulate By this it is

meant that the user may be curious about repercussions of certain database

manipulations. For example, if a user asks the question “if I update field on of table a,

what tables (if any) will be affected by the action?” By consulting the given database’s

semantic rule-base, an answer to this question may be automatically compiled by

forward-chaining on the <table> <field> pair in question This ability to navigate

through semantic repercussions constitutes a form of semantic browser in that the user

may be made readily aware of semantic aspects concerning database manipulations

91

The information and semantic browsers would prove especially indispensable

with regard to database systems intended to train individuals in the workings of the

particular domains which are represented by the database systems The same

methodology could be applied to a user asking why a particular inferable field value

came to be as the result of a certain database manipulation. In short, the same

descriptive capabilities, previously boasted only by expert systems, are now possible

with regard to database manipulations through use of the SDBMS.

Once the symbol for the desired database is made aware to the user he/she may

manipulate the data as desired, issuing SDBMS commands to the SI, which then

hands-off to the SE for processing. Certainly the use of today’s graphical user

interfaces (GUIs) along with advanced NLP integration would be most useful in this

type of interface. Whatever the interface the most important duties of the SI is to

assist the user in navigating through the vast array of available information and provide

a single interface capable of accessing multiple database engines and hence universally

centralizing information.

6.2 Semantic Interface to the Designer/Developer/Database

Administrator

SI aspects which apply to the general user would certainly assist a designer/

developer/database administrator Beyond the ability to browse through existing

information (via the symbol dictionary) and the semantic links between them (via the

rule-base) it would be nice to include some computer assisted software engineering

(CASE) tools with respect to the acquisition of rules Some developers may find the

logical language of the SDBMS complex and confusing. CASE tools could be

developed to ease the generation of complex rules Referential integrity rules, for

92

example, could be generated quite easily by acquiring from the developer the two

<table>.<field> pairs to be linked and having the system prompt the developer for

specific actions pertaining to cascade effects. Take the following scenario for

example:

Developer's requested referential integrity:

schedule productid -» product, id

SDBMS automatic generation of rule for insertion into the

"schedule " database:

{A} schedule. product_id(X) a -,(product.id(X))

=> RejectValue(schedule. product_id)

SDBMS automatic generation of rule for insertion/modification of

"product " record:

{C} product. id[A](X) a schedule. product_id(X)

a product. id(Y)

=> schedule. product_id(Y) a Update(schedule)

SDBMS:

"Should deletion of schedule record(s) remove the applicable

product record(s)?"

Developer:

“No.”

SDBMS:

(Deletion of “schedule” record—OK since deletes do not

cascade upward to “product” database.)

SDBMS:

“Should deletion of product record(s) remove the applicable

schedule record(s)?”

93

Developer:

Yes."

SDBMS automatic generation of rule for deletion of “product”

record:

{R} product. id(X) a schedule. product_id(X)

=> Delete(schedule)

These automations can be accomplished by making use of the following

pseudo-code template for referential integrity rule acquisition

REFERENTIAL INTEGRITY a «i -> p.pi):

GENERATE

{A} a.ai(X) A 4 p.pi(X))

=> RejectValue(a.ai)

GENERATE

{C} p.p^AK X) a a.«i(X) a p.p^ Y)

=> a.ai(Y) a Update(a)

IF (“Should deletion of a record(s) remove the applicable /?

recordfs)?" == YES) THEN GENERATE:

{R} a ai(X) a p Pi(X) Delete(p)

IF (“Should deletion of ft record(s) remove the applicable a

record(s)?"-= YES) THEN GENERATE:

{R} p.pi(X) a a.ai(X) Delete(a)

Conceivably, additional templates could be configured for other types of

semantic rules, thus easing the rule acquisition process With this approach developers

can quickly embed complex semantics directly into the databases themselves without

the need to integrate tedious customized programs.

94

Attaching one or more sentences of documentation to each rule (much in the

same way as described for the symbol dictionary) would provide the means for a

semantic-rule browser. With the use of such a browser developers could quickly and

intelligibly navigate through the vast array of semantic rules Given a database symbol

acquired from the developer the SI could produce a visual map which would provide

an overview of tables used by the given database (i e, those tables appearing within

the antecedent of rules applicable to the database) and tables affected by the given

database (i.e., those tables appearing within the consequent of rules applicable to the

database). The visual map could then be extended by applying the same scheme to

each of the tables linked to the originally queried database. Merging this type of

browser with descriptions of each table and its fields can produce a highly detailed

diagram of how the information is intended to interact—even cross-platform interaction

(i.e, interaction between differing database engines). Once again the SDBMS has

achieved centralization of information and a universal interface for both user and

developer alike

6.3 Semantic Interface to Programs

Although the need for customized programs which interact with databases has

been greatly minimized by the SDBMS (as has been previously noted), it may still be

necessary from time to time to link database information to specific applications. This

would most likely be the case for automated information acquisition, automated

reporting, etc. The programmer would no doubt find the browsing capabilities of the

SDBMS indispensable in developing such programs The browsers would be used

during development of the applications to acquire the necessary database symbols

95

required for data manipulation through the SDBMS. Once the database symbols are

known the programmer would embed the respective SDBMS commands directly into

the application. The SDBMS would, in effect, function much in the same way as a

typical database engine, requiring the program to first procure a linkage between itself

and the SDBMS, and then send the desired SDBMS commands directly to the SE for

processing. Thus, use of the SDBMS would provide application designers with a

seamless linkage to many different types of databases, while maintaining a single type

of programming interface for all engines

7 .0 SDBMS PROTOTYPE IMPLEMENTATION

An SDBMS prototype was developed for use under Microsoft™ Windows

3. lx. The system was written in C using the Borland™ C++ 4.0 compiler and utilized

Borland’s Paradox™ Engine as its database platform. The prototype was intended to

demonstrate the basic functionality of the three categories of semantic rules—

(A)quisition, (C)ommittal, and (R)emoval—and provide proof of concept for the

methodologies presented in chapter 4.

The prototype consists of a main window which allows the user to view one of

several Paradox databases by selecting the desired database from a drop-down

combobox located in the upper left comer of the main window Once a database is

selected the main window will display the valid fields of the chosen database and the

field values of the first record in the database. Figure 11 depicts the main window

when displaying a record in the “INPROC” database.

The button-bar located at the top of the main window allows the user to define

a new record to be inserted into the current database; search for a particular record in

the current database (see figure 12a); delete the currently displayed record; queue the

96

next or prior record in the database (as sorted by the database’s primary key); quit the

prototype; ask why the last semantic repercussion(s) occurred; or undo any changes

made to the currently displayed record. To change a particular field’s value one

simply moves the cursor to the appropriate edit box within the main window and

enters the respective information

7.1 Implementation Model of the SDBMS Prototype

The chosen model for implementation is that which was described in section

2.1 above. Figure 7 depicts the model and some of the databases used to represent the

information of a fictitious production plant. Appendix B gives a listing of the semantic

rules which were included in the prototype.

The prototype was designed to demonstrate the basic functionality of SDBMS

semantic rules As was detailed in previous chapters, any semantic rule may be

reduced to a SEARCH TEST-ACT chain, and it is the processing of these chains

which has been directly implemented within the prototype. The rules themselves are

stored within two databases The first database, "SE RULE, references the rule’s

type (acquisition, committal, or removal); the <table> or <table> <field> to which the

rule applies—facilitating forward-chaining; the rule’s id; and a natural language reason

for why the rule would potentially fire The second database, “SE CHAIN,”

references the SEARCH-TEST-ACT components of the rule. For any given rule there

exists x number of records found within this table—one for each component in the

rule’s SEARCH-TEST-ACT chain Each record contains the following: the rule’s id;

the component’s sequence in the chain beginning with 1 ; the chain component’s

command (eg, test, search, set, abort, reject Value, update, insert, etc.); and three sets

97

of fields defining the two operands and the operator of the command (i.e., the

command’s parameters). Take for instance the following rule, its SEARCH-TEST-

ACT chain, and its representation within the two tables utilized by the prototype:

3300 {A} holding.chemical_id(X) a chemical. id(X) a

chemical. name(Y)

=> holding.chemical_name(Y)

RULE A/holding.chemical_id

SEARCH: chemical.id = holding chemical_id

TEST e

ACT: Set(holding.chemical_name = chemical.name)

A chemical ID implies a specific chemical name "

SE_RULE:

RULE TYPE “A”

TABLE: “HOLDING.CHEMICAL ID"

RULE ID “3300”

REASON: “A chemical ID implies a specific chemical name "

SE_CHAIN:

RULE ID: “3300"

SEQUENCE "1 "

COMMAND: “SEARCH

LOP1 : CHEMICAL ID"

OP1:
«_ »

ROP1: HOLDING CHEMICAL ID”

RULE ID “3300"

SEQUENCE “2"

COMMAND TEST

LOP1 :

OP1

ROP1:

“<EXIST>”

“<TRUE>"

98

RULE ID: "3300"

SEQUENCE “3”

COMMAND: "SET"

LOP1: “HOLDING.CHEMICAL NAME "

OP1:
«=»

ROP1 “CHEMICAL.NAME”

7.2 Core Semantic Engine Functions

The SE itself was written in C and uses several generic database functions to

control semantic context and manipulate the Paradox databases The core SE

functions are as follows:

SE_SetField(<tableName>, <LGIndex>, <fieldName>, <fieldValue>);

SE_lnsertRecord(<tableName>, <LGIndex>);

SE_UpdateRecord(<tableName>, <LGIndex>);

SE_DeleteRecord(<tableName>, <LGIndex>);

The SE SetField function is used to access semantic context Setting a field

for a given <tableName> and <LGIndex> will associate that field value with the record

buffer for <tableName>/<LGIndex>. The <LGIndex> parameter is used to keep track

of two or more records of the same type-i e., one may wish to access the same table

in two or more record locations, maintaining record buffers for each A call to the

SE SetField function initiates a search of the “SE RULE” database for any

acquisition-type rules applicable to the <tableName> <fieldName> which is to be set

Should an applicable acquisition rule be found, its SEARCH-TEST-ACT chain is

processed—each applicable record of the “SE CHAIN” database This command is

called from the Windows interface each time a user enters a field value Any

consequents which arise from a rule’s firing are stored within the SE’s reason chain

The current reason chain may be accessed at any time by pressing the “Why9” button

99

located in the button bar on the main window. Figure 12c depicts a portion of a

reason chain which would be presented to the user upon pressing the “WHY9" button

Should a user enter a value which ultimately results in a RejectValue consequent, an

audio alert sounds and the old value (if any) is reset Pressing the “Why?" button at

this time allows the user to determine the reason for that particular value’s rejection.

The SE lnsertRecord command is called whenever a new record is entered

from the interface. To enter a new record the user first presses the “New" button,

enters the subsequent field values relative to the new record (causing the SE to

consider any/all relevant acquisition rules), and commits (inserts) the record into the

database Committal automatically occurs when the user presses any button in the

button-bar or selects a new table to view When the SE InsertRecord command is

called, the SE searches the “SE RULE" database for any relevant committal rules

associated with the <tableName>. Any consequents which arise from fired committal

rules are stored within the reason chain and may be accessed via the “Why?" button as

described above Should a committal rule result in an Abort consequent, a message

box appears (figure 12b), and the record continues to be displayed until the

information is verified by a subsequent committal or the “Undo button is pressed

Once all rules have been considered and no Abort-consequent is inferred, the record is

inserted into the database.

The SE UpdateRecord command is called when a user commits new

information for a pre-existing record The functionality is for the most part identical to

SE InsertRecord. However, when all rules have been considered and no Abort­

consequent arises, the record is updated as opposed to inserted. Similarly the

SE DeleteRecord command processes any removal rules associated with the

<tableName>, and, should no Abort-consequent occur, removes the record from the

database

100

7.3 SEARCH-TEST-ACT Chain Processing

The SE incorporates a recursive strategy when processing rules. Whenever a

SEARCH occurs, an internal multiple loop is initiated—as described in chapter 4 At

this point, should the initial search succeed, the rest of that SEARCH-TEST-ACT

chain is processed with respect to the binding of that searched-out record Upon

completed processing of the chain, control returns recursively to search for the next

valid record meeting the given criteria, and, should a “next” record be found, the

remainder of the rule is again processed with respect to the new binding This internal

multiple loop continues until no more records may be found This strategy is

analogous to the notion of unification and exhaustive search mechanisms of Prolog.

The recursive nature is further employed during forward chaining. Take for

example rule 2500 of Appendix B One of the consequents of this rule initiates an

SE SetField for the “volatile” field of the currently queued “products” record Thus,

by calling SE SetField any acquisition rules applicable to “products volatile” will be

considered and potentially fire (in fact, rule 1700 of Appendix B would fire)—the firing

of those consequents possibly chaining further in the rule-base. Similarly the Update

consequent of rule 2500 would result in forward-chaining on any committal rules

associated with “products.”

7.3.2 De-aliasing Within SEARCH-TEST-ACT Chain Processing

A de-aliasing strategy is used within SEARCH-TEST-ACT processing to yield

specific bindings within the rule For example, the operand “<DELTA> products id”

would be de-aliased to yield the delta (last) value of the “id” field for the currently

101

queued “products” record The operand “products.id” would be de-aliased to yield

the current value of the “id” field of the currently queued “products” record The

“<EXIST>” operand is de-aliased to be either “<TRUE>” or “<FALSE>” depending

on whether the last SEARCH was successful. Once a particular parameter is de­

aliased it may be acted upon by the command. The SE’s de-aliasing of parameters is

somewhat equivalent to the binding/unification which occurs in Prolog when moving

from a variable-designation to a bound value or calculation.

7.4 Signature C™

Although the semantic engine currently links to only Paradox databases (i.e.,

the prototype is homogeneous with respect to a single database engine), the system

was developed using a powerful database engine front-end—Signature C™ This

front-end engine was developed over a two-year period by this author and co­

developed by Robert S Voros Signature C is a database engine CASE (computer-

aided software engineering) tool which acts as a generic interface to the Paradox

engine and eases program coding The SDBMS semantic engine was built as a front­

end to Signature C Take for example the following lines of code (Paradox engine vs

Signature C)

PARADOX ENGINE...

char buffer[40];

TABLEHANDLE tbIHandle;

RECORDHANDLE recHandle;

PXTblOpen(“C:\KEY\DATABASE\se_rule”, &tblHandle, 0, 1);

PXRecBufOpen(tbIHandle, &recHandle);

PXRecBufEmpty(recHandle);

102

PXPutAlpha(recHandle, 1, “A”);

PXPutAlpha(recHandle, 2, “CHEMICAL”);

if (PXSrchKey(tbIHandle, recHandle, 2, SEARCHFIRST) ==

PXSUCCESS)

{
PXRecGet(tbIHandle, recHandle);

PXGetAlpha(recHandle, 3, 40, buffer);

}

SIGNATURE C:

LG_SetField(SE_RULE”, 1, “RULE TYPE”, “A");

LG_SetField(“SE_RULE”, 1, “TABLE”, “CHEMICAL”);

if (LG_Search(“SE_RULE", 1, “KEY”, 2, SEARCHFIRST))

{
LG_GetField(“SE_RULE", 1, “RULE ID”, buffer);

}

As one can easily see signature C considerably reduces the codification

required for database integration. Signature C was designed on the premise that

fundamental database operations are shared by every relational database system (e g ,

setting field values, retrieving field values, searching, inserting, deleting, etc)

Although the SDBMS prototype is admittedly homogeneous with regard to Paradox

databases, it can be stated that it is heterogeneous-ready. By modifying Signature C

routines to access other database engines one may gain a heterogeneous system.

Hence, this heterogeneous system would be obtained by enhancing the database engine

front-end while leaving domain-specific application code untouched (i e, one need

only enhance Signature C not the semantic engine to gain a heterogeneous system)

103

7.5 Execution of the Prototype

Let us examine a particularly complex operation (i.e., complex for the

SDBMS—not the user) to understand how the prototype functions. Let us say the user

enters a new record for the “ INPROC table as depicted in figure 11. Upon attempted

committal of this new record rule 2700 is first considered. In essence this rule

attempts to verify that all chemicals which are listed within the product’s recipe exist

within a record of the “holding” database (recall the “recipe” records define which

chemicals/quantities are required to produce a given product, while the “holding”

database lists which chemicals and quantities thereof are currently available at the

plant). Should there exist a particular chemical which is referenced in the product's

recipe which does not exist within the “holding” database, the committal of the new

record is aborted (i e, if no “holding” record exists for a given chemical, the system

may infer zero quantity of that chemical, and if there exists zero quantity of a chemical

which is required to make a product, then that product cannot be produced). If this

particular rule does not fire, then one can be certain that all required chemicals are

currently inventoried at the plant Note that this rule does not necessarily maintain

that there is sufficient quantity of required chemicals at the plant, but simply that all

required chemicals are present at the plant

Rule 2800 would be considered next. This rule is similar to rule 2700, except

that it concerns itself with the actual quantities of chemicals currently inventoried at

the plant For each chemical listed in the product's recipe there must be sufficient

quantity of that chemical in holding Hence, should x quantity of chemical y be

required to make product z and there exists <x quantity of chemical y currently at the

plant, then product z cannot be produced and the committal of the new in-process

record must be aborted.

104

Rule 2900 would next be considered (provided an Abort has not already

occurred). This rule performs two important tasks first, it updates the quantities of all

chemicals in holding which are required to make the new product based on its recipe;

second, it inserts a new record into the “INPRCHEM” (in-process chemical) table,

which keeps track of which chemicals are in-process making which in-process

products If there exists x z quantity of chemical y in holding and z quantity is

required to produce product p, then the holding quantity of chemical y is modified to

equal x-z. Note that setting the “quantity” field of the “holding” record for chemical y

forces the consideration of any relevant acquisition rules Similarly, the update of the

“holding” record forces the consideration of any relevant committal rules

Subsequently setting the fields of a new “IMPRCHEM” record and inserting that

record results in consideration of any respective acquisition and committal rules

respectively. In particular, should the “INPRCHEM” chemical ID be set to one which

references a volatile chemical, rule 900 ensures the proper “special handling” setting

for that new chemical in-process

Thus one sees the power of the SDBMS as a simple insert of a record into a

particular database can not only test the semantic validity of such an action (as

depicted in the verification of proper chemical quantities based on a product's recipe),

but may also cause a semantic repercussion which may affect one or more records of

one or more differing tables—normally thought of as simple reservoirs of information,

but now semantically linked by the SDBMS.

8 .0 CONCLUSION

Clearly, since the use of database management systems has saturated virtually

every facet of commercial, scientific, and educational domains, it has become a

105

necessity to make this information more accessible to more users By directly

incorporating high-level semantics into the basic functionality of today’s database

systems through the use of the SDBMS one accomplishes many feats. The most

important contribution of this work is perhaps the centralization of vast amounts of

information stored within differing database platforms through a universal semantic

interface. By themselves relational database systems have proven to be not much

more than mere vessels of information, each having limited knowledge (if any) of the

databases around them—and no knowledge of databases governed by different

database management platforms. Integration of the SDBMS allows these “blind”

databases the essential ability to communicate with one another Semantic knowledge

may be coded into SDBMS rule-bases to connect two or more tables of potentially

differing platforms, thus centralizing a vast amount of information For example, an

employee database governed by database engine A may now be semantically linked to

a payroll database governed by a different engine B which otherwise would have not

been possible With the ability to unify many different database systems the global

information exchange is increased considerably Companies need no longer create

redundant databases to capture like-information in differing platforms as the

information may flow seemlessly from system to system through the SDBMS.

Another important contribution of the SDBMS is the notion of linking a

semantic knowledge-base with each database These knowledge-bases embody the

complex semantics associated with the various databases—semantics capable, for

example, of answering such questions as: “What is the underlying meaning of

changing a product type from solid to liquid?” A transition of this type does not

merely effect the superficial modification of a single field-value, but may in fact result

in a causal chain of events required to maintain the semantic integrity of such a

change; a change which could possibly effect multiple records in multiple tables

106

spanning multiple platforms (e g, storage container types for a liquid versus a solid

may require modification as well-a bottle versus a cardboard box; reactor privileges

required to make such a product might be dictated by its type—solid or liquid—and

thus would require a change in scheduling the production of that product; etc)

Hence, the SDBMS rule-base is able to both represent and implement these data-

manipulative semantics.

Throughout this dissertation it has become clear that the semantic aspects—the

meaning—of a database extends far beyond the simplistic notion of a data structure

(i e , keys, field data types, referential integrity, etc). Data semantics span from the

internal dependencies of a single record’s field-values to cross-table/cross-platform

dependencies of other records. It has been shown that the context or state of a record

can effect its causal relationship(s) with other field values, other tables, or even other

platforms. Depending upon its field values simple generic rules may not always apply

to records, but may rather require many rules describing the various states which may

occur within that record which would cause data-manipulative repercussions

elsewhere.

It has been shown in the preceding chapters of this dissertation that the

SDBMS’s rule-based language is capable of overseeing such data-manipulative

semantic aspects as integrity management, data consistency, forced-redundancy

verification, field-value inferences, context-dependencies, data type checking, security,

etc In a sense the SDBMS acts as an automated database administrator, overseeing

much (if not all) of the operations which were previously only possible through human

intervention or the tedious integration of customized programs With the fusion of

rule-base technology with existing database technologies the SDBMS makes primitive

database management systems far more powerful and makes powerful database

management systems more flexible Database systems may be developed and

107

implemented on-the-fly, embedding complex semantic aspects which were previously

only boasted by semantic modeling schemes, but which are now directly implementable

through the SDBMS rule-based language Database systems themselves may be more

readily understood by both developers and end-users alike given the extensive

documentation-embedding techniques available to rule-bases associated with databases

governed by the SDBMS. The browsing capabilities and proposed integration of

simplistic natural language processing techniques boasts a more powerful, less-

confusing interface for both users and developers alike.

Another crucial contribution of this work lies in substantially lessening the

burden posed to programmers; those of whom in the past have had to expend a great

deal of time and effort dedicated to coding complex applications that would be

subsequently linked to a particular RDBMS to implement the otherwise lacking data-

manipulative semantics. Semantics can be directly built-in to databases, minimizing (if

not eliminating) the need for the introduction of ad hoc customized programs. The

fundamental result is that databases may evolve at a greatly accelerated rate since

complex, independent codification (external to the database) is no longer necessary

Finally, database systems seem more “intelligent” as the database itself would “know”

that a single command might infer the execution of several other commands—

transparent to the user—based on the semantic knowledge represented within the

SDBMS rule-bases

8.1 Extending the SDBMS; Future Investigations

Over the past decade considerable attention has been paid to the research and

development of object-oriented database management systems (ODBMSs) These

108

systems have integrated the object-oriented paradigms, which resulted from past

research in artificial intelligence, to provide a modular or encapsulated approach to

data management The interested reader will note a commonality of purpose between

existing ODBMSs and the SDBMS described herein. Both systems attempt to inject

some degree of high-level semantics into database systems. Where the ODBMS uses

an object-oriented approach to represent data semantics, the SDBMS adopts a

knowledge-based approach. With the SDBMS, although semantic rule-bases are

directly linked to a particular database, the rules are not encapsulated within the

database and therefore promote a more shared approach to semantic representations.

By not encapsulating the semantics the SDBMS is able to act in a front-end capacity

This front-end aspect is what allows the SDBMS to interface with a wide variety of

database engines.

Indeed, one could certainly expand the SDBMS to interface not only with

single-record manipulative and multiple-record manipulative RDBMSs, but also with

ODBMSs. Such an integration would not be as difficult as may be initially conceived.

Rule-base translation would require little modification as the root commands Insert,

Update, and Delete would still apply to ODBMSs The notion of inheritance could be

taken care of through linkages of symbols in the semantic symbol dictionary in that the

rules applicable to a parent class would also be applicable to the child class For

example, if J is a child of (inherits from) B, then all semantic rules applicable to B

would also apply to A (i e , any reference to B in those rules would be translated to

reference A). Perhaps the most challenging enhancement would lie in modifying the

working memory of semantic context to facilitate the unlimited array of user-defined

types possible with ODBMSs Where most relational database management systems

have only a handful of data types, ODBMSs allow users to define new data types by

arranging core types in different configurations Thus, the working memory of

109

semantic context would have to be capable of generically handling a wide variety of

data structures.

Another important enhancement might include extending the procedural nature

of the SDBMS rule-language Some very complex semantic issues may require the

integration of ftinctions/procedures not directly available through the SDBMS. It

would be nice if developers could compile their own ftinctions/procedures and

dynamically link them to the SDBMS, calling them from the rule-base itself

Further extensions to the semantic interface would be most useful. The areas

of advanced natural language processing (NLP) and complex graphical user interfaces

(GUIs) would increase the usefulness of such a universal interface. Merging advanced

NLP with the extensive documentation included in the rule-bases would yield

extremely powerful and user-friendly browsers for the full gambit of users and

developers.

Another significant extension would include expanding the semantic rule-base

to handle not only data-manipulative aspects of database management systems, but

also data-utilization aspects (i e , querying) One could easily conceive additional rule

categories beyond acquisition, committal, and removal, to handle such aspects as

query optimization, rejection of meaningless queries, correction of unintentional

queries, etc. The current composition of the SDBMS—its symbol dictionary, semantic

context, universal linkage to a wide variety of database engines, etc —would no doubt

prove quite useful in such an investigation

Whatever the extension, the SDBMS should prove an invaluable asset in

unifying many different forms of database management systems and promote more

“intelligent” and user-friendly systems accessible to users, developers, and programs

alike The paramount result of such a semantic system would increase the access to

shared information, while at the same time allowing more information to be acquired

110

at a much faster rate than was previously possible with more primitive systems. We

may no longer be content with the vast array of differing database platforms and the ad

hoc approaches to integrate them here and there. By directly merging the aspects of

both rule-bases and databases into a single, unified force, we grow ever closer to the

notion that information is knowledge As a result we promote more “intelligent”

systems and thus make our own lives that much easier

111

t

Normalization

of Relations

T ransformation

(Mapping)

to Relations

Entity-Relationship

Modeling

(Semantic Modeling)

Requirements Analysis

Figure 1. Design-implementation-normalization-customization Cycle.

112

RDBMS Engine

OODB Engine

u W
U

5
W
tz>

SEMANTIC

INFERENCE
v ENGINE y

USER/
PROGRAM

Smintic Bin
Aim)

RDBMS Engine

Semantic Base

__

Database C(2)

Database A(m)

Database B(2)

Database B(n)

Database C(p)

Database C(1)

Database A(2)

Database B(I)

Database A(1)

Semantic Base

_____cm____

Semantic Base

Semantic Base

W>

Semantic Base

B(i)

Semantic Base

AU)

Semantic Ba*

AO)

SYMBOL
DICTIONARY

Semantic Base

C(P)

Figure 2. Front-end Universal Medium Diagram.

113

Extensional

Intensional

Figure 3. Extensional and Intensional Paradigms.

114

override

reactor id

SAM1

TRUE

react orsc hedu le[1]

status

id
to-be-cieaned

override

SAM1

SAM1

plant2[1]

override

shut down■eactor id

SAM1

Figure 4. Example of Semantic Context Interaction.

plant2(1] &

115

override

N

SAMI

override

N

SAM1

override

reactorid
N

SAM2SAM1

------------------El
ptant2[1i -

Figure 5. Example of Purging Explicit References Within Semantic

Context

116

Chemicals

Manufacturer

ProductReactor StorageHolding

Plant

jd (^name^) type^)

quantity^) — (holding y Y

/ \ numbers Y —

reactor

< in_process Y Ç storage Y"

Transport

Customer

id 2^ GtroeT)

lame^) y (^city^^

dress^) (^state^)

(^ipco^^)

— customer

1

transport

1
■ container

Figure 6. Sample Logical Design and E/R Diagram.

H7

Prototype Database Model

Chemicals : Holding

Chemical Holding

N. InprChem

: : • Reactor Product

InProc Products

s Recipe /

Figure 7. Logical Design Used By SDBMS Prototype.

118

Traditional Database Integration

Homogeneous Systems

Database
Engine

Application n) semantics(n)

Application 1) semantics(1)

Application 2) semantics^ 2)

Database

Database

Database

Figure 8. Traditional Database Integration—Homogeneous.

119

Traditional Database Integration

Heterogeneous Systems

Application^ 1) semantics(1)

Application^ 2) semantics(2)

Application^ n) semantics(n)

Database
Engine

Database

Engine

Database

Database

Database

Database

Database

Database

Figure 9. Traditional Database Integration—Heterogeneous.

120

Semantic Database Management System

Heterogeneous Systems via SDBMS

Application 1

Application 2)

Application n)

Database

Engine Database

Database

Database

Database

Database

Semantic

Engine

Database
Engine

Figure 10. Database Integration Via SDBMS—Heterogeneous.

121

Æ i -

*

ABOUT SUB MS Prototype

123

4

i

3
&
?

/ «*<*««#//#«*«««## wibffnijftff #««<#<###*

•;»iijiwAifaaiW<iy4wiiii&iAiw4»iW<i»ii«^^

SUHMS Prototype "INPHUl "

Figure 11. SDBMS Prototype—Main Window.

122

«f*-» %" c
% V^,.X'. : V^x

a) -

3 ~?"
%- ^'-%"
iz ; , j

sdbms rnoîûTYPr search

B

Al f H I

BREACH OF SEMANTIC INTEGRITY.

UPDATE failed for current record of table, TNPROC*.

Press ‘Why?" button for reason.

Message

REASON: (Rule 1,800)

The serial number must be specified for a new INPROC record.

Figure 12. (A) SDBMS Prototype—Search Window.

(B) SDBMS Prototype—Committal Breach Message Box.

(C) SDBMS Prototype—Reason Message Box.

123

Bibliography

Brown, A (1991) Object-Oriented Databases - Applications in Software

Engineering. McGraw-Hill Book Company.

Butterworth, P , Otis, A & Stein J. (1991) “The GemStone Object Database
Management System ” Communications of the ACM Vol. 34. No. 10. October,

1991

Date, C J (1990). An Introduction to Database Systems (5th ed) Addison-

Wesley Publishing Company.

Deux, O. et al (1991) “The O2 System ” Communications of the ACM Vol 34

No. 10 October 1991.

Geoffrion, A M (1992). “The SML Language for Structured Modelling: Levels 1

and 2; Levels 3 and 4.” Operations Research. Vol 40 No. 1. January-February

1992

Giarratano, J. C. & Riley, G (1989) Expert Systems - Principles and Programming

PWS-KENT Publishing Company.

Hughes, J G (1991) Object-Oriented Databases. Prentice-Hall International (UK)

Ltd

Lamb, C , Landis, G , Orenstein, J. & Weinreb, D (1991) “The Objectstore
Database System Communications of the ACM Vol 34 No. 10 October

1991

Lippman, S B. (1990) C++ Primer Addison-Wesley Publishing Company.

Lohman, G , Lindsay, B , Pirahesh, H & Bernhard Schiefer K. (1991) “Extensions

to Starburst: Objects, Types, Functions, and Rules.” Communications of the

ACM Vol 34 No. 10 October 1991

Meersman, R A. & Semadas, A. C (editors) (1988) Data and Knowledge (DS-2)

North-Holland

Meyer, B (1988) Object-Oriented Software Construction. Prentice-Hall

International (UK) Ltd

Piatetsky-Shapiro, G & Frawley, W J (editors) (1991) Knowledge Discovery.in

Databases The AAAI Press/The MIT Press

124

Rich, E & Knight, K (1991) Artificial Intelligence (2nd ed) McGraw-Hill, Inc

Ri she, N , Tai, D & Li, Q (1989). “Architecture for a Massively Parallel Database
Machine." Microprocessing and Microprogramming. (Netherlands). Vol 25.

Iss 1-5 January 1989

Savnik, I & Novac, F (1989) “A Construction Database Model ” Microprocessing

and Microprogramming. (Netherlands). Vol. 27. Iss 1-5 August 1989

Sheu, P C (1989) “Describing Semantic Data Bases with Logic ” The Journal of

Systems and Software. Vol 9 Iss 1. January 1989.

Silberschatz, A., Stonebraker, M. & Ullman, J (editors). (1991). “Database

Systems Achievements and Opportunities." Communications of the ACM Vol

34 No 10 October 1991

Stonebraker, M & Kemnitz G (1991) The POSTGRES Next-Generation Database

Management System.” Communications of the ACM Vol 34. No. 10. October

1991.

Varvel, D A. & Shapiro, L (1989) “The Computational Completeness of Extended
Database Query Languages.” IEEE Transactions on Software Engineering. Vol

15. No. 5. May 1989

Zdonik, S B & Maier, D (editors) (1990) Readings in Object-Oriented Database

Systems. Morgan Kaufmann Publishers, Inc

125

Appendix A

Advanced Sample Rule-Reduction Chains

1. {A} pantl product_id(X) a -.(production 1 product_id(X))

=> RejectValue(plantl .productjd)

RULE A/plant1

SEARCH productionl product_id = plantl product_id

TEST —1£

ACT RejectValue(plantl.productjd)

2 {A} plant 1.product_id(X) a production 1 .product_id(X)

a production1.name(Y)

=> plantl name(Y)

RULE A/plant1

SEARCH production L productJd = plantl.productjd

TEST E

ACT Set(plantl name = productionl name)

3. {C} plant2.reactor_id(X) a reactor_schedule id(X)

a reactor_schedule.status(‘to-be-cleaned’)

=> plant2.override(‘shut down’)

RULE C/plant2

SEARCH reactor schedule, id = plant2 reactorjd

TEST E

TEST reactor_schedule. status = ‘to-be-cleaned’

ACT Set(plant2 override = shut down’)

4. {C} reactors.chemical_id(X) A -, (chemicals id(X))

=> Abort(reactors)

RULE C/reactors

SEARCH

TEST

chemicals id = reactors.chemical_id

—iE

ACT Abort(reactors)

126

5. {C} plantl product_id(null) => Abort(plantl)

RULE C/plant1

TEST plantl product_id = <NULL>

ACT: Abort(plantl)

6 {C} plantl product_id(X) a productionl product_id(X) a

production! serial_required(Y') a plant! serial(null)

=> AcquireValue(plantl serial)

RULE C/plant1

SEARCH production 1.product_id = plantl.product_id

TEST

TEST

TEST

ACT

e
productionl serial_required = Y'

plantl.serial = <NULL>

AcquireValue(plantl.serial)

7. {C} plantl chemical_id(X) a chemicals. id(X) a

chemicals.volatile(Y)

=> plantl special_handling(Y')

RULE

SEARCH

C/plant1

chemicals.id = plantl chemicaljd

TEST

TEST

£

chemicals.volatile = Y

ACT Set(plantl special_handling = Y')

8. {R} storage.chemical_id(X) a chemical_removals.chemical_id(X)

a chemical_removals. instances(Y)

=> chemical_removals.instances(Y + 1) a

Update(chemical_removals)

RULE D/storage

SEARCH chemical_removals.chemical_id =

storage.chemicaljd

TEST £

ACT Set(chemical_removals.instances =

chemical_removals. instances +1)

ACT Update(chemical_removals)

127

Appendix B

Advanced Sample Rule-Reduction Chains Used in SI) RMS Prototype

100. {A} chemical. name[A](null) a chemical.id(null) a

numbers.entity('chemical') a numbers.number(X)

=> chemical.id(X+1) a numbers.number(X+1) a

Update(numbers)

RULE: A/chemical.name

TEST:

TEST:

chemical.name[A] = null

chemical, id = null

SEARCH: numbers entity = 'chemical'

TEST: E

ACT:

ACT:

ACT:

Set(chemical.id = numbers, number+1)

Set(numbers number = numbers, number+1)

Update(numbers)

“The ID of a new chemical is acquired automatically by the system."

200. {A} ->(chemical.id[A](null))

=> RejectValue(chemical id)

RULE: A/chemical.id

TEST: chemical. id[A] * null

ACT: RejectValue(chemical, id)

“Once the chemical ID is set, it may never change. "

300 {A} chemical.id(X) a chemical.name(null)

=> RejectValue(chemical.id)

RULE: A/chemical.id

TEST:

ACT:

chemical name = null

RejectValue(chemical id)

"A new chemical ID may not be set until the chemical NAME is set. The

chemical ID is then automatically set by the system. "

128

400 {A} chemical.type(‘explosive’)

=> chemical.volatile(Y)

“Explosive-type chemicals are volatile. "

RULE: A/chemical.type

TEST:

ACT:

chemical.type = ‘explosive’

Set(chemical.volatile = Y’)

450 {A} -^(inproc.product_id[A](null))

=> RejectValue(inproc.productJd)

RULE: A/inproc.product_id

TEST: inproc. product_id[A] null

ACT: RejectValue(inproc product id)

“Once a product ID is assigned to an in-process record it may never

change."

450. {A} -,(inproc.product_id[A](null))

=> RejectValue(inproc, productjd)

RULE: A/inproc.product_id

TEST: inproc. product_id[A] * null

ACT: RejectValue(inproc.productjd)

“Once a product ID is assigned to an in-process record it may never

change. ”

475 {A} inproc. product_name[A](null))

=> RejectValue(inproc product_name)

RULE: A/inproc.product_name

TEST: inproc product_name[A] * null

ACT: RejectValue(inproc product_name)

“Once a product name is assigned to an in-process record it may

never change. "

129

500 {A} inproc. product_id(X) a ->(products. id(X))

RejectValue(inproc.product_id)

RULE: A/inproc product_id

SEARCH: products, id = inproc product_id

TEST: —æ

ACT: RejectValue(inproc.product_id)

“A product ID which is referenced in the INPROC table must exist in

the products table. "

600 {A} inproc, productJd(X) a products. id(X) a products.name(Y)

=> inproc product_name(Y)

RULE: A/inproc.productJd

SEARCH: products, id = inproc, productjd

TEST: 8

ACT: Set(inproc.product name = products, name)

“A product ID implies a specific product name ”

700 {C} inproc. product_id(null)

=> Abort(inproc)

RULE: C/inproc

TEST: inproc, productjd = null

ACT : Abort(inproc)

"The product ID field of an INPROC record must be non-null. "

800 {C} inproc product Jd(X) a products. id(X) a

products.authorization_required(Y') a

inproc.authorization_number(null)

=> Abort(inproc)

RULE: C/inproc

SEARCH: products, id = inproc. productjd

TEST: 8

TEST:

TEST:

ACT:

products authorization_required = Y'

inproc. authorization_number = null

Abort(inproc)

“The defined product requires a valid authorization number. "

130

900 {A} inprchem.chemical_id(X) a chemical.id(X) a

chemical volatile(Y")

=> inprchem.special_handling(Y')

RULE: A/inprchem.chemicalJd

SEARCH: chemical, id = inprchem.chemicaljd

TEST: chemical.volatile = Y

ACT: inprchem.special_handling = Y

“Volatile chemicals require special handling. "

1000 {C} inprchem.chemical_id(null)

=> Abort(inprchem)

RULE: C/inprchem

TEST: inprchem.chemicaljd = null

ACT: Abort(inprchem)

“The chemical ID Held of an INPRCHEM record must be non-null. "

1100. {C} inprchem.productJd(null)

=> Abort(inprchem)

RULE: C/inprchem

TEST: inprchem. productJd = null

ACT : Abort(inprchem)

“The product ID field of an INPRCHEM record must be non-null. "

1200. {C} inprchem.serial_number(null)

=> Abort(inprchem)

RULE: C/inprchem

TEST: inprchem.serial_number = null

ACT: Abort(inprchem)

“The serial number field of an INPRCHEM record must be non-null "

131

1300 {A} products. name(X) a products. name[A](null) a

products id(null) a numbers.entity(product') a

numbers number(Y)

=> products. id(Y+1) a numbers. number(Y+1) a

Update(numbers)

RULE: A/products name

TEST: products name[A] = null

TEST: products, id = null

SEARCH: numbers, entity = 'product'

TEST: £

ACT:

ACT:

ACT:

Set(products, id = numbers, number+1)

Set(numbers.number = numbers, number+1)

Update(numbers)

"Upon entry of a new product name, a new product ID is assigned

automatically by the system."

1400 {A} -.(products. id[A](null))

=> RejectValue(products id)

RULE: A/products.id

TEST: products. id[A] * null

ACT: RejectValue(products, id)

"Once a product ID is assigned it may never change. "

1500. {A} products.id(X) a products.name(null)

=> RejectValue(products id)

RULE: A/products.id

TEST: products, name = null

ACT: RejectValue(products.id)

“The product ID is assigned automatically by the system when the

product name is entered. "

132

1600 {A} products.type(explosive')

=> products.volatile(Y)

RULE:

TEST:

ACT:

A/products.type

products.type = ‘explosive’

Set(products.volatile = "Y")

“Explosive-type products are volatile. "

1700 {A} products. volatile(Y’)

=> products authorization_required(Y’)

RULE: A/products. volatile

TEST: products, volatile =‘Y’

ACT: Set(products authorization_required = Y')

"Volatile products require authorization. "

1800 {C} inproc serial_number(null)

=> Abort(inproc)

RULE: C/inproc

TEST: inproc serial number = null

ACT: Abort(inprchem)

"The serial number must be specified for a new INPROC record. "

1850 {A} -J inprchem. productJd[A](null))

=> RejectValue(inprchem. productjd)

RULE: A/inprchem.product_id

TEST: inprchem.product_id[A] * null

ACT: RejectValue(inprchem.productjd)

"Once a product ID is assigned to an in-process chemical record it may

never change. "

133

1860. {A} -.(inprchem.serial_number[A](null))

=> RejectValue(inprchem. serial_number)

RULE:

TEST:

ACT:

A/inprchem.serial_number

inprchem. serial_number[A] * null

RejectValue(inprchem.serial_number)

"Once a serial number is assigned to an in-process chemical record it

may never change. "

1870 {A} inprchem.chemical_id[A](null))

=> RejectValue(inprchem chemical_id)

RULE: A/i nprchem. chemical_d

TEST: inprchem.chemical_id[A] * null

ACT: RejectValue(inprchem.chemical_id)

“Once a chemical ID is assigned to an in-process chemical record it

may never change. "

1900 {A} inprchem.product_id(X) a ->(products.id(X))

=> RejectValue(inprchem product_id)

RULE:

SEARCH:

TEST:

ACT:

A/inprchem. product_id

products, id = inprchem. productid

—iE

RejectValue(inprchem.product id)

“The product ID must exist in the products database. "

2000 {A} inprchem.chemical_id(X) a ->(chemicals. id(X))

=> RejectValue(inprchem chemical id)

RULE: A/inprchem.chemical_id

SEARCH: chemical id = inprchem.chemical_id

TEST: —iE

ACT: RejectValue(inprchem.chemical_id)

“The chemical ID must exist in the chemical database. "

134

2100 {A} recipe.product_id(X) a -,(products. id(X))

=> RejectValue(recipe product_id)

RULE:

SEARCH:

TEST:

ACT:

A/recipe.product_id

products, id = recipe. product_id

—e

RejectValue(recipe.product_id)

“A product ID which is referenced in the recipe database must exist in

the products database. "

2200 {A} recipe.chemical_id(X) A -,(chemical.id(X))

=> RejectValue(recipe chemical_id)

RULE: A/recipe.chemical_id

SEARCH: chemical, id = recipe.chemical_id

TEST: -is
ACT: RejectValue(recipe.chemicaljd)

“A chemical ID which is referenced in the recipe database must exist in

the chemical database. "

2300 {C} recipe, productJd(null)

=> Abort(recipe)

RULE: C/recipe

TEST: recipe, productjd = null

ACT : Abort(recipe)

“The product ID field of a recipe record must be non-null."

2400 {C} recipe chemical_id(null)

=> Abort(recipe)

RULE: C/recipe

TEST: recipe.chemicaljd = null

ACT : Abort(recipe)

"The chemical ID field of a recipe record must be non-null.”

135

2500. {C} recipe.chemical_id(X) a chemical. id(X) a

chemical.volatile(Y') a recipe.product_id(Y) a

products. id(Y) a -,(products.volatile(Y))

=> products.volatile(Y) a Update(products)

RULE: C/recipe

SEARCH: chemical, id = recipe.chemical_id

TEST: £

TEST: chemical.volatile = Y'

SEARCH: products id = recipe product_id

TEST: £

TEST:

ACT:

ACT:

products volatile * Y

Set(products.volatile = Y’)

Update(products)

“The inclusion of one or more volatile chemicals in a product's recipe

makes that product volatile. "

2600. {C} products.volatile(N) a products. id(X) a recipe.product_id(X) a

recipe chemical_id(Y) a chemical.id(Y) a chemical.volatile(Y)

=> products volatile(Y')

RULE: C/products

TEST: products volatile = N

SEARCH: recipe, productjd = products, id

TEST: £

SEARCH: chemical.id = recipe chemical_id

TEST: £

TEST:

ACT:

chemical.volatile(Y')

Set(products.volatile = Y’)

“The inclusion of one or more volatile chemicals in a product’s recipe

makes that product volatile. "

136

2700. {C} inproc.product_id[A](null) a inproc.product_id(X) a

recipe. product_id(X) a recipe.chemical_id(Y) a

->(holding.chemical_id(Y))

=> Abort(inproc)

RULE: C/inproc

TEST: inproc. productJd[A] = null

SEARCH: recipe, productjd = inproc, product id

TEST: s

SEARCH: holding.chemicaljd = recipe chemical_id

TEST: —1£

ACT: Abort(inproc)

“One or more of the chemicals required by the product’s recipe is not

in stock—product cannot be produced. Therefore, this product may not

be dedicated to the in-process list at this time "

2800 {C} inproc, productJd[A](null) a inproc product_id(X) a

recipe.productJd(X) a recipe.chemical Jd(Y) a

recipe.quantity(Z) a holding chemical_id(Y) a

holding.quantity(<Z)

=> Abort(inproc)

RULE: C/inproc

TEST: inproc. product id[A] = null

SEARCH: recipe, productJd = inproc. productjd

TEST: e

SEARCH: holding, chemicaljd = recipe.chemicaljd

TEST: e

TEST:

ACT:

holding, quantity < recipe quantity

Abort(inproc)

“There is insufficient quantity of one or more of the chemicals required

by the product’s recipe—product cannot be produced. Therefore, the

product can not be dedicated to the in-process list at this time. "

137

2900 {C} inproc.product_id[A](null) a inproc.product_id(X) a

recipe.product_id(X) a recipe.chemical_id(Y) a

recipe quantity(Z) a holding chemical_id(Y) a

holding.quantity(A) a inproc.serial_number(B)

=> holding.quantity(A-Z) a Update(holding) a

NewRecord(inprchem) a inprchem.productjd(X) a

inprchem.serial_number(B) a

inprchem chemical_id(Y) a inprchem.quantity(Z) a

lnsert(inprchem)

RULE: C/inproc

TEST: inproc.product_id[A] = null

SEARCH: recipe. product_id = inproc. product_id

TEST: E

SEARCH: holding.chemicalid = recipe.chemicaljd

TEST: E

ACT:

ACT:

ACT:

ACT:

ACT:

ACT:

Set(holding.quantity = holding.quantity-recipe.quantity)

Update(holding)

NewRecord(inprchem)

Set(inprchem product_id = inproc.product id)

Set(inprchem.serial_number = inproc.serial_number)

Set(inprchem.chemicaljd = recipe.chemicaljd)

ACT:

ACT:

Set(inprchem.quantity = recipe quantity)

lnsert(inprchem)

“The inventory quantities of chemicals required by the product's recipe

have been updated accordingly."

3000. {A} -,(holding.chemical_id[A](null))

=> RejectValue(holding.chemicaljd)

“Once a chemical ID is assigned it may never change. "

RULE: A/holding. chemicaljd

TEST:

ACT:

holding.chemicalJd[A] * null

RejectValue(holding chemical id)

138

3100 {A} holding.chemical_id(X) a ->(chemicals. id(X))

=> RejectValue(holding.chemicaljd)

RULE:

SEARCH:

TEST:

ACT:

A/holding chemicaljd

chemical id = holding.chemical_id

—iE

RejectValue(holding.chemicaljd)

"The chemical ID must exist in the chemical database "

3200. {A} ->(holding.chemical_name[A](null))

=> RejectValue(holding.chemical_name)

RULE: A/holding.chemical_name

TEST:

ACT:

holding chemical_name[A] * null

RejectValue(holding.chemical_name)

“Once a chemical name is assigned to a holding record it may never

change."

3300 {A} holding chemical_id(X) a chemical.id(X) a chemical.name(Y)

=> holding.chemical_name(Y)

RULE: A/holding.chemicaljd

SEARCH: chemical, id = holding.chemicaljd

TEST: e
ACT: Set(holding chemicaljiame = chemical.name)

“A chemical ID implies a specific chemical name. "

3400 {C} holding chemical_id(null)

=> Abort(holding)

RULE: C/holding

TEST: holding.chemicaljd = null

ACT: Abort(holding)

“The chemical ID field of a HOLDING record must be non-null. "

139

3500 {C} holding.quantity(null)

=> Abort(holding)

RULE: C/holding

TEST: holding.quantity = null

ACT: Abort(holding)

"The quantity field of a HOLDING record must be a real number "

3600 {A} ->(inproc.serial_number[A](null))

=> RejectValue(inproc. serial_number)

RULE: A/ inproc. serial_number

TEST:

ACT:

inproc, séria l_number[A] / null

RejectValue(inproc.serial_number)

“Once a serial number is assigned it may never change. ”

VITA

Mr Yurchak was bom in the city of Bethlehem, Pennsylvania, on December

15, 1968, to the parents Joleita W. and W Russell Yurchak. He attended Lehigh

University, graduating with High Honors, and was awarded the Bachelor of Science

degree in Computer Science in June, 1990 He based his studies heavily on computer

science, cognitive science, and psychology. During that time Mr. Yurchak obtained

summer internships in the Knowledge Based Systems division of Air Products and

Chemicals, Inc., of Trexlertown, Pennsylvania He was involved in the research and

development of several expert systems—one of which, a prototype expert system
designed to ascertain and schedule the daily production of a chemical plant, resulted

from private research sponsored by Air Products and conducted at Lehigh University

as Mr. Yurchak’s Senior Year Project.
Mr. Yurchak continued his education at Lehigh University engaging in

graduate studies in artificial intelligence, database management systems, and advanced

software engineering. He was awarded the Master of Science degree in Computer

Science in May, 1992. During this time Mr. Yurchak worked as a research assistant
sponsored by the Ben Franklin Technology Center and other private industries,

researching and developing a Knowledge-Based Decision Support System which

linked conventional relational databases, Computer-Aided Design graphical

information, and various data-analysis packages together via expert systems
technology to provide underground infrastructure assessment, facilities management,

and environmental impact assessment. Work proceeded into the development of a

onecall underground infrastructure assessment system for the pharmaceutical

company, Merck, Sharpe, and Dohme.
Mr Yurchak is currently Senior Vice President of Origination Alternatives,

Inc (OAI), based in Marlton, New Jersey, a financial services company He is head of
development for OAI and involved with engineering specialized proprietary mortgage

origination software spanning the qualification, application, processing, tracking, and

closing of residential loans Mr Yurchak is also currently consultant to a

pharmaceutical returns company, Rx Returns, Inc, of Palm, Pennsylvania He is

engaged in the engineering of customized software to fully automate the company’s
warehouse through use of an expert database system. He is currently pursuing a

Doctor of Philosophy degree in Computer Science at Lehigh University and expects

his degree in October, 1994

141

