LEHIGH | s,

UNIVERSITY Services

The Preserve: Lehigh Library Digital Collections

Knowledge- /rule-based Semantics
For Large Database Systems.

Citation

Yurchak, Kirk Elliott. Knowledge-/Rule-Based/Semantics/For/Large/Database/Systems.
1994, https://preserve.lehigh.edu/lehigh-scholarship/graduate-publication
s-theses-dissertations/theses-dissertations/knowledge/rule.

Find more at https://preserve.lehigh.edu/

This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for
inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/knowledge/rule
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/knowledge/rule
https://preserve.lehigh.edu/
mailto:preserve@lehigh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

University Microfilms international
A Beil & Howell Information Company
300 North Zeeb Road Ann Arpor MI 48106-1346 USA
313 761-4700 800.521-0600

Order Number 9513145

Knowledge- /rule-based semantics for large database systems

Yurchak, Kirk Elliott, Ph.D.

Lehigh University, 1994

Copyright ©1995 by Yurchak, Kirk Elliott. All rights reserved.

U-M-1

300 N, Zeeb Rd.
Ann Arbor, MI 48106

Knowledge-/Rule-based Semantics for Large Database Systems

by

Kirk E. Yurchak

Presented to the Graduate and Research Committee
of Lehigh University
in Candidacy for the Degree of
Doctor of Philosophy
in

Computer Science

Lehigh University

October, 1994

Approved and recommended for acceptance as a dissertation in partial
fulfillment of the requirements for the degree of Doctor of Philosophy:

Roc ot 10, 1779
v Date

Noo) Lt

Dissertation Director

Augu b (0 (44

4 Accepted Date

Committee Members:

/S“A Mﬁw@

Dr. Donald™J. Hillman

o S

Dr. Glenn D. Blank

B /,/ 5 P i
y:/\ L. . " f‘\,k“/
Dr. Laura I. Burke

VoL . s
C'C' CZ{,V/L 1% “—\/ A
— > ——f
Dr. Edwin J; Kay

For my Mother, Joleita, my Father, Russell,
and especially my wife, Fatricia.

Thank you for your love and support throughout this endeavor.

i

Acknowledgments

Foremost, I wish to thank Dr. Donald J. Hillman for his invaluable advisement
in both my academic and commercial pursuits throughout my graduate years. The
various meetings and seminars with him greatly helped to inspire and focus the work
herein, and for that I am truly grateful. I thank Dr. Glenn D. Blank, Dr. Laura I
Burke, and Dr. Edwin J. Kay for their interest, advisement, and support in this effort.
Gratitude is extended to the Ben Franklin Technology Center and Valley Foundation
Consultants Group, Inc., for my initial graduate funding and setting the stage for the
slow, primitive budding of these ideas. I wish to thank Rx Returns, Inc., and
Origination Alternatives, Inc., not only for their financial assistance throughout the
latter part of my graduate career, but also for providing a practical environment in
which much of these concepts were put to the test of cold, hard implementation. I
thank these companies for opening their commercial doors to a young, eager, and
ambitious computer scientist and trusting him to help guide their paramount technical
paths.

Appreciation is also extended to Robert S. Voros and William C. Voros for
introducing me into many of the academic and commercial pursuits with which I have
been engaged throughout my graduate career. Special thanks is noted to Robert
Voros for co-developing the Signature (generic database interface to which the
SDBMS semantic engine prototype was linked.

Finally, I thank my family without whose grateful patience and undying support
would surely have proven to make this endeavor impossible.

v

Table of Contents

ABSTRACT 1
1.0 INTRODUCTION AND BACKGROUND ... 2
2.0 SEMANTIC MODELING AND THE ENTITY/RELATIONSHIP
MODEL ..o 4
2.1 WHAT EXACTLY IS MEANT BY “DATABASE
SEM ANTIC S e 8
3.0 LOGICAL RULE-BASED SEMANTICS ... 11
3.1 Semantic Rule Syntax.......................... 15
3.2 Semantic Rule Categories and Rule-semantics 17
321 Acquisition RUles..... ... 18
3.2.1.1 Buffering New Database Records............................ 21
3.2.2 Committal Rules 22
323 Removal Rules..........................c.cooiiiiiiviiii 27
3.3 Use of the Index Constraint in Rule-semantics 28
3.3.1 Useofthe Alndex 31
4.0 IMPLEMENTATION OVERVIEW OF THE SDBMS SEMANTIC
ENGINE 34
4.1 SEARCH-TEST-ACT Chain Reductions. ... 34
4.2 Semantic CONEXt 40
4.3 Semantic Engine AGENDA ... 45
4.4 SDBMS Symbol Dictionary ... 48
4.5 Semantic Engine Interaction with Single-record Manipulative
Database Engines ... 50
4.5.1 SDBMS Inserts with Single-record Manipulative
Database Engines 50
4.5.2 SDBMS Queuing of Records with Single-record
Manipulative Database Engines....................................... 52
4.5.2.1 SDBMS Enhanced (Queuing of Records with
Single-record Manipulative Database Engines..... 54
4.5.3 SDBMS Deletes with Single-record Manipulative
Database Engines ... 57

4.5.4 SDBMS Updates with Single-record Manipulative

Database ENgINescooooiiiiiiiiiiie e 57
4.6 Semantic Engine Interaction with Multiple-record Manipulative
Database Engines............................cccooeiiii T 58
4.6.1 Internal and External Multiples ... 59
4.6.1.1 SDBMS Implementation Scheme for Internal
Multiples ... 62
4.6.1.2 SDBMS Implementation Scheme for External
Multiples ... 64
4.6.2 SDBMS Inserts with Multiple-record Manipulative
Database Engines ... 66
4.6.3 SDBMS Deletes with Multiple-record Manipulative
Database ENginescoocooioiiiiii e 68
4.6.4 SDBMS Updates with Multiple-record Manipulative
Database Engines ... 68
5.0 SDBMS REPRESENTATION OF SEMANTIC INFORMATION.................. 69
5.1 Semantic Restriction of Context-sensitive Values 71
5.2 Cross-table Indexes (Cross-reference Tables) ... 72
5.3 Maintained Pool of Logged Values.. 74
5.4 Constrained Field Value Acquisition.........................c 75
5.5 System Maintained Meta-Tables.. 76
5.6 Inferable Field Values...................... 76
56.1 Default Field Values.. 77
5.6.2 Standard Inferable Field Values..................................... 78
5.6.3 Maintenance of Redundant Data Via Inferable Field
Values .. 79
5.6.4 Automatic Manipulative-assignment of Inferred Field
Values . 81
5.6.5 Indirect Automatic Manipulative-Assignment of Inferred
Field Values Through Redundant Data 82
5.7 Semantic “Key” Violations ... 84
5.8 Built-in Referential Integnity ... 85
5.9 Semantic Rejectionof Values ... 86
5.10 Extended Referential Integrity ... 87

vi

5.11 Context-dependent Forced Value-acquisition............................... 88
5.12 Concluding Remarks On SDBMS Representation of Database

SEMANLICS ... oo 88
6.0 THE SDBMS SEMANTIC INTERFACE (SI)........................ 90
6.1 Semantic Interface tothe User.........................o 90
6.2 Semantic Interface to the Designer/Developer/Database
ADminiStrator 92
6.3 Semantic Interface to Programs ... 95
7.0 SDBMS PROTOTYPE IMPLEMENTATION ... 96
7.1 Implementation Model of the SDBMS Prototype....................... 97
7.2 Core Semantic Engine Functions ... 99
7.3 SEARCH-TEST-ACT Chain Processing 101
7.3.2 De-aliasing Within SEARCH-TEST-ACT Chain
Processing ... 101
7.4 Signature C™ 102
7.5 Execution of the Prototype. ... 104
8.0 CONCLUSION . e 105
8.1 Extending the SDBMS; Future Investigations................................... 108
VITA 141

Vil

List of Figures

(Figures may be found directly succeeding the straight text of this dissertation
beginning on page 112.)

Figure 1. Design-implementation-normalization-customization Cycle.............. 1.0
Figure 2. Front-end Universal Medium Diagram................................. 1.0
4.0
44
Figure 3. Extensional and Intensional Paradigms................................... 3.1
Figure 4. Example of Semantic Context Interaction.................................. 42

Figure 5. Example of Purging Explicit References Within Semantic

Context ... VORI 42

433
Figure 6. Sample Logical Design and E/R Diagram..................._......... 5.0
Figure 7. Logical Design Used By SDBMS Prototype.............................. 2.1
7.1
Figure 8. Traditional Database Integration--Homogeneous............................. 2.1
Figure 9. Traditional Database Integration--Heterogeneous........................... 2.1
Figure 10. Database Integration Via SDBMS--Heterogeneous. 40
Figure 11. SDBMS Prototype--Main Window................. ... 7.0
Figure 12. SDBMS Prototype--Miscellaneous Windows........................... 7.0
72

viii

Abstract

Since their dawn, database management systems have saturated virtually every
area of academic and commercial domains. They have proven to be as indispensable
as the paper and pencil. Yet while relational database management systems
(RDBMSs) have been made so readily available, most are still quite primitive with
regard to semantic abstraction. 1t may be argued that these RDBMSs are not much
more than mere vessels of information having little knowledge of the semantics--the
underlying, meaningful aspects--which apply to the data they represent. Few systems
allow tables to “know” about other tables around them, and almost no systems allow
knowledge of tables governed by different types of RDBMSs. The notion of data
semantics spans a single record’s relation to itself (cross-field semantics), a record’s
relation to other records in the same table (cross-record semantics), a record’s relation
to records of other tables (cross-table semantics), and even a record’s relation to
records of other tables governed by other RDBMSs (cross-platform semantics). It
suggests the concept of inferring certain data-manipulative actions based on other
committal actions performed on a given database.

This dissertation proposes a knowledge-/rule-based approach to inject high-
level semantics into today’s various RDBMSs. The system has been dubbed the
Semantic Database Management System (SDBMS) and uses rule-bases associated
with each database under its control to represent semantic repercussions relative to
data-manipulations (inserts, updates, deletes, and the like). The databases governed by
the SDBMS may be of potentially differing RDBMSs. A semantic engine (SE) is used
to control inferences within the rule-bases and translate manipulative consequents to
respective RDBMS engines. Users, developers, and programs alike access data
governed by the SDBMS through a semantic interface (SI).

The goal of this work is to provide centralized access of many forms of data
through a universal medium, making primitive database engines more powerful and
powerful database engines more flexible. It provides a means for communication
between RDBMSs and promotes more “intelligent” systems. Most importantly it
lessens the burden previously posed on producing a myriad of ad hoc customized
programs subsequently requiring linkage to RDBMSs to inject the otherwise lacking
semantic knowledge.

1.0 INTRODUCTION AND BACKGROUND

The use of database systems has become as common as the paper and pencil in
today’s business and scientific communities. Database technology has literally worked
its way into every facet of commercial development. Yet while database systems,
especially large ones, have proven themselves extremely useful, their creation remains
somewhat tedious. To combat the problem of designing these large systems
researchers have derived several semantic modeling paradigms. These paradigms
allow the database creator to produce a detailed model of the domain which the
databases will represent.

Often, however, the power of these models does not extend much beyond the
design phase of large database systems. As the systems pass from design to
implementation much of the semantic information is lost due to the implementation
platform’s inability to integrate the information. Figure 1 depicts the standard
evolution of a large database system.

In phase one of this cycle a requirements analysis is conducted which sketches
the domain which the database system is meant to represent. This involves analyzing
the system as a whole and determining what parameters dictate the formation of the
system Phase two traditionally involves some form of modeling--usually a semantic
model--which is generated to define the global scope of such a system. This phase
solidifies work done in the requirements analysis, outlining the entities, objects,
classes, and relationships required to represent the system’s domain. In phase three
the entities, objects, classes, and relationships outlined in phase two are translated
(mapped) to implementation platform representations. This is most often necessary
since the implementation platform is not entirely capable of representing afl

information within the semantic model of phase two and hence a one-to-one mapping

2

of representations is not possible. It is at this time that much of the useful semantic
information is lost. Phase four occurs mainly in relational database system
implementations and involves “cleaning up” the relations derived in phase three. This
encompasses such aspects as the removal of redundant relations, reduction to more
efficient relations, etc. The design/implementation cycle is now complete. Ofien,
however, this resulting implementation is not powerful enough to fully administrate its
use among multitudes of non-expert end users. Therefore, a fifth phase is commonly
required to combat this problem. The fifth phase involves the creation of a customized
user-interface which replaces semantic information lost during the mapping of phase
three. This is an arduous process requiring low-level codification of the lost semantic
information; information which was implicitly included in semantic design, but must
now be explicitly integrated into the final implementation. Hence, integration of
semantic database information is performed twice with today’s technology--once
during design and once again in implementation.

The thrust of this dissertation is, therefore, to develop a formal system for
integrating high-level semantics into the design and implementation of large database
systems. Such a system shall be deemed the semantic engine (SE) and shall be
accessed by users and programs altke via a semantic interface (SI). Semantic
information associated with databases shall be incorporated immediately during the
design and implementation phases and continue to evolve throughout the system’s life
span. Figure 2 depicts how such a semantic system would be integrated as a front end
to today’s database management systems. Users, designers, database admimstrators,
and programs communicate with the SE through the SI. The SE accepts special
semantic commands from the SI which are translated into the appropriate database
engine commands which, in turn, physically access the data. In this manner

universality of representation and access is achieved as the SE may be generically

3

programmed with knowledge of how to communicate with multiple database engines.
The balance of this dissertation details the power required by such a semantic system

and how it can be integrated into today’s database technologies.

2.0 SEMANTIC MODELING AND THE ENTITY/RELATIONSHIP MODEL

“The motivation for {[semantic modeling] research... [is] as follows: Database
systems generally--relational or otherwise--really have only a very limited
understanding of what the data in the database means; they typically
“understand” certain simple atomic data values, and perhaps certain many-to-
one relationships among those values, but very little else...”

-- Date, 1990

It may be said that existing relational database management systems
(RDBMSs) are merely an amalgamation of data types, data values, fields, and records,
and that these systems do not generally “understand” what meaningful constraints exist
between them, nor do they “understand” how they function together to form a
cohesive representation of a particular domain. It may be unfair, however, to state
that existing DBMSs are totally lacking in semantic aspects. The use of domains,
primary keys, and foreign keys indeed brush the edge of “semantics,” yet they
represent a mere fraction of the true semantics which may apply to the DBMS as a
whole.

There has been a continuing effort to integrate more semantics into database
paradigms. To date, however, semantic integration has mainly profited the design
phase of database systems, leaving much of the implementation aspects to customized
program interfaces. Researchers have proposed several different “semantic modeling”

techniques which may be adhered to during the design phase of a given database

system. These modeling approaches inject a certain degree of data semantics by
splitting representations into enfities, types, properties, identities, and relationships.
Using these generic semantic concepts one may maintain that the world is made up of
entities which represent conceptual and/or physical objects (e.g., Daniel, container-25,
equation-45, etc.). Each entity has associated with it one or more properties
describing the characteristics, attributes, etc., commonly associated with the given
object (e.g., hair color, volume, number of parameters, etc.). Types are used to define
the various classifications of entities (e.g, a person, a storage container, a
mathematical equation, etc.). A type defines which properties an entity has when
belonging to that type. Every entity has an identity which uniquely differentiates that
entity from other entities of the same type (e.g., Dan’s full name: “Daniel John Smith,”
etc.). The semantic notion of identity is similar to the relational concept of the primary
key--as an identity uniquely distinguishes an entity, a key uniquely identifies a record.
Finally, relationships describe the interactions between entities--how one entity relates
to another.

In 1976, Chen formalized these generic terms into the Entity/Relationship
(E/R) Model. In this model entities are split into two categories; weak entities and
regular entities. Weak entities are those whose existence is dependent on the existence
of another entity. Regular entities are those which are not weak (i.e., those entities
which exist independent of any other entities). Properties were divided into several
categories: simple, composite (formed by the concatenation of two or more
properties), key (a uniquely-identifying property), single-/multi-valued, missing
(properties representing “unknown” or “not applicable” aspects), and base or derived
(those which derive their values from some calculation of other property values). Two
categories represent possible relationships: type relationships (those which form

relationships between types/classifications--e.g., a human “is a” mammal) and token

5

relationships (those relationships which simply link one entity to another entity--e.g.,
Dan “loves” Sue). Types, in turn, are made up of two classifications: subtypes and
supertypes. Subtypes are said to imherit the properties from their supertypes.
Generalizations are formed by working one’s way from subtype to supertype, while
specializations are derived from supertype to subtype.

Using these terms one may depict E/R Diagrams which map the vanous
features of the E/R Model onto a particular domain representation. Using this
diagram, one may then translate the design to the implementation platform by using

some of the following rules of thumb:

A. Transformation of entity types
1. each entity type is a base-relationship
2. the key of this base-relationship is the key property of the entity
type
3. all other properties are mapped to simple fields in the base
relationship

B. Transformation of binary relationships
1. mandatory membership classes
a. if an entity type E; is a mandatory member of a many-to-one
relationship with entity E,, then the relation scheme for E;
contains the prime attributes of E,
b. akey posted to another relation is called a foreign key
2. optional membership classes
a. if entity type E, is an optional member of a many-to-one
relationship with entity type E,, then the relationship is
usually represented by a separate relation scheme
containing the prime attributes of E, and E,, along with any
attributes of the relation
3. many-to-many binary relationships
a. always represented by a separate relation consisting of
prime attributes of each of the participating entities, along
with any attributes of the relation itself

C. Transformation of n-ary relationships

1. represented by a separate relation consisting of prime attributes
of each of the n participating entities, along with any attributes
of the relation

D. Transformation of subtypes
1. represented by a separate relation containing the prime
attributes of the supertype, along with any additional attributes
of the relation

It is during this mapping stage from the design to the implementation where
much of the useful semantic aspects are lost. The diagram is in essence broken into its
constituent parts, losing the global cohesion of the system as a whole (i.e., one is left
with many independent tables--each of which having a limited “understanding™ of the
tables around them). Thus, in the mapping to an implementation database
management system one loses semantic abstraction. Beyond this most notable
problem it can be stated that while the E/R Model promotes a solid ground for the
semantics behind the structure of the database system--superficial semantics--it does
not, however, prove to be as useful in describing what the data actually represents.
The modeling scheme seems to be deficient in several areas. Among these
deficiencies: a lack of context-sensitive restriction of values (e.g., a T, F;--the value of
field F, of table T,--may only contain values o, B, or y if T,.F; is equal to 9),
constrained field-value acquisitions, inferable field values (e g, the value of T;.F, may
be inferable from the combined values of T, F, and T, F.), semantic “key” violations
(e.g., the key for table T, may not be valid given other field values of the same record
or its relationship with records from other tables--i.e., the key may be syntactically
valid, but semantically invalid), etc. A more detailed discussion of these semantic
requirements missing from existing modeling schemes is left to the subsequent

chapters of this dissertation.

Given the drawbacks of existing semantic modeling approaches--profitability
only in the design phase, degradation of semantics in implementation, requirement for
reintegration of semantics through customized program front-ends, the inherent lack
of complex semantic representations--it is clear that a viable solution to the integration
of complex data semantics must inject new, more powerful semantic aspects, while at
the same time allowing a seamless translation to existing database platforms without
the loss of semantic information.

Other semantic modeling approaches have been presented over the years, but
most bear much resemblance to the E/R Model and shall, therefore, be dispensed with.
The advent of object-oriented database management systems (ODBMSs) has re-
injected much of the semantic aspects which were traditionally lost by their relational
counterparts. However, the codification of object-oriented databases remains
somewhat tedious, often relying on heavily trained “object engineers” to write the
complex methods required to embed semantic aspects. Further, although the use of
ODBMSs is growing in industry, it still has yet to prove itself as a domineering force
in data management. RDBMSs currently dominate the global information pool and it
is this dissertation’s focus to present a means for complex semantic support for these
systems, while at the same time centralizing many different types of RDBMSs with a

universal data interface.

2.1 WHAT EXACTLY IS MEANT BY “DATABASE SEMANTICS?”

To more clearly understand the terminology of “database semantics” let us
examine the model posed in figure 7. This design represents a very simplistic

production plant environment were raw materials are used to create products.

Chemicals (the raw materials) are brought into a plant site and placed in a holding area
until they are processed in a reactor to produce a particular product. In this example
the state of the production plant may be represented by a handful of relational
databases. A chemical database is used to store the dictionary of chemicals utilized by
the plant. A holding database is used to keep track of which of those chemicals are
currently available at the plant site and what their quantities are. A products database
is required to hold the dictionary of products which may be produced by the plant’s
reactors. Since the production of a given product may require particular quantities of
more than one chemical, a recipe database is integrated to describe which chemicals
and quantities thereof are required to produce a given product. Finally, an in-process
database is required to keep track of which products will be in-process at what times
and in which reactors (an in-process chemical database similarly keeps track of which
chemicals will be “in-process” to produce a given “in-process” product).

Having created these databases, we are confronted with the reality that the
databases by themselves are not much more than mere vessels of information. But
what of the underlying semantic issues of this representation scheme? Indeed, what
does one mean by “semantics” in this context? Consider the following “semantic”

assertions about the fictitious production plant:

a. “The ID of a new chemical record should be automatically assigned by the
system--never by the user.”

b. “Once a chemical ID is assigned it may never change.”

c. “The ID field of a new chemical record should not be assigned until the
chemical name is known.”

d. “Explosive-type chemicals are volatile by nature.”

e. “A product which is assigned to the in-process table must exist in the
products database.”

f “An in-process record which references a product that requires an
authorization number must itself identify a valid authorization number.”

g. “Product IDs referenced in the in-process table must exist in the products
table.”

h. “The value of the special handling field of a chemical record must be either
‘Y, Or LN’Aﬁﬂ

i. “Volatile chemicals require special handling.”
j. “Volatile products require authorization numbers.”

k. “The inclusion of one or more volatile chemicals in a product’s recipe
makes that product volatile.”

I. “Should insufficient quantity of a given chemical be present in the holding
area, any product which requires that chemical based on its recipe may not
be produced (i.e., may not be assigned to the in-process list).”

[”

Admittedly a few of the assertions above may be implicitly handled by the
database management system chosen for implementation. However, most of the above
items cannot be implicitly handled by existing RDBMSs. Further, one should plainly
see that most of these semantic assertions do not lend themselves to the E/R Model as
described above. These types of semantics proceed far beyond the notion of entities,
properties, and types. As a result semantic issues such as these must at present be
handled by customized front-end applications which control the semantics of the data
before they reach their respective database destinations. Figure 8 depicts this scheme
of front-end semantic integration. Procedura! semantics must be codified in a
particular programming language for every application. This code must then be cloned
and included into each application which need make use of it. Changing one set of

semantics may require changes to program code in multiple applications. As one can

10

readily see semantic integration in this manner is highly decentralized, unconnected,
and unorganized. Indeed, a full overview of semantics encompassing the entire system
may not be possible due to the hodgepodge sprinkling of semantics between multiple
applications. One must take all program code from all applications into account when
referencing system-wide semantics. For every new application developed to be
integrated with the databases, program code representing semantic aspects must first
be identified in other applications and reproduced in the new application--a nightmare
for both designer and developer alike. These problems are further compounded when
a heterogeneous system is developed as depicted in figure 9. Multiple database
engines and multiple programming environments can cause severe organizational
problems. Imagine not only reproducing procedural code intended to control
semantics, but having to then translate it from one programming language to another.
A simple, problematic pattern results: the larger such a system becomes, the more

confusing and unwieldy.

3.0 LOGICAL RULE-BASED SEMANTICS

Research into severa! semantic modeling methodologies has led this researcher
to settle on a logic/rule-based representation. By incorporating rule-based technology
into its representation scheme database systems can be closely coupled with the power
of artificial intelligence/expert systems. Instead of the traditional database
management system with an expert system front-end, this research strives to merge the
two into one autonomous unit, eliminating the often tedious task of codifying complex
linkages between the two. The expert system portion of this marriage would inject

semantic control into an otherwise lacking database management system.

11

This representation must not be confused with other existing forms of database
representation schemes such as relationat algebra, relational calculus, or SQL. Each of
these existing representations boast pros (and cons) of their own, yet all seem to share
a mutual absence of higher level abstraction as was mentioned in the preceding
chapter--that of semantic abstraction.

Research into the merging of rule-base and database technologies is currently
dominated by the object-oriented community. Systems such as POSTGRES
[Stonebraker, et al, 1991] and STARBURST [Lohman, et al, 1991] have attempted to
integrate rule-bases with various object-oriented data management techniques to
promote the concept of “active” databases--databases which allow the invocation of
rules to perform automated processing in response to specific changes made to the
data, regardiess of what entity made those changes. Take for example the following

POSTGRES and STARBURST rule examples:

POSTGRES:

ON event (TO) object WHERE
POSTQUEL-qualification
THEN DO [instead]
POSTQUEL-command(s)

STARBURST:

CREATE RULE non_empty_dept ON Departments
WHEN DELETED
IF ‘SELECT *
FROM Employees
WHERE deptno IN
(SELECT dno
FROM dd AS (DELETED()))',
THEN ‘SELECT d.dno, ‘non-empty’
FROM d as (DELETED())
WHERE d.dno IN
(SELECT deptno

12

FROM Employees)’,
‘ROLLBACK WORK');

Rule systems such as these use trigger mechanisms to control rule processing.
The POSTGRES syntax listed above allows users to define rules which trigger on
specific events (e.g., insert, update, retrieve, etc.). The majority of these systems,
however, embed the inference engines required for rule processing deep within the
database management system itself. As a result, only databases explicitly dedicated to
those systems may reap the benefits of rule-based semantics (i.e., semantic integration
is homogeneous with respect to POSTGRES-compatible implementations). Little
research has thus far been dedicated to relational systems--those systems which
continue to dominate academic and commercial domains. STARBURST does share a
fundamental link with the research proposed herein as it attempts to extend the
existing relational model to include objects and rules. However, STARBURST’s rules
are beneficial only to SQL-compatible RDBMSs (i.e., STARBURST may be
considered heterogeneous only among SQL-based implementations). Single record-
manipulative database systems which are not SQL-compatible may not benefit from
this set-based, query extension approach. Further, the declaration of rules in this
manner may be very difficult for those who understand the “semantics™ of the rules
they wish to employ, but who may not be fluent in the pragmatics of complex, nested
SQL representations. The rule-based approach proposed herein dwells on a logic-
based representation scheme which is not dependent on SQL compatibilities and is
intended to provide a heterogeneous linkage to any relational system--both single-
record manipulative and multi-record manipulative systems alike.

Indeed, there does exist a commonality of purpose between the research
presented in this dissertation and existing object-oriented rule-based semantics. The

focus of this research, however, is to provide a means for the integration of high-level

13

rule-based semantics with existing relational database management systems, and that
this approach should act in a _front-end capacity to allow a universal bridge to many
different types of RDBMSs. Instead of modifying each individual database engine to
embed rule-based control deep within, this research proposes to create a single
semantic engine which then interacts universally with existing database engines to
control rule-based semantics without explicit modifications to the database engines
themselves (figure 10). By controlling rule processing at the front-end one is able to
unify many types of database systems, which would not have been possible through
currently proposed embedded approaches.

It is important to note here that the bulk of this research centers itself around
the semantics of data definition and manipulation. Semantic issues described herein
concern themselves primarily with the semantic constraints of a database’s existence--
row/column constraints--and how its existence relates to other databases--table/table
constraints. This dissertation is therefore concerned with the creation (data definition)
of large database systems and their functionality--inserts, deletes, updates, and the like
(data manipulation). The investigation into semantic repercussions of queries (data
utilization) is somewhat beyond the scope of this paper. Nevertheless, semantic
details of data definition and manipulation would definitely play a role in such an
investigation.

Definition and manipulation aspects of database semantics play a crucial role in
large database systems--especially systems which are designed to function in a
processing environment. These types of systems do not concern themselves so much
with large amounts of querying responsibilities (although they certainly can), but are
more concerned with keeping track of the stafte of some process (e.g., a warehouse, a
plant-site, a tracking system, etc.). Often these types of large databases are tied-in

with some form of automation processing system with little (sometimes even no)

14

human intervention. Thus, it becomes important for such systems to understand the
semantics of the structures and global interactions of the databases they employ.

The succeeding chapters detail a logical rule-based approach for representing
and implementing higher-level database semantics. Later it will be shown how this
approach may be integrated into both single-record manipulative RDBMSs and multi-
record manipulative RDBMSs alike, providing a universa/ medium for centralized

access of many different types of database systems.

3.1 Semantic Rule Syntax

Before proceeding with a formal declaration of the logical rule-based semantics
an overview of the rule’s syntactical conventions is necessary. Rules within the
Semantic Database Management System (SDBMS) abide by the syntactical
restrictions of the following extended Backus-Naur form (BNF) grammar (note: BNF
operators are distinguished in bold-face, and should not be confused with valid

SDBMS operators which are not in bold-face):

<rule> := {<category>} <lhs> = <rhs>

<lhs> = <test-comp> [<operator> <lhs>] | - (<lhs>)

<rhs> := <rhs> A <rhs> | <set-comp> | <function>

<operator> = A | v

<test-comp> ::= <table> [[<index>]] .<field> [[A]] { <t-binding>)

<set-comp> ::= <table> [[<index>]] .<field>(<s-binding>)

<t-binding> ::= <t-oper> <t-binding> | <variable> | <constant>

<s-binding> ::= <s-binding> <s-oper> <s-binding> | <variable> |
<constant>

<t-oper> = > | < | ..

<s-oper> =+|-| <]«

<category> = A| C|R

<function> ::= <any valid SDBMS function/operation>

<index> := <a number greater than 1 (i.e., 2, 3, 4, ...)>

15

<variable> = <an upper case letter (i.e., A, B, C, .., Z)>
<constant> ::= <a constant expression (e.g., 12, 32.4, ‘Dark’, etc.)>
<table> = <any database name within the semantic domain>
<field> := <any valid field name for the given table>

Some valid syntactic examples of SDBMS rules are as follows:

1. {C} plant2 reactor_id(X) reactor_schedule.id(X)
~ reactor_schedule.status(‘to-be-cieaned’)
=> plant2.override(‘'shut down'’)

2. {C} reactors.chemical_id(X) A~ - (chemicals.id(X))
—> Abort(reactors)

3. {C} chemicals.chemical_id[A](X)
A reactors.chemical_id(X) » chemicals.chemical_id(Y)
— reactors.chemical_id(Y) ~ Update(reactors)

We can see in the first example--a committal rule, as distinguished with the
“{C}" prefix--that “plant2” and “reactor_schedule” denote table names, while
“reactor_id,” “id,” “status,” and “override” reference field names. The binding “X”
indicates a variable while the binding ‘shut down’ is a constant. In the second rule
example--also a committal rule--we see the use of the negation operator (—, or NOT)
and the use of an SDBMS function, namely “Abort.” The convention has been
adopted to note <table>s and <field>s in all lower case (e.g.. plantl reactor_id).
String constants are always shown within single quotes (e.g., ‘Yes’, ‘No’, 'Y’, ‘Fred’,
etc.), while numeric constants simply appear as numbers (e.g., 1, 15, 32.43, etc.).
Variables are distinguished as a single upper case letter (e.g., X, Y, etc) Finally,
SDBMS functions are customarily denoted with the first letter of the function name
capitalized (e g., Abort, Delete, Update, etc.).

Having detailed the syntactic constraints of such a language it is important to

distinguish between two types of semantics which will be discussed in the succeeding

16

chapters of this dissertation. The first type shall be deemed rule-semantics and is
intended to indicate the semantics of the SDBMS’s rule-based language itself (i.e., the
meaning behind the rule-language represented by the BNF grammar above as
understood by the semantic engine). The second type shall be deemed data-semantics
and is meant to reference the semantic knowledge represented by the rules (i.e., the
actual semantics which pertain to the databases as represented by the SDBMS rules).
Data-semantics can be further broken down into two subtypes: extensional semantics
and intensional semantics. Extensional semantics are defined herein to refer to the
semantics of the tuples of the base relations or inter-table relations. With extensional
semantics one may define the relations between tables on a global scale. Intensional
semantics are defined herein to refer to the meaning within a given table or infra-table
relations. Where extensional semantics concerns itself with table to table contentions,
intensional semantics concerns itself with row-to-row and column-to-column
constraints and other repercussions within a single table on a more local scale. Figure
3 depicts the differences between the extensional and intensional paradigms.

The next section illustrates the rule-semantics of the SDBMS logical language.
The various types of semantic database information which are capable of being stored
within SDBMS rules--extensional and intensional data-semantics--are detailed in

succeeding chapter(s).

3.2 Semantic Rule Categories and Rule-semantics

Within this proposed semantic representation each database system has
associated with it a semantic knowledge base, a set of logical rules, which govern its

integrity constraints, consistency, redundancy verification/elimination, inferable field

17

values, type checking, security, etc. Rules described within each semantic knowledge
base are divided into four categories: acquisition rules, committal rules, and removal
rules. Acquisition rules are referenced during buffering of a new database record prior
to insertion of the record into the database. This represents a slightly new approach to
database technology as the SDBMS has access to new data before it is actually
committed to the database itself. Committal rules govern semantic functionality after a
new record has been sufficiently buffered just prior to insertion and committal to the
database. Committal rules also govern semantic functionality just prior to
modification of an existing record (i.e., record updates). Removal rules are referenced

just prior to a queued record’s deletion from the database.

3.2.1 Acquisition Rules

The main premise for the acquisition rule category was to increase user-
interface performance. By adding a built-in buffering capacity for a new record’s field
values the SDBMS becomes a powerful tool since real-time semantics may be
enforced as each field value is independently acquired--before the actual insertion of
the entire record into its respective database. Field values for a new record are
acquired through the SDBMS Semantic Interface (SI). As each new field value is
acquired by the Sl it is immediately conveyed to the SDBMS semantic engine (SE)
where any semantic rules pertaining to that new field value are considered.
Results/consequences of those rules are immediately returned to the semantic
interface. Thus, semantic constraints may be enforced on data before it is actually
committed to the storage medium.

Take for example the following acquisition rule:

18

{A} plant1_product_id(X) A —(productioni.product_id(X))
= RejectValue(plant1.product_id)

Here, the “{A}” prefix denotes an acquisition rule. The atoms “plant1” and
“production]” refer to tables within the semantic domain. The atom “product id”
denotes a field belonging to those tables. “X represents a variable which is to be
bound with a field value. Semantically, this rule maintains that any newly acquired
product identification number for a record which is to be inserted into the “planti”
database must currently exist in the “productionl” database. This particular example

pertains directly to the referential integrity rule:

“The database must not contain any unmatched foreign key values.”

-- Date, 1990

In this example we may think of “plantl product id” as a foreign key to the
“production]” table. Since some forms of database implementation platforms allow
for referential integrity it may seem unclear why such a semantic system should
redundantly accomplish the same task. The SDBMS’s ability to handle referential
integrity provides several benefits over simple foreign key verification. First, should a
database implementation platform be incapable of handling referential integrity the
SDBMS may enforce this integrity itself. Hence, all database implementation
platforms governed by the SDBMS are now capable of handling referential integnity.
Second, should the database platform be capable of enforcing referential integrity the
SDBMS offers an alternate approach (i.e., instead of traditionally declaring foreign
keys one may simply represent referential integrity constraints by way of logical rules).

Third, since acquisition rules are processed immediately as field values are acquired

the user/program can be made aware of a referential integrity breach immediately
before other field values are declared and the record is inserted (or updated) in the
table. Fourth, by defining referential integrity constraints with logical rules we are not
limited with foreign key constraints. The referential integrity rule insists that foreign
keys must match, very specifically, primary keys, not alternate keys of other tables.
By using logical rules the SDBMS is capable of handling extended referential
integrity. This is similar to referential integrity (as was seen in the above example),
however, we may define referential integrity constraints which do nof insist upon

specifically matching foreign keys. Take for example the following rule:

{A} plant1.type(‘toxic’ } A —(production1.type(‘toxic'))
= RejectValue(plant1.type)

In this example, assuming that the “product_id” field is the primary key in both
the “plant1” and “productionl” tables, and the “type” field is a simple field in those
tables, the SDBMS is able to extend the notion of referential integrity without the use
of foreign keys. Here a “plant1” record may not contain the value ‘toxic’ in the simple
field “type” unless there exists ar least one record in the “productionl” table whose
simple field “type” contains the value ‘toxic.’

Acquisition rules always fire in a forward-chaining fashion matching the first
component of the antecedent of the rule to the newly acquired field value. The first
component of the antecedent of an acquisition rule afways pertains to a newly acquired
field value. In the original sample rule shown above the variable X is bound to the
new value of the “product_id” field from the “plant1” database. This bound vanable is
then used in the second component of the rule’s antecedent to test (search) for its
existence in the “production]” database. Since the second component is surrounded

by the negation operator (—), should there not exist a “productionl” record where the

20

“product id” field value equals X (i.e., a failed search for a record where
production] .product id = X) the rule’s consequent is executed. Here the only
component of the consequent states that the newly acquired field value must be
rejected. Exactly how the SE goes about considering a given SDBMS rule will be
discussed in subsequent sections of this chapter.

The interested reader will note that this semantic rule exhibits what is known as

the closed world assumption.

“[The closed world assumption] states that omission of a certain tuple from a
given relation implies that the assertion corresponding to that tuple is false.”

-- Date, 1990

Thus, if we think of each row (tuple) in a given table as a logical assertion
about the existence of something in the world, the absence of such a row (and hence

the absence of the assertion) indicates that that ‘thing’ does not exist.

3.2.1.1 Buffering New Database Records

In order to make use of the SDBMS acquisition rules a dialogue must ensue
between the user and the SE by way of the SI. A sample dialogue might look as
follows: (For now SI communication will take the form of a simple procedure-like
command language. Later it will be described how the SI can be integrated into both
single-record manipulative and multi-record manipulative relational database
frameworks and how basic natural language techniques may be incorporated to create

a powerful interface.)

NewRecord(“plant1”)

21

SetField(“plant1”, “product_id”, “A123B920"):

The first command issued to the SE, NewRecord, functions in two capacities.
First, it creates a context for the semantic dialogue--namely, that the “plant1” database
will be used in the succeeding dialogue and hence its semantic knowledge base must
now be loaded into working memory if it has not been previously. Second, a buffer
must be created for the new record’s data values to be stored before the record is
committed to the database by an insertion command. As each field value is
independently acquired via the SetField command the value is incorporated into the
buffered data structure and any acquisition rules which contain the field name in the
first component of its antecedent are considered. Once an antecedent is proven true
the resulting consequent of the acquisition rule is then executed. Should the SetField
command fail (because of a breach in semantic integrity as dictated by the acquisition
rules), the user/program is made aware of this breach immediately and the field’s value

is not set.

3.2.2 Committal Rules

The second category of semantic rules is the committal rule. These rules like
the acquisition rules are forward-chaining. However, unlike semantic acquisition rules,
committal rules are considered in bulk. Given an acquisition rule, it is only considered
if and when the field value of the first component in its antecedent is acquired--during
this time all other non-conforming acquisition rules are ignored. Alternately,
committal rules may be considered en mass by the SE as each rule must be venfied
before the actual insertion or update of the buffered record into its respective database

occurs. Take the following committal rules for example:

22

1. {C}plant1.product_id({ null) = Abort(plant1)

2. {C)plant1.product_id(X) » productioni.product_id(X) A
productioni.serial_required(‘Y’) A plant1.serial(null)
= AcquireValue(plant1.serial)

3. {C}plant1.chemical_id(X) A chemicals.id(X) A
chemicals.volatile(‘Y’)
= plant1.special_handling(‘Y’)

The prefix “{C}” denotes the committal rule category. The first rule maintains
that the “product_id” must be non-null for insertion/update to succeed. This form of
semantic representation may not be required in most database management
implementations as they implicitly test for non-null values--usually reserved for key
fields. However, some lower-level database platforms do not allow implicit non-null
checking and hence can be made more powerful by the SDBMS. The interested
reader will note that this particular rule could not be classified as an acquisition rule
since the component in its antecedent binds to mul/. The reason for this is obvious
since a field value is null until it is acquired. Further, since acquisition rules are
considered only as a field-value is acquired, this type of rule would never be
considered if the “product _id” field value was never acquired and hence was null.

The second committal rule states that if a product is to be inserted/updated in
the “plant]” database and the product is listed as requiring a serial number in the
“production1” database, then the field “serial” for “plant]” must be non-null. Here we
begin to see the power of the SDBMS as a field can be semantically defined as non-
null within a specific context. In one context the “plantl” record’s “serial” field is
defined as non-null (i.e., when the “production]” database dictates that the product

requires a serial number). In another context the “plant1” record’s “serial” field is

23

allowed to be null (i.e., when the “productionl” database dictates that the product
does not require a serial number).

In the third example the rule states that if the “plantl” record to be
inserted/updated is listed as a volatile chemical, then the “special_handling” field of the
“plant1” record should be automatically set to ‘Y’. This type of rule implies an
inferable field value since the value of the “special_handling” field of a “plant]”
record may be (indirectly) inferred from the “chemical_id” field value.

Semantic committal rules conform to several rule-semantic constraints. The
first component of the antecedent is always a “<table>.<field>(<binding>)~
designation, where the <table> denotes the type of record which is currently under
consideration for insertion or update and the <field> denotes a valid field name for a
record in that table. The <table> portion of this component references the record
which has been previously buffered in semantic context (as described above)--either a
new record which awaits insertion or an existing record which has been modified and
now awaits update and committal to its respective database. Any reference to this
<table> in the remainder of the rule will access the buffered data for that record in
semantic context. The <binding> of the <table> <field> pair represents the currently
buffered field value for that record in semantic context. The <binding> itself may
denote either a variable or a constant. In the case of a variable binding the current
value of the designated field is immediately pulled from the buffered record currently
in semantic context and bound to the variable. Once the variable is bound
consideration of the rule’s antecedent continues--that variable may nof be re-bound in
the remainder of the rule’s consideration. In the case of a constant binding the field
value which has been buffered within the semantic context is fested against the

constant. If the test succeeds the remainder of the rule’s antecedent is then

24

considered. Should the test fail, consideration of the rule ends and the next applicable
committal rule is considered.

It is important to note that all committal rules begin with a
“<table>.<field>(<binding>)" component and that the <table> atom of this component
defines which fype of record the rule is to be applied. By this convention the SE can
immediately discern that the three sample rules listed above apply to a “plant1” record
to be committed to the “plant1™ database, as all rules begin with a component which
references the “plant1” table. Hence, the <table> atom of the first component in an
committal rule references the record which has just been buffered in semantic context.
Any further references to that <table> in the remainder of the committal rule will
access the buffered field values of that record.

Two types of binding are applied during rule consideration: record binding and
field-value binding. Within field-value binding there exist two subtypes of binding:
variable binding and constant binding (described above). To illustrate the
functionality of these two types of bindings--namely, record binding and field-value
binding--let us examine exactly how the SE considers the third rule in the example
shown above.

As previously declared the first component defines the type of record which is
under consideration for committal: “plant1.” The “plant]” reference is immediately
bound to the “plant1” record which has been buffered in semantic context. Field-
binding occurs as the variable “X” is bound to the buffered “chemical _id” field value
of the “plant1™ record. The <table> atom of the second component of the antecedent
references the “chemicals” database. At this time the record which is referenced by the
“chemicals” atom of the component is unbound. Implicit in the interpretation of this
second component is the SE’s knowledge about the “chemicals” table’s structure--

how many fields make up the table’s primary key, what fields belong to the composite

25

key, etc. In this example let us say that the “chemicals™ database consists of a single-
field primary key: “id.” Since (1) the “chemicals” record is unbound, (2) the variable
“X" 1s bound, and (3) the “id” field uniquely identifies a “chemicals” record (since it is
the only field composing the primary key), the SE interprets the “chemicals.id(X)”
component as follows: “search for the record in the ‘chemicals’ database where the
value of field ‘id’ is equal to *X.””

Should this search fail, the “chemicals” record cannot be bound and hence
consideration of the rule ceases since its antecedent cannot be proven true. Upon a
successful search the “chemicals” record is bound to the record resulting from the
search. The bound record now becomes part of semantic context and any further
references to fields of the “chemicals” database will access the bound record’s field

I3

values. Since the “chemicals” record is now bound, the “’Y’” in the third component
instructs the SE to fest whether or not the “volatile” field value of the “chemcals”
record, which was bound in the previous step, is equal to ‘Y.” Should the third
component hold true, the consequent of the rule is carried out.

As noted above, “plant]1” was bound to the new-record which was previously
buffered in semantic context. Thus, the only component of rule three’s consequent--
“plant1 special_handling(‘Y’)”--instructs the SE to act on the buffered record for
“plant].” The component is fully translated by the SE to mean: set the value of the
field “special handling” of the buffered record for the “plant1” table to ‘Y’ (note the
single quotes around the ‘Y’ making it a constant value and not the variable Y).

In general, bindings of components found within the antecedent of an SDBMS
rule instruct the engine to variably bind or test the existing field value of a record
within semantic context. Bindings found within the consequent of an SDBMS rule

always instruct the SE to sef the value of a field. This set operation will override any

existing value for that field in favor of the value inferred by the rule. Special semantic

26

functions are also available for use within the consequent of an SDBMS rule. The first
rule in the above example uses the “Abort” function which instructs the SE to cease all
remaining committal rule considerations and abort the insertion/update operation of
the buffered record into its respective database. Additional SDBMS functions will be

discussed in subsequent chapters.

3.2.3 Removal Rules

Removal rules are similar in format to committal rules. However, removal
rules are considered just prior to deletion of a record from a database. Take the

following removal rule for example:

{R} storage.chemical_id(X) A chemical_removals.chemical_id(X) »
chemical_removals.instances(Y)
— chemical_removals.instances(Y + 1) A
Update(chemical_removals)

The prefix “{R}” denotes a removal rule. As in the case of the SDBMS
committal rules, the first component of the antecedent in a removal rule identifies what
type of record the rule is to be applied before a deletion occurs. Hence, the <table>
atom of the first component in the rule’s antecedent is always bound to the record
which is to be deleted. More accurately, this <table> atom is bound to the <table>’s
current record within the semantic context. The sample removal rule above, therefore,
pertains to a “storage” record which is to be deleted. Upon consideration of the rule
by the SE the reference “storage” is immediately bound to the “storage” record which
is about to be deleted. By the same token the variable X is bound to the value of the

“chemical_id” field of the bound “storage” record. The <table> atom of the second

27

component in the antecedent “chemical_removals” is currently unbound and,
therefore, requires a search to bind its record. The SE carries out the search for the
“chemical_removals” record where the field “chemical_id” is equal to the variable X.
Should this record be found it is bound to the “chemical_removals” reference and
consideration of the rule’s antecedent continues. Since “chemical_removals” record is
now bound, the third component of the antecedent binds the variable Y to the
“instances” field value of that record.

The first component of the consequent makes use of a semantic <operation>
(as syntactically outlined in the BNF grammar above)--namely, the “+” operation.
This component causes the SE to sef the “instances” field value of the previously
bound “chemical_removals” record to Y + 1 (e.g., if Y=1, then Y+1=2). The SE’s
translation of the “+” operation makes use of the operator overloading paradigm,
controlled by the SE. If the operands of the “+” operation are character strings, the
result of the operation is the concatenation of those strings. If the operands of the “+”
operation are numbers, the result is the numerical addition of those numbers.

The second and final component in the rule’s consequent makes use of another
SDBMS function “Update.” This function instructs the SE to update the current
record in semantic context for the “chemical_removals” table--the record bound by the
search which had taken place during consideration of the second component of the

antecedent.

3.3 Use of the Index Constraint in Rule-semantics

In the preceding section many rule-semantic repercussions of the SDBMS BNF

grammar have been touched on. One aspect, however, has been left unattended: the

28

use of the <index> constraint on record bindings. Consider the following portions of

the BNF grammar listed above:

<test-comp> ::= <table> [[<index>]] .<field>(<t-binding>)
<set-comp> ::= <table> [[<index>]] .<field>(<s-binding>)
<index> := <a number greater than 1 (i.e., 2, 3, 4, ...)> | A

To fully understand how the <index> constraint is utilized within the SDBMS,

let us examine the following removal rule:

{R} storage.product_id(X) A —{ storagef2].product_id(X))
~ storage.type(Y) » type_log.type(Y) = Delete(type_log)

This rule maintains that should a certain product record be removed from the
“storage” database and no other records of that product exist in the “storage”
database, and there exists a “type_log” record for that product’s type, then remove
that “type_log” record from the “type log™ database. The first component of the
antecedent binds the reference “storage” to the record which is to be deleted. The
variable “X” is then bound to that record’s “product_id” field value. The second
component makes use of the negation operator (—) which indicates that the result of
the second component should be negated. The <index> constraint is used in the
second component (“storage[2]”) to indicate that, although it is to be bound to a
“storage” record, it must be a different record than the “storage” record bound in the
first component of the antecedent. The “storage[2]” reference at this point is,
therefore, unbound--implying a search, since it lies within the rules antecedent (as
noted in the previous sections) Based on the remaining atoms of the second
component in the antecedent the SE executes a search of the “storage” database where

the value of the “product id” field is equal to “X.” This is a somewhat complex

29

search since the SE must ensure that any record found during this search is nof
identical to the record bound to the original “storage” reference--recall that the
originally bound “storage” record has not yet been deleted from the database and
therefore still resides within it. The SE accomplishes this task by performing a basic
search and then, in the case of a keyed database, comparing each (possibly composite)
key field value of the record resulting from the search with the respective field values
of the previously bound “storage” record. If the similarity check fails, the record
resulting from the search is bound to the “storage[2]” reference. If the similarity check
succeeds, the search continues until a differing record is found or further searching is
not possible. Should the “storage” database be non-keyed (ie., more than one
identical record may exist) the SE must employ some other form of similarity check
(perhaps checking the literal record number as identified by the database file).
Continuing with consideration of the rule, should the search prove successful, the
negation operator halts consideration of the antecedent and the next applicable
removal rule is then considered. However, should the search fail, the negation
operator causes continued consideration of the remainder of the rule’s antecedent.
The third antecedent binds the variable Y to the value of the “type” field for the
buffered “storage” record bound by the first component. The fourth component of the
antecedent searches out the “type log” database for a record whose “type” field is
equal to “Y” and, if found, binds this record to the “type_log” reference. The rule’s
consequent makes use of yet another SDBMS function “Delete” which performs a
removal action on the “type_log” record which was bound during consideration of the
fourth component in the antecedent. Note that this removal action, in turn, spawns

consideration of all removal rules which apply to a “type_log” record.

30

It may be stated that any reference to a <table> atom of a component which
does not make use of an <index> atom is implied to be of index, 1. For example, the

above rule may be thought of as follows:

{R} storage[1].product_id(X) A —(storage[2].product_id(X))
~ storage{1].type(Y) A type_log[1].type(Y)
= Delete(type_log[1])

Further, any use of a <table;>[<index|>] component implies uniqueness of
that bound record to all other <table;>[<index;>] references within that SDBMS rule
where iz1. The use of the <index> atom gives great power to the SDBMS as rules
may be written which define semantic repercussions of one record within the context

of other record(s) of the same type.

3.3.1 Use of the A Index

Careful examination of the committal rule category might lead one to the
question: “What if a particular system requires a certain committal rule to fire for an
update of a record, but not for an insert of that record--how can this be accomplished
when both update and insert manipulations are governed by the same rule category?”
For example, let us say we had a database system which required the tracking of
various user updates. In particular let us say there exists a “daily _log” database, and
we wish to keep track of how many times the value of the field “location” is modified
within this record. More specifically, we are not interested in how many times the
record (as a whole) was updated, but rather how many times a specific field value was

modified. This type of rule may be represented as follows:

3t

{C} daily_log.location[A}(X) A daily_log.id(Y)
A tracking.id({ Y) A tracking.displacements(Z)
—=> tracking.displacements(Z + 1)
A Update(tracking)

The A index is used to reference differing field values from the time an existing
record is queued to the time the record is to be re-committed to its respective
database. In this example, should a particular “daily log” record be queued with an
original “location” value of L, and during the time of buffering this value changes to
Ly (via the SDBMS command SetField), the binding of “daily_log.location” would
equal Lo, and the binding of “daily_log location[A]” would equal L.

A <table> <field>[A] binding is only valid (i.e., can be bound) when an existing
record is queued and the SDBMS SetField command is used on that <table> <field>
designation. Thus, if a “daily_log” record is queued, but the “location™ field is not
acted upon by a SetField command, and the record is updated, the above rule would
not be applicable, since there would be no binding for “daily log location[A]” (i.e.,
since the component cannot be bound, its truth value is FALSE, and consideration of
the rule terminates). Further, any buffered field-values for a new record (i.e., using the
SDBMS SetField function after use of the SDBMS NewRecord command) never
associate with a A index reference, since the record is brand new, there can be no a
priori field values.

Thus, the above rule functions wonderfully for tracking modifications to the
“location” field value, since “daily log.location[A]” may only be bound when the
“location” field value actually changes. Further, we see that only
modifications/updates are tracked (i.e., not inserts) since by definition of the A index
reference, no A index bindings are possible when a new “daily log” record is born
(i.e., NewRecord(daily log) . Insert(daily_log)). However, upon close inspection

of the rule one may discover a fallacy in that the rule always assumes the existence of a

32

“tracking” record for the “id” in question. Indeed, for this type of tracking technique
to operate successfully we must add the following committal rule to the semantic

knowledge base for the “daily log” database:

{C} daily_log.location[A](X) A daily_log.id(Y) A —(tracking.id(Y))
= NewRecord(tracking) A tracking.id(Y)
~ tracking.displacements(1) A Insert(tracking)

This rule maintains that a “tracking” record should be inserted upon the first
modification of the “location” field value in an existing “daily_log” record. In addition
this new “tracking” record should contain a “displacements” field value of 1, since
insertion of this record indicates the first time the “location” field was updated in an
existing “daily log” record. With the addition of this committal rule, our displacement
tracking technique is sound.

It is important to note that the A index adheres to the closed world assumption.
Take the following component reference for example, assuming the variable X has

been previously bound to a value:
—(plant1.product_id{fA}{ X))

This expression is true in two cases: (1) if “plantl.product_id[A]" cannot be
bound (i.e., the value for field “product id” remains unchanged); or (2) if “plant1[A
].product_id” can be bound, but its value is not equal to X. Thus, we see evidence of
the closed world assumption since the assertion is FALSE if a A index reference does

not exist (i.e., cannot be bound).

33

4.0 IMPLEMENTATION OVERVIEW OF THE SDBMS SEMANTIC ENGINE

Having described the syntactic and rule-semantic aspects of the SDBMS
logical rule-based language, it must be illustrated how such a system would function.
To accomplish this illustration, we must examine the basic functionality which is
required by the SDBMS to facilitate its usage as a universal medium between many
different database management system platforms (as depicted in figures 2 and 10).
Although an explicit implementation of the semantic engine is beyond the scope of this
dissertation, it is nonetheless important to describe the basis upon which such an

implementation must conform.

4.1 SEARCH-TEST-ACT Chain Reductions

Taking the rule-semantic constraints described in chapter 3 into consideration,
one may assert the basic conclusion that all rules, regardless of classification, may be
reduced to a SEARCH-TEST-SET chain. To explain this assertion let us consider the

following committal rule:

{C} plant1.chemical_id(X) A chemicals.id(X) A
chemicals.volatile('Y’)
= plant1.special_handling(Y’)

The astute reader will recognize this example rule as one presented earlier in
chapter 3. Summarizing the SE’s consideration of this rule we have the following: (1)
the reference “plant1” is bound to the “plant1” record buffered in semantic context; (2)
variable “X” is bound to the value of the buffered “plant1” record’s “chemical_id”

field; (3) since the value of field “id” uniquely identifies a record in the “chemicals”

34

database (recall, “id” is the only field composing the primary key), the value bound to
“X” is used to SEARCH the “chemicals” database for a record with that “id” value;,
(4) should this record exist, (5) the “volatile” field value of the bound “chemicals”
record is then TESTED for its equivalence to ‘Y, (6) if all components of the
antecedent prove true the only component in the consequent SETs the value of the
“special_handling” field of the bound “plant1” record to ‘Y.” Thus, the rule may be

reduced as follows:

SEARCH: chemicals.id = plant1.chemical_id

TEST: £
TEST: chemicals.volatile = Y’
SET: plant1.special_handling = 'Y’

In this particular reduction we see four components in the SEARCH-TEST-
SET chain: one SEARCH component, two TEST components, and one SET
component. Looking back at the above summary for the SE’s consideration of this
rule, binding occurs in steps (1) and (2). Step (3) is carried out by the SEARCH
component in the chain. The SEARCH component is read as follows: the
<table>.<field> operand to the left of the equal sign (=) identifies the <table> to be
searched and the first <field> to be constrained in the search. The <table> <field>
operand to the right of the equal sign (=) identifies the hound record (<table>) and
field-value (<field>) in semantic context. This second operand provides the constant
required to complete the search. The first TEST component accomplishes step (4).
The € parameter is a Boolean variable, global to the SE, which is always set when a
SEARCH occurs. This variable is set to true if the SEARCH was successful, false if
unsuccessful. Step (5) occurs during evaluation of the second TEST component.

Finally, if all TEST components prove true, the SET component executes step (6).

35

The SET portion of the SEARCH-TEST-SET chain reduction should more
explicitly be referred to as an ACT--i¢e,, SEARCH-TEST-ACT. We say ACT because
we may not only wish to have the ability to simply SET the field values of records
queued in semantic context, but rather to perform powerful ACTIONS on them.
Several rules found in the preceding chapter have, within their consequents, special
SDBMS function assertions which instruct the SE to perform various actions on the
context record(s) queued within semantic context.

Thus, we should re-evaluate the above reduction chain to the following form:

SEARCH: chemicals.id = plant1.chemical _id

TEST: £
TEST: chemicals.volatile = 'Y’
ACT. Set(plant1.special_handling = ‘Y")

One should also note that the SEARCH-TEST-ACT chain may be reduced
further if and only if the database engine for the table(s) referenced within the
antecedent are SQL-compatible. This further reduction would result in a shightly
different chain as the second TEST portion of the above example could be
incorporated into the SEARCH portion. Given the rule listed above the reduction

could be as follows:

SEARCH: chemicals.id = plant1.chemical_id
A chemicals.volatile = ‘Y’

TEST: €

ACT: Set(plant1.special_handling = 'Y")

And, the SQL interpretation of the SEARCH portion would be:

36

EXISTS
(SELECT *
FROM chemicals
WHERE id = X AND volatile = 'Y’),

Note: X = plant1.chemical_id (a buffered field value which would be
constant at time of execution)

Some database engines, however, do not boast such powerful query
capabilities. Borland International’s PARADOX™ ENGINE, for example, only
allows record searches on subsequent composite key fields or a single non-key field.
In this case, since “id” is the only field in the primary key of the “chemicals™ table, and
“volatile” is not a key-field, the SE must make use of the SEARCH-TEST-TEST-ACT
chain reduction, listed above, instead of the latter SEARCH-TEST-ACT chain
reduction.

Thus, it is the semantic engine’s duty to determine which database engine
applies to the referenced database(s) and hence which form of reduction is required.
For less powerful database engines, e.g., those which only allow searching on keyed
fields or any other single field value, the SEARCH-TEST-TEST-ACT reduction is
necessary. However, as we have seen for more powerful database engines which
allow detailed searching, the SEARCH-TEST-ACT chain reduction may be a better
strategy--note, however, that the SEARCH-TEST-TEST-ACT chain reduction is still
possible with more powerful engines, but may not represent the most efficient
accessing technique for those database implementations.

Some rules may simply require a TEST-ACT chain reduction as in the

following inferable field-value, committal rule:

{C} productioni.intensity_level(5) = production1 reaction_time(6.3)

37

Reduction:

TEST: production1.intensity_level = 5
ACT: Set(production1.reaction_time = 6.3)

One final piece of information which is paramount in rule reduction is the fype
of rule (i.e., acquisition, committal, or removal) and the table database to which it
applies. By incorporating this information into the reduction construct the SE knows
when to consider a rule and what buffered record within semantic context is under
consideration.

The following lists the final reductions for the two sample rules in this section,

respectively:

RULE: C/plant1

SEARCH: chemicals.id = plant1.chemical_id
TEST: £

TEST: chemicals.volatile = 'Y’

ACT: Set(plant1_special_handling = 'Y’)
RULE: C/production1

TEST: productioni.intensity_level = 5

ACT: Set(production1.reaction_time = 6.3)

Hence, in the first reduction the RULE component dictates to the SE that this
rule should be considered before a buffered “plant]l” record is committed to the
“plant]” database and that any “plantl” references within the reduction should be
bound to the field-values buffered in semantic context--thus, record and field-value
binding may be accomplished. Appendix A lists some sample rules and their
SEARCH-TEST-ACT chain reductions.

Once again it must be stressed that SEARCH-TEST-ACT chain reductions

require the SE’s knowledge of the structures of the databases referenced within the

38

rule. The above examples have dealt with single-key field databases and were reduced
on that basis. However, not all databases conform to single-field keys and require a bit

more work in reduction. Take the following rule, for example:

{A} order.type(‘toxic’) A order.customer_id(X) ~ order.locale(Y)
A customer.id(X) A customer.locale(Y)
A customer.handiing_level(2)
= order.shipping(‘rail car’)

Let us say in this particular example that the table “order” has a composite key
made up of fields “customer_id” and “locale” respectively. Similarly, let us say that
the “customer” table has a similar composite key made up of the fields “id” and

“locale” respectively. Given this information the SE can reduce the rule as follows:

RULE: Alorder

TEST: order.type = ‘toxic’

SEARCH: customer.id = order.customer_id
A customer.locale = order.locale

TEST: €
TEST: customer.handling_level = 2
ACT: Set(order.shipping = ‘rail car’)

Should the SE only have searched on “id,” we would not be guaranteed that
the correct record was queued. Thus, we see the use of two search constraints instead
of simply one, as the table in question requires two field-values (i.e., “id” and “locale,”
respectively) to uniquely identify a record.

Not only does the structure of a database play an important role in rule
reduction, but also the power of the database engine governing that database which
will ultimately be used to consider (and, if necessary, fire) the rule. Once again the
preceding example assumes a low-level database engine which only allows searching

on keyed fields. Should a more powerful engine be available for the referenced

39

database(s) (e.g., a SQL-compatible engine) the following reduction would most likely

prove more efficient or at least somewhat more elegant:

RULE: N/order

TEST: order.type = ‘toxic’

SEARCH: customer.id = order.customer_id
A customer.locale = order.locale
A customer.handling_level = 2

TEST: €

ACT: Set(order.shipping = ‘rail car’)

It should be noted that rule-reduction is based not only on the format of the
rule itself, but also on the structures of the database(s) referenced within the rule and

the power of the database engine(s) applicable to those database(s).

4.2 Semantic Context

The term, semantic context, has been used somewhat loosely in the preceding
chapters. To understand exactly how the SE would function, this term must be clearly
defined. Perhaps the easiest analogy to semantic context is a working memory which
maintains a dictionary of record and field-value bindings. Two types of data
references are held within this dictionary: (1) explicit references--the buffered field-
values of records to be inserted, updated, or deleted in their respective databases, or
the buffered field-values of records simply queued for reference via the SI; and (2)
implicit references--buffered field-values of any other records queued during
consideration of a particular rule. The first type of references exist within the system
(i.e., are non-volatile) until explicitly dumped by the system (as will be described in

detail below). The second type of references exist only during consideration of the

40

rule in which they were queued (ie., are volatile immediately upon completed
consideration and potential firing of a rule).
For example, let us examine the following database structures, a sample rule,

and its SEARCH-TEST-ACT chain reduction:

TABLE: plant2
reactor_id : alpha-numeric field (only KEY)
&erride . alpha-numeric field

TABLE: reactor_schedule

id . alpha-numeric field (only KEY)
éfatus . alpha-numeric field

{C} plant2.reactor_id(X) A reactor_schedule.id(X)
A reactor_schedule.status(‘to-be-cleaned’)
= plant2.override(‘shut down')

RULE: C/plant2

SEARCH: reactor_schedule.id = plant2.reactor_id
TEST: €

TEST: reactor_schedule.status = ‘to-be-cleaned’
ACT: Set(plant2.override = ‘shut down'’)

Figure 4 depicts a visual account of this example. Prior to consideration of this
rule the field-values of a new “plant2” record have been buffered within semantic
context (part A of figure 4). Let us say ‘SAM1’ has been buffered as the value of
“plant2.reactor id.” This indicates that semantic context has the value ‘SAMY’
associated with the data reference “plant2 reactor id.” Substituting this value pulled
from semantic context, the SEARCH portion of the reduction chain then reads:

“reactor_schedule.id = ‘SAML1,”” and this record is searched-out. Let us say the

41

record does exist (i.e., ¢ = TRUE). At this time, since a “reactor_schedule” record has
just been queued, its field values are loaded into semantic context (part B of figure 4).
In particular let us say its “status” field does indeed equal ‘to-be-cleaned.’ causing the
second TEST component to prove true. Since all TESTs prove true, the ACT is
executed, associating the data reference “plant2.override” with the value ‘shut down.’
The diagram visualizes SDBMS semantic context as a series of hash tables'.
The first hash table is used to reference <table> entries (i.e., the names of records
which currently reside within semantic context). These <table> entries shall be
deemed fable cells and are depicted in the diagram as rectangles. Note that appended
to each table cell identity is its index. In the diagram all table identities are appended
with “[1]”--recall that any <table> reference which does not explicitly display an index
is assumed to be of index, 1. Each table cell points to a secondary hash table which is
used to store the <field> references (and in turn the respective values) for that record.
<Field> entries shall be deemed field cells and are depicted as diamonds in the
diagram. Each field cell subsequently points to a value cell (each depicted as an
ellipse in the diagram) which holds the data-value currently associated with that
<table> <field> designation. One should note that their exists two pointer references
within each field cell. The unlabeled pointer is used to identify the current value of
that <table> <field> reference. The pointer reference labeled “A™ is used to identify
the last value of that <table> <field> reference before modification (note that this
example does not require knowledge of past field values and therefore the A-pointers

contain null values.

1 Note that the use of hash tables is certainly not a requirement for representations of this nature.
The working memory model for semantic context could have as easily been described by way of
linked lists or sorted arrays. The hash table scheme was simply selected for its undying cfficicncy and
clegance in storing large amounts of referenced data.

42

Each table cell within semantic context is tagged with either an ‘E” or an ‘I’
Table cells exhibiting an ‘E’ tag, indicate explicit references--cells which must remain
non-volatile until such time as they are explicitly dumped by the system. Those cells
which exhibit an ‘I’ flag indicate implicir references--cells which become volatile as
soon as the current rule has been fully considered and fired (if applicable). Upon
completion of a rule’s consideration and firing (should the antecedent prove true), all
‘I’-designated table cells, including all cascading field/value cells which are linked to
them, are purged from semantic context. This purging accomplishes two tasks: first,
working memory is free of “garbage” at all times; second, the SE cannot confuse like-
references in differing rules.

Explicit (‘E’-designated) table cells and their cascading field/value cells may
remain within semantic context indefinitely. There are only three ways explicit
references may be purged from semantic context: (1) if the record referenced by the
table cell is deleted, (2) if the SDBMS NewRecord command is called on the same
reference, or (3) if a different record of the same type is searched-out in the database.
One should note that the last two procedures do not actually purge the reference per
say, rather they change the field/value references associated with that record (table
cell). Figure 5 gives a visual account of these three ways of purging semantic context.
Portion A of figure 5 shows the deletion of a “plant1” record. Portion B shows what
happens when there exists a “plant1[1]” record in semantic context, but the SDBMS
command “NewRecord(plant1[1])" is called. Note that no field/value cells exist after
the NewRecord command-call. If a particular field cell does not exist in semantic
context, the SE deduces that value to be mull (i.e., not yet acquired). Part C of figure
5 demonstrates what occurs when an existing reference is re-used (i.e., the old
reference is purged in favor of the new reference) via searching/queuing an existing

record of the same type. Note that when an existing record is queued via searching,

43

all field values which are not equal to nwull are loaded into semantic context (hence, the
use of the ellipsis in the field cell hash table).

Why keep records in semantic context after inserts or updates? As new data
cells are acquired for the buffered record (via the SDBMS SetField command),
acquisition rules are considered and potentially fired, changing the state of the record
buffered in semantic context. Upon execution of the SDBMS Insert or Update
command, all committal rules pertaining to that record are considered and fired (if
applicable)--again changing the state of the buffered record. Finally, when all rules
have been fully considered and potentially fired, the record is physically inserted into
its respective database via the database engine which governs it. The record continues
to remain in semantic context for two important reasons: first, should the insert/update
operation succeed, the user may wish to access certain field values which may have
been modified by the semantic constraints represented within the committal rules (e.g.,
inferable field-values)--or the user/program may simply wish to re-access the data
within that record at a later time; second, should the insert/update operation be
aborted for some reason, it is imperative that the record remain buffered within
semantic context to allow the user/program, which communicated the new record via
the S1, to salvage data values which were accepted by the committal rules and perhaps
attempt to re-insert/re-update the record. This is important since semantic rules are
capable of aborting insertion/modification of a record if, for example, a certain field
value breaches semantic integrity. Should the system purge the buffered data
references at the point of abortion, the user/program would lose all modifications
made to that record even if insertion failed because of a single bad value. Thus, failure
of a routine of this nature should retain buffered references and allow the user/program
to correct the problem at which point an attempt may be made to re-insert the record

(if desired).

44

4.3 Semantic Engine AGENDA

Given these potentially enormous rule-bases which manage the semantic
integrity of particular databases, in what order (if any) should such a system consider
each rule? Obviously, overall consideration of a particular rule is directly associated
with the rule category to which it belongs (i.e., a removal rule for a certain type of
record would not be considered during an insert action for that type of record). The
acquisition rule category constrains consideration of rules even further to only those
rules whose first component of the antecedent matches the field being acquired.
However, once a set of rules is identified for consideration by the semantic engine, is
the order of consideration relevant? To answer this question consider the following

generalized committal rules:

1. {C} a1.B1(X) n a2 B(X) a2 B2(v2)
= a2.B3(3) ~ Update(a2)

2. {C} a1.B4(v4) = Abort(aq)

Let us assume in this case that an o] record is about to be inserted. Both
committal rules in the example apply to an o |-type record (i.e., records belonging to
the table a.]). Let us assume that the semantic engine considers each of these rules in
the order in which they are listed above. Further, let us assume that upon
consideration of each rule the antecedent of that rule is found to be true and its
consequent is duly carried out. Immediately one can see a serious flaw as rule 1
implies the setting of an inferred field-value of another record (t3) and its subsequent
update. When rule 2 is fired, the insert operation of the a record is aborred

indicating breach of semantic integrity and refusal to commit the record. However, we

45

have already updated another record in rule 1 with respect to the a record, and now
we find that the oy record is invalid. This flaw would result in inconsistent data in a
very short period of time. Thus, in this case it is important for the semantic engine to
consider rule 2 before rule 1.

To further illustrate rule consideration anomalies let us examine an additional

committal rule:

3. {C} a1.Bs(v5) rn1.Be(ve) = a1-B4(v4)

Once again let us say that an o] record is awaiting insertion and rules 2 and 3
(ignoring rule 1 for the moment) are considered respectively. Further, let us say that
upon consideration of rule 2, —a1.B4(v4) is true given the state of the o} record in
question. Thus, rule 2 fails to fire. Rule 3 is then considered and fires setting the
value of ot q.B4 to 74 (i.e.,].B4(¥4)). At this time rule 2 would imply abortion of
committal of this record, but consideration of rule 2 has come and gone. Again we see
the potential for inconsistent data due to erroneous ordering of consideration.

To solve this problem the semantic engine incorporates an agenda scheme.

The agenda scheme may be thought of as follows:

Semantic Engine Primary Rule Consideration Agenda Scheme:

Given a set of rules which are relevant to the current context:
(1) consider all non-committal-/non-abort-consequent rules,
(2) consider all abort-consequent rules, and finally,

(3) consider all committal-consequent rules.

A committal-consequent rule is one which contains a committal action (e g.,
Insert, Update, Delete, etc.) within its consequent. An abort-consequent rule is one

which contains an Abort action within its consequent. Hence, non-committal-/non-

46

abort-consequent rules identify all those rules which remain (i.e., those rules which
neither contain a committal action nor an abort action within their consequents). With
(1) the semantic engine ensures that any inference to extend the state of a record is
carried out immediately so that (2) and (3) may act upon the maximally extended state
of the record. By maximally extended we mean that there exists no rule which may
modify or add to the information state of a record. The ordering of (1) and (2) ensure
that anomalies such as the one presented in the above rule consideration example of
rules 2 and 3 cannot occur. The ordering of (2) and (3) is necessary to abolish the
problem caused by the rule consideration example of rules 1 and 2 above.

Within each step in the primary agenda, a secondary agenda must be
maintained which manages the forward chaining process itself. For instance, consider

the following two non-committal/non-abortion rules:

4. {C} aq1.B1(v1)~raq1.B2(7v2) = a1.B3(v3)
5 {C} a1.B1(v1)~ aq1.B4(v4) = a1.B2(v2)

At time of consideration within step (1) of the primary agenda (for commuttal
of an o) record) the secondary agenda would contain rules 4 and 5. Let us assume
that in a particular context —~a.|.B2(y2) holds, causing rule 4 not to fire. However, if
in the same context ot].B4(v4) holds true, rule 5 would fire (assuming, of course o).
B1(v) held true as well), bringing a.}.B2(v2) into context. Thus, we must have a
way of bringing rule 4 back into the secondary agenda so it may be reconsidered. Al
literature often refers to forward-chaining rules as if-added rules, indicating that
actions described in those rules should be taken when a value found within the
antecedent of that rule becomes available. Within the semantic context of the SE the

only way a value can “become available” is by the execution of the SDBMS SetField

47

command. Thus, the secondary agenda is driven by calls to the SetField command.
Each time the SetField command is called within a given primary agenda step the
available rules within that primary agenda are tested for any occurrences of that
particular field within the antecedent of the rule. Should a component within the
antecedent of one of these rules correspond to the field being set, that rule is placed on
the secondary agenda. When all rules within the secondary agenda have been

considered, inference continues with the next step on the primary agenda.

4.4 SDBMS Symbol Dictionary

Given that interpretation of the semantic rule base is based heavily on the
knowledge about the structures of the tables referenced therein and the ability to
identify which database engines govern which tables, the SE must be provided with a
symbol dictionary (as depicted in figure 2). This dictionary links the various symbols
used in the semantic rule-base which reference specific databases with information
about the database engine, structure of the table (e.g., key fields, non-key fields, field
data types, etc.), and (if applicable) its logical location on some (potentially
networked) storage device. This symbol dictionary would be referred to continually
by the SE when converting an SDBMS semantic rule to its corresponding SEARCH-
TEST-ACT chain, where information about the database’s structure and goveming
database engine are paramount issues (as detailed previously). Beyond the conversion
of a given semantic rule to its SEARCH-TEST-ACT chain, identification of a
particular table’s database engine is obviously important when executing the given

components of SEARCH-TEST-ACT chains, as translation must occur from any of

48

the SDBMS manipulative commands (e.g., Search, Insert, Delete, Update, etc.) to
there implementation platform equivalent.

Many database engines provide the capability of querying the structure of their
databases. In this environment when the SE is presented with a semantic rule which
references a new table (i.e., one which has not already been incorporated into the
symbol dictionary), it need only ask the user for its governing database engine (i.e., the
type of database) and logical location (if applicable). The SDBMS would then be able
to fill in the required information itself by querying that table’s structure--given the
database engines structural-query commands. Some database management systems,
however, do not boast such powerful structural-query capabilities. In such an
environment when presented with a new table--one unknown to the SDBMS--the
SDBMS would require the user to enter information about the database’s structure
and engine directly into the symbol dictionary. As an alternative to this cumbersome
need to enter structural information twice (i.e., once when creating the database and
once when linking it to the SDBMS), one might build additional SDBMS commands
designed to control database creation. For example, if a particular database engine
was capable of allowing creation/structural-modification of databases, but did not
allow querying about existing databases’ structures, the SDBMS might first acquire
the information required for building the database via the SI, incorporate the necessary
information about the new database’s structure into the symbol dictionary, and use the
respective database engine commands to physically create the database. In this manner
structural description of new databases is only required once. One must take care,
however, that any creations of new databases or structural modifications to existing
databases which are to be referenced by the SDBMS must be done so through the SI

to avoid describing the structural information twice.

49

With knowledge about the databases--their structures and the database engines
which regulate them--the SDBMS may oversee manipulative aspects in a seamless
manner, accepting manipulative database commands from the user/program via the Sl
and interpreting any semantically defined repercussions of those actions through the
SE. Having discussed implementation aspects of the SDBMS which are global to all
database engines, let us investigate specific implementation constraints posed by

different types of database engines.

4.5 Semantic Engine Interaction with Single-record Manipulative
Database Engines

SE control of primitive, single-record manipulative database engines follows
quite naturally from the way in which the SDBMS has been defined. These types of
database engines only allow users/programs to reference data one record at a time.
Often what must occur is first queuing a particular record and then acting upon it.
Multiple-record manipulations rely upon the user/program. To accomplish a multiple-
record manipulation the user/program must initiate a loop, external of the database

engine, where each single record is queued and manipulated.

4.5.1 SDBMS Inserts with Single-record Manipulative Database Engines
The insertion of records into databases which support only single-record

manipulations abides by the following template (again, we shall assume that SI

communication takes the form of a simple procedure-like command language):

30

NewRecord(T1),
SetField(T4, Fj, Vi)

SefField(T1, Fi, Vi):

Insert(T4);

In this format, T} represents some table name which is under SDBMS control.
F; and Fy, represent valid field names for table Ty The reference V; represents the
value to be set for field F; whereas V| represents the same for field Fy. The SDBMS
NewRecord command sets up semantic context for the declaration of a new T
record. The reference for this record within semantic context is defined as T1[1] (as
was described in the preceding sections). If there was a previous T1[1] record queued
in semantic context its field and value cells are purged in favor of the new record
which is assumed to initially have all null-value fields. The SDBMS command
SetField is then used in a sequential manner to set the desired values of particular
fields. Upon execution of a SetField(Tj, F;, Vj) command any acquisition rules of the
form “{A} T.Fj(2) ...” are considered and, should their antecedents prove true, their
consequents are executed. Should any of these consequents contain the SDBMS
command RejectValue(T;) the value V; for the field F; of table T; is not incorporated
into semantic context and the user/program which initiated the SetField command is
made aware of the rejection. A simple message may be compiled by interrogating the
rule which caused the value rejection. For example, if we had a referential integrity

acquisition rule of the form:
{A} T1.F1(X) A —=(T2.F2(X)) = RejectValue(T1.F1)

A rejection message could be compiled as follows: “Value rejected because “X’
does not exist in table ‘T5’ " (*X’, of course, would be displayed as the value bound to

the variable X). Use of the SetField changes the field-value state of the new record

51

both by the field which is being set directly, and by any potential consequents inferred
by the acquisition rules spawned from setting that particular field. The new record
continues to be defined in this manner until the Insert command is issued.

Upon issue of an Insert command all committal rules are interrogated, once
again changing the state of the buffered record. Once consideration of all committal
rules is concluded and no rules brought about the SDBMS Abort command, the record
is inserted into its respective database using the technique appropriate to the database
engine which governs it. At this time field cells which do not appear within semantic

context for the record to be inserted are assumed to be of value nul/.

4.5.2 SDBMS Queuing of Records with Single-record Manipulative
Database Engines

In order to accomplish one of the other two SDBMS manipulative commands
(i.e., Delete and/or Update), a record must first be queued. Queuing usually would
take the form of an SDBMS Search command. However, other SDBMS queuing
commands could be available to the user (assuming the database engine in question
can handle such queuing commands): FirstRecord(<table>), NextRecord(<table>),
PreviousRecord(<table>), and LastRecord(<table>). These additional commands
are relatively straight forward. The SDBMS Search command, however, does require
some discussion as it must be universally capable of covering a wide variety of search
techniques (since many database engines have their own, usually different, ways of
representing search criteria).

The SDBMS Search command is of the following format:
Search(T4, Fi=ViAFj=Vjn .. Fk = Vk. SCOPE),

52

In this format T; identifies some table i under SDBMS control which is to be
searched. F, is some field x belonging to table i. V is some valid value v for field x
of table i. The conjunctive symbol ‘A’ is used to specify additional search constraints.
The reference SCOPE is used to indicate the scope of the search to be performed.
The SCOPE parameter may not be applicable to some primitive forms of database
engines. However, Borland International’s PARADOX™ ENGINE, for example,
allows the scope of a search to be constrained in three different ways: (1) search
begins at the first record in the database, (2) search begins at the currently queued
record, or (3) search begins at the first record in the database and continues to the
record which matches the criteria the closest. As will be seen in the succeeding
section SQL-compatible systems always search from the first record in the database
and therefore the SCOPE parameter is irrelevant.

The second parameter of the Search command identifies what critenia the
search should constrain itself to. This second parameter may have several different
interpretations depending upon the complexity of the engine. Once again let us use
Borland International’s PARADOX™ ENGINE to illustrate differing interpretations.
The PARADOX™ ENGINE allows two techniques for searching. The first
technique--PXSrchKey--allows searching on one or more consecutive fields which
belong to the primary key, starting with the first field of the primary key. For example,
consider the table A which has fields a}, ap, a3, a4, as, ag, and a7. Further, let us say
that fields aj through a3 compose the primary key of table A. We may then use the
PXSrchKey command to search on just the field a| or we may use the same command
to search on fields aj and ay or on all fields of the primary key, aj, ap, and a3. A
second technique which the PARADOX™ ENGINE supports is PXSrchFid, which
allows a search on a single field value. Thus, we could use the PXSrchFld command

to search on field a4 or a5 or ag or a7, but no combination there of It is the SE’s

53

obligation to have knowledge of the various search techniques supported by the
various database engines under its control and to know how and when to use them.
Some simple translations from the SDBMS Search command to pseudo code

for the PARADOX™ ENGINE might look as follows:

SDBMS: Search(A, aq = v1, FIRST),
PARADOX: PXSrchKey on table A with field aq = v1,
SEARCHFIRST.

SDBMS: Search(A, aq =vq naz =vp, NEXT),
PARADOX: PXSrchKey on table A with fields a4 = vq, a2 = v2,
SEARCHNEXT.

SDBMS: Search(A, ag = vg, FIRST),
PARADOX: PXSrchFid on table A with field ag = vg,
SEARCHFIRST.

The SE is capable of determining which type of PARADOX™ command to
use based on its knowledge of the structure of the database in question. In the second
example the SE can infer the use of the PXSrchKey command since fields aj and a2
are consecutive fields in the primary key and field aj is the first field in the primary
key. Thus, the constraints for using the PXSrchKey command have been fulfilled and
therefore may be used. In the third example the SE can infer the use of the PXSrchFld

command since field ag is a non-key field of the table A.

4.5.2.1 SDBMS Enhanced Queuing of Records with Single-record
Manipulative Database Engines

Indeed, the SE may use its knowledge of the workings of a particular database
engine to provide enhanced querying capabilities, as the following PARADOX™

ENGINE interpretation demonstrates:

54

SDBMS: Search(A a4 =vq Anap =vp A ag = vg, FIRST);
PARADOX: if (PXSrchKey on table A with fields a4 = vq, az = vo,
SEARCHFIRST) is successful,
AND if ((field ag = vg) OR
[if (PXSrchFId on table A with field ag = vg,
SEARCHNEXT) is successful,
AND if the current rec’s field value for aq is vq_
AND if the current rec’s field value for ag is v2 |,
THEN the search was successful,
ELSE the search was not successful.

In this example we see that since fields a} and ap are consecutive fields
belonging to the primary key of table A and since field aj is the first field of the
primary key, the SE can make use of the PXSrchKey command to accomplish the
initial portion of the search. Further, since field ag is a simple field of table A the SE
can use the PXSrchFld command to search from the record found with the
PXSrchKey command, to the next record where ag = vg (if the record found in the
initial search has ag # vg). Note, however, that should this next record be found, its
values for fields aj and a; must be verified (since the next record where ag = vg may
not have aj = v| and ap = vp). Note also that this technique assumes that the table’s
records are sorted in an ascending manner relative to the pnmary key.

Generalizing this technique one arrives at the following algorithm which the SE

can use to enhance the querying capabilities of PARADOX-like database engines:

Algorithm for Enhanced Single-record Querying:

1. Given the command
Search(A, aj=vjAaj=Vjn..na8x=Vy SCOPE),

2. Re-organize the criteria parameter to the form aj =vj A @j=vjn ...
A ay = vy, where given the structure of the table A the logical
ordering of field a; precedes field aj precedes ... precedes field ay_

55

3. If gj is not the first field (given the structure) of table A or if table A
has no primary key, then set the variable NEXTSCOPE = SCOPE
and GOTO step 7.

4. Starting with field a;, strip off each consecutive field which belongs
to the primary key of table A--call this the key critena.

5. Use PXSrchKey to search on table A with key criteria acquired in
step 4, starting the search from the record identified by SCOPE.

6. If a record was found in step 5, then set the variable NEXTSCOPE
= SEARCHNEXT and continue with algorithm,

If a record was not found in step 5, then exit algorithm with failure
(i.e., no record found).

7. If the current record matches the remaining criteria, then exit the
algorithm with success!

8. Use PXSrchFid to search on table A with single-field criteria equal
to the first field remaining in the criteria, starting the search from
the record identified by the variable NEXTSCOPE.

9. If a record was found in step 8, then set the variable NEXTSCOPE
= SEARCHNEXT.
If a record was not found in step 8, then exit algorithm with failure.

10.If key criteria exists (i.e., step 4 was executed above) and the
current record does not match that criteria, then exit algorithm with
failure.

11.GOTO step 7.

Thus, one can see that the SDBMS Search command may be interpreted in
several distinct ways depending upon (1) the abilities of the database engine which
governs the table to be searched, and (2) the structure of the table. With this
comprehensive queuing strategy the SDBMS enhances existing technology. as was
seen in the case of PARADOX™ ENGINE interpretations, while at the same time
providing a universal medium for accomplishing the queuing of records over different

types of single-record manipulative database engines.

56

4.5.3 SDBMS Deletes with Single-record Manipulative Database Engines

Having discussed the queuing process for single-record manipulative database
engines, the idea of record deletions becomes trivial. Once a record belonging to a
certain table T is queued (as described in the preceding section) a simple SDBMS
command of the form Delete(T) deletes the record from the table. One must keep in
mind, however, that before the physical deletion of the record from table T occurs, all
SDBMS removal rules of the form “{R} T.F;(?) ...” must be considered and fired
should their antecedents prove true. Should an applicable removal rule fire which,
within its consequent, contains the SDBMS command Abort(T) the record is not
deleted from the table and the initiator of the Delete command is made aware of the
infraction which caused the abortion by way of the SI.

Upon successful completion of an SDBMS Delete command the record which
was just deleted is completely removed from semantic context (i.e., removal spans not
only all field and value cells which related to that record, but also the table cell which
referenced the record at its highest level). Part A of figure S depicts this type of total

removal from semantic context.

4.5.4 SDBMS Updates with Single-record Manipulative Database
Engines

The use of the SDBMS Update command to modify existing records follows
the format detailed above for declaration of new records prior to insertion, except that
the desired record would be queued instead of cleared via the NewRecord command.
The SDBMS SetField command would then be used to modify field values of the

queued record. As the SetField command is invoked any SDBMS acquisition rules

57

which relate to that field are considered and fired (if applicable) as outlined above.
Note, however, that once an existing record has been queued, the SDBMS SetField
command’s function is slightly different in that for each field a belonging to the queued
record A//] a A index reference of the form A//].ajA] is incorporated into semantic
context. The value cell associated with this A index field cell contains the value of
A[1].a just prior to modification by the SetField command. As was explained above A
index references may be used in rules to semantically distinguish between inserts and
updates.

Once the desired field values have been modified for the queued record via the
SetField command(s), the SDBMS Update command is used to commit the
modifications to the database. As with inserts all committal rules applicable to the
type of record being updated are considered and potentially fired. Should an Abort
command be encountered during this interrogation, the update is aborted and the
initiator of the Update command is informed. When all committal rules have been
examined, and no Abort command was encountered, the modifications for the record

are committed to the database.

4.6 Semantic Engine Interaction with Multiple-record Manipulative
Database Engines

Multiple-record manipulative database engines (e.g., SQL-compatible systems)
do not allow single-record accesses per say and hence the SE must take a slightly
different route to interact with such systems. Whereas a command issued to a single-
record manipulative engine effects a specific, unique record, a single multiple-record
engine command may result in the manipulation of several records. However, any

multiple-record manipulative system must ultimately access one record at a time.

58

Given this important factor SE interaction with such database engines follows naturally
from the SE implementation as described in the previous section with few additions to
the grand scheme.

SE interaction with multiple-record database engines involves (1) interrogation
of the command, (2) determination of which record(s) will be affected by the
command, (3) determination of which SDBMS rules associate with the command, (4)
application of those rules on each record affected by the command, and finally (5)
execution of the original command itself on each record which did not result in a
semantic infraction. SQL will be used in the remainder of this section to outline SE
interaction with multiple-record manipulative systems. One should note, however,
that the strategy described herein would apply to virtually any multiple-record

manipulative environment.

4.6.1 Internal and External Multiples

Given a multiple-record command the SE must break the command into
sequential record accesses so it can be sure each record is acted upon appropriately by
the semantic rule-base. This is accomplished by way of record cursors--common to
embedded SQL. Two types of cursors which reference multiple-records (henceforth
referred to simply as “multiples”) are utilized within the SE: external multiples and
internal multiples. To understand the nuances of the first type of multiple let us

consider the following generalized format of a multiple-record SQL command:

[action...] WHERE [criteria..]

59

Here, [action._.] denotes some multiple-record action such as update, insert,
delete, etc. The parameter [criteria..] references the constraints which records must
meet in order to be included in the multiple-record operation. If we take the [action..]
portion of this command and replace it with a SELECT ... FROM operation we can
precisely identify those records which will be affected by the [action...] operation (as
dictated by the [criteria...] parameter). To clarify let us consider the following SQL

UPDATE command:

UPDATE production1
SET production serial_required = ‘YES'
WHERE production1.type = ‘TOXIC',

Taking the WHERE clause into account we may produce the following
SELECT statement which will identify all those records which would be effected by
the UPDATE command:

SELECT *
FROM production1
WHERE production1.type = ‘TOXIC',

Using embedded SQL (our link from the SDBMS to the RDBMS) we may

then acquire a cursor on this statement as follows:

EXEC SQL DECLARE X4 CURSOR FOR
SELECT *
FROM production1
WHERE production1.type = ‘TOXIC';

The cursor X identifies the multiple-records external to the semantic rule-base
(i.e., external multiples). Using the embedded SQL command FETCH the SE may

sequentially isolate each record and independently act upon that record (in this

60

example considering all committal rules relevant to a productionl record), processing
any semantic repercussions as represented by the rule-base. As each record is fetched
from the cursor its field values are loaded into semantic context (as in the single-
record queuing strategy defined above). New field values are then set for that record
using the SDBMS SetField command (if required as dictated by the [action...] portion
of the original command). The SetField command spawns interrogation of relevant
acquisition rules for that type of record. Should all new values pass interrogation of
the acquisition rule-base (i.e, no RejectValue-consequents arise), the rule-base
relevant to the [action] is then considered (i.e., committal rules or removal rules) and
should no Abort-consequents arise, the [action] is finally performed on thar unique
record. Exactly how each [action] is performed by the SDBMS is detailed in
subsequent sections of this chapter. Should a semantic infraction occur, a log is
created outlining the infraction (this may be in the form of an immediate interface with
the user, allowing him/her to correct the infraction in the middle of processing the
original command, or it may be written out to a log file where the user/program could
return to after all valid records have been acted upon). After each record is acted
upon or rejected the SE then fetches the next external multiple and begins the process
again. Processing continues in this fashion until all records identified by the cursor
have been acted upon.

Internal Multiples are multiple records which arise from consideration of a
single rule within the context of a single subject record. To illustrate this type of

multiple consider the following semantic removal rule:

{R} supplier.s#(X) » shipments.s#(X)
~ AcquireExistingValue(“Enter the supplier # for the
supplier who will be taking over supplier |X|'s
shipments:”, supplier.s#, Y)
= shipments.s#(Y) A Update(shipments)

61

This rule states that should a supplier be removed from the database any
shipments which were assigned to him/her should now be taken over by another
(remaining) supplier. In this case the record “supplier” would be bound to a single
record in semantic context which is awaiting removal from the database. The
reference “shipments” would then bind to several records (i.e., a single supplier may
have many shipments assigned to him/her). Thus, “shipments” identifies multiple
records internal to the consideration of this particular removal rule (i.e., internal
multiples)--specifically, all shipment records assigned to supplier number, X. The
special SDBMS function AquireExistingValue is used to obtain a valid supplier
number from the supplier database, which, in this example, identifies the supplier who
will take over supplier number X’s shipments.

Hence, for each external multiple this particular rule may have to be applied to
many internal multiples. Note that internal multiples not only apply to multiple-record
manipulative database systems but also may apply to single-record manipulative
systems as well. For example, the above rule would be just as valid if the databases
“supplier” and “shipments” were governed by a single-record manipulative database
engine. Because of this important point the SE must handle internal multiples in such
a way as to provide generality among the different types of database engines which are

overseen by the SDBMS.

4.6.1.1 SDBMS Implementation Scheme for Internal Multiples

Recalling that each semantic rule which governs the manipulation of a given
database may be reduced to a SEARCH-TEST-ACT chain, it is easy to see how such

a chain may be invoked to manage internal multiples. Take for example the following

62

rule (as detailed in the previous section) and its SEARCH-TEST-ACT chain

reduction:

{R} supplier.s#(X) » shipments.s#(X)

A AcquireExistingValue(“Enter the supplier # for the
supplier who will be taking over supplier |X|'s
shipments:”, supplier.s#, Y)

= shipments.s#(Y) ~ Update(shipments }

RULE: R/supplier

SEARCH1. shipments.s# = supplier.s#

TEST1: 3

ACT¢: AcquireExistingValue(“Enter the supplier # for the

supplier who will be taking over supplier
|supplier.s#|'s shipments:”, supplier[2].s#)
ACT>: Set(shipments.s# = supplier[2].s#)
ACTj3: Update(shipments)

In this particular example the SEARCH portion of the chain may potentially
bind several different “shipments” records--each of which must be independently
considered by the rule. Thus, by thinking of the SEARCH portion as an iteration over

one or more records found by the search we arrive the following flow:

Loop whiile SEARCH1
Begin loop
TEST4
ACT
ACT>
ACT3
End loop

For single-record manipulative systems the loop would be carried out by
searching out the first record identified by SEARCH,, iterating the loop once,
searching for the next record under SEARCH, iterating once again, etc. Multiple-

record manipulative systems (e.g, SQL) would require obtaining a cursor on

63

SEARCH| and fetching the next record identified by the cursor for each iteration. In
this manner universality is achieved by simply providing an SDBMS Search procedure
for each database engine which is controlled by the SDBMS. The syntax for the
Search procedure call would remain the same (as detailed in previous sections) while
the functionality of the procedure would be dependent upon the database engine which

governs the table in question.

4.6.1.2 SDBMS Implementation Scheme for External Multiples

Having implemented internal multiples by way of the SDBMS Search
command, external multiples are handled quite easily in the same fashion. Indeed,
since external multiples are acquired (as in SQL) by replacing the [action...] portion of
an “[action...] WHERE [criteria...]” command with a “SELECT ... FROM" query, the
SE, in effect, generates an SDBMS Search query which will identify those records
which meet the [criteria...]. This “external” Search is handled in precisely the same
manner as Searches within a given rule, except that during iteration the entire
(relevant) rule-base is considered for each of those records queued by the Search and
the [action] is independently performed for each of those records as well (assuming no
semantic infractions occur, of course). To clarify this proposed flow let us consider
the following multiple-record delete command and how the SE would go about

implementing such a command:

Initial Multiple-record Command:
DELETE

FROM supplier
WHERE supplier.orders < 100;

64

External Multiples Identified By Command:

EXEC SQL DECLARE Xg CURSOR FOR
SELECT *
FROM supplier
WHERE supplier.orders < 100

(which implies the following SDBMS Search command:)
Searchp(supplier, orders < 100, N/A)

(Note: the “N/A” indicates scope is irrelevant to this database
engine.)

Recalling the sample removal rule in the previous section, relevant to a

“supplier” record, we would have the following SE flow:

Loop while SEARCH (external multiples)
Begin loop
... <consideration of initial removal rules> ...
Loop while SEARCH¢ (internal multiples)
Begin loop
TEST4
ACT4
ACT,
ACT3
End loop
... <consideration of remaining removal rules> ...
IF <NO SEMANTIC INFRACTIONS>,
THEN Delete(supplier)
End loop

Let us say further that in the above flow SEARCHj is governed by cursor Xg
and that SEARCH is governed by cursor X|. Given these stipulations, ACT3 (i.e.,
Update(shipments)) may be carried out by the following SQL translation (assuming

that supplier[2].s# was acquired in ACT as “Y22") .

65

EXEC SQL UPDATE shipments
SET shipments.s# = ‘Y22’
WHERE CURRENT OF Xq;

Finally, should no semantic infractions occur in consideration of the removal

rules for a “supplier” record, the Delete(supplier) command is carried-out as follows:

EXEC SQL DELETE
FROM supplier
WHERE CURRENT OF Xg;

Thus, by way of cursors we are able to control the iterative processes, both
external and internal, of rule-base consideration. Once again cursors would not be
required in single-record manipulative systems as actions are performed on the
currently quened record (i.e., that record which was iteratively queued by the most

recent SDBMS Search command for that record type).

4.6.2 SDBMS /nserts with Multiple-record Manipulative Database
Engines

SQL allows two modes of insertion: single-record inserts and multiple-record
inserts. Should the user/program wish to execute a single-record insert, two avenues
are available. The first route would allow the user/program to initiate the insert as was
described for single-record manipulative systems (section 4.3.1) via dialogue through
the Sl--ideal for systems where user-interface is of primary importance. This scheme
provides two important advantages: first, the application controlling the interface need
not concern itself with providing a buffering structure for the information as this is
accomplished by the SDBMS semantic context. Second, as each value is set (via the

SDBMS SetField command) acquisition rules can be applied immediately causing

66

feedback to the user of any inferred field values or value rejections resulting from
those rules. When the SDBMS Insert function is finally initiated, the committal rule-
base would be consulted and, should no abort consequent present itself, the SE would
compile the necessary SQL command to insert the given record into its respective
database. This insert command can be easily generated by taking into account all non-
null field-values within semantic context for the record being inserted.

The second route of single-record insertion would be to send the (SQL)
command directly to the SE. This command would be of the following generalized

format:

INSERT
INTOa (aq, a2, ..., aj)
VALUES (v1, v, ..., vj) ;

Given this command the SE would simply generate the following SDBMS
function calls which would ensure semantic integrity and (assuming no breach of
integrity) insert the record into its respective database (as described for single-record

manipulative database engines in 4.3.1):

NewRecord(a);
SetField(o, a1, v1);
SetField(o, a2, v2);

SetField(o, o, vi);
Insert(o);

Should, however, a multiple-record insertion be required, the corresponding
SQL command would have to be sent to the SE, where it would be interrogated,
identifying each record within the command. Each record is processed as an external

multiple (see 4.4.1), involving (1) consultation of the acquisition rule-base for each

67

new field-value specified, (2) consultation of the committal rule-base (prior to
insertion), and (3), should no semantic infractions occur, insertion of the single record

into its respective database.

4.6.3 SDBMS Deletes with Multiple-record Manipulative Database
Engines

Given the description of the SDBMS handling of external multiples, multiple-
record deletions become quite trivial. To summarize, the DELETE operation is
transformed into a SELECT.. FROM operation, identifying those external multiples
which will be deleted. Iteration continues for each external multiple, consulting the
removal rule-base respective to the database from which the record is to be deleted,
and should no semantic infractions occur the record is then physically removed from

the database.

4.6.4 SDBMS Updates with Multiple-record Manipulative Database
Engines

Multiple-record updates are performed much in the same way as multiple-

record inserts. Take the following generalized update command format:

UPDATE o
SET q; = vj, o = Vj, -
WHERE ok = vk, -

The SE would then obtain a cursor on the following query:

68

EXEC SQL DECLARE Xg CURSOR FOR
SELECT *
FROM a
WHERE ak = v, ...

Iteration would then take place over the records identified by X¢ (as described
for external multiples in 4.4.1) and for each record the following SDBMS function

calls would be invoked:
SetField(a, aj, vj)
SetField(o, 0, vj);

Update(a),

Each call to SetField moves the old field-value into the field’s A slot, places the
new field-value into the field’s current field-value slot, and considers any relevant
acquisition rules (as described in 43.4). Upon execution of the SDBMS Update

command the SE generates the following SQL command:

EXEC SQL UPDATE «
SET ay = vy, Oy = Vy, Oz = Vg, ...
WHERE CURI%EN OF Xo.

In this command, ay, Oy, Oz, - refer to all field cells which contain values
both in their current field-value slots and in their A slots, whereas vy, vy, Vg, ..., refer

to the current field-values of field cells ax., aty, a7, .., respectively.
5.0 SDBMS REPRESENTATION OF SEMANTIC INFORMATION

Given a detailed account of how the SDBMS functions the following question

presents itself “What kinds of semantic information can be represented in such a

69

system?”’ To demonstrate the types of representations possible with the SDBMS let us
examine figure 6. This figure depicts the logical design and subsequent E/R model of
a database system which is to keep track of the daily activities of a generic production
plant. Raw materials at the plant site consist of various chemicals which are produced
by manufacturers and stored in a holding area prior to their consumption. Products
are then produced by merging the chemicals in a reactor. Products are then stored in
various types of storage containers awaiting transportation to customers. The logical
design in figure 6 is based on this description, providing a general overview of the
plant’s daily throughput. Below the logical design is found a simple
Entity/Relationship (E/R) model. The E/R model expands upon the logical design,
displaying all relations required to implement the logical design. Bold lines represent a
“many” relationship, whereas non-bold lines represent a “one” relationship. For
example, many chemicals may be found in the holding area at any given time, many
products may be produced in a single reactor, etc. While this type of model details
how the information will be stored, it does not go very far in promoting a semantic
awareness of the information itself By this it is meant that although the E/R model
yields a good definition of the structure of the tables required to represent the piant’s
throughput, it does not provide any means for injecting complex semantic
constraints/stipulations about whar may be validly stored within those tables.

The succeeding chapters discuss various types of “semantic” information which
pertain to the production plant system of figure 6, and how that information may be

represented within the SDBMS.

70

5.1 Semantic Restriction of Context-sensitive Values

Once a product has been processed in one of the plant’s reactors, it must be
stored in one or more containers while awaiting shipment to the customers. It would
be ideal, for example, if the system “knew” that liquid products should only be stored
in liquid-holding containers (e.g.. one would not store a liquid product in a cardboard

box). The following SDBMS committal rule takes care of this:

{C} storage.product_id(X) A product.id(X) A product type(‘liquid’)
~ —(storage.container('drum’))
~ —(storage.container(‘tank’))
A —(storage.container(‘tank truck’))
= Abort(storage)

This rule ensures that all liquid products must be stored within liquid-
compatible containers such as a drum, tank, or tank truck. This may seem to be a
trivial type of semantic constraint and some database management systems do allow
field value-constraining. However, examining this rule more closely one finds that the
value-constraint posed herein is contexi-sensitive (i.e., the “container” field value is
only constrained to “drum,” “tank.” or “tank truck,” when the value “product.type” is
equal to “liquid”). Some database management systems allow one to constrain field-
values, but these constraints are always applied (i.e., global to all records within that
table). As has been shown here the SDBMS promotes a semantic approach to value-
constraining, while at the same time centralizing the semantic information in the rule-
base. Certain values may be semantically constrained based upon the context of other
field values within that record. This notion of context need not be local to a single
record of a single table. For instance, one could semantically define a context based

on field value(s) of one or more records within a single table; one or more records

71

within a different table; one or more records within multiple tables; or even one or

more records within multiple tables governed by different relational database engines.

5.2 Cross-table Indexes (Cross-reference Tables)

When building reports it is often necessary to employ indexes to promote an
efficient means of sortation. Further, should the desired sortation scheme bridge two
or more tables, a standard database index is not possible (as indexes pertain to one or
more fields within a single table). Using SQL’s GROUP BY function, for example,
would allow one to arrive at the desired multi-table sortation. However, if access time
is paramount this approach may be undesirable as large tables may cause execution of
the GROUP BY command to take a considerable amount of time. In this scenario one
would ideally like to make use of a multi-table indexing scheme which was maintained
in real-time. In this manner an auxiliary table could be implemented, which would
contain the multi-table items required by the sortation in its primary key. This cross-
reference table would then have to be maintained in real-time in order to be
synchronous with the modifications/additions of the multi-table items contained
therein.

This scheme is particularly useful when two tables are required to represent a
single entity. For example, let us say that for any given product there exists
approximately two thousand field-values which are to be associated with that product.
Further, let us say that the database system which we have chosen to implement the
representation of this product information allows a maximum of one thousand fields
per table. Thus, to accomplish this representation scheme at least two tables are

required, each of which containing an identical primary key structure (e.g.. a single

72

field “product_id™), and splitting the two thousand or so fields between each of the
tables (e.g., table “productl” and table “product2”™). Let us then say that a real-time
maintainable cross-reference is required between one field of the “product1” table and

another field of the “product2” table. The following semantic rules accomplish this:

{C} product1.product_id(X) A product2.product_id(X)
~ —(cross_reference1.product_id(X))
~ product1 field1(Y) A product2 field2(Z)
= NewRecord(cross_reference1)
» cross_reference1.product_id(X)
A cross_reference1 field1(Y)
~ cross_reference1 field2(Z)
A Insert(cross_referencet)

{C} product1 field1[A}(X) A product1.field1(Y)
A product1 product_id(Z) ~ cross_reference1.product_id(Z)
= cross_referencet field1(Y)
A Update(cross_reference1)

{C} product2 field2[A}(X) A product2 field2(Y)
~ product2.product_id(Z) A cross_reference.product_id(Z)
= cross_reference1 field2(Y)
A Update(cross_referencet)

{R} production1.product_id(X) A production2.product_id(X)
» cross_reference.product_id(X)
=> Delete(production2) A Delete(cross_reference)

The first rule listed above handles maintenance of the cross-reference table due
to insertion of a new product. The next two rules handle maintenance of the cross-
reference table should one of the two field values which comprise the cross-reference
be changed. The last rule applies to deletion of a product and the subsequent deletion
of the secondary table extension and cross-reference table. The interested reader may
note that two additional rules have been left out, yet are nonetheless paramount to the

maintenance of the cross-reference table. These two rules would update the cross-

73

reference table should the “product id” field of either the “productl™ table or the

“product2” table would change. The rules themselves are left to the reader.

5.3 Maintained Pool of Logged Values

Certain systems may require a memory feature for values entered by the user
(i.e., an encyclopedia of previously used values). This is especially important with
today’s graphical user-interfaces (GUIs) where programmers wish to maximize the
“point-and-click” feature for their applications. A system utilizing this type of
environment might display a list of previously entered values for a given field and
allow the user to select one of those values (if applicable). It should also allow the
user to enter new values on-the-fly if the value required did not occur in the past.

Let us say that in our production plant system it would be useful to have a pool
of product types (e.g., a given product type might be “GASOUS10-3,” “GASOUS09-
1,7 “LIQUID21-17, etc.). Further, let us say that product types are often reused when
new product information is acquired and that the list of product types grows at a slow
rate. This would be a prime candidate for a maintained pool of values, allowing the
programmer to pull existing values from the pool to form a point-and-click list for the

user. The following simple rules maintain this pool quite well:

{C} product.type(X) ~ —(product_types.type(X))
=> NewRecord(product_types) A product_types(X)
A Insert(product_types)

{R} product.type(X) A —(product{2]).type(X))

~ product_types.type(X)
= Delete(product_types)

74

{C} product.type{A)(X) n —(product[2].type(X))
~ product_types.type(X)
= Delete(product_types)

The first rule handles the instance where a new product type is incorporated
into the pool. The second two rules remove a product type from the pool when (as in
the second rule) a “product” record is removed and there exist no other “product”
records which share its “type” field value, and when (as in the last rule) a product’s
type is changed and there exist no other “product” records which share that products

old “type” field value.

5.4 Constrained Field Value Acquisition

Conceivably one might want to constrain acquisition of certain field values
upon preceding acquisition of other field values. For instance, given the “schedule”
database which is to keep track of when, where, and how certain raw materials are to
be processed in what reactors to produce which products, it would not be practical to
assign a load time for a batch unless a reactor was first chosen to load the materials
into. One might wish to capture this semantic notion in the form of an SDBMS rule
and force the system to reject the acquisition of a schedule’s “load_time” field value
before its “reactor” field value has been assigned. Although this example may seem
nonsensical, its analogy can be applied to the extraction of complex information in
which the precedent value of X is absolutely required before value Y can be accepted

and verified by the system. The following type of semantic rule would suffice:

{A} schedule.load_time(X) A schedule.reactor(nuil)
= RejectValue(schedule.load_time)

75

5.5 System Maintained Meta-Tables

Sometimes it is important to track the day-to-day user actions in regard to
possible debugging of applications, report generations, or simply to maintain an audit
trail for later reference. In such a scenario one might wish to make use of a table
whose records relate which items have been acted upon at which times. It would be
nice if one could then explain, semantically, to the system that it is to keep track of
those actions and hence maintain the table without having to introduce or modify
existing program code to effectuate this task. For example, let us say that for
whatever reason it is important for our plant managers to keep track of the number of

chemicals deleted from the holding area on a daily basis. Consider the following rules:

{R} holding.chemical_id(X)
A —(chemical_removals.chemical_id(X))
= NewRecord(chemical_removals)
~ chemical_removals.chemical_id(X)
~ chemical_removals.instances(1}
~ Insert(chemical_removals)

{R} holding.chemicai_id(X) A chemical_removals.chemical_id(X)
A chemical_removals.instances(Y)
= chemical_removals.instances(Y+1)
A Update(chemical_removals)

Both rules are sufficient in maintaining a log of how many chemicals were

removed from the “holding” database.

5.6 Inferable Field Values

Many systems often require the use of default values or inferred information.
Often this semantic knowledge must be hard coded into an application program or

76

expert system which interfaces with the storage medium (database management
system). It would be nice if this semantic knowledge could be directly linked with the
information itself without the cumbersome addition of customized interfaces.

Inferable field values can span simple context-dependent value acquisitions to
maintenance of redundant data. The incorporation of this semantic knowledge into the
SDBMS gives it expert system-like capabilities. It closely couples artificial intelligence

techniques with the storage medium, centralizing both knowledge and data alike.

5.6.1 Default Field Values

Often database systems require default information to minimize the time
required by data entry and to add to the basic inferable information about a new item.
By “default” it is meant that those values are initially inferable, but may be overridden
at some point in the future. SDBMS default values are implemented using the format

of the following rules:

{C} manufacturer.country(null) = manufacturer.country(‘USA’)

{C} container.type(‘steel’) A container.thickness(>5.0)
A container toxic_compatible(null)
— container.toxic_compatible(‘yes’)

The first rule represents a globally defaulted value (i.e., in all contexts of a new
“manufacturer” record one can assume the value of field “country” to be “USA™). The
second rule makes use of context-dependence, defaulting the field “toxic_compatible™
to “yes” only if the container’s type is “steel” and its thickness is greater than 5.0.
Hence, by utilizing the nu/l parameter one may describe default values for any fields

under SDBMS control.

77

5.6.2 Standard Inferable Field Values

Standard inferable field value rules are those which relate the assignment of
one field value with the acquisition of another field value. Take, for example, the

foltowing rule:

{C} holding.chemical_id(X) A chemicals.id(X)
A chemicals.volatile(‘yes’)
= holding.special_handling('yes’)

This rule ensures that any volatile chemical which is incorporated into the
holding area should be flagged for “special handling.” The structure of these rules
may become quite in-depth, allowing for a complex array of integrated semantic
knowledge. One should note that the above rule will set the “special_handling” field
only within a certain context (i.e., when the given chemical is volatile). This does not
prohibit the user from directly setting the “special_handling” field to “yes™ if the
chemical is non-volatile. Should this be the only constraint for special handling of
chemicals, one might wish to incorporate the following rule, which would bullet-proof

the inference of the “special_handling” field:

{C} holding.chemical_id(X) A chemicals.id(X)
A —(chemicals.volatile(‘yes’))
= holding.special_handling('no’)

78

5.6.3 Maintenance of Redundant Data Via Inferable Field Values

Many implementations to date which require immensely large databases have
abandoned much of the database “normal form” conventions in an attempt to
maximize performance. This breach of convention often involves the integration of
redundant data—-long since considered a “dirty word” in database design and
development. However, redundant data can be extremely useful albeit cumbersome in
large systems which attempt to minimize the total number of access operations. For
instance, if our “chemical” database was absolutely immense and our “manufacturers”
database was equally large, the designer might opt to eliminate the “chemicals”
database which merges the unique keys of both tables to keep track of which
manufacturers supply which chemicals. Instead the designer might wish to tack on the
manufacturer ID to the “chemical” database which describes each chemical used by the
plant. Along these lines let us say that when a chemical is accessed it is important to
know AS SOON AS POSSIBLE what the manufacturer’s name is and what country
they are located in. Traditionally, the manufacturer’s name and country should be held
within the “manufacturer” database, and would hence require a secondary access to
move from the “chemical” database to the “manufacturer” database. This same
technique would actually involve three look-ups if we made use of a “chemicals”
database, as we would (1) access the “chemical” database, then (2) access the
“chemicals” database to determine the manufacturer ID, and finally (3) access the
“manufacturer” database to determine the manufacturer’s name and country. By
adding the manufacturer’s ID, name, and country to the “chemical” database we
reduce the number of required accesses from two or three down to a single access.

However, by doing so we introduce redundant data into the system. Since our

79

production plant has plenty of computer information space available, the vote is to
increase performance at the expense of space, so our database designers must concern
themselves with the maintenance of this redundant data, since failure to maintain
redundant information would no doubt result in inconsistent and erroneous data. The

following rules allow maintenance to flow simply from the semantic model:

{A} chemical.mfg_id(X) A manufacturer.id(X)
~ manufacturer.name(Y) A manufacturer.country(Z)
— chemical.mfg_name(Y) ~ chemical. mfg_country(Z)

{A} chemical.mfg_id(X) A =(manufacturer.id(X))
= RejectValue(chemical. mfg_id)

{C} chemical.mfg_id(null)
= chemical. mfg_name(null) A chemical mfg_country(null)

Thus, we ensure that redundant data is maintained properly. However,
examining this problem more closely one will see that the above rules handle the
redundancies arising from the “chemical’” database to the “manufacturer” database, but
not vice versa. Taking note of the following SDBMS rules one will see why the above

rules are necessary but not sufficient to handle redundancy maintenance:

{C} manufacturer.id[A](X) = Abort{ manufacturer)

{C} manufacturer.name[A)(X) A manufacturer.name(Y)
A~ manufacturer.id(Z) A~ chemical.mfg_id(Z)
— chemical. mfg_name(Y) A Update(chemical)

{C} manufacturer.country[A](X) A manufacturer.country(Y)

~ manufacturer.id(Z) A chemical.mfg_id(Z)
— chemical. mfg_country(Y) A Update(chemical)

80

The first rule ensures that once a manufacturer has been assigned an 1D it can
never be reassigned. The second rule will modify all relevant “‘chemical” records in the
event that the manufacturer’s “name” designation changes. The third rule functions in
a similar capacity, maintaining “country” modifications.

With the integration of these simple SDBMS rules the database management
system may boast an increase in performance brought forth by data redundancy while
at the same time ensuring that no inconsistencies will arise because of such

redundancy.

5.6.4 Automatic Manipulative-assignment of Inferred Field Values

Certain applications may require the system to assign identification numbers to
new entries, facilitating a unique identification scheme and tracking over the life time
of those items. Often for systems which boast a large amount of new item acquisitions
and which operate under a multi-user environment, user-assignment of unique
identification is not possible. Rather it is left to the system to carry-out some form of
automated ID assignment. Given the production plant scenario let us say that new
customers are continually being associated with the plant, and that a unique ID is
required for each customer to facilitate orders, shipping, billing, etc. Further, since
many different users may be entering new customers into the system it is not possible
to rely on user-assignment of those unique IDs. The following rules handle automatic

assignment of customer IDs as they are acquired:

{C} customer.name(X) A numbers.table(‘customer’)
~ numbers field(‘id’) A numbers.number(Y)
= customer.id(Y+1) A numbers.number(Y+1)
»~ Update(numbers)

81

{C} customer.id[A])(X) = Abort(customer)

In this example the production plant database management system makes use
of a “numbers” database which associates the last used ID number for a given
“table”/field” pair. Thus, as a new customer is entered the “number” field value of
the “numbers” record identified by “customer”/“id” will yield the last used ID number.
Adding one (1) to this number results (simply) in the next useable unique customer ID.
The first rule listed above accomplishes this quite well, assigning the new ID to the
new “customer” record and updating the “numbers” database with the newly used
value. The second rule ensures that once an “id” has been assigned to a “customer”
record it may never be altered--as we have given the system complete control over the

numbering scheme.

5.6.5 Indirect Automatic Manipulative-Assignment of Inferred Field
Values Through Redundant Data

Given redundant data the system may allow users to define a new record in
table A, as a repercussion of inserting a new record into table B. Proceeding along the
lines of required redundant data with the chemical/manufacturer relationship consider

the following semantic rule:

{C} chemical.mfg_name(X) A ~(manufacturer.name(X))
~ numbers.table(‘manufacturer’) A numbers.field(‘id’)
A numbers.number(Y)
= chemicals.mfg_id(Y+1)
A NewRecord(manufacturer)
A manufacturer.id(Y+1)
~ manufacturer.name(X)
TAN
A Insert(manufacturer)

82

A numbers.number(Y+1)
~ Update(numbers)

In this rule the system allows the user to define new manufacturers on-the-fly
while inputting new chemical information. The rule tests the entry of the
“chemical mfg_name” field with its possible existence in the “manufacturer” table, and
if it is not found there, inserts a new “manufacturer” record with automated 1D
assignment. One should be careful, however, with such rules since the manufacturer’s
name may not be unique among manufacturers. Indeed, should the user miss-type the
name of an existing manufacturer, the system would (by this rule) insert the miss-entry
as a new manufacturer with a new unique ID--definitely nor a desired side effect. To
combat this problem one could incorporate a new SDBMS function ConfirmUnique
which would take a <table> <field> pair as one parameter and a value as a second
parameter and display all close references to that value within the <table> The
function would then request confirmation of the value versus the existing close values.
Confirmation of the value’s uniqueness (i.e, a TRUE result returning from the
ConfirmUnique function) should be sufficient to indicate firing of the above rule.
Syntactically the rule might be rewritten as follows (taking into account the

requirement for user-confirmation):

{C} chemical. mfg_name(X) ~ ~(manufacturer.name(X))
A ConfirmUnique(manufacturer.name, X)
A~ numbers.table(‘manufacturer’) A numbers field(‘id’")
A numbers.number(Y)
> chemicals.mfg_id(Y+1)

~ NewRecord(manufacturer)

~ manufacturer.id(Y+1)

~ manufacturer.name(X)

A ... ~ Insert(manufacturer)

A numbers.number(Y+1)

~ Update(numbers)

83

5.7 Semantic “Key” Violations

Designers of SDBMS database systems need not be content with the simple
key violations of typical relational systems, but may rather describe semantic context-
dependent constraints which constitute rejection of committed records. Perhaps
certain combinations of field values for a given record would be impossible or
undesired. By representing this knowledge in the form of semantic rules one gives the
system the capability of rejecting unmeaningful, inconsistent, or impossible
information. The following semantic rule disallows the event of producing a toxic

product directly after the production of a non-toxic product in the same reactor:

{C} schedule.type(‘toxic’') A schedule.prior_serial_no(X }
A schedule[2].serial_no(X) A —{ schedule[2].type(‘toxic’))
= Abort(schedule)

By using semantic rules the SDBMS may extend the capabilities of more
primitive database management systems. The following rule allows a database
management system to disallow a null key entry, even though the DBMS would be

incapable of such restrictions:
{C} in_process.product_id(null) = Abort(in_process)

Using the SDBMS Abort command allows the system designer to describe
semantic or meaningful reasons for why certain combinations of values would be
inappropriate. It gives the designer the ability to define these constraints in a context-

dependent manner and centralizes this knowledge into a unified rule-base.

84

5.8 Built-in Referential Integrity

Many new database management systems boast the ability to control referential
integrity from within the database system itself. However, older or more primitive
systems still rely on external means with which to manage referential integrity (see
chapter 3 for a discussion of referential integrity). By defining referential integrity in
the form of semantic rules one accomplishes two feats: (1) all database management
systems under SDBMS control may now support referential integrity, (2) referential
integrity is centralized into a readily accessible knowledge base and hence all database
systems share the same representation scheme (i.e., one need not concern oneself with
the differences of how two databases engines would handle referential integrity). The
following example depicts a referential integrity scenario and the semantic rules which

would maintain such integrity:

Referential integrity:
schedule. product_id — product.id
Insertion into the “schedule” database:

{A} schedule.product_id(X) A =(product.id(X))
= RejectValue(schedule.product_id)

Deletion of “schedule” record--OK since deletes do not cascade
upward to “product” database.

Insertion/modification of “product” record:
{C} product.id[A}{ X) ~ schedule.product_id(X)

A product.id(Y)
=»> schedule.product_id(Y) A Update(schedule)

Deletion of “product” record:

85

{R} product.id(X) A schedule.product_id(X)
= Delete(schedule)

Thus, with these few simple semantic rules we are able to maintain the
referential integrity of schedule.product id — product.id, providing any database
management system under SDBMS control with the means to manage referential

integrity.

5.9 Semantic Rejection of Values

Much in the same way one can define the semantic constraints under which
records may be rejected, one may also define semantic constraints under which field
values may be rejected. Again field value rejection need not be defined globally (e.g.,
in the case of “field F| may only contain the values A, B, or C, and no others™), but
rather may be described in a context-dependent manner (e.g., “field F| may normally
contain the values A, B, or C, but may contain the field value D if the value of field Fy

is E,” etc.). Take for instance the following:

{A} —(storage.container(‘drum’ }) n —(storage.container(‘tank’))
A —(storage.container(‘tank truck’))
~ —(storage.container(‘cardboard box’))
~ —(storage.container(‘plastic bag’))
~ —(storage.container(‘paper bag’))
FANN
= RejectValue(storage.container)

{A} storage.product_id(X) ~ product.id{ X) A product.type(‘liquid’)
A —(storage.container(‘drum’))
A —(storage.container(‘tank’))
~ —(storage.container(‘tank truck’))
— RejectValue(storage.container)

86

In this example the first rule globally defines the valid values of field
“storage.container,” while the second rule constrains those values to a specific subset
should the type of product to be stored be “liquid.” This technique may also be used
to define certain aspects of referential integrity (as described above) and to control

redundant data (also mentioned above) as in the following:

{A} chemical.mfg_name(X) ~ chemical.mfg_id(Y)
~ manufacturer.id(Y) A —(manufacturer.name(X))
= RejectValue(chemical mfg_name)

Thus, we ensure that any change to the redundancy of the manufacturer’s name
in the “chemical” table must jive with the manufacturer’s ID to be accepted by the

SDBMS.

5.10 Extended Referential Integrity

By using semantic rules the SDBMS is capable of handling extended
referential integrity (as was described in chapter 3). To reiterate, extended referential
integrity is similar to standard referential integrity except that constraints may be
defined which do not insist upon specifically matching foreign keys, but rather may be
dependent on the simple field values of other records, or even the existence of several
other records. The following rule insists that an “in_process” record may not contain
the value ‘toxic’ in the simple field “type” unless there exists af least one record in the

“product” table whose simple field “type” contains the value ‘toxic.":

{A} in_process.type(‘toxic’) A —(product.type(‘toxic’))
= RejectValue(in_process.type)

87

5.11 Context-dependent Forced Value-acquisition

Certain contexts may insist that specific field values be acquired from the user

(or program interface). Take for example the following SDBMS rule:

{C} in_process.product_id(X) A product.id(X)
A product.type(‘toxic’) A in_process.handling_auth(null)
=> AcquireValue(in_process.handling_auth)

This semantic rule ensures that any production of a toxic product must be
accompanied by a handling authorization number before proceeding. Hence, with this
type of rule we force the interfacing entity to obtain a handling authorization number

before the record may be committed to the “in_process” database.

512 Concluding Remarks On SDBMS Representation of Database
Semantics

One could continue to identify a potentially endless roster of semantic
information representable by the SDBMS rule-based language. The types of semantic
information which regulate the manipulative aspects of a given database system may
range anywhere from simple inferable field values to complex integrity maintenance.
Rules need not only reference single types of database management systems, but may
rather reference a host of differing databases, all of which requiring unique database
engine interaction. Thus, semantic knowledge may span many different database
implementations, providing a means for universal data exchange and platform

independence.

88

We have seen that complex semantic information can be easily represented
with this rule-based language, providing a close coupling of knowledge and data. This
close coupling is important for both developer and user in that semantic information
may be readily accessible to both. The developer need no longer be concerned with
producing complex customized programs to implement semantic knowledge as has
been required with most of today’s database management systems. By adding a few
simple semantic rules to the system the developer may accomplish complex tasks
which in the past would have required integration of complex interfaces, customized
programs, or even loosely coupled expert systems. Semantic rules which are added to
the system may be done so by a host of developers, centralizing all semantic
knowledge and making semantic changes readily available for all developers. Users
may find the rule-base indispensable not only in the sense that the system itself would
automate much unnecessary data entry and maintenance, but also in the sense that the
rule-base itself may be used to inform them of semantic repercussions due to certain
actions on the data. By associating a documentation paragraph with each semantic
rule an interested user would be able to browse through the semantic information
embedded in the rule-base. This could be carried out by using backward-/forward-
chaining methods to determine applicable rules to a <table> <field> pair requested by
the user and displaying appropriate documentation associated with those rules.

At best the SDBMS minimizes the often haphazard integration of independent
customized applications required to implement semantic aspects of database
manipulations, eliminating the problem of modification migration from customized
program to customized program. One gains a powerful means to semantically and

universally centralize enormous amounts of shared data.

89

6.0 THE SDBMS SEMANTIC INTERFACE (Sl)

We finally concern ourselves with the basic requirements for Aow a user,
developer, or even a program might interact with the SDBMS. The SI's primary
function is to provide a means for a user, developer, or program (henceforth referred
to as the “operating entity”’) to manipulate a universal array of relational data through
a single interface. The SI shuttles the operating entity’s SDBMS command to the SE
where it is interrogated by applicable rule-base(s), processing any semantic
repercussions brought forth by the command. The Sl itself may take different forms

depending on the type of operating entity.

6.1 Semantic Interface to the User

The most notable database manipulative aspects concerning human operating
entities (users) would lie in the areas of (1) finding the intended data to be modified,
(2) acquiring a basic understanding of the intended data (if necessary), and finally (3)
modifying said data. Given the first point the user must have the capability of
precisely identifying the database which he/she intends to modify (i.e., the user must
specify the correct database by matching it with an item in the SDBMS symbol
dictionary). Once the database symbol is acquired from the symbol dictionary the
SDBMS has an immediate understanding of the database’s type (i.e., which database
engine is required to manipulate it), its structure, and its location on some (potentially
networked) storage device. With this information the SDBMS is able to “open” the
specified database (i.e., acquire the database as a resource), refer to the database’s

semantic rule-base, and “open” any databases which may be affected by the rules

90

regulating that database’s semantic integrity. However, identifying the correct
database symbol could pose a substantial problem for the user as the SDBMS symbol
dictionary may be quite large. To combat this problem the SI could make use of a
simplistic form of natural language processing (NLP) to assist the user in his/her
navigation through the symbol dictionary.

Having the database administrator attach one or more descriptive sentences
(documentation) to a database symbol during its creation would provide at least some
form of natural language assistance during database navigation. Applying the same
scheme to a database’s structure (i.e., attaching descriptions to field names) would
provide an even more detailed synopsis on a given database’s purpose. The
envisioned result would be a form of information browser which would take an initial
list of keywords from the user, query those keywords against the descriptions of
entries in the SDBMS symbol dictionary, and generate a list of descriptions to
potential tables matching the user’s criteria. The user could then browse through this
list, perhaps issuing further keyword constraints, until the desired database is
identified.

The second aspect of user interaction concerns itself with the user acquiring a
“basic understanding of the database” which he/she intends to manipulate. By this it is
meant that the user may be curious about repercussions of certain database
manipulations. For example, if a user asks the question “if I update field o, of table a,
what tables (if any) will be affected by the action?” By consulting the given database’s
semantic rule-base, an answer to this question may be automatically compiled by
forward-chaining on the <table> <field> pair in question. This ability to navigate
through semantic repercussions constitutes a form of semantic browser in that the user

may be made readily aware of semantic aspects concerning database manipulations.

91

The information and semantic browsers would prove especially indispensable
with regard to database systems intended to train individuals in the workings of the
particular domains which are represented by the database systems. The same
methodology could be applied to a user asking why a particular inferable field value
came to be as the result of a certain database manipulation. In short, the same
descriptive capabilities, previously boasted only by expert systems, are now possible
with regard to database manipulations through use of the SDBMS.

Once the symbol for the desired database is made aware to the user he/she may
manipulate the data as desired, issuing SDBMS commands to the SI, which then
hands-off to the SE for processing. Certainly the use of today’s graphical user
interfaces (GUIs) along with advanced NLP integration would be most useful in this
type of interface. Whatever the interface the most important duties of the Sl is to
assist the user in navigating through the vast array of available information and provide
a single interface capable of accessing multiple database engines and hence universally

centralizing information.

6.2 Semantic Interface to the Designer/Developer/Database
Administrator

SI aspects which apply to the general user would certainly assist a designer/
developer/database administrator. Beyond the ability to browse through existing
information (via the symbol dictionary) and the semantic links between them (via the
rule-base) it would be nice to include some computer assisted software engineering
(CASE) tools with respect to the acquisition of rules. Some developers may find the
logical language of the SDBMS complex and confusing. CASE tools could be

developed to ease the generation of complex rules. Referential integrity rules, for

92

example, could be generated quite easily by acquiring from the developer the two
<table> <field> pairs to be linked and having the system prompt the developer for
specific actions pertaining to cascade effects. Take the following scenario for

example:

Developer's requested referential integrity:

schedule. product_id — product.id

SDBMS automatic generation of rule for insertion into the
“schedule” database:

{A} schedule.product_id(X) A —(product.id(X))
= RejectValue(schedule.product_id)

SDBMS automatic generation of rule for insertion/modification of
“product” record:

{C} product.id[A){ X) A schedule.product_id(X)

A product.id(Y)
= schedule.product_id(Y) A Update(schedule)

SDBMS:

“Should deletion of schedule record(s) remove the applicable
product record(s)?"

Developer:
“No.”
SDBMS:

(Deletion of “schedule”’ record--OK since deletes do not
cascade upward to “product” database.)

SDBMS:

“Should deletion of product record(s) remove the applicable
schedule record(s)?”

93

Developer:
‘Yes.”

SDBMS automatic generation of rule for deletion of “product”
record:

{R} product.id(X) A scheduie.product_id(X)
= Delete(schedule)

These automations can be accomplished by making use of the following

pseudo-code template for referential integrity rule acquisition.

REFERENTIAL INTEGRITY(a..y — B.B1):

GENERATE:
{A} a.on(X) A =(B.Bi(X))

— RejectValue(a.a)

GENERATE:
{C} BBAK X) Aaas(X) ABB(Y)
> a.ai{ Y) A Update(a)

IF (“Should deletion of a record(s) remove the applicable
record(s)?” == YES) THEN GENERATE:
{R} cas(X) A B.Bs(X) = Delete(B)

IF (“Should deletion of B record(s) remove the applicable a
record(s)?” == YES) THEN GENERATE:
{R} BB X)Aa.aq X) = Delete(a)

Conceivably, additional templates could be configured for other types of
semantic rules, thus easing the rule acquisition process. With this approach developers
can quickly embed complex semantics directly into the databases themselves without

the need to integrate tedious customized programs.

G4

Attaching one or more sentences of documentation to each rule (much in the
same way as described for the symbol dictionary) would provide the means for a
semantic-rule browser. With the use of such a browser developers could quickly and
intelligibly navigate through the vast array of semantic rules. Given a database symbol
acquired from the developer the SI could produce a visual map which would provide
an overview of tables used by the given database (i.e., those tables appearing within
the antecedent of rules applicable to the database) and tables affected by the given
database (i.e., those tables appearing within the consequent of rules applicable to the
database). The visual map could then be extended by applying the same scheme to
each of the tables linked to the originally queried database. Merging this type of
browser with descriptions of each table and its fields can produce a highly detailed
diagram of how the information is intended to interact--even cross-platform interaction
(i.e., interaction between differing database engines). Once again the SDBMS has
achieved centralization of information and a universal interface for both user and

developer alike.

6.3 Semantic Interface to Programs

Although the need for customized programs which interact with databases has
been greatly minimized by the SDBMS (as has been previously noted), it may still be
necessary from time to time to link database information to specific applications. This
would most likely be the case for automated information acquisition, automated
reporting, etc. The programmer would no doubt find the browsing capabilities of the
SDBMS indispensable in developing such programs. The browsers would be used

during development of the applications to acquire the necessary database symbols

95

required for data manipulation through the SDBMS. Once the database symbols are
known the programmer would embed the respective SDBMS commands directly into
the application. The SDBMS would, in effect, function much in the same way as a
typical database engine, requiring the program to first procure a linkage between itself
and the SDBMS, and then send the desired SDBMS commands directly to the SE for
processing. Thus, use of the SDBMS would provide application designers with a
seamless linkage to many different types of databases, while maintaining a single type

of programming interface for all engines.

7.0 SDBMS PROTOTYPE IMPLEMENTATION

An SDBMS prototype was developed for use under Microsoft™ Windows
3.1x. The system was written in C using the Borland™ C++ 4.0 compiler and utilized
Borland’s Paradox™ Engine as its database platform. The prototype was intended to
demonstrate the basic functionality of the three categories of semantic rules--
(A)quisition, (C)ommittal, and (R)emoval--and provide proof of concept for the
methodologies presented in chapter 4.

The prototype consists of a main window which allows the user to view one of
several Paradox databases by selecting the desired database from a drop-down
combobox located in the upper left corner of the main window. Once a database is
selected the main window will display the valid fields of the chosen database and the
field values of the first record in the database. Figure 11 depicts the main window
when displaying a record in the “INPROC” database.

The button-bar located at the top of the main window allows the user to define
a new record to be inserted into the current database; search for a particular record in

the current database (see figure 12a); delete the currently displayed record, queue the

90

next or prior record in the database (as sorted by the database’s primary key), quif the
prototype; ask why the last semantic repercussion(s) occurred; or undo any changes
made to the currently displayed record. To change a particular field’s value one
simply moves the cursor to the appropriate edit box within the main window and

enters the respective information.

7.1 Implementation Model of the SDBMS Prototype

The chosen model for implementation is that which was described in section
2.1 above. Figure 7 depicts the model and some of the databases used to represent the
information of a fictitious production plant. Appendix B gives a listing of the semantic
rules which were included in the prototype.

The prototype was designed to demonstrate the basic functionality of SDBMS
semantic rules. As was detailed in previous chapters, any semantic rule may be
reduced to a SEARCH-TEST-ACT chain, and it is the processing of these chains
which has been directly implemented within the prototype. The rules themselves are
stored within two databases. The first database, “SE RULE,” references the rule’s
type (acquisition, committal, or removal); the <table> or <table>.<field> to which the
rule applies--facilitating forward-chaining; the rule’s id, and a natural language reason
for why the rule would potentially fire. The second database, “SE_CHAIN,”
references the SEARCH-TEST-ACT components of the rule. For any given rule there
exists x number of records found within this table--one for each component in the
rule’s SEARCH-TEST-ACT chain. Each record contains the following: the rule’s id,
the component’s sequence in the chain beginning with 1; the chain component’s

command (e.g., test, search, set, abort, rejectValue, update, insert, etc.); and three sets

97

of fields defining the two operands and the operator of the command (i.e., the

command’s parameters). Take for instance the following rule, its SEARCH-TEST-

ACT chain, and its representation within the two tables utilized by the prototype:

3300. {A} holding.chemical_id(X) A chemical.id(X) A
chemical.name(Y)
= holding.chemical_name(Y)

RULE: A/holding.chemical_id
SEARCH: chemical.id = holding.chemical_id
TEST: €
ACT: Set(holding.chemical_name = chemical.name)
“A chemical ID implies a specific chemical name.”
SE_RULE:

RULE TYPE: “A”

TABLE: “HOLDING.CHEMICAL ID”

RULE ID: “3300
REASON: “A chemical ID implies a specific chemical name.”

SE_CHAIN:

RULEID: *3300"

SEQUENCE:"1”

COMMAND: “SEARCH"

LOP1: “CHEMICAL.ID"

OP1: ="

ROP1: *“HOLDING.CHEMICAL ID”

RULE ID: “3300"
SEQUENCE:"2"
COMMAND: "TEST"
LOP1: “<EXIST>"
OP1: =

ROP1: “<TRUE>"

98

RULE ID: “3300"

SEQUENCE: 3"

COMMAND: “SET”

LOP1: "HOLDING.CHEMICAL NAME”
OP1: ="

ROP1: "CHEMICAL.NAME"

7.2 Core Semantic Engine Functions

The SE itself was written in C and uses several generic database functions to
control semantic context and manipulate the Paradox databases. The core SE

functions are as follows:

SE_SetField(<tableName>, <LGIndex>, <fieldName>, <fieldValue>),
SE_InsertRecord(<tableName>, <LGIndex>),

SE_UpdateRecord(<tableName>, <LGlIndex>);

SE_DeleteRecord(<tableName>, <LGIndex>),

The SE_SetField function is used to access semantic context. Setting a field
for a given <tableName> and <LGIndex> will associate that field value with the record
buffer for <tableName>/<LGIndex>. The <LGIndex> parameter is used to keep track
of two or more records of the same type--i.e., one may wish to access the same table
in two or more record locations, maintaining record buffers for each. A call to the
SE SetField function initiates a search of the “SE_RULE” database for any
acquisition-type rules applicable to the <tableName> <fieldName> which is to be set.
Should an applicable acquisition rule be found, its SEARCH-TEST-ACT chain is
processed--each applicable record of the “SE_CHAIN" database. This command is
called from the Windows interface each time a user enters a field value. Any
consequents which arise from a rule’s firing are stored within the SE’s reason chain.

The current reason chain may be accessed at any time by pressing the “Why?" button

99

located in the button bar on the main window. Figure 12c depicts a portion of a
reason chain which would be presented to the user upon pressing the “WHY?” button.
Should a user enter a value which ultimately resuits in a RejectValue consequent, an
audio alert sounds and the old value (if any) is reset. Pressing the “Why?” button at
this time allows the user to determine the reason for that particular value’s rejection.

The SE_InsertRecord command is called whenever a new record is entered
from the interface. To enter a new record the user first presses the “New” button,
enters the subsequent field values relative to the new record (causing the SE to
consider any/all relevant acquisition rules), and commits (inserts) the record into the
database. Committal automatically occurs when the user presses any button in the
button-bar or selects a new table to view. When the SE InsertRecord command is
called, the SE searches the “SE_RULE" database for any relevant committal rules
associated with the <tableName>. Any consequents which arise from fired committal
rules are stored within the reason chain and may be accessed via the “Why?" button as
described above. Should a committal rule result in an Abort consequent, a message
box appears (figure 12b), and the record continues to be displayed until the
information is verified by a subsequent committal or the “Undo” button is pressed.
Once all rules have been considered and no Abort-consequent is inferred, the record is
inserted into the database.

The SE UpdateRecord command is called when a user commits new
information for a pre-existing record. The functionality is for the most part identical to
SE InsertRecord. However, when all rules have been considered and no Abort-
consequent arises, the record is updated as opposed to inserted. Similarly the
SE DeleteRecord command processes any removal rules associated with the
<tableName>, and, should no Abort-consequent occur, removes the record from the

database.

100

7.3 SEARCH-TEST-ACT Chain Processing

The SE incorporates a recursive strategy when processing rules. Whenever a
SEARCH occurs, an internal multiple loop is initiated--as described in chapter 4. At
this point, should the initial search succeed, the rest of that SEARCH-TEST-ACT
chain is processed with respect to the binding of that searched-out record. Upon
completed processing of the chain, control returns recursively to search for the next
valid record meeting the given criteria, and, should a “next” record be found, the
remainder of the rule is again processed with respect to the new binding. This internal
multiple loop continues until no more records may be found. This strategy is
analogous to the notion of unification and exhaustive search mechanisms of Prolog.

The recursive nature is further employed during forward chaining. Take for
example rule 2500 of Appendix B. One of the consequents of this rule initiates an
SE_SetField for the “volatile” field of the currently queued “products” record. Thus,
by calling SE_SetField any acquisition rules applicable to “products.volatile” wilt be
considered and potentially fire (in fact, rule 1700 of Appendix B would fire)--the firing
of those consequents possibly chaining further in the rule-base. Similarly the Update
consequent of rule 2500 would result in forward-chaining on any committal rules

associated with “products.”

7.3.2 De-aliasing Within SEARCH-TEST-ACT Chain Processing

A de-aliasing strategy is used within SEARCH-TEST-ACT processing to yield
specific bindings within the rule. For example, the operand “<DELTA> products.id”

would be de-aliased to yield the delta (last) value of the “id” field for the currently

101

queued “products” record. The operand “products.id” would be de-aliased to yield
the current value of the “id” field of the currently queued “products” record. The
“<EXIST>" operand is de-aliased to be either “<TRUE>" or “<FALSE>" depending
on whether the last SEARCH was successful. Once a particular parameter is de-
aliased it may be acted upon by the command. The SE’s de-aliasing of parameters 1s
somewhat equivalent to the binding/unification which occurs in Prolog when moving

from a variable-designation to a bound value or calculation.

7.4 SignatureC™

Although the semantic engine currently links to only Paradox databases (i.c.,
the prototype is homogeneous with respect to a single database engine), the system
was developed using a powerful database engine front-end--Signature ('™ This
front-end engine was developed over a two-year period by this author and co-
developed by Robert S. Voros. Signature C is a database engine CASE (computer-
aided software engineering) tool which acts as a generic interface to the Paradox
engine and eases program coding. The SDBMS semantic engine was built as a front-
end to Signature C. Take for example the following lines of code (Paradox engine vs.

Signature C):

PARADOX ENGINE...

char buffer{40];
TABLEHANDLE tblHandle;
RECORDHANDLE recHandle;

PXTblOpen(“C\KEY\ADATABASE\se_rule”, &tbiHandle, 0, 1 };

PXRecBufOpen(tbiIHandle, &recHandle),
PXRecBufEmpty(recHandle),

102

PXPutAlpha(recHandle, 1, "A”),

PXPutAlpha(recHandle, 2, “CHEMICAL”)

if (PXSrchKey(tbiHandle, recHandle, 2, SEARCHFIRST) ==
PXSUCCESS)

{
PXRecGet(tbiHandle, recHandle),

PXGetAlpha(recHandle, 3, 40, buffer);

}
SIGNATURE C:

LG_SetField(“SE_RULE", 1, “RULE TYPE", “A"),
LG_SetField(“SE_RULE”, 1, “TABLE", “CHEMICAL"),
if (LG_Search(“SE_RULE”, 1, “KEY”, 2, SEARCHFIRST))

{
LG_GetField(“SE_RULE”, 1, “RULE ID", buffer),

As one can easily see signature C considerably reduces the codification
required for database integration. Signature C was designed on the premise that
fundamental database operations are shared by every relational database system (e g,
setting field values, retrieving field values, searching, inserting, deleting, etc).
Although the SDBMS prototype is admittedly homogeneous with regard to Paradox
databases, it can be stated that it is heterogeneous-ready. By modifying Signature C
routines to access other database engines one may gain a heterogeneous system.
Hence, this heterogeneous system would be obtained by enhancing the database engine
front-end while leaving domain-specific application code untouched (i.e, one need

only enhance Signature C not the semantic engine to gain a heterogeneous system).

103

7.5 Execution of the Prototype

Let us examine a particularly complex operation (i.e, complex for the
SDBMS--not the user) to understand how the prototype functions. Let us say the user
enters a new record for the “INPROC™ table as depicted in figure 11. Upon attempted
committal of this new record rule 2700 is first considered. In essence this rule
attempts to verify that all chemicals which are listed within the product’s recipe exist
within a record of the “holding” database (recall the “recipe” records define which
chemicals/quantities are required to produce a given product, while the “holding”
database lists which chemicals and quantities thereof are currently available at the
plant). Should there exist a particular chemical which is referenced in the product’s
recipe which does nof exist within the “holding” database, the committal of the new
record is aborted (i.e, if no “holding” record exists for a given chemical, the system
may infer zero quantity of that chemical, and if there exists zero quantity of a chemical
which is required to make a product, then that product cannot be produced). If this
particular rule does not fire, then one can be certain that all required chemicals are
currently inventoried at the plant. Note that this rule does not necessarily maintain
that there is sufficient quantity of required chemicals at the plant, but simply that all
required chemicals are present at the plant.

Rule 2800 would be considered next. This rule is similar to rule 2700, except
that it concerns itself with the actual quantities of chemicals currently inventoried at
the plant. For each chemical listed in the product’s recipe there must be sufficient
quantity of that chemical in holding. Hence, should x quantity of chemical y be
required to make product z and there exists <x quantity of chemical y currently at the
plant, then product z cannot be produced and the committal of the new in-process

record must be aborted.

104

Rule 2900 would next be considered (provided an Abort has not already
occurred). This rule performs two important tasks: first, it updates the quantities of all
chemicals in holding which are required to make the new product based on its recipe,;
second, it inserts a new record into the “INPRCHEM” (in-process chemical) table,
which keeps track of which chemicals are in-process making which in-process
products. If there exists x -z quantity of chemical y in holding and z quantity is
required to produce product p, then the holding quantity of chemical y is modified to
equal x-z. Note that setting the “quantity” field of the “holding” record for chemical y
forces the consideration of any relevant acquisition rules. Similarly, the update of the
“holding” record forces the consideration of any relevant committal rules.
Subsequently setting the fields of a new “IMPRCHEM” record and inserting that
record results in consideration of any respective acquisition and committal rules
respectively. In particular, should the “INPRCHEM” chemical ID be set to one which
references a volatile chemical, rule 900 ensures the proper “special handling” setting
for that new chemical in-process.

Thus one sees the power of the SDBMS as a simple insert of a record into a
particular database can not only test the semantic validity of such an action (as
depicted in the verification of proper chemical quantities based on a product’s recipe),
but may also cause a semantic repercussion which may affect one or more records of
one or more differing tables--normally thought of as simple reservoirs of information,

but now semantically linked by the SDBMS.

8.0 CONCLUSION

Clearly, since the use of database management systems has saturated virtually

every facet of commercial, scientific, and educational domains, it has become a

105

necessity to make this information more accessible to more users. By directly
incorporating high-level semantics into the basic functionality of today’s database
systems through the use of the SDBMS one accomplishes many feats. The most
important contribution of this work is perhaps the centralization of vast amounts of
information stored within differing database platforms through a universal semantic
interface. By themselves relational database systems have proven to be not much
more than mere vessels of information, each having limited knowledge (if any) of the
databases around them--and no knowledge of databases govermed by different
database management platforms. Integration of the SDBMS allows these “blind”
databases the essential ability to communicate with one another. Semantic knowledge
may be coded into SDBMS rule-bases to connect two or more tables of potentially
differing platforms, thus centralizing a vast amount of information. For example, an
employee database governed by database engine A may now be semantically linked to
a payroll database governed by a different engine B which otherwise would have not
been possible. With the ability to unify many different database systems the global
information exchange is increased considerably. Companies need no longer create
redundant databases to capture like-information in differing platforms as the
information may flow seemlessly from system to system through the SDBMS.

Another important contribution of the SDBMS is the notion of linking a
semantic knowledge-base with each database. These knowledge-bases embody the
complex semantics associated with the various databases--semantics capable, for
example, of answering such questions as: “What is the underlying meaning of
changing a product type from solid to liquid?” A transition of this type does not
merely effect the superficial modification of a single field-value, but may in fact result
in a causal chain of events required to maintain the semantic integrity of such a

change; a change which could possibly effect multiple records in multiple tables

106

spanning multiple platforms (e.g., storage container types for a liquid versus a solid
may require modification as well--a bottle versus a cardboard box; reactor privileges
required to make such a product might be dictated by its type--solid or liquid--and
thus would require a change in scheduling the production of that product; etc.).
Hence, the SDBMS rule-base is able to both represent and implement these data-
manipulative semantics.

Throughout this dissertation it has become clear that the semantic aspects--the
meaning--of a database extends far beyond the simplistic notion of a data structure
(i.e., keys, field data types, referential integrity, etc.). Data semantics span from the
internal dependencies of a single record’s field-values to cross-table/cross-platform
dependencies of other records. It has been shown that the context or state of a record
can effect its causal relationship(s) with other field values, other tables, or even other
platforms. Depending upon its field values simple generic rules may not always apply
to records, but may rather require many rules describing the various states which may
occur within that record which would cause data-manipulative repercussions
elsewhere.

It has been shown in the preceding chapters of this dissertation that the
SDBMS’s rule-based language is capable of overseeing such data-manipulative
semantic aspects as integrity management, data consistency, forced-redundancy
verification, field-value inferences, context-dependencies, data type checking, security,
etc. In a sense the SDBMS acts as an automated database administrator, overseeing
much (if not all) of the operations which were previously only possible through human
intervention or the tedious integration of customized programs. With the fusion of
rule-base technology with existing database technologies the SDBMS makes primitive
database management systems far more powerful and makes powerful database

management systems more flexible. Database systems may be developed and

107

implemented on-the-fly, embedding complex semantic aspects which were previously
only boasted by semantic modeling schemes, but which are now directly implementable
through the SDBMS rule-based language. Database systems themselves may be more
readily understood by both developers and end-users alike given the extensive
documentation-embedding techniques available to rule-bases associated with databases
governed by the SDBMS. The browsing capabilities and proposed integration of
simplistic natural language processing techniques boasts a more powerful, less-
confusing interface for both users and developers alike.

Another crucial contribution of this work lies in substantially lessening the
burden posed to programmers; those of whom in the past have had to expend a great
deal of time and effort dedicated to coding complex applications that would be
subsequently linked to a particular RDBMS to implement the otherwise lacking data-
manipulative semantics. Semantics can be directly built-in to databases, minimizing (if
not eliminating) the need for the introduction of ad hoc customized programs. The
fundamental result is that databases may evolve at a greatly accelerated rate since
complex, independent codification (external to the database) is no longer necessary.
Finally, database systems seem more “intelligent” as the database itself would “know”
that a single command might infer the execution of several other commands--
transparent to the user--based on the semantic knowledge represented within the

SDBMS rule-bases.

8.1 Extending the SDBMS; Future Investigations

Over the past decade considerable attention has been paid to the research and

development of object-oriented database management systems (ODBMSs) These

108

systems have integrated the object-oriented paradigms, which resulted from past
research in artificial intelligence, to provide a modular or encapsulated approach to
data management. The interested reader will note a commonality of purpose between
existing ODBMSs and the SDBMS described herein. Both systems attempt to inject
some degree of high-level semantics into database systems. Where the ODBMS uses
an object-oriented approach to represent data semantics, the SDBMS adopts a
knowledge-based approach. With the SDBMS, although semantic rule-bases are
directly linked to a particular database, the rules are not encapsulated within the
database and therefore promote a more shared approach to semantic representations.
By not encapsulating the semantics the SDBMS is able to act in a front-end capacity.
This front-end aspect is what allows the SDBMS to interface with a wide variety of
database engines.

Indeed, one could certainly expand the SDBMS to interface not only with
single-record manipulative and multiple-record manipulative RDBMSs, but also with
ODBMSs. Such an integration would not be as difficult as may be initially conceived.
Rule-base translation would require little modification as the root commands /nsert,
Update, and Delete would still apply to ODBMSs. The notion of inheritance could be
taken care of through linkages of symbols in the semantic symbol dictionary in that the
rules applicable to a parent class would also be applicable to the child class. For
example, if A is a child of (inherits from) B, then all semantic rules applicable to B
would also apply to 4 (i.e., any reference to B in those rules would be translated to
reference A). Perhaps the most challenging enhancement would lie in modifying the
working memory of semantic context to facilitate the unlimited array of user-defined
types possible with ODBMSs. Where most relational database management systems
have only a handful of data types, ODBMSs allow users to define new data types by

arranging core types in different configurations. Thus, the working memory of

109

semantic context would have to be capable of generically handling a wide variety of
data structures.

Another important enhancement might include extending the procedural nature
of the SDBMS rule-language. Some very complex semantic issues may require the
integration of functions/procedures not directly available through the SDBMS. It
would be nice if developers could compile their own functions/procedures and
dynamically link them to the SDBMS, calling them from the rule-base itself.

Further extensions to the semantic interface would be most useful. The areas
of advanced natural language processing (NLP) and complex graphical user interfaces
(GUIs) would increase the usefulness of such a universal interface. Merging advanced
NLP with the extensive documentation included in the rule-bases would yield
extremely powerful and user-friendly browsers for the full gambit of users and
developers.

Another significant extension would include expanding the semantic rule-base
to handle not only data-manipulative aspects of database management systems, but
also data-utilization aspects (i.e., querying). One could easily conceive additional rule
categories beyond acquisition, committal, and removal, to handle such aspects as
query optimization, rejection of meaningless queries, correction of unintentional
queries, etc. The current composition of the SDBMS--its symbol dictionary, semantic
context, universal linkage to a wide variety of database engines, etc.--would no doubt
prove quite useful in such an investigation.

Whatever the extension, the SDBMS should prove an invaluable asset in
unifying many different forms of database management systems and promote more
“intelligent™ and user-friendly systems accessible to users, developers, and programs
alike. The paramount result of such a semantic system would increase the access to

shared information, while at the same time allowing more information to be acquired

110

at a much faster rate than was previously possible with more primitive systems. We
may no longer be content with the vast array of differing database platforms and the ad
hoc approaches to integrate them here and there. By directly merging the aspects of
both rule-bases and databases into a single, unified force, we grow ever closer to the
notion that information is knowledge. As a result we promote more “intelligent”

systems and thus make our own lives that much easier.

111

Entity-Relationship
Modeling :
(Semantic Modeling)

Transformation
(Mapping)
to Relations

Normalization j
of Relations

Figure 1. Design-implementation-normalization-customization Cycle.

112

Database A(1)

Database A(Z) -

Database A(m) |/

Database B(1)

Database B(2) |

Database B(n) |/

Database C(1)

Database C(2)

Database C(p)

SYMBOL

DICTIONARY|

SEMANTIC
INFERENCE
ENGINE

SEMANTIC
INTERFACE

Figure 2. Front-end Universal Medium Diagram.

USER/

PROGRAM

Extensional

Intensional

Figure 3. Extensional and Intensional Paradigms.

114

Frrggicic

reactor_schedule(1]

plant2[1]

I

plant2[1]

Figure 4. Example of Semantic Context Interaction.

15

Figure 5. Example of Purging Explicit References Within Semantic
Context.

116

Plant

=& \@

\/

\/ /

customer

/\

'”"\ R

\5’“"""'/

container

Figure 6. Sample Logical Design and E/R Diagram.

117

Prototype Database Model

| Chemicals E l Holding E | Reactor E:’: l Product E

IChemicaI I"‘_‘_— Holding @ @

inprChem

—

O

Figure 7. Logical Design Used By SDBMS Prototype.

118

Traditional Database Integration

Homogeneous Systems

Application(1) | semantics(1)

Application(2)

semantics(2)

Application(n) | semantics(n)

3

Database
~
Database
e
Database

e

Figure 8. Traditional Database Integration--Homogeneous.

119

Traditional Database Integration

Heterogeneous Systems

semantics(1) :

Application(1)

semantics(2) ’

Engine
s

Application(2)

YT YWY ST R L OTVIYY T YYE STy P YTWRY 4R SN ae RAAR 7Y s e £ £ Avn

Application(n) | semantics(n)

JaTREetteTemsummTteteametasemsrrseaneasiAsRmERAsTTATERTasTEaeqryeTeessEystaved

Database
“

-

Database
N~

-

Database

~———
<

Database

SN—

3

Database
N
Database
N—
o
N—]
Database

N—

Figure 9. Traditional Database Integration--Heterogeneous.

120

Semantic Database Management System

Heterogeneous Systems via SDBMS

Application(1) f
Application(2) E
Application(n) E

Database
Engine A

~ron,

Database
. CNgine ",

3

Database

—

T
N]

Database
N—e
Database

N

i
M

Database
—

-

Database
~—
Database
N—e

Figure 10. Database Integration Via SDBMS--Heterogeneous.

121

EE ABOUT SDBMS Prototype

HINEFTHUL

I3

553
3355

Figure 11. SDBMS Prototype—-Main Window.

122

A

BREACH OF SEMANTIC INTEGRITY.
UPDATE failed for current record of table, 'INPROC'.

Press "Why?" button for reasan.

REASON: [Rule 1,800)

The serial number must be specified for a new INPROC record.

Figure 12. (A) SDBMS Prototype—-Search Window.
(B) SDBMS Prototype--Committal Breach Message Box.
(C) SDBMS Prototype--Reason Message Box.

123

Bibliography

Brown, A. (1991). Object-Oriented Databases - Applications in Software
Engineering. McGraw-Hill Book Company.

Butterworth, P., Otis, A. & SteinJ. (1991). “The GemStone Object Database
Management System ™ Communications of the ACM. Vol. 34. No. 10. October,
1991.

Date, C. J. (1990). An Introduction to Database Systems. (5th ed.). Addison-
Wesley Publishing Company.

Deux, O. et al. (1991). “The Oy System.” Communications of the ACM. Vol. 34.
No. 10. October 1991.

Geoffrion, A. M. (1992). “The SML Language for Structured Modelling: Levels 1
and 2; Levels 3 and 4.” Operations Research. Vol. 40. No. 1. January-February
1992.

Giarratano, J. C. & Riley, G. (1989). Expert Systems - Principles and Programming.
PWS-KENT Publishing Company.

Hughes, J. G. (1991). Object-Oriented Databases. Prentice-Hall International (UK)
Ltd.

Lamb, C.. Landis, G., Orenstein, J. & Weinreb, D. (1991). “The ObjectStore
Database System.” Communications of the ACM. Vol. 34. No. 10. October
1991.

Lippman, S. B. (1990) C++ Primer. Addison-Wesley Publishing Company.

Lohman, G, Lindsay, B., Pirahesh, H. & Bernhard Schiefer K. (1991). “Extensions
to Starburst: Objects, Types, Functions, and Rules.” Communications of the
ACM. Vol 34. No. 10. October 1991.

Meersman, R. A. & Sernadas, A. C. (editors). (1988). Data and Knowledge (DS-2).
North-Holland.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall
International (UK) Ltd.

Piatetsky-Shapiro, G. & Frawley, W. J. (editors). (1991). Knowledge Discovery in
Databases. The AAAI Press/The MIT Press.

124

Rich, E. & Knight, K. (1991) Artificial Intelligence. (2nd ed.). McGraw-Hill, Inc.

Rishe, N, Tai, D. & Li, Q. (1989). “Architecture for a Massively Parallel Database

Machine.” Microprocessing and Microprogramming. (Netherlands). Vol. 25.
Iss. 1-5. January 1989.

Savnik, I. & Novac, F. (1989). “A Construction Database Model.” Microprocessing
and Microprogramming. (Netherlands). Vol. 27. Iss. 1-5. August 1989.

Sheu, P. C. (1989). “Describing Semantic Data Bases with Logic.” The Journal of
Systems and Software. Vol 9. Iss. 1. January 1989.

Silberschatz, A., Stonebraker, M. & Uliman, J. (editors). (1991). “Database
Systems: Achievements and Opportunities.” Communications of the ACM. Vol
34. No. 10. October 1991.

Stonebraker, M. & Kemnitz G. (1991). “The POSTGRES Next-Generation Database
Management System.” Communications of the ACM. Vol. 34. No. 10. October
1991.

Varvel, D. A. & Shapiro, L. (1989). “The Computational Completeness of Extended
Database Query Languages.” IEEE Transactions on Software Engineering. Vol.
15. No. 5. May 1989

Zdonik, S. B. & Maier, D. (editors). (1990). Readings in Object-Oriented Database
Systems. Morgan Kaufmann Publishers, Inc.

125

Appendix A

Advanced Sample Rule-Reduction Chains

1. {A} pant1 . product_id(X) A —(production1.product_id(X))
= RejectValue(plant1.product_id)

RULE:
SEARCH:
TEST:
ACT:

Alplanti
productioni.product_id = plant1.product_id

—e

RejectValue(plant1.product_id)

2. {A} plant1.product_id(X) ~ productiont.product_id(X)
A productiont.name(Y)
= plant1.name(Y)

RULE:
SEARCH:
TEST:
ACT:

Alplant1
production1.product_id = plant1.product_id

€
Set(plant1.name = production1.name)

3. {C}plant2.reactor_id{ X) A reactor_schedule.id(X)
~ reactor_schedule. status(‘to-be-cleaned’)
= plant2.override(‘shut down’)

RULE:
SEARCH:
TEST:
TEST:
ACT:

Clplant2

reactor_schedule.id = plant2.reactor_id

£

reactor_schedule. status = ‘to-be-cleaned’
Set(plant2.override = ‘shut down'’)

4. {C)reactors.chemical_id(X) A — (chemicals.id{ X))
= Abort(reactors)

RULE:
SEARCH:
TEST:
ACT:

Clreactors
chemicals.id = reactors.chemical_id

—E

Abort(reactors)

126

5. {C}plant1.product_id(null) = Abort(plant1)

RULE: C/plant1
TEST: plant1.product_id = <NULL>
ACT: Abort(plant1)

6. {C}plant1.product_id(X) A production1.product_id(X) »
production1.serial_required(‘Y’) A plant1.serial(null')
= AcquireValue(plant1.serial)

RULE: Cl/plant1

SEARCH: production1.product_id = plant1.product_id
TEST: £

TEST: production1.serial_required = ‘Y’

TEST: planti.serial = <NULL>

ACT: AcquireValue(plantt.serial)

7. {C}plant1.chemical_id{ X) A chemicals.id(X) ~
chemicals.volatile(‘Y’)
= plant1.special_handling(‘Y’)

RULE: Ciplant1

SEARCH: chemicals.id = plant1.chemical_id
TEST: €

TEST: chemicals.volatile = Y’

ACT: Set(plant1.special_handling = Y")

8. {R} storage.chemical_id(X) ~ chemical_removals.chemical_id(X)
~ chemical_removals.instances(Y)
=> chemical_removals.instances(Y + 1) »
Update(chemical_removals)

RULE: D/storage
SEARCH: chemical_removals.chemical_id =
storage.chemical_id

TEST: £

ACT: Set(chemical_removals.instances =
chemical_removals.instances +1)

ACT: Update(chemical_removals)

127

Appendix B

Advanced Sample Rule-Reduction Chains Used in SDBMS Prototype

100. {A} chemical.name[A](null) ~ chemical.id(null') n
numbers.entity(‘chemical’) A numbers.number(X)
= chemical.id(X+1) A numbers.number(X+1) A
Update(numbers)

RULE: A/chemical.name

TEST: chemical.name[A} = nuil

TEST: chemical.id = null

SEARCH: numbers.entity = ‘chemical’

TEST: €

ACT: Set(chemical.id = numbers.number+1)
ACT: Set(numbers.number = numbers.number+1)
ACT: Update(numbers)

“The ID of a new chemical is acquired automatically by the system.”

200. {A} —(chemical.id[A}(null))
= RejectValue(chemical.id)

RULE: A/chemical.id
TEST: chemical.id[A] = null
ACT: RejectValue(chemical.id)

“Once the chemical ID is set, it may never change.”

300. {A} chemical.id(X) A chemical.name(null)
= RejectValue(chemical.id)

RULE: Alchemical.id
TEST: chemical.name = null
ACT: RejectValue(chemical.id)

“A new chemical ID may not be set until the chemical NAME is set. The
chemical ID is then automatically set by the system.”

128

400. {A} chemical.type(‘explosive’)
= chemical.volatile('Y’)

RULE: Alchemical.type
TEST: chemical.type = ‘explosive’
ACT: Set(chemical.volatile = 'Y’)

“Explosive-type chemicals are volatile.”

450. {A} —(inproc.product_id[A)(null })
= RejectValue(inproc.product_id)

RULE: Alinproc.product_id
TEST: inproc.product_id[A] = null
ACT: RejectValue(inproc.product_id)

“Once a product ID is assigned to an in-process record it may never
change.”

450. {A} —(inproc.product_id[A}J(null })
= RejectValue(inproc.product_id)

RULE: Alinproc.product_id
TEST: inproc.product_id[A] = null
ACT: RejectValue(inproc.product_id)

“Once a product ID is assigned to an in-process record it may never
change.”

475 {A} —(inproc.product_name[A}(null))
= RejectValue(inproc.product_name)

RULE: Alinproc.product_name
TEST: inproc.product_name[A] = null
ACT: RejectValue(inproc.product_name)

“Once a product name is assigned to an in-process record it may
never change.”

129

500. {A} inproc.product_id{ X) A —(products.id(X))
= RejectValue(inproc.product_id)

RULE: Alinproc.product_id

SEARCH: products.id = inproc.product_id
TEST: —E

ACT: RejectValue(inproc.product_id)

“A product ID which is referenced in the INPROC table must exist in
the products table.”

600. {A} inproc.product_id(X) A products.id(X) A products.name(Y)
= inproc.product_name(Y)

RULE: Alinproc.product_id

SEARCH: products.id = inproc. product_id

TEST: £

ACT: Set(inproc.product_name = products.name)

“A product ID implies a specific product name.”

700. {C} inproc.product_id(null)
= Abort(inproc)

RULE: Clinproc
TEST: inproc.product_id = nulf
ACT: Abort(inproc)

“The product ID field of an INPROC record must be non-nuil.”

800. {C} inproc.product_id(X) A products.id(X) A
products.authorization_required(Y') A
inproc.authorization_number(null)

= Abort(inproc)

RULE: Clinproc

SEARCH: products.id = inproc.product_id
TEST: €

TEST: products. authorization_required = 'Y’
TEST: inproc.authorization_number = null
ACT: Abort(inproc)

“The defined product requires a valid authonzation number.”

130

900. {A} inprchem.chemical_id(X) A chemical.id{ X) A
chemical volatile(‘Y’)
= inprchem.speciai_handiing(‘Y’)

RULE: Al/inprchem.chemical_id

SEARCH: chemical.id = inprchem.chemical_id
TEST: chemical.volatile = Y’

ACT: inprchem.special_handling = 'Y’

“Volatile chemicals require special handling.”

1000. {C} inprchem.chemical_id(null)
= Abort(inprchem)

RULE: Clinprchem
TEST: inprchem.chemical_id = null
ACT: Abort(inprchem)

“The chemical ID field of an INPRCHEM record must be non-null.”

1100. {C} inprchem.product_id(null)
= Abort(inprchem)

RULE: Clinprchem
TEST: inprchem.product_id = null
ACT: Abort(inprchem)

“The product ID field of an INPRCHEM record must be non-null.”

1200. {C} inprchem.serial_number(null)
= Abort(inprchem)

RULE: Clinprchem
TEST: inprchem.serial_number = null
ACT: Abort(inprchem)

“The serial number field of an INPRCHEM record must be non-null.”

131

1300. {A} products.name(X) »n products.name[A} null) »
products id(null) A numbers.entity(‘product’) A
numbers.number(Y)

= products.id(Y+1) A numbers.number(Y+1) A
Update(numbers)

RULE: A/products.name

TEST: products.name[A] = null

TEST: products.id = null

SEARCH: numbers.entity = ‘product’

TEST: £

ACT: Set(products.id = numbers.number+1)
ACT: Set(numbers.number = numbers.number+1)
ACT: Update(numbers)

“Upon entry of a new product name, a new product ID is assigned
automatically by the system.”

1400. {A} —(products.id[A} null))
= RejectValue(products.id)

RULE: A/products.id
TEST: products.id[A] = null
ACT: RejectValue(products.id)

“Once a product ID is assigned it may never change.”

1500. {A} products.id(X) A products.name(null)
= RejectValue(products.id)

RULE: Alproducts.id
TEST: products.name = null
ACT: RejectValue(products.id)

“The product ID is assigned automatically by the system when the
product name is entered.”

132

1600. {A} products.type(‘explosive’)
= products.volatile(‘Y")

RULE: Alproducts.type
TEST: products.type = ‘explosive’
ACT: Set(products.volatile = Y’)

“Explosive-type products are volatile.”

1700. {A} products.volatile(Y’)
=> products.authorization_required('Y')

RULE: A/products.volatile
TEST: products.volatile =Y’
ACT: Set(products.authorization_required = Y")

“Volatile products require authorization.”

1800. {C} inproc.serial_number(null)
= Abort(inproc)

RULE: Clinproc
TEST: inproc.serial_number = null
ACT: Abort(inprchem)

“The serial number must be specified for a new INPROC record.”

1850. {A} —(inprchem.product_id[A](null })
—> RejectValue(inprchem.product_id)

RULE: Alinprchem.product_id
TEST: inprchem.product_id[A] = null
ACT: RejectValue(inprchem.product_id)

“Once a product ID is assigned to an in-process chemical record it may
never change.”

133

1860. {A} —(inprchem.serial_number[A)(null))
=> RejectValue(inprchem. serial_number)

RULE: Alinprchem.serial_number
TEST: inprchem.serial_number{A] = null
ACT: RejectValue(inprchem.serial_number)

“Once a serial number is assigned to an in-process chemical record it
may never change.”

1870. {A} —(inprchem.chemical_id[A)}(null))
= RejectValue(inprchem.chemical_id)

RULE: Alinprchem.chemical_d
TEST: inprchem.chemical_id[A] = null
ACT: RejectValue(inprchem.chemical_id)

“Once a chemical ID is assigned to an in-process chemical record it
may never change.”

1800. {A} inprchem.product_id(X) ~ —(products.id(X))
=> RejectValue(inprchem.product_id)

RULE: A/inprchem.product_id

SEARCH: products.id = inprchem.product_id
TEST: —€

ACT: RejectValue(inprchem.product_id)

“The product ID must exist in the products database.”

2000. {A} inprchem.chemical_id(X) A —(chemicals.id(X))
—=> RejectValue(inprchem.chemical_id)

RULE: Alinprchem.chemical_id

SEARCH: chemical.id = inprchem.chemical_id
TEST: —E

ACT: RejectValue(inprchem.chemical_id)

“The chemical ID must exist in the chemical database.”

134

2100. {A} recipe.product_id{ X) A —(products.id(X))
= RejectValue(recipe.product_id)

RULE: Alrecipe.product_id

SEARCH: products.id = recipe.product_id
TEST: —€

ACT: RejectValue(recipe.product_id)

“A product ID which is referenced in the recipe database must exist in
the products database.”

2200. {A} recipe.chemical_id(X) A —(chemical.id(X))
= RejectValue(recipe.chemical_id)

RULE: Alrecipe.chemical_id

SEARCH: chemical.id = recipe.chemical_id
TEST: —€

ACT: RejectValue(recipe.chemical_id)

“A chemical ID which is referenced in the recipe database must exist in
the chemical database.”

2300. {C} recipe.product_id(null)
= Abort(recipe)

RULE: Clrecipe
TEST: recipe.product_id = nuil
ACT: Abort(recipe)

“The product ID field of a recipe record must be non-null.”

2400. {C} recipe.chemical_id(null)
= Abort(recipe)

RULE: Clrecipe
TEST: recipe.chemical_id = null
ACT: Abort(recipe)

”

“The chemical ID field of a recipe record must be non-nuil.

135

2500. {C} recipe.chemical_id(X) A chemical.id(X) A
chemical.volatile('Y’) A recipe.product_id(Y) A
products.id(Y) A —(products.volatile(Y'))

= products.volatile('Y’) A Update(products)

RULE: Clrecipe

SEARCH: chemical.id = recipe.chemical_id
TEST: €

TEST: chemical.volatile = Y’

SEARCH: products.id = recipe.product_id
TEST: €

TEST: products.volatile # Y’

ACT: Set(products.volatile = Y’)
ACT: Update(products)

“The inclusion of one or more volatile chemicals in a product’s recipe
makes that product volatile.”

2600. {C} products.volatile(‘N’) ~ products.id(X) » recipe.product_id(X) A
recipe.chemical_id(Y) A chemical.id(Y) n chemical.volatile(Y’ }
= products.volatile(YY")

RULE: C/products

TEST: products.volatile = ‘N’

SEARCH: recipe.product_id = products.id
TEST: €

SEARCH: chemical.id = recipe.chemical_id
TEST: £

TEST: chemical.volatile(Y’)

ACT: Set(products.volatile = Y’)

“The inclusion of one or more volatile chemicals in a product’s recipe
makes that product volatile.”

136

2700. {C} inproc.product_id[A])(null) A inproc.product_id(X) A
recipe.product_id(X) A recipe.chemical_id(Y) A
-~(holding.chemical_id(Y))
= Abort(inproc)

RULE: Clinproc

TEST: inproc.product_id[A] = null

SEARCH: recipe.product_id = inproc.product_id
TEST: €

SEARCH: holding.chemical_id = recipe.chemical_id
TEST: —€

ACT: Abort(inproc)

“One or more of the chemicals required by the product’s recipe is not
in stock—product cannot be produced. Therefore, this product may not
be dedicated to the in-process list at this time.”

2800. {C} inproc.product_id[A)(null) A inproc.product_id(X } A
recipe.product_id(X) A recipe.chemical_id(Y) A
recipe.quantity(Z) A holding.chemical_id(Y) A
holding.quantity(<Z)

= Abort(inproc)

RULE: Clinproc

TEST: inproc.product_id[A] = null

SEARCH: recipe.product_id = inproc.product_id
TEST: >

SEARCH: holding.chemical_id = recipe.chemical_id
TEST: £

TEST: holding.quantity < recipe.quantity

ACT: Abort(inproc)

“There is insufficient quantity of one or more of the chemicals required
by the product’s recipe--product cannot be produced. Therefore, the
product can not be dedicated to the in-process list at this time.”

137

2900. {C} inproc.product_id[A}(null) A inproc.product_id(X) A
recipe.product_id(X) A recipe.chemical_id(Y) A
recipe.quantity(Z) A holding.chemical_id(Y) A
holding.quantity(A) A inproc.serial_number(B)

= holding.quantity(A-Z) A Update(holding) »

RULE:
TEST:
SEARCH:
TEST:
SEARCH:
TEST:
ACT:
ACT:
ACT:
ACT:
ACT:
ACT:
ACT:
ACT:

NewRecord(inprchem) A inprchem.product_id(X } »
inprchem.serial_number(B) A
inprchem.chemical_id(Y) A inprchem.quantity(Z) »
Insert(inprchem)

Clinproc

inproc.product_id[A] = null

recipe.product_id = inproc.product_id

€

holding.chemical_id = recipe.chemical_id

€

Set(holding.quantity = holding.quantity-recipe.quantity)
Update(holding)

NewRecord(inprchem)

Set(inprchem product_id = inproc.product_id)

Set(inprchem.serial_number = inproc.serial_number)
Set(inprchem.chemical_id = recipe.chemical_id)

Set(inprchem.quantity = recipe.quantity)

Insert(inprchem)

“The inventory quantities of chemicals required by the product’s recipe
have been updated accordingly.”

3000. {A} —(holding.chemical_id[A](null) }
= RejectValue(holding.chemical_id)

RULE:
TEST:
ACT:

A/holding.chemical_id
holding.chemical_id[A] = null
RejectValue(holding.chemical_id)

“Once a chemical ID is assigned it may never change.”

138

3100. {A} holding.chemical_id(X) A —(chemicals.id(X))
= RejectValue(holding.chemical_id)

RULE: A/holding.chemical_id

SEARCH: chemical.id = holding.chemical_id
TEST: —€

ACT: RejectValue(holding.chemical_id)

“The chemical ID must exist in the chemical database.”

3200. {A} —(holding.chemical_name[A}(null))
= RejectValue(holding.chemical_name)

RULE: A/holding.chemical_name
TEST: holding.chemical_name[A] = null
ACT: RejectValue(holding.chemical_name)

“Once a chemical name is assigned to a holding record it may never
change.”

3300. {A} holding.chemical_id(X)} A chemical.id(X) » chemical.name(Y)
== holding.chemical_name(Y)

RULE: A/holding.chemical_id

SEARCH: chemical.id = holding.chemical_id

TEST: €

ACT: Set{ holding chemical_name = chemical.name)

“A chemical ID implies a specific chemical name.”

3400. {C} holding.chemical_id(null)
= Abort(holding)

RULE: C/holding
TEST: holding.chemical_id = null
ACT: Abort(holding)

“The chemical ID field of a HOLDING record must be non-null.”

139

3500. {C} holding.quantity(null)
= Abort(holding)

RULE: C/holding
TEST: holding.quantity = null
ACT: Abort(holding)

2

“The quantity field of a HOLDING record must be a real number.’

3600. {A} —(inproc.serial_number[A](null))
= RejectValue(inproc.serial_number)

RULE: AJ inproc.serial_number
TEST: inproc.serial_number{A] = null
ACT: RejectValue(inproc.serial_number)

“Once a serial number is assigned it may never change.”

140

VITA

Mr. Yurchak was born in the city of Bethlehem, Pennsylvania, on December
15, 1968, to the parents Joleita W. and W. Russell Yurchak. He attended Lehigh
University, graduating with High Honors, and was awarded the Bachelor of Science
degree in Computer Science in June, 1990. He based his studies heavily on computer
science, cognitive science, and psychology. During that time Mr. Yurchak obtained
summer internships in the Knowledge Based Systems division of Air Products and
Chemicals, Inc., of Trexlertown, Pennsylvania. He was involved in the research and
development of several expert systems--one of which, a prototype expert system
designed to ascertain and schedule the daily production of a chemical plant, resulted
from private research sponsored by Air Products and conducted at Lehigh University
as Mr. Yurchak’s Senior Year Project.

Mr. Yurchak continued his education at Lehigh University engaging in
graduate studies in artificial intelligence, database management systems, and advanced
software engineering. He was awarded the Master of Science degree in Computer
Science in May, 1992. During this time Mr. Yurchak worked as a research assistant
sponsored by the Ben Franklin Technology Center and other private industries,
researching and developing a Knowledge-Based Decision Support System which
linked conventional relational databases, Computer-Aided Design graphical
information, and various data-analysis packages together via expert systems
technology to provide underground infrastructure assessment, facilities management,
and environmental impact assessment. Work proceeded into the development of a
onecall underground infrastructure assessment system for the pharmaceutical
company, Merck, Sharpe, and Dohme.

Mr. Yurchak is currently Senior Vice President of Origination Alternatives,
Inc. (OAI), based in Marlton, New Jersey, a financial services company. He is head of
development for OAI and involved with engineering specialized proprietary mortgage
origination software spanning the qualification, application, processing, tracking, and
closing of residential loans. Mr. Yurchak is also currently consultant to a
pharmaceutical returns company, Rx Returns, Inc., of Palm, Pennsylvania. He is
engaged in the engineering of customized software to fully automate the company’s
warehouse through use of an expert database system. He is currently pursuing a
Doctor of Philosophy degree in Computer Science at Lehigh University and expects
his degree in October, 1994.

141

