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Abstract

Lifelong navigation of mobile robots is to ability to reliably operate over extended

periods of time in dynamically changing environments. Historically, computational

capacity and sensor capability have been the constraining factors to the richness of

the internal representation of the environment that a mobile robot could use for

navigation tasks [1, 2]. With affordable contemporary sensing technology available

that provides rich 3D information of the environment and increased computational

power, we can increasingly make use of more semantic environmental information in

navigation related tasks [3].

A navigation system has many subsystems that must operate in real time com-

peting for computation resources in such as the perception, localization, and path

planning systems. The main thesis proposed in this work is that we can utilize 3D

information from the environment in our systems to increase navigational robust-

ness without making trade-offs in any of the real time subsystems. To support these

claims, this dissertation presents robust, real world 3D perception based navigation

systems in the domains of indoor doorway detection and traversal, sidewalk-level out-

door navigation in urban environments, and global localization in large scale indoor

warehouse environments.

The discussion of these systems includes methods of 3D point cloud based object

detection to find respective objects of semantic interest for the given navigation tasks

as well as the use of 3D information in the navigational systems for purposes such

as localization and dynamic obstacle avoidance. Experimental results for each of

these applications demonstrate the effectiveness of the techniques for robust long

term autonomous operation.
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Chapter 1

Introduction

Autonomous navigation has reached increased public awareness since Google’s self-

driving car project [4] was spawned. This project has its roots in the 2007 DARPA

Urban Challenge, the third driverless car competition where teams competed in a

cluttered urban environment. Five of the six teams that finished the race: Tartan

Racing [5], Stanford Racing [6], Victor Tango [7], MIT [8], The Ben Franklin Racing

Team [9], and Cornell [10] all made use of the Velodyne HDL-64E LIDAR as the

primary sensor for terrain map construction and obstacle detection. This sensor has

the capability of returning 3D scans of the environment and is the same sensor used

on the first generation Google self-driving cars.

This dissertation explores lifelong navigation for service robots using 3D sensors

that are smaller and more affordable than those used on autonomous cars. The goal

of lifelong navigation for mobile robots is to reliably operate over extended periods

of time in dynamically changing environments. A key prerequisite of navigation

systems is an internal representation of the environment. Historically, computational

capacity and sensor capability have been the constraining factors in the choice of

map representation [1]. With the advent of inexpensive sensors that provide rich

3D information of the environment, such as the Microsoft Kinect, and increased

computational power, we are in the midst of a paradigm shift in the field of robot

navigation for service robots.

Leveraging contemporary technology, the thesis proposed here is that robust life-

long navigation is enabled by:

1. 3D information from the environment,

2. a navigation system that can adapt to environmental changes.
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The main contribution of this dissertation is the demonstration of robust long

term autonomous navigation solutions in applied real-world settings. The area of

applied mobile service robots draws on many subfields of robotics research to enable

successful operation. Some of the subfields include: perception, navigation, and con-

trol. Integrating the many systems involved into a functional robot is part of the

challenge of applied mobile robotics. The perception and navigation subsystems, and

the integration of these systems, are the main focus of this work.

1.1 System Considerations

One important consideration in mobile robotics is the choice hardware as this strongly

influences algorithmic decisions across all subsystems involved. For the applications

in this work we are focused on service robots and specifically in this dissertation

the main target platform is an electric powered wheelchair. A useful mobile robot

must be able to perceive the world to some extent. Perception typically falls into two

categories: proprioception, sensing of one’s own internal status, and exteroception,

sensing of the outside world. The proprioceptive sensors of the wheelchair platform

include wheel encoders, which measure the revolution of each wheel, and an inertial

measurement unit, which measures the linear acceleration and angular velocity of the

wheelchair.

The exteroception of the system is the focus of the 3D perception aspect of the

research. The system has various sensors available for this purpose including: the

IFM O3D200, Microsoft Kinect, and Velodyne VLP-16. The commonality of all these

sensors is that range information is returned from discrete samples of 3D surfaces.

This information can be represented as a point cloud, a set of 3D points in some

coordinate system. For the applications discussed in in this dissertation, we assume

that the information that the system receives from the environment is in the form of

a stream of point clouds. Furthermore, the focus of the perception subsystem is to

extract salient objects from these point clouds.

1.2 Point Cloud Based Object Detection

Object detection is the process of finding instances of semantic objects of certain

classes, such as pedestrians or cars. The process of detecting objects in a point cloud

3



involves finding subsets of the points that belong to the objects of interest.

Point cloud object detection methods can be roughly divided into three categories:

1. Assume that separate point clouds representing entire objects have been ex-

tracted from the original point cloud data. The goal is to classify the object

that a point cloud represents.

2. Label a scene directly into regions belonging to object classes.

3. Perform a targeted segmentation of the point cloud data. In this case, the class

of interest is known and the segmentation method is specifically designed to

find objects of this class.

In the first type of method, the segmentation of objects of interest from data is a

crucial preprocessing step. Nguyen and Le [11] provide a recent survey of general point

cloud segmentation methods. Also in the literature are methods tailored to certain

environments. Douillard et al. [12] assume an urban environment and consequently

the existence of a ground plane and object segments are constructed from non-ground

data.

After segmentation, the individual point cloud objects are then classified. This is

typically done using machine learning methods. Examples of the first method that

require only basic point clouds as input (some methods utilize additional information

about the points, such as color) include Teichman et al. [13, 14] who use sequences

of segmented objects tracked through time to classify objects as cars, pedestrians,

bicyclists, or background. Endres et al. [15] use an unsupervised approach to discover

object classes using Latent Dirichlet Allocation.

The second type of method labels individual points directly, which typically lie

in regions belonging to objects, but separate object instances are not necessarily

identified. As an example, Anguelov et al. [16] use an approach based on Markov

Random Fields which uses local features computed at each point to produce a globally

consistent point labeling. Triebel et al. [17] use an unsupervised approach based on

Conditional Random Fields to discover multiple objects of a similar type that occur

in a given 3D point cloud.

In the third type of method the segmentation is targeted toward finding a specific

class of object. For example, Spinello et al. [18] focus on the detection of pedestrians.

Wang et al. [19] consider the domain of autonomous driving and focus the segmen-

tation to a set of classes, namely cars, pedestrians, and bicyclists. This third type

4



of object detection is the method used for our applications to detect specific objects:

doorways, urban pole-like features, and vertical pallet rack supports.

1.3 Long Term Navigation

Mobile robot navigation is the ability for a robot to determine its position with re-

spect to a frame of reference and then plan a path to a goal location. A mobile

robot navigation system consists of three main capabilities: map construction and

interpretation, localization, path planning. The map is an internal representation of

the external environment that the robot is expected to operate within. Localization

is the ability to interpret the map and determine its position and orientation with

respect to a frame of reference. Path planning, also called motion planning, is the

ability to take a movement task and decompose it into a sequence of discrete mo-

tions that achieve the task and satisfy movement constraints. Map building is the

construction of the internal representation of the external environment the robot uses

for localization and path planning. As mentioned above, our target platform is an

electric powered wheelchair. This influences the scale of the navigation tasks, that

is, we operate at human scale. The real-world navigation tasks presented in this dis-

sertation are: doorway navigation, sidewalk-level urban navigation, and large-scale

indoor warehouse localization.

1.4 Dissertation Contributions

As previously mentioned, the primary contribution this research is the demonstration

of systems that perform long term robot navigation in dynamic environments via the

integration of point cloud based object detection and robust navigation that makes

use of this information. This is demonstrated by three different robot navigation

systems: a doorway traversal system, a sidewalk level urban navigation system, and

a large scale indoor warehouse localization system.

Regarding the doorway navigation system, CoPilot, this dissertation presents:

• A robust real-time method that detects open doorways using data from two

Primesense Carmine sensors.

• A navigation system that traverses detected doorways while avoiding obstacles.
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• Experimental results demonstrating the robustness of both doorway detection

and doorway traversal.

With respect to the urban navigation system, this dissertation presents:

• A mapping trike platform that generates high fidelity point cloud reconstruc-

tions of the environment.

• A procedure to reduce the high fidelity point cloud reconstructions into the

global locations of semantically interesting landmarks.

• A client platform capable of sidewalk-level navigation in urban environments

via 3D registration of semantic landmarks.

• Experimental results demonstrating the effectiveness of the mapping platform

including landmark segmentation and ovreall global map consistency.

• Experimental results demonstrating reliable long term navigation, specifically

in the areas of 3D landmark segmentation, localization in the landmark map,

and autonomous route navigation.

In regard to the warehouse localization system, this dissertation presents:

• An extension to the previous urban mapping and localization system to the

domain of large scale indoor warehouse environments.

• Procedures to segment landmarks (vertical pallet rack supports) with the map-

ping platform and the client platform equipped with a sensor not used in the

previous system, namely the Velodyne VLP-16.

• Experimental results demonstrating localization accuracy on the order of 2cm

in the map learned with the mapping platform.

• Experimental results demonstrating the viability of using the client platform

equipped with the VLP-16 sensor to learn the landmark maps.

1.5 Dissertation Outline

This dissertation is organized as follows: Chapter 2 describes some of the technologies

that enable 3D point cloud based representations of the environment. These tech-

nologies include stereo vision, structured light, and time-of-flight. Additionally, the
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specific sensors used in this dissertation are detailed under their respective technology

sections.

Chapter 3 describes sensor calibration procedures. The first is a description of

an intrinsic calibration procedure to obtain a greater than advertised effective range

for Primsense based sensors. Following that, two extrinsic calibration procedures are

discussed. The first is for sensors that can return 3D scans of the environment. The

second is for sensors that only return a 2D scan of the environment and uses vehicular

motion to obtain 3D information.

Chapter 4 discusses the approaches to navigation tasks that are common among

our applications. The first section describes feature based map representations. The

following section details a particle filter based approach to localization given a feature

map. The final section describes the approach to path planning on global and local

scales.

Chapter 5 discusses the doorway navigation system, CoPilot. The CoPilot system

provides real-time detection of open doorways and autonomous traversal of detected

doorways. Doorway detection is performed by first fusing the point cloud data from

two Primesense sensors, then finding potential boundaries of doorways, and finally

validating each pair of boundaries based on geometric constraints. Doorway traversal

is performed by using the nearest validated doorway as a goal point and local planner

that is capable of avoiding obstacles using 3D sensor data. Experimental results

are presented where the system automatically detected and traversed 100 unique

doorways with a 100% success rate.

Chapter 6 discusses the Smart Wheelchair System (SWS) for sidewalk-level urban

navigation. The system is composed of a mapping platform with an accurate sensor

suite and a client platform, the smart wheelchair with a less expensive sensor suite

that navigates the environment based on the generated map. The mapping platform,

a tricycle, is described in detail including the sensor suite and map generation pro-

cess. The map includes the locations of semantically interesting landmarks, in this

case pole-like urban features such as lamp posts. Then the SWS client vehicle is de-

scribed including 3D perception based localization and path planning. Experimental

results are presented demonstrating the effectiveness of map generation, localization,

and long term navigation. The SWS achieved long term navigation, covering approx-

imately 12km among the experiments performed.

Chapter 7 describes an extension of the SWS into the domain of large scale indoor
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warehouse environments. The same mapping platform described in Chapter 6 is used

to map a representative warehouse. The landmarks in this domain are the vertical

pallet rack supports. The mapping procedure is described in detail. The client

vehicle, the SWS, equipped with a Velodyne VLP-16 is used for localization within

the map. Details of localization process including the 3D segmentation process used to

detect the landmarks are discussed. Experimental results are presented demonstrating

effective localization on the order of 2cm in accuracy and evidence to substantiate

the viability of using the client vehicle itself to generate maps.

Finally, Chapter 8 discusses extensions of this research to related to the relation-

ship between the sensor capability and the map representation. The first proposes

richer map representations that contain more semantic information about the envi-

ronment. This additional information can be utilized to enhance both localization and

path planning. The next extension looks into approaches for modeling the dynamics

of the environment explicitly in the map representation based on available sensor

data. One aspect of this modeling is long term map maintenance, the goal of which

is to automatically correct the map representation when the stable features of the

environment slowly change over time. Another aspect of this modeling is dynamic

obstacles, for instance pedestrians, that could be modeled and tracked to improve

path planning.
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Chapter 2

Sensing Technology

As mentioned in the previous chapter, the assumption for our robotic navigation ap-

plications is that the exteroceptive sensors are capable of producing 3D point clouds.

This chapter describes some of the sensing technologies that have this capability. The

following sections describe stereo vision, structured light, and time-of-flight based

sensors. Also, the specific sensors used in this dissertation are described in their

respective sensing technology sections.

2.1 Stereo Vision

Stereo vision is a passive 3D system in which two cameras are used to capture separate

images of scene from different viewpoints using only ambient lighting. Triangulation

methods are used to determine correspondences between pixels in each image. The

relative depth of a given point in the scene can computed because the depth of each

point is inversely proportional to the difference between the distances to the corre-

sponding points and their camera centers. This information can then be used to

generate a disparity map that encodes the 3D information of each point correspon-

dence. The disparity values are inversely proportional to the to the distance that

the object is away from the two cameras and directly proportional to the distance

between the two cameras [20]. Figure 2.1 depicts a Stereo Labs ZED stereo camera

and a representative depth image.
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Figure 2.1: (Left) The Stereo Labs Zed stereo camera. (Right) A representative depth
image captured by the Zed camera. Distance is colored on a grey to white
scale where gray is nearer to the camera. Black pixels indicate that a point
correspondence could not be found between the two camera images.

2.2 Structured Light

Structured light sensors work by projecting a specific light pattern on to a scene.

The way that the pattern distorts when it hits a surface allows a vision system to

calculate the depth information of objects in the scene. Structured light sensors

use triangulation to compute disparity maps similar to the stereo vision technique,

but unlike stereo vision, structured light is an active sensing technology due to the

projection of the light pattern. Figure 2.2 depicts two structured light based sensors:

the Microsoft Kinect and the Primesense Carmine. The later of which is used in this

work.

2.2.1 Primesense Carmine

The Primesense Carmine, depicted in Figure 2.2, is a structured light based sensor

using the same technology as the first generation Microsoft Kinect, but in a smaller

form factor. The Carmine comes in two varieties that have different sensing ranges.

The Carmine 1.08 has an advertised effective range between 80 and 350 cm and the

Carmine 1.09 has a range between 35 and 140 cm. However, the calibration procedure

described in Section 3.1 can be used to increase these effective ranges. The depth

accuracy of the Carmine 1.08 is 1.2 cm at 2 m and the Carmine 1.09 is 0.1 cm at 50 cm.

Table 2.1 contains more information about the Carmine’s operational characteristics.

The main advantages of the Carmine with respect to mobile robotics applications

are low cost, small form factor, light weight, and high point density. The form
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Figure 2.2: Examples of structured light based sensors. (Left) The Microsoft Kinect.
(Right) The Primesense Carmine 1.09.

factor and weight enable more options for mounting the sensors to the platform.

Another advantage is that the Carmine streams depth images and RGB images. This

enables a point cloud representation of a scene where each point is also registered to

a color and this additional information can be used to aid object detection. However,

the main disadvantage of the Carmine is that the structured light technology that

the Carmine uses does not work in sunny outdoor environments. This limits the

application domains where the Carmine could be used.

2.3 2D Scanning LIDAR

Light detection and ranging (LIDAR) sensors are based on the time-of-flight (ToF)

measurement principle. Time-of-flight sensors emit a light pulse that can be reflected

object’s surface within the sensor’s range. Based on the known speed of light, mea-

suring the elapsed time of a light signal between its emission an reception allows us

to calculate the distance between the object and the sensor. Scanning LIDARs rely

on a spinning mirror and laser diode to perform the time-of-flight distance calcula-

tions. As the mirror spins the laser returns are measured point by point. Figure 2.3

depicts two representative scanning LIDARs: the SICK LMS 291 and the Hokuyo

UTM-30LX. The later is is used as a component in actuated sensor described below

and the former is described next.

2.3.1 SICK LMS 291

The SICK LMS 291 is a ToF based scanning LIDAR. The LMS 291 has a maximum

effective range of 80 meters. In our work, we use two varieties: the LMS 291-S05

and LMS 291-S14. The main difference between them is the field of view, angular

resolution, return values when operating at the 75 Hz. The LMS 291-S14 can return
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Figure 2.3: Examples of scanning LIDARs. (Left) The SICK LMS 291. (Right) The
Hokuyo UTM-30LX.

an additional intensity value corresponding to each point which represents the amount

of light reflected back to the sensor.

The main advantages of the LMS 291 in our work are its high scan rate and

accuracy. These characteristics enable high quality point cloud reconstructions of the

environment. The main disadvantages of the LMS 291 for use on human scale robot

platforms are its weight and power consumption (20 W). Another disadvantage with

regard to our work is that the LMS 291 only returns 2D scans of the environment.

2.4 3D Time-of-Flight

There are two main categories of 3D ToF based sensor technology are scanning LI-

DARs and flash LIDARs. The first is an extension of the 2D scanning LIDAR tech-

nology described in the previous section; these sensors add more beams allowing for

multiple simultaneous scans. Flash LIDARs capture the entire scene with a single

light pulse and a dedicated image sensor and produce a range image where each pixel

in the image corresponds to a distance. Some flash LIDARs are capable of simultane-

ously measuring the distance and reflectivity of the sensed object. Scanning LIDARs

that support this capability require two revolutions of the mirror to obtain this infor-

mation. Also, flash LIDARs require no moving parts. Figure 2.4 depicts the Velodyne
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Figure 2.4: Examples of 3D LIDAR sensors. (Left) The Velodyne VLP-16 scanning LI-
DAR. (Right) The IFM O3D200 flash LIDAR.

Puck a 3D scanning LIDAR with 16 beams and an IFM O3D200 flash LIDAR, both

of which are used in this work.

2.4.1 IFM O3D200

The IFM O3D200 is a ToF range imaging camera. While the sensor has its limitations

(an effective range of ≈ 6 meters, a resolution of 48 × 60 pixels, a field of view of

30◦ × 40◦, and a relatively low frame rate of ≈ 7 Hz), it has one critical capability.

Specifically, the O3D200 can provide 3D measurements in outdoor conditions, includ-

ing bright sunlight. This is something that lower-cost structured light based sensors

are incapable of doing. It is also reasonably affordable, costing ≈$1500 USD. At the

time of the work in this dissertation, the O3D200 was an affordable sensor providing

3D sensing capability. But, the O3D200 is now obsoleted by the IFM O3D303 which

provides improved sensing capability at a similar price point.

2.4.2 Actuated 3D LIDAR

This section describes an actuated Hokuyo UTM-30LX LIDAR, herein referred to

the 3D Hokuyo. The motivation for actuation was to obtain 3D information from the

environment to enable 3D point cloud object segmentation methods. The 3D Hokuyo
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Figure 2.5: (Left) The actuated LIDARmounted on an electric powered wheelchair. (Cen-
ter) Histogram of the representative scan angles in a sweep and (Right) his-
togram of the number of 2D scans in a sweep. 3D aggregates of the scans in
each sweep are streamed at ≈ 5 Hz.

was actuated with a Dynamixel AX-12A servo which was encased in a custom 3D

printed enclosure. The 3D Hokuyo is depicted in the left image of Fig. 2.5. The entire

3D Hokuyo system has a small footprint, and is comparable in size to the standard

joystick controller on an electric powered wheelchair. The actuated behavior was to

simply nod up and down over a limited angular range. The Dynamixel servo is well

suited for this task, as it can be controlled by explicitly setting angle commands and

polled for its current angle position.

The task of the 3D Hokuyo was to aggregate the 2D laser scans from one angular

set point to the next (a sweep either up or down), register each scan to a common

odometric coordinate frame to account for the robot’s motion, and then report the

aggregation as a 3D point cloud. The design target for the 3D Hokuyo was to stream

aggregated 3D scans at 5 Hz, as this was the frequency of the motion planner’s control

loop. A constraint on this goal was that the vertical angular resolution had to be

sufficiently small in order to perform effect object segmentation. The free parameters

(the choice of angular set points) were empirically determined to be ±5◦ from the

neutral position (the LIDAR scan parallel to the ground). This choice gave us a field

of view of 270◦ × 10◦.

Fig. 2.5 shows histograms of the salient operating characteristics of the actuated

LIDAR in operation. Due to factors such as inertia, the scan angles in a sweep, the

number of scans in a sweep, and the amount of time a sweep takes are not deter-

ministic. The results show that an average sweep of the actuated LIDAR contains

approximately 7.5 laser scans. As the UTM-30LX scans at 40 Hz, the effective update

rate of the 3D Hokuyo was 5.35 Hz, which was sufficiently close to our design target
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Figure 2.6: (Top) A scan from the 3D Hokuyo. (Bottom) A photo of the corresponding
scene.
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of 5 Hz. Fig. 2.6 shows a visualization of the 3D point cloud data from one sweep.

2.4.3 Velodyne VLP-16

The Velodyne VLP-16, depicted in Figure 2.4 is a ToF scanning LIDAR that has 16

beams. These beams cover an vertical field of view of 30◦ (±15◦ from horizontal)

with a vertical angular resolution of 2◦. The horizontal field of view is 360◦. The

rotational speed can be set to values in the range of 5 Hz to 20 Hz corresponding to

a horizontal angular resolution in the respective range of 0.1◦ to 0.4◦. The maximum

effective range of the VLP-16 is 100 meters.

The main advantages of the VLP-16 in our applications are its small footprint and

360◦ sensing capability. At the time of this work, the VLP-16 is a relatively recent

sensing technology and largely obsoletes our work on the Actuated Hokuyo 2.4.2. The

main disadvantage of the VLP-16 with respect to this work, is its low vertical angular

resolution. With respect to object detection, the number of vertical beams that can

be expected to hit a given object is a function of the range to the object which limits

the effective range for successful detections.

2.5 Summary

This chapter described some sensing technologies capable of generating 3D point

clouds. Sensors specific to this dissertation were also described, the characteristics of

which are summarized in tables 2.1 and 2.2. The information is split into two tables

for readability. In the next chapter methods of calibrating these sensors for robotics

applications are discussed.
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Carmine LMS 291-S05 LMS 291-S14
Field of View 57.5◦ × 45◦ 180◦ 90◦

Angular Resolution 0.09◦ × 0.08◦ 1◦ 0.5◦

Points per Return 640× 480 181 181
Scan Rate (Hz) 30 75 75
Dimensions (mm) 250× 350× 1800 155× 156× 210 155× 156× 210
Weight (g) 226 4500 4500

Table 2.1: Sensor summary (part 1). This table summarizes the characteristics of the
Primesense Carmine, SICK LMS 291-S05, and SICK LMS 291-S14. The Field
of View, Angular Resolution, and Points per Return rows for the Carmine are
listed horizontal × vertical.

O3D200 Actuated Hokuyo VLP-16
Field of View 40◦ × 30◦ 270◦ × 10◦ 360◦ × 30◦

Angular Resolution 0.625◦ × 0.625◦ 0.25◦× ≈ 0.8◦ (0.1◦ − 0.4◦)× 2◦

Points per Return 64× 48 ≈ 8100 (3600− 900)× 16
Scan Rate (Hz) 7 (20 max) ≈ 5 5− 20
Dimensions (mm) 75× 95× 137 60× 70× 106 103 (diameter) ×72
Weight (g) 1250 ≈ 530 830

Table 2.2: Sensor summary (part 2). This table summarizes the characteristics of the IFM
O3D200, Actuated Hokuyo, and Velodyne VLP-16. The Field of View, Angular
Resolution, and Points per Return rows are listed horizontal × vertical.
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Chapter 3

Sensor Calibration

This chapter describes procedures for calibrating the sensors described in the previous

chapter for effective use in robotics applications. There are two types of calibration

procedures described here: intrinsic and extrinsic. Intrinsic calibration procedures are

used to increase the accuracy of an individual sensor. For example, manufacturing

variations can result in two sensors from the same manufacturer yielding slightly dif-

ferent measurements. Extrinsic calibration procedures are used to determine position

and orientation of the sensor with respect to some coordinate frame of reference. The

following sections describe an intrinsic calibration procedure to increase the effective

range of Primesense based sensors, an extrinsic calibration procedure for 3D sensors,

and an extrinsic calibration procedure for 2D scanning LIDARs.

3.1 Primesense Intrinsic Calibration

As mentioned in the previous chapter, the maximum advertised range of the Carmine

1.09 is 1.4 meters, but objects at depths farther than 1.4 meters could still be detected.

The triangulation based nature of structured light sensors induces a nonlinear noise

model of the form |δz| ∝ z2|δd|, where δz is the error in the depth observation, z is

the actual depth, and δd is the error in disparity [21]. In other words, errors grow

quadratically with depth. This can be mitigated by using an appropriate error model

and adjusting the depth measurements accordingly. Unfortunately, global distortion

models used for traditional camera calibration are of limited use as sensors based on

the Primesense appear to have irregular distortion patterns unique to each individual

sensor [22]. While they propose an unsupervised procedure to intrinsic calibration in
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[22], we use an alternate approach that while supervised, is fast to use and significantly

less complex to implement.

Starting at the minimum effective range of the sensor, the user captures a depth

image of a nominally flat wall. The sensor is then moved incrementally farther from

the wall, and a new image is captured out to the maximum sensor range. For example,

if the minimum and maximum ranges of interest were 0.5 m and 3.0 m respectively,

depth images would be captured at nominal depths of z = [0.5,1.0,1.5,2.0,2.5,3.0]

meters. Note that the exact spacing is not critical. However, the accuracy of the

depths z is the basis for the calibration, and must be measured accurately. This can

be readily accomplished using standard tools (e.g., a tape measure or laser distance

measurer). It is also important that the sensor’s optical axis be roughly normal to the

wall surface. To ensure this, we developed an application that provides visual feedback

of the alignment error between the sensor’s optical axis ~o and the wall’s surface normal

~nw. This is estimated by using RANSAC [23] to automatically segment the wall plane

in real-time. The user then adjusts the sensor orientation until ||~o × ~nw|| ≈ 0. In

practice, an alignment error of ≤ 1 degree is adequate for calibration, and easily

obtained.

Given a set of k point cloud images P = [P1, . . . , Pk] and corresponding ground

truth depth measurements z, the remainder of the calibration process is completely

automated. For each P ∈ P, we recover the parameters for the respective wall planes

Π = [Π1, . . . ,Πk] where the relative orientation is again estimated using RANSAC and

the translation using the depth measurements z. Given robust estimates of the actual

wall’s relative positions and orientations Π, the point clouds P are adjusted to ensure

that each point pi(i, j) ∈ Pi lies on its respective plane Πi. This is accomplished by

generating a set of scaling coefficients K = K1, . . . , Kk for each point of each point

cloud. We denote the corrected point cloud set as P∗.

The scaling coefficients K are to this point limited to the discrete set of ranges z

where calibration data were collected. These are generalized to continuous space by

modeling the scaling coefficients as a quadratic function of scene depth, i.e.,

K(i, j, z) = A(i, j)z2 +B(i, j)z + C(i, j) (3.1)

where (i, j) are the pixel coordinates of the point cloud. Thus, every sensor pixel

has it’s own specific quadratic function k(i, j, z) that is used to determine the scaling

factor at a given depth z. The quadratic coefficients [A(i, j), B(i, j), C(i, j)] for each

pixel (i, j) are recovered as a least squares solution minimizing the residuals between
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P and P∗. The coefficients are calculated offline, and stored in three Look Up Tables

(LUTs) A,B,C corresponding to the respective quadratic coefficients.

A point cloud P ofm×n points can be described through its Euclidean coordinates

X, Y, Z ∈ R
m×n where each matrix entry corresponds to the x, y, z coordinates of

the respective point. To calculate the corrected points, the following operations are

performed on the streaming point cloud:

K(i, j) = A(i, j) ∗ Z(i, j)2 +B(i, j) ∗ Z(i, j) + C(i, j) ∀ (i, j)

X∗(i, j) = K(i, j) ∗X(i, j)

Y ∗(i, j) = K(i, j) ∗ Y (i, j)

Z∗(i, j) = K(i, j) ∗ Z(i, j)

where X∗, Y ∗, Z∗ denote the corrected point set. Thus, online intrinsic calibration

can be performed at a cost of only several floating point operations and array look

ups per point.

We have used the calibration procedure extensively, and performance has been

very good. A sample calibration run is shown at Figure 3.1. The left sub-figure shows

a point cloud before (top in red) and after (bottom in blue) calibration. Qualitatively,

we see that both the distortion and dispersion of the points were significantly reduced.

This is also reflected quantitatively in the center-right sub-figures, which show the

mean error and mean standard deviation of the points vs. scene depth (pre-calibration

and post-calibration). The reductions in both error and variance were significant,

clearly demonstrating the efficacy of the approach.

Figure 3.1: (Left) Sensor points before (top) and after (bottom) intrinsic calibration. Note
that both point distortions and dispersion is reduced. This is also reflected in
the mean error (center) and standard deviation (left) of the points.
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3.2 3D Sensor Extrinsic Calibration Procedure

The goal of this procedure is to recover the rotation Rv
s and translation tvs relating

the sensor frame Fs to the vehicle frame Fv. To accomplish this, a calibration target

is placed at constant x (depth) in Fv and with known y position. For the remainder

of the procedure discussed, we assume a single 3D image I is taken of the scene, and

used to perform the calibration procedure. In practice, a large number of images (e.g.,

10-100) could be taken, and an “average” calibration returned to mitigate random

sensor noise. The entire process would take only several seconds.

The following assumptions are made for calibration purposes:

1. A vertical rectangular calibration target of known dimension is available.

2. The calibration target’s position and orientation with respect to the vehicle

frame is known.

3. The target orientation is normal with respect to both the ground plane and the

x-axis of the vehicle frame.

4. The two largest planes in the sensor’s field-of-view (FOV) are the ground plane

and the target.

5. The orientation of the sensor with respect to the vehicle frame is poorly known

(i.e., within 45 degrees for a given axis.

To recover the sensor rotation, the two largest planes Π1,Π3 in the scene are

recovered (the choice of the “3” subscript will become apparent shortly). This is

accomplished by recovering Π1 using RANSAC [23], removing its associated inliers

from the point cloud, and then repeating the process with the reduced point set to

obtain Π3. This is illustrated in Figure 3.2, where the two segmented planes in the

point cloud are highlighted in green and blue.

To identify which plane is the ground plane vs. the target, we compare the unit

normals of the recovered planes u1,u3 in Fs with the associated normals in the vehicle

frame, i.e., ux = [1, 0, 0]T and uz = [0, 0, 1]T . From Assumption 5, detailed above,

we can correctly associate the planes in Fs with the planes in Fv. Without loss of

generality, assume that u1 is associated with ux. This yields two of the three basis

vectors needed to infer the relative orientation of the sensor. The third is accomplished

by taking the vector product u2 = u1 × u3. Note that to ensure a proper right-hand
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Figure 3.2: 3D calibration image with the ground plane (green) and calibration target
(blue) segmented.

coordinate frame, the directions of the basis vectors [u1,u2,u3] can be validated by

taking the dot product with the respective basis vectors in Fv. If the projection is

negative, then the sign of the normal is reversed, e.g., u1 = −u1.

The matrix [u1,u2,u3] is equivalent to Rs
v, and Rv

s is readily obtained from its

transpose. Note however that since the recovered planes Π1,Π3 will not be exactly

orthogonal, the initial estimate for Rv
s will not be a valid rotation matrix. To remedy

this, we use singular value decomposition (SVD) to refine Rv
s = UDV T and obtain

its closest valid rotation matrix by R∗v
s = UIV T where I is the identity matrix.

After recovering R∗v
s , all that remains is to recover the translation vector tvs =

[tx, ty, tz]
T . The first component tx can be obtained using the distance to the seg-

mented target plane since by Assumption 2 its x position in Fv is known a priori.

The same argument can be made for tz using the segmented ground plane since we

assume that in Fv for the ground plane z = 0. This leaves only ty to be recovered.

Again, we know the y position of the target in Fv. Also by Assumption 1, we
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Figure 3.3: Target histogram h(y) before (left) and after its convolution with a boxcar
function. The peak of f(y) corresponds to the target center yc.

know its dimensions. We will exploit this knowledge to recover the y coordinate of the

target center yc. Since its position and size are known, this will allow us to estimate

ty.

To recover yc, we first rotate all of the points in Fs to an intermediate coordinate

frame using R∗v

s
. We then generate a histogram h(y) by binning all of the target

points along the y direction using a 1mm bin size. A representative result for h(y) is

shown at Figure 3.3 (left).

Next we convolve h(y) with a discrete boxcar function g(y) of unit amplitude and

with the same interval width as the target discretized at 1mm resolution. The result-

ing function we denote f(y) = g(y) ∗ h(y). To illustrate with an example, the target

used in this calibration example was 61 cm wide. Discretized to 1 mm, the resulting

function h(y) = [1, 1, . . . , 1, 1] ∈ R
610 is a vector of 610 “1s”. This convolution is

equivalent to performing a crosscorrelation of the segmented target associated with

h(y) with a “perfect” target associated with g(y). When they completely overlap, the

value of f(y) will be maximized. In other words, yc = argmax f(y). Again, this is

illustrated in Figure 3.3, showing the target histogram h(y) on the left and f(y) on

the right. As expected, latter is unimodal with a single, obvious maximum.

Figure 3.4 show sample results of a 3D image taken in the sensor frame Fs, and

then warped to the vehicle frame Fv using the recovered extrinsic parameters.
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Figure 3.4: Original sensor image (left) and resulting image after being warped to the
vehicle frame Fv. Both the translation and rotation of points are apparent.

3.3 2D LIDAR Extrinsic Calibration Procedure

The procedure described here originally described in [24] and is summarized here for

completeness. The goal of this procedure is to recover the rotation RV
L and translation

T V
L relating the sensor frame L to the vehicle frame V under the assumption that the

sensor returns a 2D scan. Because of this assumption, the points are registered to a

common world frame W and we rely on the motion of the vehicle to recover the 3D

extrinsic parameters. That is, a sensor point, registered to the world frame has the

form

Xi,W = RW
V (t)(RV

LXi,L + T V
L ) + TW

V (t)

where the unknowns are RV
L , T

V
L , and XW and i is a corresponding point index, the

parameters relating the vehicle frame to world frame, RW
V and TW

V , are functions of

time. With a sufficient number of non-coplanar point correspondences between XL,

the point in the sensor frame, and XW , the point in the world frame, we can solve

for the RV
L and T V

L directly.

The following assumptions are made for this procedure:

1. The estimate of RW
V and TW

V is of high quality.

2. The sensor can return points with associated intensity values.

3. The distances between fiducial markers on the calibration targets are known.
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Figure 3.5: (Left) A photo of the calibration target. (Right) An aggregation of sequential
LIDAR scans where the color corresponds to the remission values. The retro-
reflective tape is clearly visible.

We obtain a set of points by setting up calibration targets in a space large enough

to accommodate the vehicle and the sensor’s range. An example of a calibration

target (a poster board with with square pieces of retro-reflective) is shown in Fig. 3.5

(Left), that have retro-reflective targets to facilitate segmentation of feature corre-

spondences. The laser scans are logged as the vehicle moves past the calibration

targets. Afterwards, the laser scans are aggregated into a single point cloud and the

targets are segmented using a threshold operation (γ > γmin); an example of the point

cloud is shown in Fig. 3.5 (Right). Note that targets are clearly not point features

(each target is 5 cm × 5 cm). To reduce each target to point feature, the nearest

data point to the centroid of each cluster was used. An actual data point was needed

in order to retrieve the vehicle pose (RW
V (t), TW

V (t)) at which the measurement was

taken.

To solve for the unknown RV
L and T V

L we use a similar procedure as described

in [24]. We assume that we have an initial estimate (R̂V
L , T̂

V
L ) obtained by physical

measurements. We can linearize a small change in the Euler angles of a rotation

matrix by starting with Rodrigues’ rotation formula

R(n̂, θ) = I+ sin θ[n̂]× + (1− cos θ)[n̂]2
×

where n̂ is an axis, θ is a rotation about that axis, and[n̂]× denotes the matrix form
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of the cross product operator with the vector n̂ = [n̂x, n̂y, n̂z]
T , that is

[n̂]× =









0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0









and then applying the small-angle approximation, which yields

R(ω) ≈ I+ sin θ[n̂]× ≈ I+ [θn̂]× =









1 −ωz ωy

ωz 1 −ωx

−ωy ωx 1









where ω = θn̂ = [ωx, ωy, ωz]
T . We can then model RV

L as the product initial estimate

and a small change in the Euler angles, that is, RV
L ≈ R̂V

LR(ω).

We then cast the problem of solving for (RV
L , T

V
L ) as a second-order cone program

which allows us to enforce known geometric constraints. If we assume that our initial

estimate R̂V
L is accurate within a small tolerance on the Euler angles, we can write

a second-order cone constraint of the form ‖ω‖2 ≤ δ for each of the three Euler

angles. A bound on errors in T V
L could be written as ‖T V

L − T̂ V
L ‖2 ≤ ε. Furthermore,

we know the approximate height of each data point since we are collecting data

indoors. This knowledge can be encoded as a second-order cone constraint of the

form ‖X∗

i,W −Ti‖2 ≤ βi‖2 where Ti = [0, 0, b]T and b is the known height of the target

i’s centroid. The optimization program is written as

min
∆RV

L
,TV

L
,X̂i,W

t

∑N

i=1
‖X̂i,W −X∗

i,W‖
2
2 ≤ t

‖ωx‖2 ≤ δx, i = 1 . . . N

‖ωy‖2 ≤ δy, i = 1 . . . N

‖ωz‖2 ≤ δz, i = 1 . . . N

‖T V
L − T̂ V

L ‖2 ≤ εi, i = 1 . . . N

‖X∗

i,W − Ti‖2 ≤ βi, i = 1 . . . N

However, due to the linearization of the original problem, the recovered rotation

matrix is not necessarily in the group SO(3) or the globally optimal solution. To

properly orthogonalize RV
L we perform a singular value decomposition RV

L = UDV T

and retrieve a valid rotation matrix R∗V
L = UV T . But, this orthogonalization invali-

dates the local optimality of the solution. To mitigate this effect, the procedure was

performed a second time using R∗V
L as the initial estimate.
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Chapter 4

Approach to Robot Navigation

As mentioned in Section 1.3, the main capabilities of a robot navigation system are:

map construction and interpretation, localization, and path planning. While a major

focus of this dissertation is the 3D point cloud based perception component, we also

want to demonstrate autonomous navigation systems. This requires the integration

of the 3D perception component with the navigation systems. This chapter describes

our general approach to each of the navigation system’s components.

4.1 Map Representation

The internal representation of the environment used in our robotic navigation appli-

cations is a feature-based map, where each feature in the map denotes a landmark

of semantic interest. Associated with the landmark map is a route network of way-

points for the purpose of path planning. Additionally, an instantaneous occupancy

map representation is used for local path planning and dynamic obstacle avoidance.

This section describes the global map representation components: the landmark map

and the route network. The local occupancy map is described below in Section 4.3.1.

4.1.1 Landmark Map

A landmark map is a feature-based map representation where each feature in the

map is a landmark that is perceptually differentiable from its surroundings. The

representation for features in our work are the 2D coordinates with respect to some

global frame of reference and some additional semantic information to assist in data
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association for the localization procedure. The assumption here is that the environ-

ments that the wheelchair system traverses are approximately planar, so using a 2D

map representation reduces the computational complexity for the localization and

path planning systems. This choice does not necessarily limit 3D based landmark

detection as the geometry of the detected landmarks can be projected to the 2D map

coordinate frame.

4.1.2 Route Network

The route network is modeled as a graph G(V,E) where waypoints correspond to the

vertices vi ∈ V and the edges eij ∈ E correspond to directed edges connecting pairs

of waypoints. Each edge can also contain semantic information associated with it,

for example a speed limit, which could be used to constrain the sampled trajectories

of the local path planner 4.3.3. The purpose of the route network is to demarcate a

safe path with respect to the landmark map.

4.2 Localization

The localization method used in this dissertation is a Rao-Blackwellized particle filter

approach similar to the FastSLAM 2.0 algorithm [25]. The FastSLAM algorithm is a

solution to the simultaneous localization and mapping problem. Since our landmark

map was known a priori, we were only concerned with the localization aspect. The

particle filter approach was chosen because in our applications it was more robust to

aspects of the environment that were not modeled by the system than an EKF based

localization approach.

A set of p particles was maintained where each particle had the form:

Y
[p]
k = 〈x

[p]
k , 〈µ

[p]
1 ,Σ

[p]
1 〉, . . . , 〈µ

[p]
N ,Σ

[p]
N 〉〉, (4.1)

where x
[p]
k was the pose of the pth particle at time k defined as [x, y, θ]T where x and

y were the Cartesian coordinates and θ was the robot’s orientation with respect to

the map’s frame. Every particle was initialized with a map containing the mean,

µ[p], and covariance estimate, Σ[p], for each landmark in the map. The mean vector

had the form [xl, yl, s]
T , where xl and yl were the landmark’s position and s was the

landmark’s signature, which contained additional semantic information to facilitate

data association.
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The prediction phase of the filter consisted of sampling from a probabilistic motion

model of a differential drive robot where the control inputs (v, ω) were corrupted with

additive Gaussian noise [26]; two noise parameters were used for error in translational

movement due to linear and rotational motion (a1) and a2) as well as two for the error

in rotational movement due to linear and rotational motion (a3) and (a4).

Data association of segmented landmarks was done by using a maximum likelihood

correspondence. During the correction phase of the filter, for a given particle p,

every observation at time k was compared to each of the landmarks in p’s map

and a weight was computed for each observation - landmark pair that measured the

likelihood that the observation corresponded to the landmark. Observations were of

the form: z = [ρ, φ, s]T , where the components corresponded to the range, bearing,

and signature (radius of the pole). The weight was approximated by a Gaussian with

mean (z− ẑj), where z is the measured observation and ẑj is the predicted observation

of particle p’s jth landmark, and covariance matrix Qj = HjΣ
[p]
j HT

j +Q, where Hj is

the Jacobian taken with respect to the map features, Σ
[p]
j is the covariance of particle

p’s jth landmark, and Q is the linearized measurement noise. The weight assigned to

each association was the Mahalanobis distance, defined as:

wj = |2πQj|
−1/2 exp

(

−
1

2
(z − ẑj)

TQ−1
j (z − ẑj)

)

. (4.2)

The landmark with the maximum weight was chosen to be associated with an ob-

servation if it exceeded a minimum threshold. We found that the addition of the

signature led to fewer false data associations than using location alone.

4.3 Path Planning

The path planning method is composed of two main tasks: mapping the immediate

local environment from sensor data and planning a path through this local environ-

ment.

4.3.1 Constructing the Local Map

Our robot application all employ a local map modeled as a 2D occupancy grid for

the purpose of generating local plans. This local map was centered at the position

of the robot and moved with the robot in a rolling window fashion. We leveraged

ROS [27] for populating and clearing cells in the local map via raytracing techniques.
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For navigation purposes, 3D points from any equipped sensors were projected down

to the 2D occupancy grid M where each cell in the grid that contained a projected

point was classified as occupied. Each occupied cell M(x, y) was given an obstacle

cost value Cobst(x, y) = ∞. Nearby cells were also assigned cost values based on the

proximity to occupied cells as well as the footprint of the robot; if the robot were

to occupy a cell M(x, y) and any portion of its footprint would overlap an obstacle

cell where Cobst(x, y) = ∞, then that cell was also assigned a value of ∞ making it

untraversable by the local planner. Otherwise, obstacles were modeled by exponential

potential functions.

In addition to the occupancy cost for each cell, the local map also maintained

planning related costs for each cell Cgoal(x, y) and Cpath(x, y). Cgoal was proportional

to the distance from the current robot position and the subgoal positionGi (the closest

waypoint in the route network to the goal waypoint that is within the bounds of the

local map M) which was given a zero cost value. Similarly, Cpath was proportional to

the distance from the robot’s position to the cells along the waypoint path where path

cells were determined by linear interpolation between the waypoints and assigned a

cost of zero. The resulting occupancy map M and associated costs Cobst, Cgoal, and

Cpath were used by the local planner for trajectory planning. Fig. 4.1 depicts an

example of a local map.

4.3.2 Global Path Planning

The global planner for our applications operates on the route network map represen-

tation, that is, given the waypoint network, G(V,E), described in Section 4.1.2 and

a desired destination v ∈ V , the path to the destination is computed via Dijkstra’s

algorithm. Note that the weight for each edge does not necessarily have to be dis-

tance and could be a function of any semantic information contained in the edge so

the path returned from Dijkstra’s algorithm could minimize some other quantity. For

example, an edge may contain a semantic value corresponding to some quantification

of safety, and the weights could be a function of safety and distance, and the shortest

safest path is returned.
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Figure 4.1: Navigation visualization. The black rectangle is the robot footprint, the red
line is the desired path, the yellow line is the lowest cost trajectory. The bright
green cells are obstacles of maximum cost. Obstacle cells are inflated with a
high cost region in blue.

4.3.3 Local Path Planning

A sample based approach was used for local planning where the input space ranges

over linear and angular velocities (v, ω) [28]. Sampling control velocities in this way

ensured that the trajectory honored the kinematics of the SWS. At the beginning of

each planning cycle, a set of trajectories of the form:

Ti = (x, v1, ω1, . . . , vn, ωn), (4.3)

were sampled over the range of velocities v ∈ [0.1, 1.2] m/s and ω ∈ [−0.3, 0.3] rad/s

where x is the pose of the SWS and n denotes the number of discrete time steps in the

control horizon. Each sampled trajectory Ti was then evaluated with a cost function

of the form:

C(Ti,M) = Cobst + k1Cgoal + k2Cpath, (4.4)
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where M is the occupancy map described in Section 4.3.1 and k1 and k2 are tunable

gain parameters. Cobst was the maximum obstacle cost of any cell along the specified

trajectory. If Cobst =∞, the trajectory was infeasible as it passed through an obstacle

and was discarded. The goal and path costs were determined by the endpoint of the

trajectory (x′, y′) and assigned the values Cgoal(x
′, y′) and Cpath(x

′, y′). The optimal

trajectory T ∗ = argmin C(T,M) was selected and the associated velocity command

(v∗, ω∗) ∈ T ∗ was issued to the robot’s Motion Control Module (MCM).
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Chapter 5

CoPilot: Autonomous Doorway

Navigation

This chapter describes CoPilot, an active driving aid that enables semi-autonomous,

cooperative navigation of an electric powered wheelchair (EPW) for automated door-

way detection and traversal. The goal of CoPilot is to leverage 3D sensing to provide

reliable doorway traversal at the level of a typical human operator or better. The

following sections detail the motivation for the CoPilot system, some related work, a

description of the development platform, the details of doorway detection and door-

way navigation approaches, experimental results demonstrating the reliability of the

system, and a brief discussion.

5.1 Background

The U.S. Department of Health and Human Services reports that the number of

people over the age of 65 will increase from 40.4 million people in 2010 to over 70

million by 2030 [29]. This rapid growth in the U.S. elder population will also increase

the number of people with age-related symptoms that hamper their mobility. Such

common symptoms include visual impairments, dementia, and Alzheimer’s disease

[30]. Providing electric-powered wheelchairs (EPWs) to seniors (and others) is a

significant step in helping them live at home and maintain independent mobility.

However, it is not without its own challenges. Maintaining straight paths and avoiding

obstacles is often challenging - especially for drivers using alternative controls such as

sip-and-puff devices, switch driving systems, chin controls, or short-throw joysticks.
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Additionally, traditional joystick users with impaired hand control and those who rely

on “latched driving” modes (i.e., cruise control) for independence and function may

require additional assistance to ensure safe and comfortable mobility. To realize the

home health benefits of EPWs while also maintaining safety, active safety systems

for EPWs could be deployed.

To this end, we have developed CoPilot, an active driving aid that enables semi-

autonomous, cooperative navigation of an EPW. Similar to active driver-assist sys-

tems in automobiles, the driver remains in primary control of the vehicle, while in the

background, CoPilot uses intelligent sensing and drive control systems that work in

cooperation with the driver to aid in avoiding obstacles/collisions and fine precision

driving tasks. The motivation is that as an individual begins to lose cognitive, per-

ceptive, or motor function due to age, injury, or disease, CoPilot can augment that

loss because it can interpret the user’s intent by seeing into the environment. This ex-

teroceptive sensing capability is enabled by leveraging the latest in three-dimensional

(3D) imaging technology. While being developed with a suite of semi-autonomous

driving behaviors in mind, the focus of this system is automated doorway detection

and traversal. This functionality was motivated by discussions with physical and

occupational therapists in the wheelchair space who prioritized doorway navigation

as a capability that would provide real value to EPW users. CoPilot provides near

100% effectiveness in this application.

5.2 Related Work

Doorway detection using 3D sensing has been accomplished in various ways. Rusu

et al. used 3D point clouds to locate doors [31]. The goal was to find doors for the

purpose of opening or closing them with a robotic manipulator. When the robot

was at a door location, a planar model was fit to the point cloud data. The models

were validated based on geometric constraints. More recently, RGB-D data has been

used for the task of parsing indoor scenes [32, 33]. The goal of which is to detect

and correctly label objects in indoor environments. This is a more difficult task

than looking for a single category of object, in our case doorways. These algorithms

are based on learning classifiers where the feature vectors are largely inspired from

computer vision techniques, such as histograms of oriented features. In our work, we

also leverage computer vision approaches for some aspects of doorway detection.
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Early approaches of wheelchair systems capable of doorway traversal include [34–

36]. For navigation, Levine et al. [34] and Yanco [35] both utilized an array of sonar

sensors and Parikh et al. [36] used a planar laser scanner. While these works yielded

successful demonstrations, the limitations of the sensors were not necessarily suitable

for use in cluttered environments. For example, depending on sensor placement, these

approaches might be susceptible to navigating through a table because the table legs

could be detected but not the table top.

The work most similar to our own is Derry and Argall [37], where the goal was to

detect open doorways suitable for wheelchair traversal. Their approach involved pro-

cessing point cloud data to fit planar models under the assumption that gaps in the

planar model correspond to doorways if they meet certain geometric criteria. A key

difference in approaches is that while their focus was in processing point clouds, our

algorithms emphasize processing the depth images directly. Furthermore, their inves-

tigation was limited to doorway detection. In contrast, CoPilot provides a complete

solution for automated doorway navigation.

5.3 Development Platform

The development platform used in this research was based on the Quantum Q6 Edge

electric powered wheelchair (EPW) shown in Fig. 5.1. The Q6 features motors with

integrated encoders for measuring wheel velocities. To access these for odometry

purposes, we interfaced an on-board embedded computer with the EPW’s motor

controller over the CAN bus. It also enabled the regulation of the EPW’s linear and

angular velocities via a software-based PID.

Exteroceptive sensing was from two Primesense Carmine 1.09 sensors. The Carmine

1.09 is the shorter range version of the Primesense structured lighting sensor. It has

an advertised effective range between 35-140 cm (compared to 80-350 cm for the

standard range Carmine 1.08). The decision to use the short range variant was to

ensure that doorways and obstacles remained visible in close proximity to the chair.

However, the maximum range of 1.4 m was extremely limiting. We addressed this

through an intrinsic calibration procedure which extended the effective range to ap-

proximately 3 meters with little degradation in accuracy. This is discussed in detail

in Section 3.1. Two sensors were used in order to increase the total field of view.
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Figure 5.1: CoPilot integrated into an Quantum Q6 Edge EPW. The Primesense Carmine
1.09 sensors are circled in red.

This ensured better coverage of the chair footprint (to avoid collisions with obsta-

cles), as well as facilitated doorway detection at a range of chair orientations. The

mounting positions of the sensors are depicted in Fig. 5.1. Note that the sensors are

mounted vertically rather than horizontally as this was found to be a less obstructive

configuration.
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5.4 CoPilot Perception

This section describes the components of the doorway detection procedure used by

the CoPilot system.

5.4.1 Depth Image Warping & Fusion

Our approach to doorway segmentation relies heavily upon the observation that door-

way border features are strongly vertical. We further observe that computationally,

these features can be extracted most efficiently if the sensor frame is aligned vertically

with the world frame, i.e., the gravity vector. An analogy would be the motivation

for rectification of stereo image pairs. As a result, we warped and fused the depth

image pair as a pre-processing stage.

Given two point clouds PL, PR associated with the left and right sensors, respec-

tively, the first step was to warp the points to a common coordinate frame F. We

chose F to be centered between the actual sensor positions, and with an orientation

identical to the EPW vehicle frame. Using the extrinsic calibration relating the sen-

sor and vehicle frames, we recovered the rigid transformation between the frames and

transformed the points in each point cloud

P̂L = CRLPL + CtL (5.1)

P̂R = CRLPR + CtR (5.2)

where (CRL,
CtL) and (CRR,

CtR) were the rigid transformations relating the left and

right sensor frames to F. Since most of our processing will be in the depth image

space, we next calculated the back projection of P̂L, P̂R to form the fused depth

image ID. In doing so, a couple of subtleties needed to be addressed. First, the

back projection of points do not lie on exact pixel boundaries. As a result, we use a

nearest neighbor interpolation scheme to form the depth image. Second, there was

the potential that a point in both P̂L and P̂R would warp to the same pixel ID(i, j).

In this event, the depth of the closer point was used.

The process is reflected in Figure 5.2. The left-center sub-figures show the raw

depth images from the left and right sensors. Note that when mounted on the EPW,

the sensors were rolled approximately 90 degrees which explains the vertical orienta-

tion of the depth images. The right sub-figure shows the resulting depth image ID

after transforming and fusing the point clouds. All subsequent image and point cloud

processing is done using this image as input.
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Figure 5.2: (Left-Center) Raw depth images of a doorway from the left and right sensors.
(Right) Fused depth image.

5.4.2 Real-time Doorway Detection

After the transformation outlined in Section (5.4.1), vertical edges in the real-world

map to vertical columns in ID. The doorway detection procedure exploits this fact to

efficiently find doorway boundaries based on salient features in the depth image. We

evaluated two approaches to finding doorway boundaries, a feature based approach

and a histogram based approach. After a set of doorway boundaries was obtained

(from either approach), they were then validated based upon geometric constraints.

We now describe the process in detail.

Feature Based Doorway Boundary Detection

Doorways are transition features between interior and exterior space. When viewed

within a depth image ID, they appear as spatial discontinuities. This is to be expected,

as there must be sufficient free space to accommodate pedestrian (or EPW) traffic

across the spaces. We leveraged techniques traditionally used in 2D image processing

to localize this discontinuity, and by association the doorway edges. To enhance these

edges, we convolved ID with a [−1, 0, 1] kernel to generate the horizontal gradient

image, and then thresholded based upon the size of the depth discontinuity to generate

an edge image ED. The next step was to identify edges of sufficient length to be

classified as a doorway edge. Note that simply summing the edge pixels for each

column of ED would produce incorrect results for two reasons: (i) the edges could

actually be at different depths in 3-space, possibly corresponding to multiple objects,

and (ii) the resulting sum would be biased towards objects close to the sensor because

they subtend more pixels.
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The first problem was mitigated by calculating the median depth z̄k of each column

k of ID and generating a copy of the depth image, MD, where values in column k are

set to zero if they are not within some specified distance to z̄k. The idea was that

true doorway edges would represent the majority of the edge length in the column,

and the median value would therefore lie upon this edge. The second problem was

addressed by weighting the depth measurements with the height of the unit pixel ph

subtended at the respective depth. The approach can be expressed concisely as

Φ = 1T (ph · ED �MD) (5.3)

where 1 is a column vector of all ones, � denotes elementwise multiplication, and Φ

defines a row vector where each component corresponds to the edge height in each

column. Each component in Φ was evaluated based on a minimum height require-

ment. The set of columns that meet the threshold were marked as potential doorway

boundaries at a depth of z̄k.

The process is illustrated in Figure 5.3. The left sub-figure shows the edge image

ED. The center image shows edge pixels overlaid on the fused RGB-D image. The

right image shows edge clusters projected to the x − y plane. Note that each cell

represents a potential doorway boundary, so that multiple candidates can be obtained

from a single doorway image. Discriminating the correct edge (e.g., the front doorway

edge vs. the rear) will be discussed in Section 5.4.2.

Figure 5.3: (Left) Edge image of doorway. (Center) Edge pixels identified in the scene.
(Right) Top down view of door edge coordinates.

We quickly determined that by themselves, doorway edges were an insufficient

feature for doorway detection. For example, an inward opening door may not offer a

strong edge on the hinge side as the door face can provide a smooth transition into
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the room. As a result, we also integrated corner features into our classifier. To do

this, we first generated a 2D histogram H(x, y) that bins points in 3-space to the

ground plane. After applying the Harris operator to H(x, y) [38], we identified the

set of bins C in H(x, y) that corresponded to corner features using an appropriate

threshold. Marking a column as a potential doorway based on C required a small

amount of effort since measurements from multiple columns could fall into the same

bin. For each Ck ∈ C, we found the data point x closest to the centroid of the bin

and marked the associated column as a potential doorway boundary at a depth equal

to the distance to x.

The corner detection process is illustrated in Figure 5.4. The left sub-figure shows

the fused depth image. The center image shows corner pixels overlaid on the fused

RGB-D image. The right image shows valid corners projected to the x− y plane.

Figure 5.4: (Left) Fused depth image of doorway. (Center) Corner pixels identified in the
scene.(Right) Top down view of doorway corner coordinates.

In practice, our feature based approach was very successful at segmenting door-

ways. However, its computational complexity - dominated by the corner segmentation

component - was of concern. This motivated our investigation into the histogram-

based approach described below.

Occupancy Histogram Doorway Boundary Detection

Our feature-based approach attempts to directly identify the doorway boundaries,

leaving only a small number of candidates as input to the validation procedure out-

lined in Section 5.4.2. However, this comes at the expense of significant up-front

computation. As a result, we investigated a simpler descriptor. It is based upon the

observation that the segmented edge and corner features were subsets of all columns
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largely occupied by a vertical object. For edge and corner features, we expend sig-

nificant computational resources verifying that neighboring columns in 3-space are

not occupied. But what if we simply identified each column that had a high occu-

pancy rate as a potential doorway boundary? Undoubtedly this would lead to a much

larger number of candidates for validation, but in practice the computational savings

in image and point cloud processing more than makes up for this expense.

In effect, the depth image was reduced to a 1-D occupancy histogram. To accom-

plish this, we simplified the approach summarized in (5.3) to

Φ = 1T (ph ·MD) (5.4)

which yielded a row vector where each component was the height of the object in

each column corresponding to the median value z̄k. In other words, where in (5.3)

we accumulated edge lengths, in (5.4) we are accumulating object height. Φ is now

a 1D histogram of heights per bin where each bin corresponds to a column in MD.

Thresholding each component of Φ on a minimum height requirement segments every

column that corresponds to a large vertical object.

When combined with the validation procedure in Section 5.4.2, this approach

worked surprisingly well in practice. Compared to the feature-based approach, the

implementation is far simpler as neither edge nor corner detection is required. It is

also more efficient computationally. With a Primesense at VGA resolution (640 ×

480), the feature based approach detected doorways at 12 Hz on the computer in

Section 5.3. By comparison, the histogram approach ran at frame-rate (30 Hz). In

the current version of CoPilot, the occupancy histogram approach is used exclusively.

Doorway Validation

Given the columns marked as candidate doorway boundaries and the associated depth

depth values, the role of the doorway validation procedure is to find the best estimate

of the relative position and orientation of the doorway. Algorithm 1 Validate-

Doors outlines the procedure of reducing the set of doorway boundaries to a set

of doorway candidates D. Each pair of doorway boundaries must meet geometric

constraints based on the width of the doorway (line 5), the orientation of the EPW

to the doorway (line 5) and the amount of free space beyond the sill of the doorway

(lines 10-14). Guided by the American’s with Disability Act (ADA) [39] accessibility

guidelines, minimum and maximum doorway widths were set to 82 cm and 162 cm,
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respectively. The orientation constraint was set to ±45◦ and the free space beyond the

doorway had to be sufficient to accommodate the EPW footprint. Doorway width and

orientation validation are performed by theGeometric-Validation sub-procedure.

Computationally, the most expensive part of Validate-Doors is the Intersect

sub-procedure which verifies that sufficient free space exists beyond the candidate

doorway via ray-tracing. In theory, there could be O(n2k) calls, where n is the

number of columns and k is the number of free space tracing operations per doorway

boundary pair. In practice, this will not happen due to constraints on doorway

width, sensor field-of-view, and wheelchair orientation. When benchmarked with a

single Primesense at VGA resolution, Validate-Doors had a mean run time of

approximately 3 ms with a standard deviation of approximately 1 ms.

Algorithm 1 Door Validation

1: procedure Validate-Doors(O,B) . O: obstacle coordinates, B : boundary
coordinates

2: D ← ∅ . set of valid doorways
3: for i← 0 to n− 1 do
4: for j ← i+ 1 to n do
5: if Geometric-Validation(B[i], B[j]) then
6: continue
7: end if
8: is valid← true
9: for k ← i to j do . trace free space
10: p← Intersect(B[i], B[j], k) . line segment intersection point
11: if ‖O[k]‖ < ‖p‖ then
12: is valid← false
13: end if
14: end for
15: if is valid = true then
16: D ∪ {[x, y, θ]T} . add doorway pose
17: end if
18: end for
19: end for
20: end procedure
21: Note: The loops on B continue early when the column has no associated doorway

boundary.

The doorway validation procedure returns the set of valid doorways D with the

relative position of the doorway’s center and its orientation. Note there is high prob-

ability that the classifier will return multiple doorway candidates. However, these

42



will typically be variants of the actual doorway opening (e.g., front edge to rear edge,

front corner to rear edge, door stop to front corner, etc.). To ensure consistent posi-

tion and orientation estimates, we wish to identify only the front edges/corners of the

doorway. To this end, we use a heuristic of choosing the closest doorway candidate.

In practice, this has worked quite well for detecting the actual doorway.

The process is illustrated in Figure 5.5. The center sub-figure shows the valid

doorway candidates (red arrows), and the right sub-figure the chosen doorway. The

latter well approximates the doorway position and orientation.

Figure 5.5: (Left) Free space check for feature pairs. (Center) The set of valid door-
way features. (Right) The final doorway chosen using the “nearest doorway”
doorway heuristic.

5.5 Autonomous Doorway Navigation

At the user level, the CoPilot interface is very intuitive. The user switches the EPW

controller drive mode to “CoPilot” and manually drives towards the door. As soon

as CoPilot detects the doorway, an icon appears on the LCD control panel. The user

then pushes a single button to effect doorway traversal. Note also that the user can

also steal back control from CoPilot at any time by simply touching the joystick.

At the software level, doorway navigation is decomposed into two primary sub-

tasks: mapping the environment, and given such a map perform real-time planning

and control of the EPW for safe and reliable doorway traversal.

The global planner for doorway navigation is very intuitive. Given a doorway

position and orientation, the it constructs an objective path down the doorway cen-

terline with the same orientation as the doorway itself. A goal pose G = [xg, yg, θg]
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is then placed on this path the length of the EPW through the doorway. This is a

basic route network (§ 4.1.2) containing only two nodes.

For local planning, the sample based approach on the input space of the linear

and angular control velocities (v, ω) described in Section 4.3.3 was used. The range

of velocities sampled for this application was v ∈ [0.1, 0.4] m/s, and ω ∈ [−0.3, 0.3]

rad/s. Updates to the costmap were performed asynchronously whenever a scan from

either of the sensors was available, with an objective feedback rate of 15 Hz. The

costmap was centered on the EPW and covered an area of 10 × 10 meters with a grid

cell resolution of 5 cm.

5.6 Experiments

The doorway navigation behavior for CoPilot is extremely effective. ADA compliant

doorways can be navigated with near 100% reliability. The mapping capability also

allows CoPilot to identify both static and dynamic obstacles in the environment, and

react to these accordingly (i.e., by avoiding the obstacle or stopping when necessary).

As additional anecdotal evidence of its performance, CoPilot was demonstrated at

the headquarters of a major EPW manufacturer. The system was fully integrated

into an EPW with a user-friendly interface. When placed in CoPilot driving mode, an

icon would appear on the EPW’s control display when a doorway was detected. The

user then simply pressed a button to initiate door traversal. Although no data was

collected during the demonstration, the system was tested by numerous company

representatives across a large population of doors. CoPilot successfully traversed

every door that the participants attempted.

To support this research, a more formal experiment was conducted over the course

of several days at various locations around the Lehigh University campus. During

this time, the EPW was operated in a natural fashion with no attempt to specifically

align the wheelchair into a favorable pose. A total of 100 traversals of 100 unique

doorway instances were attempted. All were successful. Fig. 5.6 depicts a sample of

the doorways that were traversed. Note that CoPilot was even successful navigating

through doorways where structured lighting systems might be expected to struggle,

e.g., doorways with glass doors. Fig. 5.7 shows the variety of starting EPW poses and

a probability mass function of the door widths. Note also that the large majority of

the doorways were at the lower range of ADA compliant doorway widths.
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Figure 5.6: Examples of the variety of doors successfully traversed

In terms of “failure modes,” the doorway detection system used in CoPilot is

susceptible to false positives in that clustered vertical objects meeting the geometry

constraints could be interpreted as doorways. For example, two tall file cabinets with a

sufficient opening in between would be segmented as a doorway. However, while some

may consider this a false positive, others might consider it a feature as it generalizes

CoPilot to traversing a larger range of narrow openings. We should emphasize that

since migrating to the occupancy histogram approach to doorway segmentation, no

false positives have been observed when attempting an actual doorway traversal.

Finally, videos demonstrating the use of CoPilot can be found at http://

loveparkrobotics.com/?p=993 and http://loveparkrobotics.com/?p=997. The

latter shows CoPilot integrated with a head array controller, an input device not well

suited for the doorway navigation tasks. With the EPW in CoPilot mode and the

doorway detected (i.e., when it puts the icon on the screen), a momentary tap of the

rear switch embedded in the head-array will signal CoPilot to initiate door traversal.

Just as with the Joystick mode of operation, the user can steal back control at any

time by pushing the head-array switches.

5.7 Discussion

In this chapter we introduced CoPilot, an active driving aid that enables semi-

autonomous, cooperative navigation of an EPW for automated doorway detection

and traversal. The system demonstrated reliable navigation through a large popula-

tion of representative doorways. The ability to simultaneously detect doorways and

model the occupancy of obstacles in real-time were enabling factors to the robustness
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Figure 5.7: (Left) visualization of EPW starting poses with respect to a doorway centered
at the origin with an orientation of −90◦ and (right) the probability mass
function of the traversed door widths.

of the system. Long term autonomy was demonstrated in the sense that the sys-

tem could repeatedly detect and traverse doorways. However, each doorway traversal

was an independent navigation mission and the scale of the autonomous navigation

task was limited to immediate perceptual neighborhood around the target doorway.

In the next chapter, we extend this line of research into large scale outdoor urban

environments.
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Chapter 6

Service Robot Navigation in

Outdoor Urban Environments

In the previous chapter (5), 3D point clouds were processed in real-time to both detect

domain specific objects (doorways) and populate a local occupancy grid map. This

processing was used for navigation goal selection and local path planning respectively.

In this chapter, we broaden that line of research and present a system level approach

to service robot navigation navigation in large scale outdoor urban environments. In

addition to domain specific object detection and modeling the occupancy, here we use

3D point clouds to generate large scale landmark maps and real-time object detection

to localize within those maps. The following sections describe the motivation of this

approach, related works, an overview of the system, the map generation procedure,

the navigation method, experimental results for both map generation and long term

navigation, and a discussion.

6.1 Background

Smart wheelchair systems (SWS) have been an active research area for over 30 years

[40]. The spectrum of work has ranged from component level safety sensors, to as-

sistive controllers for steering, to completely autonomous solutions. This research

interest is driven in part by their potential for improving the independence and

quality-of-life of persons with disabilities and the elderly. Enabling mobility can

allow individuals to participate more fully in basic activities such as employment,

education, recreation, worship, commerce and other activities of community life that
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most people take for granted. An additional positive side-effect of increased inde-

pendence is significant cost savings in healthcare and long-term care [41]. While the

large majority of research to date has focused on indoor operations, there is growing

interest in extending SWS capabilities to outdoor environments [42, 43].

Our own approach to outdoor navigation for SWS was inspired by our work with

autonomous automobiles [9]. By using a route network associated with a geographic

coordinate system (e.g., latitude and longitude, UTM, etc), users merely specify a

desired goal location and the automobile navigates there autonomously. This is made

possible in large-part through the availability of accurate pose estimates (typically

from high-performance GPS/INS systems), and exteroceptive sensors which provide

rich three-dimensional (3D) data (e.g., Velodyne HDL-64E LIDAR) for robust per-

ception in unstructured environments. Leveraging these sensor technologies, vehicles

such as Google’s driverless car have driven 100,000s of miles on public roads demon-

strating performance at least as good as their human counterparts [44].

First, our emphasis is on navigation in urban environments. This is motivated

by the observation that over 80% of the U.S. population resides in urban areas [45].

While the availability of GPS measurements in urban areas can typically be assumed,

multi-path errors from buildings, trees, etc., can significantly compromise its accuracy.

However, we further observe that these same structures can be used as landmark

features to yield highly accurate relative position estimates. This is illustrated in

a simple experiment shown at Fig 6.1. In this example, the SWS was manually

driven around an 80 meter triangular-shaped sidewalk loop while logging GPS data.

Portions of the path were lined with large trees. As a result, a large section of the

path had significant position estimate errors due to multi-path. This is shown in

the left satellite image. During the experiment, an Extended Kalman Filter (EKF)

based SLAM algorithm was also executed. It took its initial pose from the GPS,

but all subsequent pose estimates were derived from pole-like features (in this case,

the trees) that were segmented by a LIDAR system. The resulting pose estimates

are dramatically improved, as shown in the right satellite image. This motivates the

use of feature-based SLAM algorithms to compensate for GPS errors. Furthermore,

as with indoor paradigms, a priori maps embedding accurate landmark locations

have the potential to significantly improve localization performance and robustness

in urban environments.
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Figure 6.1: A demonstration of the ineffectiveness of GPS as method of sidewalk level
localization. (Left) The GPS signal is overlaid on satellite imagery while
driving around the triangular-shaped path. (Right) The path derived from
SLAM using trees as landmarks.

To this end, we employ a holistic approach to SWS navigation in urban environ-

ments. The proposed SWS Ecosystem has two primary components. The first is a

mapping service which generates accurate, large-scale landmark maps and an associ-

ated route network that are made available through a cloud interface. The second is

the SWS itself, which is a client of the mapping service. The SWS prototype inte-

grates 3D LIDAR/imaging systems which provide robust perception in unstructured,

outdoor environments. It also leverages these same sensors to perform map-based

localization with a demonstrated accuracy at the decimeter level. The net result is

an SWS platform with perception and localization systems suitable for autonomous

navigation in urban environments. Furthermore, these capabilities are achieved at a

monetary cost not prohibitive for the EPW consumer space.

The results presented herein extend our previous work in three significant ways.

First, we developed and integrated a 3D LIDAR into the SWS prototype. This

improved the safety and effectiveness of the system by enabling robust detection of

both 3D landmarks and obstacles. Second, we developed a new vehicle for mapping

at the sidewalk level. Using this, we created higher resolution and larger scale maps

(3 times what was completed in the past), and also addressed the significant issue of

sidewalk occlusion that we observed previously. Finally - and in part due to these
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first two improvements - we have demonstrated autonomy over distances exceeding

12 km. This represents an order of magnitude improvement over our previous work.

6.2 Related Work

The proposed SWS Ecosystem has strong ties to research in smart wheelchair systems,

large-scale urban mapping, and autonomous navigation of service robots in urban

environments. While a complete survey of these topics is outside the scope of this

document, we have tried to highlight at least the most relevant and recent works in

each of these areas.

Smart wheelchair systems (SWS) have been an active research area since the early

1980s. Our own work in the SWS space spans over a decade, and includes [46–49].

A survey of the field (as of August 2005) can be found in [40]. More recent projects

of note include the MIT Intelligent Wheelchair Project [50], the goal of which is to

develop a voice-commanded autonomous wheelchair intended for use in indoor envi-

ronments. The Home, Lift, Position, and Rehabilitation (HLPR) Chair [51] developed

by NIST is a special-purpose assistive mobility device to provide independent patient

mobility for indoor tasks, such as moving to and placing a person on a chair or bed.

HLPR has demonstrated obstacle detection and navigation indoors with promising

results. The Personal Mobility and Manipulation Appliance (PerMMA) [52] is being

developed at the University of Pittsburgh and Carnegie Mellon University with the

objective of combining manipulation and mobility assistance in support of complete

independence for its users. The system employs two robotic arms, and has demon-

strated object manipulation tasks such as retrieving a drink from a refrigerator.

In contrast to these other efforts, our work has been centered around outdoor

systems. Our most current research, and the focus of this paper, emphasizes ro-

bust navigation in unstructured outdoor environments. Developing robust robotics

solutions suitable for use outdoors is a significant challenge compared to indoor envi-

ronments. The scale is much larger, illumination levels vary from strong sunlight to

near complete darkness, the environment is far less structured, environmental condi-

tions can change quickly and dramatically, and simplifying assumptions such as a level

ground plane are not reliable. Furthermore, operations at the sidewalk level require

localization performance beyond the bounds of what traditional GPS can provide.

Since 2012, several other research groups have turned their sights towards outdoor
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wheelchair systems as well. Yokozuka et al. [43] employ an approach similar to ours

in that they actuate a 2D LIDAR to produce 3D point clouds of the environment.

However, they use a 3D voxel grid as the map representation whereas we use a feature-

based map to operate in similar outdoor urban environments. They report that their

system has autonomously operated for at least two missions of over a kilometer dur-

ing the Tsukuba Challenge whereas our system has performed autonomously for over

10km. Also, their approach to obstacle avoidance uses 2D information (the localiza-

tion component uses the 3D data) which is not as robust as the 3D information used

in our approach.

The work by Irie and Tomono [42] also has a wheelchair navigating an urban

environment. Their approach uses maps that are already available and annotated for

human use, say from Google maps, and use those to localize in urban environments.

Their approach assumes that a grid map is available where grid cells have been labeled

as belonging to a roadway, sidewalk, or building and localization is done by detecting

the boundaries between these types of regions using stereo vision. This is similar

to our approach in that 3D perception is used and that common urban features are

used for localization. Key differences are in the chosen sensing modality and map

representation. We deliberately ruled out a vision-based approach due to robustness

concerns. They demonstrated successful position tracking on a 150m sidewalk course

whereas our system demonstrated successful autonomous navigation (which assumes

successful position tracking) of an order of magnitude more distance. Also, their

assumption is that annotated maps of the environment will someday exist for easy

consumption, but in this work every map had to be hand labeled. In this respect,

they still require a mapping procedure.

One inspiration for our mapping approach is the Google mapping trike [53], which

is used in areas where their mapping cars cannot traverse. Their platform has a high-

end sensor suite with multiple sensing modalities whereas ours is a relatively low-cost

platform. Our mapping approach reduces a 3D representation of the environment

to a 2D planar map of features for the SWS client. Chong et al. [54] use a method

whereby a 3D point cloud of the environment is created using a push broom mounting

of a 2D LIDAR. They then project points of interest from the 3D point cloud to a 2D

plane to create a synthetic 2D LIDAR scan that is invariant to roll and pitch of the

mobile platform. They report successful localization on a 1.5 km route with quanti-

tative performance similar to ours. Their localization approach uses a 2D occupancy
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grid as a map representation whereas we use a feature based representation. They

also demonstrate two successful autonomous missions on two shorter sub-routes. We

have demonstrated both short term and long term autonomy in fifteen autonomous

missions.

Mapping at the sidewalk level requires a sufficiently accurate 6 degree of freedom

pose estimate in a global coordinate frame in GPS compromised areas. Baldwin et

al. [55] use a push-broom style 2D LIDAR with the goal of providing an accurate pose

estimate by using probabilistic methods on small swaths of aggregated push-broom

scans. They also report better accuracy with their method in a GPS compromised

outdoor environment than a reference high-performance GPS/INS system. Their

localization approach uses previously seen swathes of the environment represented

as point clouds. During operation of the localization system, the currently observed

swathe is matched to the most likely swathe observed in a prior experience and the

pose is estimated based on that match. They report successful localization results on

26km of roadway, but have not demonstrated autonomous navigation. We have not

autonomously operated that amount of distance, but emphasize that we are operating

at human scale, rather than road vehicle scale.

Lategahn et al. [56] map urban environments using predominately a stereo cam-

era and IMU. Although, they use a GPS measurement to initialize the pose estimate.

Similar to our work, they use 3D features as landmarks. However, their localization

approach uses only a monocular camera and IMU in conjunction with the landmark

map to provide an accurate 6 degree of freedom pose estimation. Our client system

operates under a 3 degree of freedom pose assumption. Their system demonstrated a

mean localization performance accuracy of 10cm on a 10km mapped urban environ-

ment. Our mapped environment is smaller, but our localization results are similar.

Furthermore, while their work focuses on localization, our SWS Ecosystem offers a

more complete solution for autonomous navigation.

Finally, an important aspect to navigation at the sidewalk level is the ability

to handle dynamic obstacles in the environment such as pedestrians. Kummerle et

al. [57] present a tour guide robot that autonomously navigated through a crowded

3.3 km urban route. They use a grid map representation of the environment and a

particle filter based approach to localization. They demonstrate qualitatively suc-

cessful localization results whereas we provide a quantitative analysis of localization
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accuracy. Their approach relies on 2D information for localization and dynamic ob-

stacle avoidance. While we are also concerned with dynamic obstacles, the emphasis

of our work is in localization and mapping. Robustly handling dynamic obstacles is

outside the scope of this work. However, our system utilizes 3D information for ob-

stacle avoidance and can potentially perform better when there are low lying dynamic

obstacles, such as dogs, which their system had trouble with.

6.3 SWS Ecosystem Overview

As alluded to earlier, the key for our SWS to navigate reliably in an urban environment

is having an accurate landmark map and route network. The landmark map consists

of the absolute locations of landmark features (in this case, pole-like features) and

is used for localization purposes. The route network is used to indicate wheelchair

accessible paths with respect to the landmarks and is used for path planning.

We approach the problem from a client service standpoint. Hence, our ecosystem

is composed of two major systems: the SWS acting as a consumer of landmark maps

and route networks, and a service platform used to generate landmark maps and route

networks, and to make them available to SWS clients. The envisioned approach is to

use a sidewalk-level mapping vehicle with high quality sensing equipment to enable a

high fidelity 3D reconstruction of the environment. Then, the 3D reconstruction could

be reduced to salient landmark features and their absolute locations with respect to

a global coordinate frame. Route networks could then be generated via the service

mapping platform or by manually driving the client SWS on safe paths in a learning

phase before autonomous operation as in [46]. These landmark maps would then

reside in the cloud, and the SWS would download the landmark map and route

network based on its location and the desired goal locations chosen by the operator.

In this chapter, we describe a proof of concept implementation of the envisioned

system. The mapping service platform and the map generation process is outlined in

Section 6.4. The client SWS platform and methods it uses to perceive and navigate

the environment are described in Section 6.5. Following the specifics of the service

and client components, results of using the system in practice are discussed in Section

6.7.
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Figure 6.2: Some example pole features. From left to right a street sign, parking meter,
lamp post, and fire hydrant.

6.4 Server Side Map Generation

This section details the service component tasked with generating and providing the

landmark map and route network. The map representation used by the system is

feature-based, which was motivated by the need for the SWS to localize in a GPS

compromised environment utilizing a relatively low cost sensor suite. The global

feature map was generated by capturing and synthesizing a dense point cloud rep-

resentation of the environment. Urban environments offer a plethora of features for

tracking. In this work, we focused on pole-like features - herein referred to simply

as pole features - such as parking meters, lamp posts, trees, etc. Examples of typical

pole features in our map are shown in Fig. 6.2. In our previous work [49], we em-

ployed a street level mapping platform (a car) that had the advantage of utilizing a

high-end OXTS RT-3050 GPS/INS system which provided accurate positional infor-

mation. However, a shortcoming with mapping from the street was that features at

the sidewalk level could be occluded by obstacles such as parked cars. This led to the

construction of a sidewalk level mapping platform.

6.4.1 The Mapping Trike Platform

Taking inspiration from Google’s mapping efforts [53], the Mapping Trike platform

was built upon a commercial tricycle augmented with a sensor suite, depicted in

Fig. 6.4. A Microstrain 3DM-GX3-45 inertial measurement unit (IMU) with GPS

antenna and two 4096 cycles per revolution (CPR) resolution encoders were used to

54



Figure 6.3: A block diagram representing the data flow of the mapping process. The
section above the dashed line represents the map initialization phase and the
section below the dashed line represents the map refinement phase.

provide pose estimation. Point data from two side-facing LIDARS (SICK LMS291-

S14) and one rear-facing LIDAR (SICK LMS291-S05) were used to detect landmark

features. The Mapping Trike was driven manually around an area of interest while

logging data from all of its sensors. Data were then post-processed to synthesize the

landmark map.

Synthesizing the map takes place in two main stages. The initialization stage cre-

ates a high fidelity 3D reconstruction of the environment via the side-facing LIDARS.

This reconstruction is then reduced to landmark features that have an associated

position and covariance. These landmark statistics serve as an initial estimate of the

landmark map, which is later refined to correct positional errors of the landmarks.

6.4.2 Mapping Stage 1: Initialization

The initial map is generated in three main stages: pose estimation, landmark seg-

mentation, and map synthesis. A data-flow diagram for the map initialization phase

is depicted above the dashed line in Fig. 6.3.
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Figure 6.4: (Left) The Mapping Trike platform. (Center) A rear view of the Mapping
Trike with mounting positions of the LIDARs indicated. (Right) Close up
pictures of the GPS antenna, wheel encoder, and the Microstrain 3DM-GX3
IMU.

Pose Estimation

The localization module of the SWS works under the assumption that the landmark

map is a 2D plane. Hence, the mapping goal is to register the landmarks to a consis-

tent 2D global coordinate frame that is sufficiently planar in local neighborhoods. In

our case, we use the Universal Transverse Mercator (UTM) coordinate system, which

maps positions on the globe to a 2D Cartesian coordinate frame. To achieve this goal,

the estimated pose of the trike with respect to the UTM frame must be accurate to

within the operating tolerances of the SWS. The 3DM-GX3-45 has an integrated an

on-board GPS, but its accuracy was insufficient to accurately register the trike to the

UTM frame even when fused with inertial measurements from the IMU. Our solution

was to integrate feedback from the wheel encoders and incorporate the kinematics of

the trike into an extended Kalman filter (EKF). Thus, the trike pose was estimated

by using the vehicle kinematics as the predictive step, and fusing the GPS and iner-

tial measurements for the corrective step. We used a predictive motion model of the
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where x denotes the state vector consisting of the Cartesian coordinates (x, y, z) and

the yaw and pitch angles (α, β), ∆l and ∆a were the linear and angular displacements

over some small time step derived from the encoders. The k subscript denotes a time

step and the superscript − denotes the prediction of the state and covariance after

the motion update. The roll angle was not tracked because the effect of roll was

minimal on flat sidewalks, but tracking the pitch was crucial as small changes in

pitch could distort the projection of the rear-facing LIDAR data. For example, the

map in Section 6.7 has hills with a grade of approximately 8.5%.

For the purposes of the EKF, the covariance P was updated as:
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Jm was the Jacobian with respect to the linear and angular displacement defined as:
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and Q is additive Gaussian noise in the linear and angular displacements.

The 3DM-GX3-45 streams the GPS data and IMU data at different rates, 4 Hz

and 100 Hz respectively. So, in our EKF formulation each of these data streams has
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a separate measurement update. The GPS measurement update is computed with

the following sequence of equations:
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−1

xk+1 = x−

k+1 +Kg,k(zg −Hgx
−

k+1)

Pk+1 = (I−KgHg)P
−

k+1,

(6.5)

where zg is the GPS measurement represented as a UTM coordinate, x is the state

vector, and Hg is a projection matrix to extract the x and y Cartesian coordinates

from the state vector defined as:

Hg =

(

1 0 0 0 0

0 1 0 0 0

)

. (6.6)

Rg(k) is a covariance matrix that represents the uncertainty of the GPS measurement

at time step k, I is the identity matrix, xk+1 and Pk+1 are the corrected state and co-

variance respectively. The IMU itself does some on-board filtering and the covariance

of the GPS measurement can be requested. This is the value used for Rg(k).

Similarly, the gyro measurement update was computed with the sequence of equa-

tions:
Ka,k = P−

k+1H
T
a (HaP

−

k+1H
T
a +Ra(k))

−1

xk+1 = x−

k+1 +Ka,k(za −Hax
−

k+1)

Pk+1 = (I−Ka,kHa)P
−

k+1,

(6.7)

where za is a gyro measurement of the form [α, β]T , and Ha is a projection matrix to

extract the yaw and pitch from the state vector defined as:

Ha =

(

0 0 0 1 0

0 0 0 0 1

)

. (6.8)

Ra(k) is a covariance matrix that represents the uncertainty of the gyro measurement

at time k, I is the identity matrix and xk+1 and Pk+1 are the corrected state and

covariance respectively.

Landmark Segmentation

The EKF described above provided an acceptable pose estimate for the mapping trike.

The next step was to register the LIDAR scans to a common coordinate frame (in our

case, the Standard UTM frame), as we are relying upon the motion of the trike to
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Figure 6.5: Pole segmentation of a parking meter from the dense 3D reconstruction of a
side facing SICK LIDAR.

build the 3D reconstruction of the sidewalk scene via 2D laser scans. Because of this,

in our data collection we aimed for a speed of approximately 1 m/s. In conjunction

with the LMS291 LIDAR scan rate of 75 Hz, this gave us a vertical scan for each 1-2

centimeters of distance traveled.

Once we had a sufficiently dense set of LIDAR scans registered to a common

frame, we segmented the pole features by aggregating subsequent 2D scans into a 3D

point cloud. The scans were aggregated in a sliding window fashion. The first n scans

made up the first point cloud and subsequent point clouds began at the middle scan

of the previous point cloud. The reason for this overlap was that a landmark could

be missed if it straddles the boundary of the two windows. Additional bookkeeping

was done to eliminate the duplicate landmarks in the overlapping regions. For each

window, the points corresponding to the ground plane were removed using a RANSAC

procedure. The remaining points were then clustered based on the Euclidean distance

to neighboring points. The maximal intra-cluster distance was set to 10 cm. An

example of the segmentation of a parking meter from a window containing 100 scans
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Figure 6.6: An example of a lamp post that would be clustered into two components due
to a section of invalid measurements.

is shown in Fig. 6.5.

Unfortunately, some features were clustered into several disjoint clusters using this

approach. This was most likely to occur when observing lamp posts due to the low

albedo surface. An example of a lamp post that would be improperly segmented is

shown in Fig. 6.6. Based on the observation that vertical features are the focus of

our landmark segmentation, we performed a cluster merging step to combine clusters

that were likely to belong to the same vertical object. The centroids of each cluster

were projected to the x − y plane. If the Euclidean distance between two centroids

was less than 20 cm, the clusters were merged into a single cluster. This merging

phase significantly increased the accuracy of the entire segmentation process.

The next step was to validate that a cluster was a pole feature by passing some

validation gates. The approach of fitting a cylindrical model, while intuitive was not

very effective. This was especially true for features like street signs and parking me-

ters which lacked uniformity. That being the case, we validated a cluster’s status as

a pole by first performing a spectral decomposition of the covariance matrix of its

data points. This gave us information that was invariant to the coordinate system in
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which the data was measured. The eigenvector associated with the largest eigenvalue

λ1 was compared against the vector [0, 0, 1]T (corresponding to the gravity vector).

If the angle between them was outside some tolerance, the cluster was rejected as

a landmark; a cluster passing this validation gate was assumed to be a tall vertical

object. We further examined the aspect ratio of the cluster. Since the eigenval-

ues correspond to the variances in the principal directions and the largest direction

was already determined to be vertical, several ratios of the eigenvalues were tested:

λ2/λ3 ≈ 1 to validate that the width and depth were similar and λ1/min(λ2, λ3) > 2

to validate the object was at least twice as tall as it was wide. Only after passing

these gates was a cluster considered a candidate landmark.

Landmark Map v1.0

Ultimately, the landmarks associated with each cluster needed to be transformed to

2D UTM coordinates. The reason for this is that the client SWS is not assumed to

have the sensing capability to track its position in R
3. As such, the trike pose and

centroid of each cluster were transformed to UTM coordinates and each landmark

cluster was reduced to a feature vector of the form [ρ, φ, s]T where ρ and φ were the

range and bearing to the transformed landmark’s centroid with respect to the trike’s

transformed pose at which the landmark was detected and s was a signature for the

landmark (in our case the radius of the pole). The signature value aids in data associ-

ation in the map refinement step (§ 6.4.3) and was computed by finding the bounding

box of the landmark cluster’s data points and returning min(width, depth)/2 as the

radius.

For our landmark map, we wish to embed both the mean position and covariance

of each landmark in the UTM frame. Using the 2D projection of the trike’s pose

estimate, denoted as x = [x, y, θ]T , we converted the landmarks to the UTM frame

as follows:

µL =

(

f1

f2

)

=

(

x+ ρ cos(φ+ θ)

y + ρ sin(φ+ θ)

)

, (6.9)

where µL denotes the mean location of a landmark. To compute the covariance we

need to transform the noise model of the LIDAR to Cartesian coordinates. Note that

the variance of the signature is not considered here as it does not depend on the
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position. The noise model is denoted as:

Q =

(

σρ 0

0 σφ

)

, (6.10)

and is linearized with the Jacobian of µL with respect to ρ and φ, defined as:

HQ =

(

cos(φ+ θ) −ρ sin(φ+ θ)

sin(φ+ θ) ρ cos(φ+ θ)

)

. (6.11)

However, we also need to propagate the uncertainty in the trike’s pose into the uncer-

tainty in the landmark’s position. The linearization is performed using the Jacobian

of µL with respect to x, y, and z, defined as:

Ht =

(

1 0 −ρ sin(φ+ θ)

0 1 ρ cos(φ+ θ)

)

. (6.12)

The covariance for a landmark’s position is then

ΣL = HtΣtH
T
t +HQΣQH

T
Q. (6.13)

The initial map estimate is the set of means and covariances for each landmark

feature denoted

Mv1 = ((µL1,ΣL1), . . . , (µLN ,ΣLN)) (6.14)

where N is the number of landmarks.

6.4.3 Mapping Stage 2: Refinement

In our previous work [46], the mapping vehicle employed a high performance OXTS

RT-3050 GPS/INS system for pose estimation. Despite this luxury, the residual errors

in initial landmark positions were large enough to make SWS localization impossible.

As a result, a second mapping stage was required to refine the landmark positions.

Furthermore, the 3DM-GX3-45 used on the Mapping Trike lacks the accuracy of the

OXTS RT-3050, and so a map refinement step was expected.

The map refinement stage used an EKF simultaneous localization and mapping

(SLAM) approach modified to useMv1 as an input. While the map initialization stage

was performed off-line using the trike’s side-facing LIDARs, the map refinement stage

was performed on-line using trike’s rear-facing LIDAR. Extracting poles from the rear-

facing LIDAR was done by first registering the laser scan to the trike’s coordinate
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Figure 6.7: A comparison of an initial landmark map to the refined map. The trike started
on the left with an acceptable GPS position estimate and traveled to the right
up a grade of approximately 8.5%. The red triangles indicate the landmarks
in Mv1 and the yellow circles indicate the landmarks in Mv2. A landmark at
each corner was tagged with satellite imagery positional information to act as
known correspondences.

frame. The point data in the scan were then clustered based on the Euclidean distance

of neighboring points; the maximal intra-cluster distance was set to 10 cm. This value

was chosen to capture pole features at a range of approximately 8 meters. Any cluster

of less than 4 points was rejected as a possible landmark. A circle model was then

fit to each remaining cluster using RANSAC [58] and the model parameters were

refined using a least squares fit to the inliers. Any cluster that had less than 90%

inliers (a measure of model fit) or a fitted circle radius greater than 40 cm (none of

the landmarks have a radius this large) was rejected as a landmark. Each accepted

landmark was then put into the [ρ, φ, s]T form by converting the center point of the

fitted circle to polar coordinates with respect to the trike. The radius of the circle was

used for the signature s. Note that the center of the fitted circle was used rather than

the centroid of the cluster’s data as it was a better approximation of the landmark’s

actual location when seen from different viewing angles.

As in a typical EKF SLAM implementation, the vehicle pose and map locations

were represented as a Gaussian with mean vector µ = [x,m1, . . . ,mn]
T where x =

(x, y, θ) was the trike’s pose and mi = (xi, yi, si) was the ith landmark’s position and
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signature, and covariance, defined as:

Σ =















Σxx Σxm1
· · · Σxmn

Σm1x Σm1m1
· · · Σm1mn

...
...

. . .
...

Σmnx Σmnm1
· · · Σmnmn















, (6.15)

where Σ is a block matrix and each block corresponds to the covariance of the pose

Σxx, the pose with respect to landmark Σxmi
, or the covariance of a landmark Σmimi

.

The first step to our map refinement is to pre-process Mv1 by tagging a small

number of specific landmarks with accurate position information using satellite im-

agery. This information provides known correspondences for these features and aids

in loop closure. We found this necessary, as the loops we are considering are on the

order of a kilometer in length. The SLAM measurement update step computes the

Mahalanobis distance from an observation to each landmark in Mv1, as well as to each

landmark in the refined map maintained by the EKF denoted as Mv2. The maximum

likelihood correspondence (MLC) [26] is selected and the update has three possible

outcomes:

1. The MLC is below some threshold and the observation is discarded.

2. The MLC is associated with a landmark in Mv2 and the EKF is updated nor-

mally.

3. The MLC is associated with a landmark in Mv1 and the landmark feature

is removed from Mv1 and added to Mv2. Additionally, if the landmark has

associated satellite data, then that position is used when adding the landmark

to Mv2.

The refined landmark map v2.0 is the result of the EKF SLAM procedure. Fig. 6.7

shows the difference between one instance of the initial map compared to the refined

map on Webster Street. The trike started on the left with an acceptable GPS posi-

tion estimate and traveled to the right up a grade of approximately 8.5%. The red

triangles indicate the landmarks in Mv1 and the yellow circles indicate the landmarks

in Mv2. A single landmark at each corner was tagged with satellite imagery positional

information to act as known correspondences.
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6.4.4 Route Network Generation

The SWS uses a route network 4.1.2 for global path planning containing information

about wheelchair accessible paths with respect to the landmark map. Each edge also

has semantic information associated with it: a speed limit, a stop condition, and a

weight. The speed limit is used to constrain the local path planner (§ 4.3.3) to a

maximum speed in areas of the map where high speed traversal could be unsafe. The

stop condition is used in areas of the map, such as street crossings, where the operator

of the SWS must determine when it is safe to cross. The edge weight is used by the

global planner to search for paths that minimize the expected time of arrival.

The route network was constructed by first sampling the trike poses as corrected

by the map refinement step. The trike was driven on acceptable wheelchair accessible

paths in order to ensure that the sampled path is valid for the SWS. After the initial

route network was constructed, semantic information associated with the edges was

added manually. While not fully automated, the associated workload is not too

cumbersome. For example, the route network used in our experiments (§ 6.7) only

had to have the six street crossings annotated by hand.

6.5 The Smart Wheelchair System (SWS) Client

This section describes the operation of the SWS under the assumption that the land-

mark map and route network are available. The SWS software has three major

components: perception, localization, and navigation. The perception component

of the SWS has two primary tasks: pole feature segmentation for localization, and

populating a cost map for obstacle avoidance. The localization component maintains

an estimate of the SWS with respect to the landmark map by utilizing the output

of the pole feature detection process. Finally, the navigation component uses the

route network for global planning and the cost map (populated via the 3D sensors)

to generate local trajectories. A detailed description of each component, as well as

the SWS hardware platform, now follows.

6.6 The SWS Platform

The SWS used in this work is pictured in Fig 6.8. It is an Invacare M91 Pronto

that integrates the FDA approved Motion Control Module (MCM) developed under
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Figure 6.8: The SWS prototype with the fields of view of the actuated LIDAR (blue) and
each 3D camera (orange) highlighted. (Left) A profile view and (Right) a top
down view of the respective sensors’ fields of view.

our previous work [47]. The MCM provides a seamless interface for regulating SWS

linear and angular velocities. Proprioceptive sensing includes high resolution quadra-

ture encoders (4,096 CPR) and a Microstrain 3DM-GX1 IMU. The latter is used to

enhance the odometry performance by providing gyro corrections. Exteroceptive sen-

sors include two IFM O3D200 3D cameras 2.4.1 and an actuated Hokuyo UTM-30LX

2D LIDAR (described in detail in Section 2.4.2). These provide the necessary 3D

sensing for robust obstacle detection and landmark segmentation. The total cost of

all sensors is <$10K USD in quantities of one.

The primary role of the IFM O3D200 3D cameras was to detect obstacles in

the environment and propagate that information to the local map (§ 4.3.1). In our

previous work [49] the 3D camera was crucial for robust obstacle detection as it was

the only 3D sensing modality used. The current SWS integrates a second 3D sensing

modality (§ 2.4.2), but the O3D200 is still useful for ground plane segmentation and

to cover the near field and low-lying blind spots. In addition, to compensate for the

limited field of view, two O3D200 cameras are used. Fig. 6.8 shows the mounting

positions and depicts the vertical and horizontal fields of view for each sensor.

The SWS also features an actuated Hokuyo UTM-30LX LIDAR, herein referred

to as the 3D Hokuyo. Although it was also used for obstacle detection, the primary

role of the 3D Hokuyo was landmark segmentation. Our motivation for actuation was

due to robustness concerns in our previous work [49]. Specifically, localization with

the UTM-30LX was done using 2D information, but the SWS operates in a 3D envi-

ronment. While this was sufficient for demonstration purposes, robust segmentation
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of 3D landmarks requires a 3D sensor.

The software was developed using the Robot Operating System (ROS) [27] frame-

work and modularized based on the message passing paradigm used by ROS. Addi-

tionally, the Point Cloud Library (PCL) [59] was leveraged for processing point cloud

data from the exterioceptive sensors. The computational processing for the software

components was performed by a laptop with an Intel Core i7-2760QM 2.4GHZ pro-

cessor and 4 GiB of RAM.

6.6.1 Ground Plane Tracking

Reliable obstacle detection and mapping requires the local ground plane to be tracked.

For the SWS, this is accomplished using the O3D200 3D cameras and employing an

iterative reweighted least squares (IRLS) approach. IRLS has advantages over a

traditional RANSAC approach in that it integrates both temporal filtering as well as

regularization through the use of a calibrated ground plane. In [9], we found that

it outperformed RANSAC for road segmentation, and therefore employed it here as

well.

IRLS starts with an estimate of an ideal ground plane derived from the extrinsic

calibration parameters of the 3D cameras. We model the plane at time k as

Πk = akx+ bky + ckz + dk = 0. (6.16)

The assumption is that the ground plane orientation changes with time, but that the

rate of change is small in comparison to the scan rate of the 3D camera (≈ 7 Hz).

Let Pk ∈ R
3×n denote the n points returned from a 3D camera image at time k. The

normal distance from point pk = [xk, yk, zk]
T ∈ Pk on the ground plane at time k

to the estimate to the ground plane at the previous time Πk−1 should be small in

practice. This notion is formalized by solving a problem of the form:

min
a,b,c,d

n
∑

i=1

W (pki ,Πk−1)(axki + byki + czki + d)2+

m
∑

j=1

W (qj,Πk−1)(axj + byj + czj + d)2,

(6.17)

where pki denotes the ith point of the 3D camera image at time k, W : R3 × Π→ R

is a weighting function of the form:

W (p,Π) =

[

1− α

1 + β exp(γ f(p,Π)− δ)
+ α

]

g(p), (6.18)
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where the first expression is a logistic function of the normal distance from the point p

to the plane Π denoted as f(·) and the second expression is a function g(p) that scales

the measurement based on the x component of p = [x, y, z]T . This is to mitigate the

effect of a greater density of points returned at closer ranges. The first term in the

minimization problem operates on the points in the current 3D camera scan Pk. The

second term is a regularization component that operates on points Q ∈ R
3×m that

are uniformly sampled from the ideal ground plane.

6.6.2 Landmark Segmentation

SWS landmark segmentation follows the same general procedure described in Sec-

tion 6.4.2, but data from the 3D Hokuyo are used as input. These data have different

characteristics than the side-facing LIDAR data of the Mapping Trike. First, the

ground plane does not need to be segmented as it is first seen at approximately 9

meters, and we restrict landmark segmentation to ranges of 8 meters or less. Second,

the vertical angular resolution is larger with the actuated LIDAR, so the clustering

procedure uses a maximal intra-cluster distance of 45 cm rather than the 10 cm figure

previously stated.

6.6.3 SWS Navigation

At the user level, navigation only requires two inputs. The first is selecting a desti-

nation. The second is resuming the SWS when it pauses at locations where the user

must determine when it is safe, such as crossing a street. The latter is necessary, as

some street crossings feature high speed automobile traffic that would be detected

too slowly with the on-board sensor suite.

Localization of the SWS was performed using the particle filter approach described

in Section 4.2. The particle filter approach was chosen because it was more robust

to aspects of the environment that were not modeled by the system, namely the

assumption the SWS is operating on a perfect 2D plane. The motion noise parameters

were empirically determined under the assumption that a diverse particle set improves

localization performance. As such, the values chosen (a1 = 0.05, a2 = 0.01, a3 =

0.001, a4 = 0.1) were an exaggeration of the true noise model. For this application,

the signature value used to enhance data association was the radius of the pole feature.

The number of particles used in our implementation was 60 and, for the purposes of
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planning, the mean of all the pose components was used.

The global planner for the SWS is intuitive; given the waypoint network, G(V,E),

described in Section 6.4.4 and a desired destination v ∈ V , the path to the destination

is computed via Dijkstra’s algorithm. Note that the weight for each edge is the

estimated traversal time rather than the distance, so the path returned from Dijkstra’s

algorithm minimizes the estimated traversal time and does not necessarily correspond

to the shortest distance.

For local planning, the sample based approach on the input space of the linear

and angular control velocities (v, ω) described in Section 4.3.3 was used. The range

of velocities sampled for this application was v ∈ [0.1, 1.2] m/s, and ω ∈ [−0.3, 0.3]

rad/s. Updates to the costmap were performed asynchronously whenever a scan from

any of the sensors was available, with an objective feedback rate of ≈ 7 Hz. The

costmap was centered on the SWS and covered an area of 6 × 6 meters with a grid

cell resolution of 5 cm.

6.7 Experimental Results

To demonstrate the effectiveness of the two major components of the smart wheelchair

ecosystem, namely the server mapping component and the client SWS, a map was

constructed following a path starting at the loading dock of Packard Lab and then

going across the street and circling a multi-block loop in South Bethlehem, PA. This

route (shown at Fig. 6.9) was chosen for several reasons:

1. The route was of significant length (approximately 1 km) and had diversity in

the frequency and signature of landmarks.

2. The route contained a large loop which allowed us to test loop closure.

3. The route was not flat. The streets running in the north-south direction had

a grade of approximately 8.5%. This allowed us to test the effectiveness of the

2D localization and mapping approach across significant changes in elevation.

We should emphasize that the density of landmarks played no role in the selection of

this route, as pole features appear to be universally pervasive in South Bethlehem.

The following sections describe the mapping results and SWS navigation results.
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Figure 6.9: Satellite view of the block route network. The route is depicted as the green
path. The yellow circles indicate the landmark features. The distance around
the loop is approximately 944 meters. The six stop sign icons correspond to
locations where the SWS automatically stops and waits for the operator to
determine when it is safe to cross. The numbered locations correspond to
labeled destinations for SWS navigation.

6.7.1 Server Mapping Performance

To test the performance of the server mapping component, we mapped a multi-block

area in South Bethlehem, PA shown in Fig. 6.9. The route is approximately one

kilometer in length, and features a loop of approximately 944 meters. To validate the

effectiveness of landmark segmentation by the Mapping Trike, the number of land-

marks along this route (187) were counted by hand as a ground truth measure. This

was compared against the output of the map initialization and refinement stages. The

landmark segmentation procedure in the map initialization step successfully detected

186 of the ground truth poles. The sole missing landmark was a lamp post with a

bike chained to it, so its omission was not unexpected. More significantly, there were

32 false positives which were associated with stationary pedestrians and the corners

of buildings. The latter occurred when the sliding window only caught the very be-

ginning of a building facade. These false positives could be readily eliminated by not
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accepting landmarks at the leading edge of the sliding window, as they would reap-

pear in the center of the window at the next time-step and be easily discriminated.

Eliminating false positives from pedestrians would be somewhat more complicated,

likely requiring a vision system implementing people detection as a validation gate.

As this was not available in the current Mapping Trike configuration, these false

positives were removed manually.

By comparison, the final landmark map contained 185 landmarks after the re-

finement stage. The sole discrepancy between this value and the ground truth was

due to a false data associations in the EKF SLAM procedure where two poles were

sufficiently close to one another (< 10cm) and associated as being the same pole. As

a measure of map accuracy, the final landmark map was compared to the satellite

image. The coordinates of 24 clearly visible poles were obtained by clicking their po-

sitions on the satellite map and the distances to the associated poles in the landmark

map were computed. The mean error in distance was 66cm with a maximum error of

115cm and a minimum error of 28cm. These values are only an approximate measure

of map accuracy as errors in clicking and satellite imagery are confounding factors.

To validate the generality of the server mapping component, we mapped a second

neighboring block depicted in Fig. 6.10. The reason for this was that the parameters

for the mapping procedure (e.g., the pole segmentation parameters) were tuned using

data from this same loop. As a result, a test set disjoint from the training set was

required. Using the same parameters as the first map, all 129 landmarks in the second

map were successfully detected. However, 25 false positives were also detected. In

addition to the types detected in the first map, there were also false positives from

the supports of windows and glass doors, as well as from the fence posts of a chain

link fence. These additional false positives are interesting cases. To elaborate, like

the mapping vehicle our SWS segmented landmarks using 3D point cloud data. As

a result, window supports or chain link fence posts likely would also be detected

as landmarks by the SWS and correctly associated with those in the map. So, an

argument could be made for labeling these as true positives and keeping them in the

map. However, an alternate sensing modality (e.g., a camera based vision system)

likely would not detect these as landmarks. Ultimately, since they did not meet our

strict geometric definition for a pole feature, they were categorized as false positives.

We also note that the north-south distance of both loops was approximately 175
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Figure 6.10: Satellite view of a second block mapped with the trike using the same pa-
rameters as the first block. The red circles indicate the landmark features
and the yellow circles indicate false positives. The distance around the loop
is approximately 585 meters. Out of 129 manually counted ground truth
poles 100% were successfully segmented. However, 25 false positives were
detected.
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Figure 6.11: A close up view of the map in Fig. 6.9. The landmarks are depicted as red
crosses.

meters along a grade of 8.5%. Without compensating for this grade, landmark posi-

tions on the north and south ends of the map would be shifted 60-70cm which would

place many in the street. However, a review of the map indicates that these did in

fact remain on the sidewalk. This validated our approach to projecting the landmark

positions to the UTM frame. Since it is difficult to qualitatively discern the landmark

accuracy at the scale of the map in Fig 6.9, Fig. 6.11 depicts a zoomed in view of a

section of the map in 6.9. This section was chosen for two reasons: the landmarks are

visible in the satellite image and it is along the east-west direction and could suffer

from the previously mentioned shifting effect.

6.7.2 SWS Localization Accuracy

In an attempt to quantify the accuracy of the proposed map-based localization ap-

proach, the SWS was manually driven around the loop but with the localization

module running. It was then stopped immediately adjacent to a reference landmark,

and the normal distance from the base of the SWS to the landmark was measured

manually. At the same time, this distance was also captured using the SWS’s localized

position. This process was repeated for a total of 30 landmarks.

This experiment was conducted a total of three times with landmark maps con-

taining 50%, 75%, and 100% of the total landmarks. The motivation for reducing the

number of landmarks available to the localization module was to assess the impact of

landmark occlusion, e.g., what happens if half the landmarks are occluded by pedes-

trians? The results of these experiments are summarized in Fig. 6.12 with box plots

for each landmark map. These indicate that sub-decimeter level 1D accuracy could

be expected when even just half the landmarks are visible. To place these results in
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Figure 6.12: A comparison of 1d localization error from 30 reference locations. Local-
ization was performed on three landmark maps containing 50%, 75%, and
100% of the landmarks. Each respective box plot shows the median, 25th,
and 75th percentiles, with outliers plotted as individual points.

the proper context, we note that the authors in [55] evaluated their own approach in

a somewhat urban environment against a “high caliber” DGPS/IMU system. They

achieved a median path error of ≈ 0.5 m, while the DGPS/IMU error was ≈ 1.0 meter.

While theirs and our test procedures were not entirely consistent, these results sup-

port the assertion that our map-based localization approach can achieve significantly

better performance than a DGPS/IMU solution in urban environments.

6.7.3 SWS Navigation Performance

To demonstrate autonomous navigation of the client SWS, the landmark map and the

route network generated from § 6.7.1 were downloaded by the SWS from the cloud

to support the navigation task. Subsequently over the course of two days, the SWS

drove autonomously around the loop (a distance of approximately 944 meters) five

times in each direction. The reason for 10 loops was to demonstrate a reasonable

level of reliability. The rationale for both clockwise and counterclockwise loops was

not just scene diversity. We also wanted to investigate the impact (if any) of bias in

74



Figure 6.13: Changes to the environment not modeled by the system. (Left) winter con-
ditions raised the curb cut out by 8cm. (Center) a parking meter covered by
a bag. (Right) A bike chained to a tree.

the mapping procedure, as the map was constructed with the trike driving in only

one direction. In our test protocol, once initiated the operation of the SWS was

to be completely autonomous. The only exception was when groups of pedestrians

blocked the sidewalk, where it was manually paused for safety considerations. With

lone pedestrians, the SWS was not hindered from performing obstacle avoidance.

Testing was run under winter conditions that were less than ideal. Fig. 6.13 depicts

some of these instances. In some areas, frost heave significantly disturbed sidewalk

pavers. This caused surface deviations as much as 8 cm in height. Generous use

of snow melt (i.e., rock salt) further reduced traction in these areas. Despite these

challenges, the SWS motor controller performed well, although there was a noticeable

decrease in velocity when traversing up steep grades. Landmarks in the map were also

changed in unexpected ways. For example, a sequence of ten parking meters featured

in the landmark map were covered by local law enforcement to indicate that park-

ing was temporarily prohibited (Fig. 6.13). These coverings altered the signatures

reported by the 3D Hokuyo which the localization relies upon.This particular stretch

has two of the largest dead reckoning lengths (≈ 13.5 meters) where the only land-

marks were these parking meters. In spite of these discrepancies, accurate localization

was maintained.

In total, the SWS traveled a distance of 10.3 km over an operational time of 222

minutes. The longest run of continuous operation was for 88 minutes covering 3.7

km, and was only suspended due to depletion of the laptop battery. No localization

failures were observed during testing. However, during one trial manual intervention

was required due to a control “failure.” Specifically, a large amount of road salt in
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Figure 6.14: Photos of the SWS in operation, highlighting interactions with pedestrians
(left), the narrowness and clutter of certain sidewalk areas (center), and
automatically pausing at a crosswalk (right).

an area where sidewalk pavers were pushed up significantly from frost heave (similar

to Fig. 6.13) resulted in the SWS drive wheels spinning in place, and the SWS could

not overcome the “obstacle” on the first try. This required the operator to manually

back up the SWS less than 1 meter. A second attempt under autonomous control was

successful and the trial continued to the end. We should emphasize that localization

was not lost even with the wheel slippage as the 3D Hokuyo was able to observe

landmarks during the episode.

Additional images highlighting points of interest during course navigation are

shown at Figure 6.14. A more informative video from testing can be viewed at

http://vader.cse.lehigh.edu/videos/sws_navigation.mpeg.

An interesting question posed by one of the reviewers (for which we are grateful)

was the impact on system performance if false positives in the landmark map had

not been removed. We had assumed this was necessary, but was this in fact the

case? To assess this, logged data from the ten trials was used to localize the SWS

using the landmark map with both true and false positives in place. If a localization

failure occurred during playback of the log file, the SWS was manually re-localized

and the log file was continued from that point. Of the five clockwise trials, three had

localization failures. Two suffered from a single failure but completed the loop upon

resumption. The third had to be reset twice. Of the five counter-clockwise trials, two

had localization failures. One was able to complete the loop after being manually

reset, while the second had to be reset twice. Thus, the success rate for this route

dropped from 100% to 50%, motivating the need for an accurate landmark map.
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6.7.4 SWS Path Planning Performance

The results presented in Section 6.7.2 provided insights into the accuracy of the

localization system only. Uncertainty in SWS planning and control was deliberately

removed from the evaluation. However, we were also interested in quantifying the

performance of the planner itself. To do this, we examined the paths of the 10 trials

to evaluate their consistency. This was done using the pose estimates provided by

the localization module as ground truth. Since these estimates are assumed to be

correct, localization uncertainty is removed from the analysis and the variance in

path following can be attributed entirely to planner performance.

Fig. 6.15 shows three 20 meter sections of the route. The three sections were chosen

arbitrarily except to evaluate locations with different densities of landmark features.

Each section has ten paths shown (five in each direction), with the landmarks depicted

as blue circles and the waypoints as black circles. Note the relative size of a landmark

circle reflects its signature (its radius). Also note the radius of each waypoint (50 cm)

includes the local planner’s tolerance to reach the waypoint.

Qualitatively from the figure, planning performance is very good. To quantify

this, we computed the 1D mean absolute error (MAE) and 1D standard deviation of

the paths across a range of cross-sectional samples. These values were computed by

taking 50 evenly spaced locations along the x axis. For each of these locations, the

average normal was computed where it intersected the given x coordinate. Then the

cross-sectional line was computed using the x coordinate and the mean y coordinate as

a base point, and the average surface normal as the slope. The points of intersection

of the paths along the cross-sectional line were then found and transformed to reduce

the dimension to one via principal component analysis. The now 1D values were

centered so that the mean value was zero. Finally, the data from each of the 50 cross

sections were pooled to compute the MAE and standard deviation as it was in a

compatible form. The three data sets were evaluated separately. The top figure had

a MAE of 1.8 cm and a standard deviation of 2.1 cm. The middle figure had a MAE

of 1.7 cm and a standard deviation of 2 cm. The bottom figure had a MAE of 1.9cm

and a standard deviation of 2.4 cm.

When evaluated in conjunction with the localization performance reported in Sec-

tion 6.7.2, we would expect the wheelchair to consistently drive the same path to a

tolerance of approximately ± 10 cm. This is in fact consistent with our subjective

observations made during testing.
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Figure 6.15: Close up of ten paths (five in each direction) on 20 meter sections of the
block with various densities of landmarks. The landmarks are depicted in
blue. The black circles indicate the tolerance for hitting a waypoint and have
a radius of 50 cm.

6.7.5 Simulated User Testing

The results presented in Section 6.7.3 are limited in the sense that they do not re-

flect typical user operation. Specifically, it is the same route repeated 5 times in

2 directions. Ideally, user testing with non-confederate participants would be con-

ducted. Due to concerns with human-subjects use and institutional review board

(IRB) requirements, we chose to simulate such a use.

First, a total of 10 destinations of interest were identified in the test loop and

a semantic label was attached to each. These are listed below. Note the numbers

correspond to the locations highlighted in Fig. 6.9.
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Path Distance

2 → 5 → 8 572 m

4 → 10 → 7 943 m

6 → 5 → 8 385 m

9 → 10 → 6 463 m

2 → 1 → 4 199 m

Table 6.1: Results of simulated user trials, where each destination was randomly gener-
ated. All trials were successfully completed without incident.

1. Apartment 20 on Morton Street

2. Police station on Morton Street

3. Book store at Campus Square

4. Apartment 14 on Morton Street

5. Entrance to Whitaker Lab on Webster Street

6. Entrance to Whitaker Lab on Packard Avenue

7. Entrance to Mudd on Packard Avenue

8. Iaccoca plaza on Packard Avenue

9. Entrance to STEPS on Packard Avenue

10. Entrance to STEPS on Vine Street

We then performed five trials using random sampling without replacement. First,

a random starting location was chosen. This was followed by a random intermediate

goal location, and then a random final goal. Table 6.1 shows the path locations and

total distance traveled for each trial. We should note that these trials were performed

during sidewalk construction on Vine Street, so the link between destinations 1 and

10 had to be removed. As a consequence, some of the global plans (e.g, 4→ 10→ 7)

between locations were longer distance than usual.

All 5 trials were successfully completed without incident. These amounted to a

total of 2.6 km of additional autonomous operations.
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6.8 Discussion

In this chapter, we presented a system level approach to SWS navigation in urban

environments. The proposed ecosystem features a mapping service which generates

large-scale landmark maps, and the client SWS which integrates 3D perception for

robust navigation in unstructured, outdoor environments. In our experiments, the

SWS was able to reliably navigate over a distance of > 12 km without losing localiza-

tion. From this, we claim the proposed map-based localization approach can provide

the performance of a high-end GPS/INS system, but without the cost.

We are firm believers in the future of map-based localization solutions for urban

environments that leverage 3D LIDAR/camera systems. We further note that since

this work was completed, our 3D Hokuyo was rendered obsolete by the release of the

Velodyne VLP-16 “Puck” LIDAR. In the same window, our IFM O3D200 3D cameras

were also superseded by the release of the O3D303; the smaller, more accurate, lower-

cost successor has 29 times the pixels of the O3D200. These higher performance

sensors would only improve the performance of our current system.

There are of course concerns with map-based solutions to the localization problem.

Two obvious questions are: 1) what happens if a feature is removed (e.g., a tree is

cut down), and 2) what happens if a new feature is added (e.g., a tree is planted).

Fortunately, the proposed approach is robust to such small-scale changes. In the

former case, the removed feature will not be detected by the SWS and would be

handled no differently than when a feature is occluded (i.e., no measurement update).

In the latter case, the new feature will be detected by the SWS. However, there will

be no respective feature in the landmark map. As a result, data association will

likely fail so again the result will be a “nop.” One could imagine a pathological case

where a feature is removed, and a new featured added at approximately (but not

exactly) the same location. If the new feature had the same signature as the old one,

there is the potential for it to be wrongly associated in the landmark map. However,

the error tolerance would have to be comparable to the uncertainty in wheelchair

position which we have shown to be quite small. As a result, we expect the impact

to localization accuracy in even this pathological case to be small.

Despite being relatively stable, large-scale changes do occur in urban areas. We

saw this first-hand when the STEPS building was recently constructed at Lehigh

University, affecting a roughly 100 meter stretch in our map. We also demonstrated

in Section 6.7.3 that large-scale errors in the map (i.e., 15% false positive landmarks)
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will result in localization failure. While there might be potential for SWS clients

to update the map in crowd-sourcing fashion, in all likelihood remapping would be

necessary in such an event.

While we were pleased with the navigation performance of the SWS, improvements

are needed in the mapping service component. Specifically, false positives in landmark

segmentation must be eliminated and an improved localization approach is necessary.

However, in fairness these shortcomings are of less concern than if the issues were

with the SWS itself. The Mapping Trike was fabricated from hardware on-hand, and

within the constraints of our limited budget. In practice, such server vehicles would

be viewed as part of the infrastructure. So, while the price of an SWS needs to be

competitive for the consumer, cost constraints would be less of a concern for the

mapping vehicle. As a result, we expect shortcomings in mapping performance could

be readily addressed with improvements in hardware and/or software.

Although the SWS system described in this chapter was focused on outdoor

sidewalk-level urban environments, the map based navigation approach should be

generalizable to any large scale environment where natural features can be segmented

and used as landmarks. To test this hypothesis, the next chapter describes an ex-

tension of the map-based localization approach to the domain of large scale indoor

warehouse environments.
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Chapter 7

Warehouse Mapping and

Localization

In this chapter, we present a method for infrastructure-free localization of automated

guided vehicles (AGVs) in a warehouse environment. This is an extension of the

landmark map based localization approach described in the previous chapter (6),

where a landmark map was used for localization in outdoor urban environments. The

main difference between these approaches is the choice of natural features that are

used as landmarks. Whereas the system in chapter 6 used sidewalk level pole-like

features, the natural features used in the warehouse domain are the vertical pallet

rack supports. The following sections describe the motivation for using this approach

in warehouse environments, related warehouse localization work, the map generation

procedure, the localization method, experimental results, and a brief discussion.

7.1 Background

In warehouse environments, manual forklifts (aka “lift trucks”) are the workhorses of

material handling [60]. In 2013 alone it was estimated that orders for over 1 million

forklifts were placed [61]. Manual forklifts are driven by a human operator. A typical

work cycle involves ferrying palletized goods and materials between storage (either

racks and shelves or block storage areas) and trucks for receiving or shipment. Despite

their flexibility and effectiveness in material handling tasks, they are not without

their shortcomings. These include operating efficiency, high energy consumption,

and safety considerations. These concerns have led to the rise of Automated Guided
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Vehicle (AGV) systems for automated pallet transport and storage [62–65]. While

they lack the adaptability of human operators, for repetitive material handling tasks

they are far more efficient - often operating around the clock, and with reduced

product damage. Also in large part due to rigorous ANSI safety standards regulating

their design and use [66], they are far safer in practice.

AGVs are not merely vehicles, but autonomous systems in the full sense of the

word. The components of an AGV system include one or more automated vehicles, a

localization system which provides precise position and orientation estimates for the

vehicles, a route map or network which delineates the guidepaths where the AGVs

can travel, and a centralized controller which coordinates between and assigns specific

tasks to the individual vehicles [67]. While all of these components are essential for

AGV operation, it can be argued that the enabling technology is the localization

system as it answers the first fundamental question which an autonomous vehicle

must ask (i.e., Where am I?). There are multiple approaches to AGV localization

[68]. The first systems relied upon either wire guidance, where wires are embedded

in the floor and sensed inductively, or inertial guidance with magnets placed in the

floor which act as landmarks to reset the dead reckoning system for overcoming drift.

For contemporary AGV installations, the “gold standard” for localization is arguably

laser guidance. In this paradigm, each AGV vehicle is fitted with a 2D scanning

LIDAR system. As the AGV navigates, the LIDAR tracks precisely placed retro-

reflector targets in the environment which serve as landmarks. Retro-reflectors are

used so that the target’s reflectivity can be used as a filter for robust landmark

segmentation. Otherwise, attempting to segment targets in a 3D world using a 2D

sensor is extremely error prone. In practice the approach works quite well, providing

sub-centimeter positioning accuracy.

A significant drawback of each of the aforementioned approaches is that they re-

quire modifications to the warehouse infrastructure. In the case of laser-guidance,

hundreds or even thousands of targets need to be accurately placed within the envi-

ronment. The large number is necessary to ensure the required localization accuracy

can be achieved from any location in the facility, as industrial environments are of-

ten very cluttered [67]. The result is not only significant per-vehicle costs, but also

very high installation costs. Furthermore, the approach has limited flexibility in that

changes to a facility’s layout may necessitate significant modifications to the reflector

installation.
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Figure 7.1: An occupancy grid map of an approximately 20 × 35 meter section of ware-
house. The red circles denote a feature map composed of the vertical pallet
rack supports.

It should then come as no surprise that there is significant interest in infrastructure-

free solutions to AGV localization. Indeed, in their roadmap for boosting the use of

AGVs in industrial applications, the authors in [67] specifically cite localization based

upon natural landmarks as a key enabling technology. Both academic and industry

researchers have taken notice. Vision-based solutions have been proposed in [68, 69],

and most significantly by Seegrid Corporation [65]. These approaches come with the

pros (e.g., lower-cost, passive sensors) and cons (e.g., limited robustness to illumina-

tion changes, inability to operate in darkness) associated with vision sensors. More

recently, researchers have begun investigating the use of LIDAR systems to localize

in large-scale warehouse environments by leveraging maps generated a priori [70, 71].

However, the authors’ use of a 2D LIDAR for localization in a cluttered industrial

environment necessitated a contour-based approach. Of concern is that palletized

goods and materials may make up a significant portion of the LIDAR scan (contour),

and the robustness of the approach to permutations in pallet placement and density
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has only seen limited validation.

With these insights, we argue that:

1. Robust, infrastructure-free localization in a cluttered industrial environment

motivates 3D LIDAR systems for perception

2. Feature based localization approaches are preferable, as they are more stable

and less dependent upon variability in warehouse inventory, and

3. Using 3D LIDAR sensors, there are sufficient natural 3D features in warehouse

environments that the use of retro-reflector targets can be eliminated.

Unfortunately, the accessibility of such an approach has been constrained due

to the limited availability of suitable sensing technology. However this is rapidly

changing, and AGV localization now appears ready for a paradigm shift.

Based on our previous work in landmark map-based localization in large scale

urban environments [72], we propose an adaptation of the approach for large scale

indoor warehouse environments. In urban environments, we used ubiquitous pole-

like features, such as lamp posts, parking meters, and decorative trees, as natural

landmarks in our map. Similarly, in warehouse environments, we propose using the

pole-like pallet rack supports as landmarks. In addition to the new application area,

the main extensions of this work include the integration of the Velodyne VLP-16

LIDAR, a comparison of alternate mapping paradigms, and methods used to segment

the pallet rack supports from 3D representations of the warehouse environment.

7.2 Related Work

Mapping and localization in static environments is a mature area in robotics with a

rich body of literature. As such, we limit the scope of discussion to the state-of-the-art

in the specific context of warehouse environments.

In [73], the authors propose an infrastructure-free framework for warehouse nav-

igation that uses a topological map rather than a globally consistent metric map.

Their approach is to use a monocular camera to track the texture on the floor and

the map is a locally consistent pose graph representation where each pose in the

graph has an associated image. Localization is performed by matching the current

camera frame to a likely subset of the pose graph. Due to the differences in map

representation, our approach is not directly comparable.
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More similar to our work in terms of map representation is a body of research

[70, 71, 74] under the PAN-Robots project [75] funded by the European Union. The

scope of the project is AGV based automation for factory logistics. The relevant sub-

goals to our work are automated mapping and localization in warehouse environments.

In [71] the authors use the GMapping algorithm [76] to build an 2D occupancy grid

based map representation. We similarly use the GMapping algorithm, but only as a

means to build a globally consistent 3D reconstruction of the environment. In [74],

the authors extend the work to include GraphSLAM [26] based mapping approach

where existing retro-reflectors were used as landmarks. This is similar to our approach

in that the map representation is feature-based, however our landmarks are based on

natural 3D features of the environment, rather than artificial 2D features. While a

stated goal in [71] is to enable 3D mapping, all the mapping and localization work is

2D based. There is only a brief mention that 3D mapping is possible and is left as

future work.

In [71, 74] they use a contour-based, adaptive Monte Carlo localization (AMCL)

approach [26] where they use P-L-ICP [77] for visual odometry. In contrast, our

localization approach focuses on naturally occurring warehouse features (the vertical

uprights on the rack systems). We are able to do this by leveraging the latest in 3D

LIDAR systems for localization, specifically the Velodyne VLP-16 LIDAR [78]. This

enables us to robustly segment 3D features from the environment in real-time, and

then associate these with 3D features in our landmark map. This 3D-to-3D feature

mapping provides a significant advantage over 2D contour approaches in terms of

system robustness. Furthermore, since the features we are tracking are temporally

invariant for a given warehouse layout, we expect this approach will provide more

stable and consistent localization performance.

7.3 Map Generation

The map representation used by the system is feature-based. In this work, we chose to

use the vertical, pole-like supports of pallet racks as landmark features, which we will

refer to simply as pole features. The mapping process consists of three main steps: (1)

collect dense laser scans of the environment, (2) register the laser data to a common

coordinate frame to create a 3D point cloud reconstruction of the environment, and

(3) segment salient 3D features from the registered point cloud to create a landmark
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map.

To acquire dense laser scans of the environment, we utilized our Mapping Trike

platform 6.4.1. Details of the sensor suite are repeated here for convenience. An

estimate of Mapping Trike’s pose was provided by a Microstrain 3DM-GX3-45 inertial

measurement unit (IMU) in conjunction with two 4096 cycles per revolution (CPR)

resolution encoders mounted on the rear wheels. Two SICK LMS291-S14 LIDARs

were mounted facing each side for the purpose of creating the 3D reconstruction. A

single SICK LMS291-S05 LIDAR was mounted parallel to the ground plane facing

the rear for the purpose of global pose corrections.

7.3.1 Coordinate Frame Registration

We note that although we are creating a 3D reconstruction of the warehouse environ-

ment and tracking 3D features, AGV localization will be on the plane. As a result,

the mapping goal is register the 2D positions of the landmarks to a common global

coordinate frame. There are many mature solutions to the Simultaneous Localization

and Mapping (SLAM) problem for learning 2D maps. In this work, we chose to use

the GMapping algorithm [76]. The main reason for this decision was convenience

as a high quality open source solution implementation is available [79]. However,

any SLAM algorithm capable of recovering the trike’s trajectory could be a suitable

replacement.

The GMapping algorithm is a particle filter based approach to learn a 2D oc-

cupancy grid representation of the environment from horizontal planar laser scans

and odometry measurements. Laser scans from the rear-facing LIDAR were used as

input. For the odometry measurements, an extended Kalman filter (EKF) was used

which incorporated the vehicle kinematics in the predictive step and data from the

encoder and IMU for the corrective step. Since the floor of a warehouse environment

is roughly planar, we used a 3 degree of freedom motion model of the form:
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where x denotes the state vector consisting of the Cartesian coordinates (x, y) and

the yaw angle θ, ∆l and ∆a were the linear and angular displacements over some

small discrete time step denoted as k. Note that there is an unmodeled kinematic

constraint from the trike’s front wheel, but this was not needed for mapping purposes.
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The GMapping algorithm learns a 2D occupancy grid representation of the en-

vironment. However, our goal is to learn a 2D feature-based representation by cre-

ating a 3D reconstruction of the environment, segmenting the landmarks from this

representation, and then registering the landmarks to the 2D plane. We used a

structure-from-motion based approach to register the side-facing LIDAR scans to the

GMapping result, which only required logging the pose corrections at each time step

of the GMapping algorithm.

7.3.2 Landmark Segmentation

With the corrected trike poses, a globally consistent 3D point cloud reconstruction

of the environment could be constructed as depicted in Fig. 7.2 (center). The goal

was to segment the pole features from this reconstruction. First each 2D laser scan

was transformed to a coordinate frame where the x axis was parallel to the ground

plane, here denoted as a sequence of consecutive points, S = (p1, . . . , pk), where k is

the number of points in a scan and each pi is a vector of coordinates, [x, y]T .

Then each scan was clustered into subsets where the points in a valid cluster

satisfied three conditions:

1. ‖pi+1 − pi‖ < α, where α is the distance tolerance between points,

2. ‖aTpi − f(S)‖ < β, where a = [0, 1]T , f(S) is the median y value of the points

in scan S and β is a distance tolerance to f(S),

3. ‖pnc
− p1c‖ > γ, where p1c and pnc

are the first and last points in cluster c

respectively, and γ is a tolerance on the length of a cluster.

The assumption was that a pallet rack support was the tallest contiguous vertical

object in a scan that contained one. Hence, the first condition validates “contiguous-

ness”, the second condition validates “verticality”, since the median value should lie

on the pole feature, and the third condition validates “tallness”. In this work, the

α and β values were both set to 2 cm, and γ was set to 30 cm since the side-facing

LIDARs were not perfectly perpendicular to the ground.

The points from all valid clusters from all laser scans were transformed to the 3D

global coordinate frame based on the corrected trike poses and combined into a setM .

The points in M were clustered into subsets that satisfied the condition ‖pi− pj‖ < ε

where ε is the maximal intra-cluster distance between points. In this work, ε was
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Figure 7.2: (Left) One aisle of the warehouse. (Center) A point cloud reconstruction.
(Right) Landmark segmentation for feature map generation.

set to 5 cm. Any cluster that had a bounding box height greater than 2 meters was

considered to be a landmark. A depiction of accepted landmark clusters is shown in

Fig. 7.2 (right). The 2D landmark map was then synthesized by projecting centroids

of each accepted cluster to the ground plane.

7.4 Map-based Localization

This section describes the proposed AGV localization procedure, which assumes that

a landmark map is available. The main components of the system are perception

and localization. The perception component handles landmark segmentation and the

localization component maintains an estimate of the AGV’s pose within the landmark

map. A description of each of these components and the development platform now

follows.

7.4.1 The Development Platform

Since an AGV was not initially available to us, to demonstrate feasibility we employed

our Smart Wheelchair (SWS) platform as a surrogate 6.6. The SWS was equipped

with a mast-mounted Velodyne VLP-16 for exteroceptive sensing. The VLP-16 was

chosen as it provides accurate, real-time 360◦ 3D measurements. It features 16 laser

sensors with a vertical field of view of 30◦. We also note that the VLP-16 costs

less (≈ $8000 USD) than single-beam LIDARs currently used on AGV reflector-

based localization systems. The SWS also provided odometry information from wheel

encoders and IMU measurements.
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7.4.2 Landmark Segmentation

We denote a 360◦ VLP-16 laser scan as a matrix of the form:

P =









p1,1 p1,2 . . . p1,k
...

... . . .
...

p16,1 p16,2 . . . p16,k









,

where k is the number of scans, pi,j is a 3D coordinate. Each row corresponds to a

laser scan and each column corresponds to an azimuth angle.

The first step is to correct the measurements in P to compensate for vehicular

motion. We assume constant motion between odometry measurements and a constant

rotational velocity of the sensor. For each column j in P , the corrected translation is

given by lerp(w0, w1, η) where lerp(·) is the linear interpolation operation, w0 and w1

are the measured vehicle position at the beginning and end of the scan respectively,

and η = (j − 1)/(k − 1) is the interpolation parameter. Similarly, the corrected

rotation for each column j in P is given by slerp(q0, q1, η), where slerp(·) is the

spherical linear interpolation operation and q0 and q1 are quaternion representations

of the measured vehicle yaw at the beginning and end of the scan respectively.

Next, the points in each column j in P are associated to 2D polar coordinates,

(ρi,j, φi,j), based on the x and y components of each point, assuming that the x − y

plane is the ground. Then a set of valid points was created:

V = {pi,j | ‖ρ1,j − h(j)‖ < δ ∧ . . . ∧ ‖ρ16,j − h(j)‖ < δ},

where h(·) is the median ρ value in column j and δ is a distance tolerance from this

value. In this work the value of δ was set to 3 cm. The assumption was that due to

the limited vertical field of view and a priori knowledge of the sensor position that

all 16 scans at a given azimuth would hit a pole feature.

The points in V were then clustered into subsets that satisfied the condition

‖πxy(pi) − πxy(pj)‖ < ξ where πxu(p) is the x − y projection of point p and ξ is

the maximal intra-cluster distance between points. In this work, ξ was set to 3 cm.

Each cluster was then validated based on the geometry of its oriented bounding box.

Clusters were rejected if: the height was less than 1.2 meters, the max(width, depth)

was greater than 0.5 meters, or the ratio of the height to the max(width, depth) was

less than 5. Fig. 7.3 depicts the resulting segmentation. The segmentation operated

in real-time with a VLP-16 scan rate of 5 Hz.
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Figure 7.3: Real-time landmark segmentation for localization using the Velodyne VLP-16.
Detected landmarks are highlighted in red.

7.4.3 Localization Procedure

Localization of the SWS was performed using the same particle filter based approach

described in our previous work [72]. In short, we implemented a variant of the feature-

based FastSLAM 2.0 algorithm [25] that performed localization, but no mapping. We

found that due to the improved proposal distribution, fewer particles were needed to

maintain localization. In this work, we used 20 particles for our localization ex-

periments. This compares favorably to the AMCL approach in [71] which required

hundreds of particles for effective localization. For pose estimation the mean over the

particle set was used.

7.5 Experiments

To demonstrate the effectiveness of the proposed method in its intended environment,

a map was constructed of an approximately 20 × 35 meter section of warehouse

shown in Fig. 7.1. The following sections describe the mapping results and the client

localization results. We leveraged the Robot Operating System (ROS) [27] framework
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Figure 7.4: (Left) The localization accuracy experiment set up with the SWS equipped
with a Velodyne VLP16. (Center) The actual vs. estimated path. (Right)
Absolute error vs. time. The mean absolute error was 1.9 cm.

for our implementation and also utilized the Point Cloud Library (PCL) [59] for

processing point cloud data from the exterioceptive sensors.

7.5.1 Mapping

To construct the map, data were collected by driving the Mapping Trike through the

warehouse at a rate of approximately 1 m/s. In conjunction with the LMS291 LIDAR

scan rate of 75 Hz, this gave us a vertical scan for each 1-2 centimeters traveled which

was sufficiently dense for our landmark segmentation procedure. An advantage of the

Mapping Trike platform in this scenario was that the maneuverability allowed us to

collect data without disrupting normal warehouse operations.

To validate the effectiveness of the landmark segmentation of the Mapping Trike,

the number of landmarks was counted by hand as a ground truth measure. This value

was compared against the map generated by the mapping process. In total, 74 of 74

visible landmarks were successfully segmented. Furthermore, no false positives were

detected. From this, we report that in our test environment the proposed mapping

approach had a 100% true positive rate for segmenting landmarks, and a 0% false

positive rate. While there were no ground truth measurements of the true landmark

coordinates to determine a quantitative measure of accuracy, the generated map was

qualitatively consistent to the environment based on the spacing between landmarks

and the ability of the SWS to localize.

A second mapping experiment was performed to evaluate the viability of mapping

with the SWS platform. The motivation for this was to investigate the potential

for eliminating the special purpose mapping vehicle. In other words, could an AGV

equipped with a VLP-16 LIDAR create its own map? While the accuracy of the
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VLP-16 in conjunction with the motion estimation error of the platform was initially

deemed unsuitable to create an accurate 3D reconstruction, the SWS (our AGV

surrogate) had the advantage of being able to detect each landmark multiple times

from different poses. Thus, a given landmark position estimate could be derived from

multiple constraints.

To build the map, data were logged while driving several loops through the ware-

house (the same data set used in Fig. 7.5), landmarks were segmented using the

approach in Section 7.4.2, and then a classic EKF SLAM formulation [80] was used

to learn the map. The SWS generated map contained all the ground truth landmarks

with no false positives.

To quantitatively compare the maps a minimization of the form:

argmin
R,t

f(R, t) =
1

N

N
∑

i=1

‖xi −Ryi − t‖2,

where xi and yi are the corresponding points, N is the number of points, R is a

rotation matrix in SO(2), and t is a translation vector, was solved to obtain the

obtain the R and t to align the points. After the points were aligned the distances

between corresponding points were computed and used as a quantitative measure of

map similarity. This resulted in a mean distance of 4.3 cm with a standard deviation

of 3.5 cm. Again, while we lack absolute ground truth, the relative consistency of

the two maps indicates the potential for an AGV equipped with a Velodyne VLP-16

LIDAR to create its own landmark map.

7.5.2 Localization Accuracy

In an attempt to quantify localization accuracy, we performed an experiment where

we marked a line down the center of the middle aisle with blue tape, shown in Fig. 7.4

(left). The line served as “ground truth” and was measured by hand relative to the

landmark positions. The operator then attempted to drive the SWS straight down

the line, turn in place at the end, and drive straight back to the starting position.

Results of localization are shown in Fig. 7.4. The center figure depicts the path

traveled and the right figure depicts the absolute error to the target line over time.

The average path error was 1.9 cm with a standard deviation of 1.1 cm and a median

error of 2.3 cm. While this is in excess of our target centimeter-level accuracy, we

note that the analysis assumes that the line was perfectly straight (it was not) and
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Figure 7.5: The estimated real-time corrected path where the SWS was driven around
several arbitrary loops within the warehouse map.

the SWS operator drove down the center of the line (he did not). This is evidenced

in Fig. 7.4 (right), where there is a noticeable symmetry about the 30 second mark

when the turn in place maneuver was performed. This is likely due to a bias error

in the placement of the tape line. As a result, centimeter-level localization accuracy

may have been achieved. We acknowledge that this was a limited test, but argue that

it demonstrates the potential of our approach to achieve the necessary localization

accuracy for an infrastructure-free warehouse environment.

To investigate the ability to maintain localization over time, a second experiment

was performed where the SWS was driven around several arbitrary loops in the map

at an average speed of 1.0 m/s for approximately six minutes. The estimated path

is shown in Fig. 7.5. The starting pose was approximately [-19 -9 0]T , and the total

distance traveled was 353 meters. There were an average 9.5 landmark observa-

tions per meter traveled. Every visible landmark was detected, and there were no

false positive (a feature being incorrectly associated with a landmark) as accurate
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localization was maintained throughout the trial. A video showing the 3D recon-

struction and landmark segmentation for part of this experiment can be viewed at

https://www.youtube.com/watch?v=B73tgGoT6Ms&feature=youtu.be.

7.6 Discussion

In this chapter, we presented a 3D map-based approach to infrastructure-free lo-

calization of an AGV in a warehouse environment. Preliminary results support our

hypothesis that there are sufficient natural 3D landmarks to support a robust, feature-

based localization approach. During warehouse mapping, visible pole features were

segmented with 100% reliability, and with a 0% false positive rate. During localization

trials, all visible landmarks were detected, and again no false positive landmarks were

identified. The demonstrated accuracy of the localization system was approximately

2cm.

This research was an extension of our outdoor mapping and localization approach

described in the previous chapter 6. One significant improvement that we observed

herein was the potential for eliminating the special purpose mapping vehicle previ-

ously required. This is a side-effect of employing the recently introduced Velodyne

VLP-16 LIDAR on our AGV surrogate. In chapter 6, we relied upon an actuated

Hokuyo UTM-30LX for 3D perception. Compared to the 3D Hokuyo, the VLP-16

has over 3X the range, 2X the number of effective beams, up to 2.5X the angular

resolution, and greater fields-of-view. Our experimental results indicate that these

improvements are sufficient to enable mapping with the AGV platform itself, which

dramatically simplifies the logistics for a real-world implementation.
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Chapter 8

Discussion & Future Work

This dissertation presented three autonomous navigation tasks relying on 3D point

cloud based object detection. The specific objects in each case were chosen such that

they were semantically interesting for the task at hand. The enabling technology for

these tasks was affordable 3D sensors and the computational power to perform object

detection in real time. These factors also influenced algorithmic decisions in the

navigation components: map representation, localization and path planning. All of

these systems had to operate in real-time sharing the same computational resources.

A key decision for our autonomous navigation applications was the choice of map

representation. The map representation is the foundation of robot navigation; local-

ization and path planning algorithms depend on the map representation. In turn,

these algorithms are fundamentally coupled to the capabilities of the sensors involved

and the perceptual algorithms used. Much of the work in this dissertation has focused

on the real-time 3D point cloud based object detection systems, but similar naviga-

tion components were used throughout the three systems described in chapters 5, 6,

and 7. The following sections discuss some extensions related to the interplay be-

tween the 3D perception and aspects of environmental modeling and navigation not

explored in this dissertation.

8.1 Richer Semantic Map Representations

There are three main interrelated map representations used in this dissertation: a

globally consistent landmark feature map, a route network to demarcate safe paths

relative to the landmark map, and a local occupancy map for path planning purposes.
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The main design decisions were based on integrating the point cloud based object de-

tection with the navigation systems. For instance, although we use 3D information

for object detection, these objects are reduced to 2D representations for efficient lo-

calization and path planning algorithms. The experiments in this dissertation never

used the full computational resources available and we believe we can make further

use of sensor information. This section discusses augmentations to initial map rep-

resentation to encode additional semantic information into the map with the goal of

enhancing navigation performance.

In chapter 6 a route network was used for global planning purposes to demarcate

a safe path relative to the landmark map. However, the route network does not ex-

press margins of safety along the path (e. g. the extent of the sidewalk). The local

planner is not necessarily constrained to remain on the path to circumvent obstacles

and may plan a trajectory that is outside the bounds of the sidewalk. We have done

preliminary work in terrain classification to automatically distinguish between side-

walk, asphalt, grass, and “other” terrain classes using remission measurements from

the O3D200 3D cameras [81]. It would be straightforward to embed this additional

semantic information into the local occupancy grid by adding one additional value

per cell. The sample based planning algorithm could make use of this additional

information by adding an extra term to the cost function. We expect this additional

terrain information information will improve navigation performance over geometric

information alone.

Furthermore, the landmark map representation encoded only the 2D position of

a landmark and the radius of the feature. The radius was crucial for reducing false

data associations during localization. A natural extension for this is to encode more

semantic information for each landmark derived from the detected object’s point

cloud to further aid in data association. A further extension is to use more categories

of objects for landmarks or have more specificity within a category. For example,

the pole-like features in the urban environment could be recognized as belonging to

a specific class, such as tree or lamp post, rather than the more general pole-like

object with a given radius. Another factor not explored here is the incorporation of

additional sensing modalities to aid in object recognition. The Kinect based sensors

can register a color to point in the point cloud. There has been some work in the area

of semantic object recognition using both color and depth [32, 33, 82, 83]. Similar

methods could be used to obtain additional semantic information for each landmark.
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8.2 Modeling Environment Dynamics

Traditionally, learning the map representation is done by solving a Simultaneous

Localization and Mapping (SLAM) problem on sensor data gathered from a single

pass through the environment. This map is then used for future localization and path

planning tasks. And this is the approach taken in chapters 6 and 7. The problem with

this approach is that for long term autonomy, the assumption that the environment is

stationary is not necessarily valid. As long term navigation in dynamic environments

is one of the main goals of this work, this section discusses approaches to continuously

model the environment in order to adapt to change.

An approach to this is to classify aspects of the environment by the degree of

temporal stability they have: stationary, temporarily stationary, or dynamic. For

example, given an outdoor urban environment, buildings could be considered sta-

tionary, parked cars as temporarily stationary, and pedestrians as dynamic. In our

work, we implicitly modeled low dynamic obstacles by choosing landmarks that were

assumed to be temporally stable or stationary, or that the long term existence of the

landmark did not matter, such as in the case of CoPilot. However, on long time scales

this assumption is not true. Take the warehouse domain for instance, the pallet racks

may change configuration at some point. We want to allow for the detection and

correction of the map if possible in these scenarios. The following sections discuss

modeling low dynamic objects and high dynamic objects respectively.

8.2.1 Low Dynamics and Map Maintenance

As mentioned above, we chose the features in the environment that were assumed

to have a high level of temporal stability. In the discussion in chapter 6 we also

mentioned that large scale changes have occurred in our outdoor urban map as a

result of construction, which necessitated a remapping of certain sections of the map.

An interesting open question is can changes in landmark based maps be detected and

recovered from?

There is some research in modeling low dynamics, but in the context of visual

maps. Due to the dense information from a visual sensor, distinguishing a particular

scene can potentially be done with a single frame. Because of this property, visual

mapping methods typically represent the map as a graph of poses where each node
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represents a 6 degree of freedom pose with an associated image frame from the cam-

era and edges represent relative geometric constraints between nodes. Localization

methods match the current image frame against the nodes in the pose graph to derive

the robot’s pose. This is called place recognition. An interesting property of visual

maps is that they can encode conflicting information, for example two images of a

door, one open and one closed, can exist in a visual map.

A useful concept proposed in [84] is the idea of a lifelong visual map. A lifelong

map should be able to handle the following situations: incremental mapping, dynamic

environments, and localization and odometry failure. Incremental mapping is the

ability of the system to add new sections to the map at any point, that is the system

is continuously localizing and mapping. With respect to dynamic environments, the

system should be able to repair its map to reflect changes in the environment. The

system should recover from localization failure by relocalizing in the map at the

earliest opportunity.

An additional method proposed in [85] is to encode the map based on visual

experiences where each experience is a sequence of images with relative metric in-

formation about the robot’s path. Places that change over time are represented as

a set of experiences, that is, the number of experiences associated with a specific

place is proportional to its dynamics. Localization is performed by data association

(place recognition) with all previous experiences and when localization fails, a new

experience is recorded.

The key system that enables both lifelong visual maps and visual experience based

maps is place recognition. Place recognition in landmark maps is challenging because

the landmarks are typically sparse point features and constellations of these features

are ambiguous from different vantage points [86]. The ability to disambiguate con-

stellations of landmarks can be achieved by encoding additional semantic information

into the landmark representations, as mentioned in the previous section, and using

this information to help solve the correspondence problem. The pursuit of this line

research can enable landmark maps to achieve the benefits of lifelong visual maps

and visual experience based maps. The ability to maintain multiple representations

of the same place can aid in more robust localization and the potentially the ability

to detect and recover from localization failures.

The disadvantage to these long term map representations is the unbounded growth

in the map when attempting to maintain the perceptual history of a given place. The
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work in [87] tackles the unbounded growth in visual maps when accumulating map

data over an unbounded number of sessions. Their approach is based on online

localization and offline map maintenance. The main idea is to generate compact

maps offline from the subset of all the recorded data that minimize map size and

maximize localization usefulness online. These summary maps are downloaded by the

vehicle before a mission. Although their method is based on visual maps, this concept

resonates with certain aspects of our work. In chapter 6 the map representation that

the client vehicle uses is downloaded from a cloud based component. Also, in chapter 7

the viability of using the client vehicle to learn the map. A system that combines

these ideas could have a central cloud based map service where map data is constantly

collected as the client vehicles perform their navigation tasks. The cloud service could

offer the best current map when a client vehicle is about to embark on a new mission.

A system such as this could potentially detect environmental changes that should be

reflected in the landmark map automatically.

8.2.2 Tracking High Dynamic Obstacles

In some contemporary literature, handling dynamic obstacles has been done by uni-

fying the environmental dynamics into a single representation. For example, in [88]

moving objects are modeled using an occupancy grid under the assumption that that

occupancy is caused by objects and when objects move, the corresponding occupied

cells of the map should move accordingly. Their Bayesian occupancy filter representa-

tion tracks the dynamics of every grid cell over time. Similarly, in [89] an occupancy

grid based approach where the occupancy of each cell is modeled as a hidden Markov

model. Instead of using a single representation, some approaches separate the dy-

namic and static aspects of the environment by maintaining two maps. For example,

in [90] a general framework is devised to simultaneously localize, map, and track

dynamic objects by determining whether a measurement is caused by a static or

dynamic object and placed in an appropriate map accordingly.

These approaches are similar in that occupancy grid maps are used to model

the motion of dynamic obstacles. Our existing path planning system only models

the instantaneous occupancy of dynamic obstacles in the local costmap and plans

accordingly. Since the dynamics of moving obstacles are not modeled, there exists

the possibility of collision. By adding additional information to each grid cell that

encodes motion, the path planner could make use of this information for more reliable
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collision avoidance. This information could be derived from an 3D point cloud based

object detection methods for specific objects known to be dynamic.

For instance, one significant aspect of urban environments that was ignored in

this work was navigation in crowds. This is a rich research area in its own right, and

one we intend to investigate in the future. One insight we are happy to report is

that on the whole, pedestrians are largely considerate of the SWS and give it a wide

birth. We discovered through many hours of testing that despite its sensor “warts,”

the SWS is perceived merely as a person operating a conventional EPW and not as a

smart wheelchair system. We believe this “disguise” will be an asset when navigating

crowded environments.

An area for future research is to first focus on the detection and tracking of

pedestrians under the assumption that pedestrians are the most common class of

dynamic obstacle in environments where EPWs operate. This can be achieved by

finding a way to segment pedestrians from point cloud data. The basic aim would be

to devise an online detection and tracking method that can be encoded into the local

costmap to assist in path planning. A further extension could make use of tracked

pedestrian data to model pedestrian interaction with wheelchairs which could used

to model the behavior of crowds. This extension could enable the path planner to

move with the flow of foot traffic.
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