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•Low-carbon solutions: 
conversion of natural gas to 
useful chemicals.

•Increasing natural gas 
production.
•2022: 28.6 trillion cubic 
feet (Tcf) shale gas 
produced in the U.S. (79% 
of total U.S. dry natural 
gas production).1

Natural Gas and Ethylene Production

21. U.S. Energy Information Administration. (accessed 2023-12-
06). 



•39 gas-phase reactions

•14 surface reactions

•33 species (gas-phase, surface, free radicals, 
inert gas)

Kinetic Model2

3
2. SUN, J.; THYBAUT, J.; MARIN, G. Microkinetics of Methane Oxidative Coupling. 
Catalysis Today 2008, 137 (1), 90–102. DOI:10.1016/j.cattod.2008.02.026. 



• 

Python Script
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• Solve a system of ODEs
• solve_ivp
• Method: ‘BDF’ (backward differentiation 

formula)
• Example input



Gas Phase Rate Constants
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The forwards rate constant was calculated using the 
Arrhenius equation. The equilibrium constant relation was 
used in order to determine the backwards rate constant.

Af = pre-exponential factor 
[1/s or m3/mol s or m6/mol2 s]

Ea
f  = activation energy 

[kJ/mol]

K = equilibrium constant



Surface Reaction Rate Constants
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For adsorption steps, the following equation was used:

So = the initial sticking probability

σ = the density of active sites 
[mol/m2]

n = reaction order

M = the molar mass [kg/mol]



Third-Body Modeling
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• 



Catalyst
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Sn/Li/MgO

•BET surface area = 2800 m2/kg

•Density = 2300 kg/m3

•Porosity = 0.27

•Areal density = 1.14e-5 mol site/m2

Assumed 100 mg of catalyst

•Catalyst surface area = 0.28 m2



Conditions3
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• T = 750°C, P = 130 kPa

• Runtime = 0.0124 seconds

• CH4 initial fraction = 0.1

• CH4/O2 = 2

• [CH4]o = 1.54 mol/m3

• [O2]o = 0.77 mol/m3

• [N2]o = 12.5 mol/m3

• Reactor volume = 3.27e-5 m3

• Gas volume = 3.19e-05 m3

• Weight of Catalyst/Flowrate = 2 kg s/mol

3. Couwenberg, P. M.; Chen, Q.; Marin, G. B. Kinetics of a Gas-Phase Chain Reaction 
Catalyzed by a Solid:  The Oxidative Coupling of Methane over Li/MgO-Based Catalysts. 
Industrial &amp; Engineering Chemistry Research 1996, 35 (11), 3999–4011. 
DOI:10.1021/ie9504617. 



Conversion
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• Very little conversion of both CH4 and O2

• Maximum conversion of CH4 = 3.31e-5%

• Maximum conversion of O2 = 4.01e-5%

 
Ci,t = concentration of species i at 

time t
Ci,o = initial concentration of 

species i



Yield
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• Very little yield for all species

 
num_molCH4 = moles of CH4 required to produce 
species i
Ci,t = concentration of species i at time t

CCH4,t = initial concentration of CH4

Species Maximum 
Yield [%]

Ethane (C2H6) 2.69e-3

Ethylene (C2H4) 5.71e-7

Acetylene 
(C2H2)

3.23e-11

Propane (C3H8) 5.32e-12

Propylene 4.92e-11



Increase Runtime
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• Modify rate constants to create a less stiff reaction network

• Increased the runtime to 100 seconds

Maximum conversion of CH4 = 

2.27%
Maximum conversion of O2 = 

1.82%

Species Maximum 
Yield [%]

Ethane (C2H6) 1.46

Ethylene (C2H4) 0.346

Acetylene 
(C2H2)

6.30e-4

Propane (C3H8) 1.53e-9

Propylene 
(C3H6)

0.029



Future Directions
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• Increase the amount of catalyst

• Model different types of reactors (PFRs, CSTRs, etc.)\

• Model UV-PIMS

• Compare to experimental data



Thank you!
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Gas Phase Reactions
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CH4+O2⇌CH3•+HO2•
CH4+H•⇌CH3•+H2
CH4+O•⇌CH3•+OH•
CH4+OH•⇌CH3•+H2O
CH4+HO2•⇌CH3•+H2O2
CH3•+O2⇌CH3O•+O•
CH3•+O2⇌CH2O+OH•
CH3•HO2•⇌CH3O•+OH•
CH3•+CH3•+M⇌C2H6+M
CH3O•+M⇌CH2O+H•+M
CH2O+OH•⇌CHO•+H2O
CH2O+HO2•⇌CHO•+H2O2
CH2O+CH3•⇌CHO•+CH4
CHO•+M⇌CO+H•+M
CHO•+O2⇌CO+HO2•
CO+HO2•⇌CO2+OH•
C2H6+H•⇌C2H5•+H2
C2H6+OH•⇌C2H5•+H2O
C2H6+CH3•⇌C2H5•+CH4
C2H5•+HO2•⇌CH3•+CH2O+
OH•

C2H5•+M⇌C2H4+H•+M
C2H5•+O2⇌C2H4+HO2•
C2H4+O2⇌C2H3•+HO2•
C2H4+H•⇌C2H3•+H2
C2H4+OH•⇌C2H3•+H2O
C2H4+CH3•⇌C2H3•+CH4
C2H4+OH•⇌CH3•+CH2O
C2H3•+M⇌C2H2+H•+M
C2H3•+O2⇌C2H2+HO2•
C2H3•+O2⇌CH2O+CHO•
C2H5•+CH3•⇌C3H8
C3H8+H•⇌C3H7•+H2
C2H4+CH3•⇌C3H7•
C3H7•⇌C3H6+H•
O2+H•⇌OH•+O•
O2+H•+M⇌HO2•+M
HO2•+HO2•⇌O2+OH•+OH•
H2O2+M⇌OH•+OH•+M
C2H6⇌C2H5•+H•



Catalytic Reactions
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O2+2S1⇌2OADS1
CH4+OADS1⇌CH3+OHADS
C2H4+OADS1⇌C2H3+OHADS1
C2H6+OADS1⇌C2H5+OHADS1
2OHADS1⇌H2OADS1+OADS1
H2OADS1⇌H2O+S1
CH3+OADS1⇌CH3OADS1
CH3OADS1+OADS1⇌CH2OADS1+OHAD
S1
CH2OADS+OADS⇌HCOADS+OHADS1
HCOADS1+OADS1⇌COADS1+OHADS1
COADS1+OADS1⇌CO2ADS+S1
CO+S1⇌COADS1
CO2+S1⇌CO2ADS1
4HO2→3O2+2H2O
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