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Abstract

In order to sustain a smoothly-operating economy, reliable and healthy infrastructure

is critical. Civil infrastructure including bridges, roads, buildings, and many more are

designed for long time operation with minimal interruption. However, in developed

countries, the strong majority of operating structures were built decades ago and have

already passed their designated lifespan, while their operation rate has not been dis-

counted but even boosted. This concerning trend is now a global economic challenge

that requires drastic financial investments if supposed to be addressed traditionally.

The financial burden of such solutions is extremely high so that it has encouraged

scientists to distribute resources attentively between monitoring and repairing costs.

Structural health monitoring is a collective term for any advanced engineering tech-

nique that is able to estimate the existing status of structures given sensory data.

By advancements in sensor technology, dense sensor networks have been installed for

detailed monitoring of structures. Despite its promising achievements, the method is

yet expensive and cannot be upscaled to a large number of structures. Mobile sensing

as an alternative paradigm strives to dramatically reduce the sensor setup costs while

maintaining the data information as high and dense as possible. The idea of mobile

sensing is promising and feasible, yet further developments are required to establish

industry-friendly solutions. In this thesis, practical and scalable solutions based on

realistic mobile sensing data are developed in order to shrink the gap between theory

and applied scenarios.
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Chapter 1

Introduction

1.1 Motivations

American Society of Civil Engineers (ASCE) has recently reported that nearly one

out of every nine bridges in the US is structurally deficient [ASCE, 2017]. The report

estimated that it would cost nearly $123 billion to fix the bridges if we take immedi-

ate actions. This cost is the minimum and probably unrealistic, considering the fact

that a detailed map of bridges with their structural health conditions does not exist.

this technological gap is critical because a healthy and operational infrastructure is

a key requirement for a prolific and leading economy. Official agencies such as De-

partments of Transportation (DOTs) and Federal Emergency Management Agency

(FEMA) have repeatedly reported that transportation infrastructure in the US suf-

fer from aging and substantial deterioration. For instance, PennDOT published that

the average age of bridges in the state system is over 50 years old. Citizens have

great reliance on operating bridges, buildings, and highways to maintain their daily

activities. When a large body of infrastructure is at risk of damage or loss of ser-

viceability, this risk directly affects the public. In the COVID-19 pandemic era, we

have realized the importance of having a sustainable and strong medical infrastruc-

2



ture. Civil infrastructure is of the same level of importance and require inspection,

monitoring, and maintenance. In this dissertation, the goal is to develop practical

and inexpensive solutions to monitor structural health of bridges which benefit from

enabling technologies such as smartphones.

The state of practice for bridge health monitoring consists of periodic inspections

by human agents who collect qualitative information using visual assessments and

limited measurements. For bridges with higher traffic demands or importance, the

inspection plan may include some sensors in fixed locations that collect structural

vibrations over a limited time frame. These approaches are slow and manual, mean-

ing that each bridge requires its own planning and implementations. They also could

conflict with the regular operation of the bridge. Most importantly, the information

is limited to the bridges under inspection and the date they were inspected, and also

bounded to a few sensing locations. Utilization of mobile sensors for bridge health

monitoring has potentials to address the majority of these challenges at once. Ulti-

mately, in the mobile sensing paradigm, smartphones that are located within vehicles

perform as the primary sensing devices. Smartphones are equipped with a complete

set of motion sensors including accelerometers. The ubiquity of smartphone data that

collect vibrations while crossing bridges creates a unique potential for comprehensive

and large-scale bridge inspection frameworks.

1.2 Thesis Statement

The topic has been of great interest over recent years. In particular, indirect bridge

health monitoring and damage detection is one of the most active research domains

in the field of infrastructure health monitoring. The objective of mobile sensing re-

search is to develop mathematical frameworks that enable processing of vibration

data that are functions of time and space, as opposed to the traditional fixed sensing
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in which the sensor data is merely a time function [Matarazzo and Pakzad, 2018,

Sadeghi Eshkevari et al., 2020a]. The interaction of the vehicle and the bridge is

also a difficult challenge when considering vehicles as sensor carriers. Over the past

few decades, researchers have developed methodologies for processing data collected

by individual vehicles that interact with simple and short-span bridges [Yang et al.,

2004a,b, González et al., 2012, Marulanda et al., 2016, OBrien and Malekjafarian,

2016]. The methods have been a step towards a practical mobile sensing solution;

nevertheless, the application has been limited to controlled vehicle-bridge interaction

scenarios. In addition, the studies have been more focused on partial modal informa-

tion (i.e., natural frequencies), rather than a complete bridge modal identification.

To reach further to a realistic and general solution, it is desired to develop method-

ologies that can incorporate data from a network of vehicle fleet and also enable

comprehensive modal identification. The motivation is that when a large pool of

vehicles are sensing simultaneously, the extracted information is a consensus of all

individual sensors which is more reliable and informative compared to an individual

moving agent. In this regard, Matarazzo and Pakzad [2016a] proposed truncated

physical model for bridges and further, developed the STRIDEX algorithm that en-

ables utilization of a group of mobile sensor carriers for comprehensive bridge modal

identification [Matarazzo and Pakzad, 2018]. The method has been numerically and

experimentally validated. Despite its generality and wider application, the method

employs a simplified approach to convert mobile sensing data to virtual stationary

measurements. In addition, the method was verified for vehicle networks with planned

motions. This presumption complicates the application of the method since in prac-

tice, vehicles in a network maintain random motions. In this dissertation, developing

alternative methods with more practicality has been one of the objectives.

The other challenge for a realistic and generalized framework is the fact that the

data collected by smartphones within vehicles is not a pure version of structural vi-
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brations, but a highly contaminated variant of it. In particular, vehicle contact point

experiences the roughness of the road pavement and the vehicle suspension system

responds to it. This vibration response is fully manifested in the signal collected by

the smartphone. In literature, the main approach to circumvent this challenge has

been setting some specifications for mobile sensing with vehicles. For instance, Yang

et al. [2004b], OBrien et al. [2010] suggest that as the speed of the sensing vehicle

increases, the rate of contamination intensifies. Alternatively, in some research it is

recommended to utilize task-specific sensor carriers (i.e., carts or pulleys) to minimize

the impact of the vehicle suspension. Still, looking forward to the ultimate idea of

crowdsensing, in this dissertation a significant effort has been invested in proposing

algorithms to decontaminate these sensor measurements with feasible solutions. Sig-

nal decontamination methods enable the exploitation of raw smartphone data which

is a substantial step toward a human-based collaborative framework for bridge health

monitoring.

1.3 Approaches

Considering the state of research in the field of mobile sensing, in this thesis, studies

are divided in two categories. Each category has been studied from different per-

spective to maximally address the substantial remaining challenges for reaching to a

practical crowd-based and collaborative bridge health monitoring paradigm.

1.3.1 Practical Mobile Sensing Methodologies

The objective is to develop frameworks for collaborative mobile sensing. Previous

works have demonstrated the inspiring potentials of mobile data aggregation for

bridge system identification. Yet, the reality of crowdsensing using smartphones dif-

fers from the building assumptions of these methods. In this phase, some algorithms
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are designed that enable more realistic data collection schemes such as random vehicle

fleet. Chapters 2, 4, and 5 are attributed to this phase of the research.

• In Chapter 2, an alternative viewpoint to the mobile sensing problem is pre-

sented. In summary, it is argued that individual mobile sensors sparsely observe

a huge matrix of bridge vibration responses. Given this sparse representation,

optimization solutions are proposed that enable comprehensive modal identifi-

cation.

• Numerical analysis of bridges subjected to a random traffic load is computa-

tionally laborious and restricting, so that there are very few available studies

considering networks of vehicles interacting with long bridges. In Chapter 4, a

simplified algorithm for this numerical analysis is proposed and then validated

with a theoretical proof as well as a multiple numerical trials.

• To the best of our knowledge, all available methods for mobile sensing using

crowd data are based on synchronous data collection. In Chapter 5, an intuitive

approach for asynchronous data acquisition is presented. In this method, by

aggregation of vibrations collected by independent and unconnected vehicles,

natural frequencies and absolute mode shapes of the bridge are reconstructed.

1.3.2 Bridge Vibration Retrieval from Noisy Vehicle Mea-

surements

Data acquisition practices in structural health monitoring are susceptible to high

noise. Likewise, the vibration signal collected by mobile phones contains unsought

contents triggered by the vehicle suspension as well as the pavement roughness. In

fact, there is a theoretical gap in this research community regarding this challenge

and practical approaches to address it. In this dissertation, multiple recommendations
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and methodologies are proposed to minimize the noise effect. Chapters 3, 6, and 7

are focused on this phase of research.

• In Chapter 3, a detailed investigation of vehicle-road-bridge interactions is pre-

sented and the sources of noise are characterized. In addition, two blind source

separation techniques are proposed in order to mitigate the undesired vibration

contents from raw data. In this research, the primary assumption is that the

vehicle suspension responds linearly to the input.

• Linearity assumption is valid when vehicle motion is controlled and slow, or

when customized sensing vehicles are utilized. In order to expand the extent

of our ultimate solution, in Chapter 6 we investigate data-driven approaches to

predict responses of nonlinear dynamic systems to a given input. A physics-

based neural network architecture is proposed that is able to quickly learn the

dynamics of the nonlinear system. The trained network is then useful for future

response predictions.

• In Chapter 7, inspired by the neural network architecture proposed in Chapter

6, the inverse problem of dynamic systems is explored. By training a neural net

that is able to predict a vehicle’s input given its cabin measurements, the vehicle

turns into a useful sensing device with no suspension-caused contamination. To

validate this idea, an experimental study is conducted and results are presented

in this chapter.
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Chapter 2

Mobile Sensing with Sparse

Vibration Data

2.1 Abstract

Dynamic sensor networks have the potential to significantly increase the speed and

scale of infrastructure monitoring. Structural health monitoring (SHM) methods have

been long developed under the premise of utilizing fixed sensor networks for data ac-

quisition. Over the past decade, applications of mobile sensor networks have emerged

for bridge health monitoring. Yet, when it comes to modal identification, there re-

main gaps in knowledge that have ultimately prevented implementations on large

structural systems. This study presents a structural modal identification methodol-

ogy based on sensors in a network of moving vehicles: a large-scale data collection

mechanism that is already in place. Vehicular sensor networks scan the bridge’s vi-

brations in space and time to build a sparse representation of the full response, i.e., an

incomplete data matrix with a low rank. This research introduces modal identification

using matrix completion (MIMC) methods to extract dynamic properties (frequen-

cies, damping, and mode shapes) from data collected by a large number of mobile
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sensors. A dense matrix is first constructed from sparse observations using alternat-

ing least-square (ALS), then decomposed for structural modal identification. This

study shows that the completed data matrix is the product of a spatial matrix and

a temporal matrix from which modal properties can be extracted via methods such

as principal component analysis (PCA). Alternatively, an impulse-response structure

can be embedded into the temporal matrix then, natural frequencies and damping

ratios are determined using Newton’s method with an inverse Hessian approxima-

tion. For the case of ambient vibrations, the natural excitation technique (NExT)

is applied and then, structured optimization (Newton’s method) is performed. Both

approaches are evaluated numerically and results are compared in terms of data spar-

sity, modal property accuracy, and post-processing complexity. Results show that

both techniques extract accurate modal properties, including high-resolution mode

shapes, from sparse dynamic sensor network data; they are the first to provide a

complete modal identification using data from a large-scale dynamic sensor network.
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2.2 List of Symbols

xk state vector at time step k
A state matrix
ηk systematic noise at time step k (bridge random load)
yk observation vector at time step k
C observation matrix
νk sensing noise at time step k
Q covariance matrix of the systematic noise
R covariance matrix of the sensing noise
p model order
Nα number of virtual probing nodes
N0 number of observation nodes
Ωk mode shape regression function at time step k
s0k position vector of sensing nodes at time step k
sαi location of the ith virtual probing location
∆sα uniform distance between virtual probing locations
yk, y

br
k pure bridge dynamic response at time step k

yactk actual response recieved by the sensor at time step k

yifk bridge response to the vehicle-bridge interaction force at time step
k

yvbik actual bridge response including vehicle-bridge interaction at time
step k

yactk actual response recieved by the sensor at time step k

yrghk road profile roughness displacement under the tire at time step k
yengk engine-induced vibration at time step k
yobsk observed vibration within the vehicle at time step k

yinpk displacement input of the vehicle at the tire level at time step k
Y (ω) frequency representation of yk
H(ω) vehicle transfer function
α(ω) frequency response function
Φ vehicle mode shapes
ms vehicle sprung mass
mus vehicle unsprung mass
cs vehicle sprung damping
cus vehicle unsprung damping
ks vehicle suspension stifness
kus vehicle tire stiffness
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2.3 Introduction

Dynamic sensor networks are an element of modern society. Humans are increas-

ingly relying on ubiquitous smartphones, internet-of-things devices, and data-driven

services in their daily lives. This phenomenon has given life to massive amounts

of data, which have driven an entire field of studies [Barabasi, 2005, Wang et al.,

2010, 2012, Alexander et al., 2015, Tachet et al., 2017] on human activity in the

urban environment and the development of smart city applications [Tachet et al.,

2016, Anjomshoaa et al., 2018, Vazifeh et al., 2018]. Sensors carried by humans cre-

ate an inexpensive, large-scale mobile sensor network and as smart and self-driving

cars continue to emerge, vehicles will become a growing source for sensory data on

the built environment [Gurney et al., 2015, Massaro et al., 2017]. Throughout hun-

dreds of millions of trajectories each day, humans capture data on bridges and other

infrastructure routinely and comprehensively.

This has sparked a massive interest in the use of mobile sensors for structural

health monitoring (SHM), a field that has exclusively relied on datasets collected by

networks of fixed sensors [Sony et al., 2019, Pakzad et al., 2008, Lynch and Loh,

2006, Kurata et al., 2011, Matarazzo and Pakzad, 2016a]. Mobile sensor networks

have low setup costs and address major shortcomings of fixed sensor networks. Mo-

bile sensor data contain a denser spatial resolution when compared to data collected

by the same number of distributed fixed sensors. Overall, mobile sensor networks are

scalable and produce significantly more spatial information per sensor. The develop-

ment of SHM approaches that are able to incorporate crowdsensed mobile sensor data

[Matarazzo and Pakzad, 2018, Matarazzo et al., 2018, Mei et al., 2019, Mei and Gül,

2018] accelerates the rate at which engineers acquire knowledge on the true conditions

of infrastructure; the corresponding boom in information would prove invaluable to

bridge monitoring and management [Kleywegt and Sinha, 1994, Smith, 2016]. Early

work on mobile sensors in SHM demonstrated that a sensor within a moving vehicle
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can be used to detect the fundamental frequency of a bridge [Yang et al., 2004a, Lin

and Yang, 2005, Yang and Chang, 2009]. Subsequent studies built on the theory and

application of vehicle-bridge interaction in order to estimate damping using various

”drive-by” setups [González et al., 2012, Keenahan et al., 2014, McGetrick et al.,

2015] or stiffness information [Li et al., 2014] whose variations may be indicative of

structural damage. Very recent studies have theoretically and experimentally devel-

oped methodologies for damage detection using aggregation of passing-by vehicles on

bridges [Mei et al., 2019, Mei and Gül, 2018].

Modern system identification (SID) algorithms for civil structures are reliable,

repeatable, and often have a formidable mathematical foundation, e.g., frequency do-

main decomposition (FDD) [Brincker et al., 2001], eigensystem realization analysis

(ERA) [Juang and Pappa, 1985, James et al., 1995], stochastic system identifica-

tion (SSI) [Peeters and De Roeck, 2001], fast Bayesian FFT method [Au, 2011], dis-

tributed modal identification [Pakzad et al., 2011], Kalman filter-based SID [Chang

and Pakzad, 2013a], and stochastic iterative SID [Dorvash and Pakzad, 2013]. As

with SHM, classical SID methods were formulated under the premise of fixed sensor

network data and are incompatible with mobile sensor data. Recently, there has been

progress in the development of SID methods that are designed for mobile sensor data.

Matarazzo and Pakzad [2016b] proposed an updated version of the structural modal

identification using expectation maximization (STRIDE) algorithm to recognize in-

complete datasets and mobile sensor network data. A method proposed by Marulanda

et al. [2016] enabled the identification of spatially dense mode shapes using a hybrid

sensor network: one mobile and one fixed. Matarazzo and Pakzad [2016a] derived

three state-space models that expect data from dynamic sensor networks and recom-

mended the truncated physical model based on its configurable model complexity and

ability to distinguish between sensing nodes and model DOF. Matarazzo and Pakzad

[2018] introduced a new version of the STRIDE algorithm called STRIDEX, which
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is able to identify the parameters of the truncated physical state-space model and

therefore produce comprehensive estimates of structural modal properties using data

from a mobile sensor network. In an initial experimental application, STRIDEX pro-

duced an accurate mode shape with 248 points using data from two mobile sensors.

Subsequent experimental applications demonstrated accurate identification of higher

modes, complete with dense mode shapes, based exclusively on mobile sensor data

[Matarazzo et al., 2018].

This study focuses on bridge SID based on random vehicular sensor networks, an

especially widespread dynamic sensor network with increasing sensing capabilities. In

everyday traffic, connected vehicles with embedded sensors scan the bridge’s vibra-

tions in space and time. The vehicular sensor network data is a sparse representation

of the full response - more specifically, an incomplete data matrix with a low rank.

The sparsity of the data matrix depends on attributes of the vehicular sensor net-

work, such as the number of mobile sensors, position time-series, sampling rates, etc.

This study presents modal identification using matrix completion (MIMC) methods

for SID of bridges based on data collected by a large number of mobile sensors.

2.4 Background Theory and Scope

2.4.1 Mathematical Model for Dynamic Sensor Networks

Dynamic sensor network data are produced when some aspect of the sensor network

varies during measurement. For instance, mobile sensor data are classified as dynamic

because the positions of the sensors change throughout discrete-time sampling. Dy-

namic sensor networks were introduced in Matarazzo and Pakzad [2016a] along with

state-space models that were designed to analyze the resulting datasets for structural

dynamics applications; the stochastic truncated physical state-space model is the pri-

mary model for the case of ambient vibrations (for complete mathematical details
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see Matarazzo and Pakzad [2016a] and Matarazzo and Pakzad [2018]). The model is

given in Equation 2.1:

xk = Axk−1 + ηk

yk = GkCxk + νk

(2.1)

where x1 ∼ N(µ̂, V̂ ), ηk ∼ N(0, Q) and νk ∼ N(0, R). A ∈ R
pNα×pNα is the state

matrix, C ∈ R
N0×pNα is the observation matrix, xk ∈ R

pNα and yk ∈ R
N0 are the

state and observation vectors, respectively. ηk and νk are the input excitation and

measurement noises, which are both modeled as Gaussian white noise with covari-

ance matrices Q and R, respectively. Nα is the number of virtual probing locations

and N0 is the size of the observation vectors and p is the model order. Gk is the

mode shape regression (MSR) function (here, Gk is identical to Ωk in Matarazzo and

Pakzad [2016a]), which maps structural responses at the locations of the mobile sen-

sors to responses at virtual probing locations (VPLs). In one definition, VPLs are the

structural DOF of interest and are the points at which mode shapes are computed.

In theory, the MSR function is a product of two matrices, which are based on the

exact structural mode shapes. Matarazzo and Pakzad [2016a] showed that the MSR

function could be approximated adequately using sinc basis functions with Ĝk, as

shown in Equation 2.2:

Ĝk =

[

sinc(
1

∆sα
(sOk − sα1 )), sinc(

1

∆sα
(sOk − sα2 )), ..., sinc(

1

∆sα
(sOk − sαN))

]

(2.2)

In this equation sOk is a vector of sensors’ positions at time step k, sαi is the location

of the ith VPL, and ∆sα is the uniform distance between the VPLs. In spatial signal

reconstruction, the role of sinc(x) = sin(x)
x

is to map measurements from an observed
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location to a different unobserved location based on an ideal low-pass filter [Gensun,

1996, Schanze, 1995, Moheimani et al., 2003].

In this mathematical framework, the STRIDEX method has been successful in

both numerical and experimental applications where the VPLs were set to be uni-

formly spaced (as recommended by Matarazzo and Pakzad [2016a]). Yet, the ap-

plications to date have considered a relatively small number of mobile sensors (less

than ten). In addition, signal reconstruction literature shows the errors associated

with nonuniform sampling [Jerri, 1977, Maymon and Oppenheim, 2011]; yet, further

research is needed to quantify how the spacing of the VPLs, or the mobile sensors,

influences the accuracy of the sinc MSR approximations used in STRIDEX, which

ultimately impact modal property estimates. When relying on vehicular sensor net-

works, it is prudent to consider the following: (i) a very large number of sensors col-

lecting data simultaneously; (ii) a variable number of participating sensors during data

collection; and (iii) vehicle-bridge interaction and pavement roughness effects. The

approach described in this study addresses the first two considerations (Throughout

the study, the dynamic effect of the vehicles are ignored and road surface is assumed

to be smooth); topic (iii) is studied in Sadeghi Eshkevari et al. [2020b] and Eshkevari

and Pakzad [2019a] and will be discussed in the following chapters. In addition, the

effect of vehicle dynamics and roughness-caused vibrations has been broadly studied

in recent years [Lin and Yang, 2005, Malekjafarian et al., 2015, Malekjafarian and

OBrien, 2014a].

2.4.2 Dynamic Sensor Networks with Sparse Data

The structural responses recorded by a vehicular sensor network are both sparse and

dynamic. At each instant, the vast majority of the bridge is not sampled in space

(sparse) and the sensing configuration is time variant (dynamic). Consider a large

response matrix with temporal and spatial dimensions. Since the data collected by a
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moving sensor is a function of both time and space, the entries build in two directions

simultaneously, i.e., not just in single a row or a column. In case of a constant speed,

the mobile sensor data is a diagonal band within the response matrix.

Figure 2.1 shows an illustration of a generic sparse data matrix produced by a

large vehicular sensor network. The response matrix is three-dimensional with two

spatial dimensions on the bridge (longitudinal and transverse directions) and one

temporal dimension (time). A 2D slice of this matrix removes the dimension along

the cross section (transverse) of the bridge and shows the data collected for a given

traffic lane. There are two key observations: (i) this data matrix is mostly empty;

and (ii) while there are some visible patterns among the available entries in the

data matrix, ultimately there is an unknown stochastic structure that governs. The

methods presented in this study are evaluated based on this 2D slice of the full 3D

response matrix, both of which are sparse tensors.

The general approach is to ”complete” the unobserved parts of this matrix given

the sparse entries, i.e., the matrix completion problem. For example, in Eshkevari

and Pakzad [2020a], the alternating least-squares (ALS) method [Jain et al., 2013,

Zachariah et al., 2012] was implemented to complete a sparse structural response

matrix, which resulted in responses at all considered DOFs. Using ALS, the sparse

matrix is estimated as the product of two matrices with rank K, which is much

smaller than the dimensions of the original matrix. Further details of this method

are discussed later in this study.

2.4.3 Contributions

This study presents a set of Modal Identification using Matrix Completion (MIMC)

methods which enables a comprehensive bridge SID based solely on data collected

by a large-scale vehicular sensor network. As mentioned previously, vehicular sensor

network data are unique for SHM because they are both sparse and dynamic. Two
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Figure 2.1: Illustration of a sparse matrix produced by a large vehicular sensor net-
work. The full bridge response is represented by a 3D data matrix: two spatial
dimensions and one temporal dimension. A 2D matrix shows the response along the
bridge length for a given traffic lane. The methods in this study consider the problem
of completing such a sparse 2D data matrix and extracting bridge modal properties.
The instantaneous vehicle configurations corresponding to time samples T1, T2, T3,
and T4 are depicted.

approaches, principal component analysis (PCA) and structured matrix optimization

(SOA) are proposed to transform a completed response matrix into structural modal

properties. The MIMC methods have the following novelties:

1. The MIMC methods are the first SID algorithms designed to process data col-

lected by a large network of mobile sensors and are immediately applicable to

vehicular sensor networks.
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2. MIMC methods are able to process unstructured mobile sensor data, which

include records from vehicles that have random and independent trajectories,

e.g., different speeds, sampling rates, etc.

3. MIMC methods are able to estimate very high-resolution mode shapes after one

computational run (no iterations are necessary).

4. Within the MIMC methods, a new optimization technique for the structured

matrix completion problem that uses an approximate Newton’s method is pro-

posed and validated.

5. MIMC methods adapt to the availability of the observed data. The procedure

is successful in identifying structural modes even when the original data matrix

is very sparse, e.g., 0.5% completeness.

In the next section, the matrix completion problem is presented with respect to

incomplete structural response data. Then in Section 2.6 three MIMC methods are

proposed and described in detail. In Section 2.7 three mobile sensing simulations

based on finite element models are presented to evaluate the performance of the

MIMC methods. In Section 2.8, the simulation results are discussed. Section 2.9

provides the conclusions.

2.5 Completion of a Sparse Structural Response

Matrix

In this matrix completion problem, the full structure response matrix Y is represented

as the product of two matrices A and B (see Equation 2.3). Within alternating least

squares (ALS), the problem reduces to determining the optimal values of decompo-

sition matrices A and B [Jain et al., 2013, Zachariah et al., 2012]. Note that Y is
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the true complete response matrix which is not available; only a subset of it is ob-

served (Yobs) during data collection. As a result, the mathematical expression of the

objective function is described in Equation 2.5

Y = AB (2.3)

Yobs = Φ(Y ) (2.4)

min
A,B

1

2
||Yobs − Φ(AB)||2 +

λ

2
(||A||2 + ||B||2) (2.5)

where Yobs is a sparse matrix, which is a subset of the original time-space matrix

Y . The matrix Φ is a mapping function that selects observed entries from the full

matrix Y . In the ALS method, the objective function shown in Equation 2.5 is

minimized using alternating gradient descent steps on matrices A and B (the goal is

to find matrices A and B that minimize the objective function). Conventionally, a

regularization term is added to the objective function to prohibit overfitting.

So far, the algorithm provides a solution to complete the response matrix using

sparse observations. Next step is to process this matrix in order to extract modal

properties of the bridge. The first approach could be to apply ERA [Juang and Pappa,

1985] for modal identification. Despite its broad application, ERA is computationally

impractical when the number of output channels is large [Kramer and Gugercin, 2016,

Krishnan et al., 2011, Kramer and Gorodetsky, 2018]. In addition, no distributed

implementation of ERA-based algorithms are known to the authors. To address this

concern, and since the focus of this study is not on the system identification methods,

alternative approaches have to be proposed that are computationally affordable and

19



can adequately demonstrate the efficiency and accuracy of this approach.

ALS requires that the original matrix (here Y ) has a low-rank. From structural

dynamics, it is known that in a multi degrees of freedom (MDOF) system, the response

at each location can be represented in modal coordinates as shown in Equation 2.6.

In this equation, Ω is a matrix of stacked mode shapes and Q is a matrix of stacked

single-degree-of-freedom (SDOF) responses of modal coordinates.

Y = ΩQ ≈ Ω̃Q̃ (2.6)

The dimensionality of this equation can be reduced through modal truncation.

For many structures, the dynamic responses can be estimated accurately using only

the most significant modes, e.g., the first K modes. The truncated matrices of the

mode shapes and modal coordinates are presented as Ω̃ and Q̃ with the ranks equal

to K (model order). From Equations 2.3 and 2.6, AB ≈ Ω̃Q̃. This suggests that

matrices A and B are the transformed versions of the matrix of mode shapes (Ω̃) and

modal coordinates (Q̃), respectively.

From modal analysis, it is known that the modal coordinates are orthogonal with

respect to the mass and stiffness matrices, while there is no orthogonality condition

when matrices A and B are optimized using ALS (unconditional optimization). The

normalized mass matrix of a large and homogeneous bridge converges to an identity

matrix. This fact simplifies the mass orthogonality condition to a simple orthogonality

condition. Therefore, to mass-orthogonalize components of matrices A and B, a

simple approach is to transform them using principal component analysis (PCA).

PCA extract orthogonal principal components from a set of data (note that it is

nearly equivalent to apply PCA over the reconstructed matrix with significantly more

computational cost). It is expected that after orthogonalization of A and B, these new
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matrices are better estimations of the actual modal components. However, it is known

that the mass and stiffness orthogonality between two modes does not guarantee that

these modes are natural mode shapes. For instance, Ritz modes [Wilson et al., 1982]

are orthogonal but not natural (Ritz modes may contain an exclusive set of natural

modes). To address this problem, an alternative approach is proposed to estimate

modal components from matrices A and B in which the structure of matrix B is

prefixed.

2.5.1 Impulse Response Analysis using Structured Optimiza-

tion

The impulse response of each mode in a MDOF system has a certain structure. In

fact, in this response, Q̃ contains the free vibration responses of the modal coordinates

as presented in Equation 2.7 for undamped and Equation 2.8 for damped problems

Y (x, t) =
K
∑

n=1

Ωn(x) sin(ωnt+ ψn) (2.7)

= Ω1(x) sin(ω1t+ ψ1) + · · ·+ ΩK(x) sin(ωKt+ ψK)

=

[

Ω1(x) Ω2(x) · · · ΩK(x)

]



















sin(ω1t+ ψ1)

sin(ω2t+ ψ2)

...

sin(ωKt+ ψK)



















= Ω̃Q̃
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Y (x, t) =
K
∑

n=1

Ωn(x)e
−ξnωnt sin(ωnt+ ψn) (2.8)

=

[

Ω1(x) Ω2(x) · · · ΩK(x)

]



















e−ξ1ω1tsin(ω1t+ ψ1)

e−ξ2ω2tsin(ω2t+ ψ2)

...

e−ξKωK t sin(ωKt+ ψK)



















= Ω̃Q̃

where Ωi(x) is the ith mode shape magnitude at location x and ξi, ωi, and φi are

modal damping, frequency, and phase angle for mode i. This reiterates the fact that

the dense time and space response matrix Y can be decomposed into two sub-matrices

that include modal information. The rows of the matrix Q̃ are decaying harmonics.

In this study, as an alternative for the PCA method for extracting modal compo-

nents from ALS step results, the following optimization problem is considered. Say

matrix Y is estimated from Yobs using the ALS method; the new objective function

is expressed as Equation 2.9, in which optimization variables are shown in Equation

2.10.

min
Ω̂,Q̂

1

2
||Y − Ω̂Q̂||2 (2.9)
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Q̂ =



















e−ω11ω12tsin(ω12t+ ω13)

e−ω21ω22tsin(ω22t+ ω23)

...

e−ωK1ωK2tsin(ωK2t+ ωK3)



















K×N

Ω̂ =













...
...

...

V1 V2 · · · VK
...

...
...













M×K

(2.10)

Matrix Ω̂ is unknown in all components, while Q̂ has only three unknowns per row

(ωi1, ωi2, ωi3). This optimization problem aims to find the best parameters for ωij and

Vk in order to minimize the objective function. A visualization of this decomposition

is given in Figure 2.2.

Figure 2.2: The concept of matrix decomposition from free vibration response: In
this case, a bridge is subjected to impulsive loading and its vibration responses at
all DOFs are stacked and form matrix (a). This response matrix can be accurately
approximated as a multiplication of two matrices (b) and (c), both with rank K
(model order). The vertical matrix contains natural mode shapes, while the horizontal
matrix includes natural modal fluctuations.

By imposing the structure, it is guaranteed that if the optimal parameters can
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be found, they will provide modal property estimates, i.e., frequency, damping, and

mode shapes. The ALS method, like other common linear optimization methods

for matrix completion [Cai et al., 2010, Candès and Recht, 2009], is inapplicable to

such a highly-constrained optimization problem. Therefore, in this study, Newton’s

optimization method is incorporated for estimating parameters. The main challenge

in applying Newton’s method to high dimensional data is the numerical calculation

of Hessian inverse [Zhu et al., 1997]. An approximate approach is utilized here to do

this task more efficiently.

2.5.2 Ambient Response Analysis using NExT

The structured optimization technique is suitable only when the impulse responses

of an MDOF system are available. In order to generalize this method for random

structural vibrations, the natural excitation technique (NExT) [James et al., 1995] is

embedded into the proposed method. In short, this technique converts the response

of a structure under ambient loading into impulse responses in cross-correlational

coordinates. The equation of motion for a damped system under ambient loading is

shown in Equation 2.11:

Mÿ(t) + Cẏ(t) +Ky = F (t) (2.11)

where M , C, and K are mass, damping, and stiffness matrices of the system,

respectively. y(t) is the response vector at time t and F (t) is a random loading

vector. In case of a random ambient load (e.g., white noise), the cross-correlation

function of the response vector with an arbitrary reference response channel results

in a free vibration equation of motion, as in Equation 2.12
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MR̈ÿiÿref
(t) + CṘÿiÿref

(t) +KRÿiÿref
(t) = 0 (2.12)

where Rÿiÿref (t) is the cross-correlation between the response signal yi at DOF i

and a reference response signal ÿref (could be any chosen DOF, with minimal con-

strains). Note that this technique was developed to use with measurements from a

fixed sensor network. Yet, in this case, after matrix completion, the columns of the

response matrix Y , i.e., time histories at the DOFs, are available. Therefore, it is

possible to apply NExT on the columns of Y to produce a response matrix with the

necessary structure, i.e., free vibration of a damped SDOF system. A demonstration

of how to incorporate NExT with structured optimization analysis (SOA) is given in

Figure 2.3.

Figure 2.3: The concept of matrix decomposition from ambient loading response: in
this case, a bridge is subjected to ambient loading and its vibration response is shown
as matrix (a). The vibration responses at each DOF is not decaying, therefore, these
random responses are mapped into decaying signals, matrix (b), using NExT. Once
this matrix is formed, the rest of the process is identical to the free vibration case
(Figure 2.2).
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2.6 Modal Identification using Matrix Completion

(MIMC) Methods

In this section, the proposed procedure (MIMC) is explained in its three possible

forms: 1) Matrix completion with PCA; 2) Matrix completion with structured op-

timization analysis; and 3) Matrix completion with structured optimization analysis

integrated with NExT method. In all three methods, the preliminary step is to com-

plete the bridge response matrix using the ALS method. The first two methods are

designated for bridges subjected to impulsive loads (free vibration response), while

the third method is generalized for structures responding to ambient white noise

excitations.

2.6.1 Method 1: Matrix Completion with PCA

This method includes two main steps; i) use ALS to complete the response matrix

based on the observed mobile sensor data, and ii) apply PCA to the decomposition

matrices to produce orthogonal modes. In order to complete the highly sparse re-

sponse matrix, the objective function shown in Equation 2.5 should be minimized by

tuning variable matrices A and B. This task can be done by taking gradient steps

towards optimality as expressed in Algorithm 1 [Jain et al., 2013].

Algorithm 1 Alternating minimization for matrix completion.

1: Input: Yobs,Φ(.), T
2: Initialize A1

M,K , B1
K,N to be random matrices

3: for t = 1, · · · , T do

4: At+1 = argminA(||Yobs − Φ(AtBt)||22) . Gradient Descent
5: Bt+1 = argminB(||Yobs − Φ(At+1Bt)||22) . Gradient Descent

6: Return AT , BT

In this algorithm, Y M×N
obs is a sparse matrix with an assumed model order K, Φ(.)

is a binary location matrix with ones at observed coordinates and zeros elsewhere, and

T is the desired number of iterations. Within the argmin(.) function, the variable
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matrices are updated using a magnitude proportional to their gradients and with a

certain step size. For brevity, these common steps are summarized into the argmin(.)

function.

After this step, the PCA algorithm is applied on K columns (or rows) of matrix A

(or B) to decouple its components into estimations of modal coordinates. A similar

task was done by Poncelet et al. [2007] using PCA, independent component analysis

(ICA), and second-order blind identification (SOBI). These tools are all able to extract

uncoupled sources from mixed data by assuming different characteristics for separated

sources (e.g., orthogonality, statistical independence, and uncorrelatedness for the

three mentioned methods). In this study, the simplest method (PCA) is incorporated

for the separation task. In PCA, a matrix is decomposed into its singular vectors and

values and then, based on a desired level of accuracy, multiple singular terms with the

most participation are used to repopulate an estimation of the original matrix. We

say that the estimated matrix Y = AT ×BT has a rank equal to the model order K.

Therefore, by applying PCA, K orthogonal modes are expected that are estimations

of the natural mode shapes.

2.6.2 Method 2: Matrix Completion with Structured Opti-

mization Analysis

The second MIMC method can be viewed as a variation of Method 1. In the second

step of Method 1, PCA may not produce the expected results, i.e., natural modal

coordinates. There are multiple modal coordinates among which, each pair satisfies

the orthogonality condition; however, they are not necessarily true structural modes.

In fact, PCA performs ideally on regular and symmetric structures with a uniform

mass distribution. In these cases, the mass matrix is approximated as a scaled identity

matrix and mass orthogonality condition is simplified to the regular orthogonality

condition which is guaranteed in PCA. To force this step of the algorithm to produce
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the natural modes, structured optimization analysis (SOA) is proposed, as shown in

Equation 2.10.

To estimate parameters of the structured decomposition matrices (Q̂ and Ω̂ in

Equation 2.10), an approximate Newton’s optimization method is adopted from Eisen

et al. [2017]. In principle, Newton’s optimization method takes the step shown in

Equation 2.13 towards the optimal point, using second order information from the

Hessian:

ωn+1 = ωn − λH[f(ωn)]
−1∇f(ωn) (2.13)

where H(.) is the Hessian of a function f(ω), λ is a step size that ensures the step

satisfies Wolfe conditions [Wright and Nocedal, 1999] (a requirement for line search

algorithms). The inverse calculation for the Hessian is a computationally expensive

task for high-dimensional data. In this problem, the dimension includes all entries of

matrix Q̂ and three parameters for each columns of matrix Ω̂, in total (M + 3)×K.

Despite its lower dimension with respect to the matrix completion problem using ALS,

the problem is still high dimensional and the inverse Hessian calculation is a bottle-

neck. To circumvent this issue, k-truncated adoptive Newton’s method (k-TAN) is

implemented as shown in Algorithms 2 and 3:

In this algorithm, eps is a threshold for eigenvalue truncation, threshold is the

acceptable accuracy indicator, and f(.) is a function that converts ξ, ω and φ into

decaying oscillations and stack them to form matrix A. The LineSearch(.) function

is adopted from Wright and Nocedal [1999] to calculate valid step sizes anew and

produce H(loss)−1∇loss for each time step. Note that Φ(.) is the binary matrix that

activates available entries of Yobs in AB. However, since this step (Newton’s optimizer)

is implemented following ALS, after all entries of Yobs have been estimated, Φ(.) is
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Algorithm 2 Newton Algorithm using Approximated Hessian Inverse.

1: Input: Yobs,Φ(.), eps, threshold
2: d = 1, w1 = random;
3: procedure lossFunction(w)
4: ξ, ω, φ,B := w . w is flattened vector of variables
5: A = f(ξ, ω, φ)
6: return loss(w) := |Φ(AB)− Yobs|

7: while d > threshold do

8: anew, Pk = LineSearch(eps) . Based on strong Wolfe conditions
9: w2 = w1 + anewPk

10: d =| loss(w2)− loss(w1) |
11: w1 = w2

12: Return w1

Algorithm 3 Hessian Inverse Approximation using Truncated Absolute Eigenvalues.

1: procedure InverseHessian

2: Input: H, eps
3: UTV U := H . Eigenvalue decomposition of Hessian
4: λi = diag(V )
5: If |λi| > eps: . Eigenvalue truncation
6: γi := 1/|λi|
7: Else:

8: γi := 0
9: Vnew := diag(γi)
10: Hinv := UTVnewU . Inverse Hessian approximation
11: Return Hinv

equal to a matrix of all ones. Most importantly, H(.)−1 is calculated according to

Algorithm 3. This algorithm uses truncated absolute values of the Hessian eigenvalues

to approximate its inverse. The proposed method using ALS and SOA is illustrated

visually in Figures 2.4 and 2.5.

SOA is a nonconvex optimization problem and is sensitive to the initial values of

the variables. Accordingly, an appropriate initialization of the frequencies is possible

by detecting peaks in the PSD estimate of a random scan. This ”warm start” of

the frequency variables proved to be sufficient for the algorithm to find the optimal

parameters.
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Figure 2.4: Process of the methods for free vibration-based identification. the method
consists of three main phases: Block 1: pre-processing, Block 2: matrix completion,
and Block 3: system identification. The third phases can be performed using PCA
(Block 3a) or structured optimization (Block 3b).

Method 2b: Structured Optimization Only

Method 2 can proceed without the matrix completion step in advance. In Algorithm

2, the objective function still includes Φ(.) which is an element-wise multiplication of a

binary matrix. In Method 2, the binary matrix Φ(.) is all ones, since the unobserved

entries of the response matrix are estimated. Alternatively, instead of minimizing

the objective function calculated over the entire matrix, Yobs (sparse matrix) can be

fed into the algorithm along with its corresponding binary matrix Φ(.) to tailor this

algorithm for an SOA-only method. In other words, SOA has this possibility to

be applied directly on the original sparse matrix of the observations, in contrast to

PCA in which a preliminary matrix completion step is necessary. This approach is

successful in SID when impulse responses are considered; however, for a generalized,

random structural response, it is beneficial to integrate NExT into the process. For

that case, ALS as a preliminary step is required.

30



Figure 2.5: Components of the free vibration-based methods. Block 1: superposing
dynamic mobile scans into a global response matrix. Block 2: Applying ALS to com-
plete matrix from the sparse matrix. Block 3a: Applying PCA to extract uncoupled
components from matrices A and B. Block 3b: Applying structured optimization to
fit free vibration signal parameters for each mode from the completed matrix.
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2.6.3 Method 3: Matrix Completion with Structured Opti-

mization Analysis Integrated with NExT

The third method combines Method 2 with the natural excitation technique (NExT)

in order to process response data from a randomly excited structure, which is the

most commonly considered scenario in SID. Figure 2.6 shows that in this approach,

after completing the partially observed response matrix Yobs, one DOF is selected as

the reference signal (yref in Figure 2.3) and a new matrix of cross-correlated signals

with respect to the reference signal is produced. Then, this matrix is estimated using

the SOA technique to produce modal property estimates.

The critical hyper-parameter here is the index of the reference signal (DOF). Ac-

cording to literature on NExT, the best selection for ÿref is a location whose response

is influenced by the structural modes of interest (i.e., it is not at or near a modal

node for modes of interest). This method needs the matrix completion step to be

performed before SOA, since the completed matrix after Block 2 (Figure 2.6) does

not have the presumed decaying structure in its columns. A better illustration of this

proposed method is given in Figure 2.7.

Figure 2.6: Process of the method for ambient vibration-based identification. The
identification phase can be performed by structured optimization after applying NExT
to the completed matrix.

To evaluate the proposed methods, in the next section they are validated in mul-

tiple simulated numerical case studies.
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Figure 2.7: Components of the ambient vibration-based method. Block 1: superpos-
ing dynamic mobile scans into a global response matrix. Block 2: Applying ALS to
complete matrix from the sparse matrix. Block 3: Applying NExT to convert non-
decaying signals to decaying signals. Block 4: Applying structured optimization for
modal properties extraction.
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2.7 Simulation and Results

In this section, three simulations of the MIMC methods are presented to demonstrate

their performances for SID: 1) undamped structure subjected to an impulsive load, 2)

damped structure subjected to an impulsive load, and 3) damped structure subjected

to a random ambient load. The goal of the simulations is to accurately identify the

first four modes of a bridge using mobile sensors scanning data. In the first two sim-

ulations, Method 1 (ALS+PCA) and Method 2 (ALS+SOA) are implemented and

their performances are compared for three different levels of data availability, which

are directly related to the total number of vehicles that contribute to the mobile sen-

sor dataset: 75 scans, 100 scans, and 125 scans (cases A, B, and C, respectively). The

completeness of the corresponding data matrices in these cases are 0.75%, 1.00%, and

1.25%, respectively. These cases are presented first as a reference to better understand

the methods in order to present comprehensively in the third simulation case. More-

over, in bridges with potholes or construction/expansion joints, impulsive loads are

a proper way of modeling large trucks and buses passing through these irregularities.

In Simulation III, ambient vibrations are considered along with four data completion

levels (0.50%,0.75%, 1.00%, and 1.25%) for which Method 3 is implemented.

2.7.1 Finite Element Model and Mobile Sensing Setup

The simulations are based on a 500-meter single-span bridge, whose linear responses

are modeled using OpenSees. The responses at 5, 000 equally-spaced DOFs of the

bridge are considered, which are sampled at 50 Hz and have a duration of 100 sec-

onds. Forces are applied at nine evenly-spaced nodes along the bridge with random

magnitudes. The response data at all DOFs form a 5, 000×5, 000 dense response ma-

trix from which a sparse response matrix Yobs can be subsampled based on the paths

of the simulated mobile sensors. Rayleigh damping is assigned by setting damping
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ratios equal to 2% for modes one and eight. A modal analysis of the structure shows

the natural frequencies of the first four modes: 0.2655 Hz, 0.7322 Hz, 1.4356 Hz,

and 2.3731 Hz. Since the bridge is modeled in 2D, all modes are vertical. After

data generation in OpenSees, the matrix database is exported to Python for further

analyses.

The mobile scanning data are generated by selecting appropriate entries from the

dense response matrix – a process that is illustrated in Block 1 of Figure 2.5. To

simulate the random nature of vehicles scanning the bridge, the starting times and

locations of each vehicle are selected randomly. This process is repeated n times

to mimic a sensing scenario including n vehicular sensors, which scan the bridge’s

response within a 100-second period. Note the lengths of the individual datasets

(diagonals) vary among the vehicles, since their trajectories begin at a random point

in the data matrix. In other words, the mobile sensors collect data independently.

Finally, for simplicity, the speeds of all the sensors are set to 5.0 m/s to allow just

enough time (100 seconds) for a vehicle starting at one end to complete one full-length

bridge scan, meaning that most scans only cover a portion of the bridge.

2.7.2 Simulation I: Undamped Bridge Subjected to Impul-

sive Load

The first step in all the proposed methods is to complete the matrix using the ALS

method, for which Algorithm 1 is implemented in Python using TensorFlow frame-

work and performed on the sparse matrix. For applying the algorithm, a value for K

(desired model order of the decomposition matrices) must be selected. In all three

cases, a K value between four and six yields the best performance - further details

about this selection are discussed later. Figure 2.8 shows the ALS results for cases A,

B, and C: top plots display the components of the A matrix and bottom plots show

the power spectral density (PSD) estimates of the components of the B matrix. The
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components of the matrix A are similar to the expected mode shapes of the bridge;

however they are not exactly the natural modes. The peaks of the PSD estimates

of the components of the B matrix correspond to the modal frequencies. Note that

these components are coupled, i.e., each component contains multiple peaks. PCA is

used to make these components orthogonal to one another.
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Figure 2.8: Simulation I: ALS results for three cases: (a) Case A, (b) Case B, (c)
Case C. Top plots show matrix A components in space and bottom plots show Welch
PSD estimates of matrix B components.

PCA is performed on columns of matrix A as well as rows of matrix B to produce

orthogonal modes. Figure 2.9 shows the mode shapes resulting from PCA for cases

A, B, and C, respectively. The estimated mode shapes for the first four modes are

consistent with the true mode shapes of the bridge as indicated by the modal assurance

criteria (MAC) [Allemang and Brown, 1982] values in Table 1, which are all greater

than 0.95. The first and second mode shapes were perfectly identified in all cases.

The PSD estimates of these extracted modes for all three cases are presented in Figure

2.10. In this figure, each mode shows only one peak in its frequency representation,

which means PCA is successful in decoupling the modes.

It is important to notice that the identified mode shapes contain 5, 000 points; a

very high resolution - in fact, these are the densest mode shapes that are extracted
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Figure 2.9: Simulation I: mode shapes resulted from method 1: (a) Case A, (b) Case
B, and (c) Case C.
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Figure 2.10: Simulation I: Welch PSD estimates of identified modes for (a) Case A,
(b) Case B, and (c) Case C using Method 1.
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from accelerometer data in the literature of the field. The implication is that, in case

A, on average, each mobile sensor scan produced about 66 points.

The same problem is approached using Method 2 (matrix completion with struc-

tured optimization). In this method, after the matrix completion step, the response

matrix is reformed into a structured matrix to approximate modal properties of each

mode. Likewise, Algorithm 2 is implemented in Python to tune unknown variables.

The estimated mode shapes for cases A, B, and C are shown in Figure 2.11. In Method

2, the number of points in the identified mode shapes is reduced to 100, a user-defined

value. This particular selection enables a quick solution to the optimization problem

while maintaining a dense mode shape.
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Figure 2.11: Simulation I: mode shapes resulted from method 2: (a) Case A, (b) Case
B, and (c) Case C.

The accuracy of the identified mode shapes are quantified using MAC values and

displayed in Table 2.1. The MAC values for all four modes are above 0.94 in all three

cases, which indicates the identified shapes are consistent with the true mode shapes.

In addition, the mode shape estimates are insensitive to data completion levels (from

case A to case C). MAC values for two first modes using both PCA and SOA are
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above 0.99. This accuracy is especially significant considering the high resolution of

the identified mode shapes. Comparing two methods in natural frequency estimation

shows that PCA has 2% error in the worst case, while SOA estimates are within 1%

of the true values. Regarding the frequency representation of the modes identified

with SOA, Figure 2.12 shows that in all three cases, modes are independent and

without spectral leakage. By comparing this results with Figure 2.10, the advantages

of SOA are noticeable; SOA includes a constraint that guarantees natural mode ex-

traction, which is different from PCA. This special feature is demonstrated again in

the following simulation.
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Figure 2.12: Simulation I: Welch PSD estimates of identified modes for (a) Case A,
(b) Case B, and (c) Case C using Method 2.

Table 2.1 summarizes the estimated modal frequencies from both methods and all

three cases; the results confirm that both methods produce accurate modal property

estimates. Overall, SOA provided more accurate frequency estimates than PCA. It is

important to keep in mind that while successful, this simulation was basic; a damped

structure is considered in simulation II.

2.7.3 Simulation II: Damped Bridge Subjected to Impulsive

Load

Simulation II is the same as simulation I except damping is considered. After forming

a sparse matrix of the damped bridge response subjected to an impulsive load from

finite element analysis, the matrix is completed using the ALS algorithm; the results
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Table 2.1: Identification results for simulation I.

Case Method Mode 1 Mode 2 Mode 3 Mode 4

MAC values

A
PCA 0.9999 0.9993 0.9408 0.9585

SOA 0.9995 0.9987 0.9575 0.9511

B
PCA 0.9999 0.9996 0.9577 0.963

SOA 0.9995 0.9985 0.9418 0.9543

C
PCA 0.9999 0.9993 0.9533 0.9566

SOA 0.9995 0.9988 0.9485 0.9519

Natural frequencies [Hz]

A
PCA 0.2562 0.7291 1.4187 2.3498

SOA 0.2656 0.7317 1.4066 2.3554

B
PCA 0.2704 0.7375 1.4356 2.3451

SOA 0.2656 0.7316 1.4322 2.3553

C
PCA 0.2653 0.7274 1.4305 2.3499

SOA 0.2656 0.7317 1.4313 2.3553

Actual 0.2655 0.7322 1.4356 2.3731

are shown in Figure 2.13. These plots are different when compared with ALS results

of the undamped case; for instance, the components of the A matrix are noisy and

contain outliers. In addition, the peaks in the PSD estimates are less prominent.

One explanation for this difference is that the matrix completion algorithm performs

more desirably when the values of the matrix do not decay significantly. In the

damped case, the rapid decays of the signal interfere with the algorithm’s ability

to properly estimate the tails. Despite this, Table 2.2 shows that Method 1 is still

successful in identifying highly dense mode shapes. A comparison between Figures

2.12 (undamped) and 2.14 (damped) highlights the spectral leakage among the modes

in frequency domain in the damped case, which influences the amplitudes of each

peak.

Regarding three sparsity cases, it was observed that as the amount of available

data increased, the estimated components of matrix A are less noisy. However, to
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address this noise (unwanted high frequency content), a moving average window is

applied to the mode shapes resulting from PCA to filter out high frequency noises.
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Figure 2.13: Simulation II: ALS results for three cases: (a) Case A, (b) Case B, and
(c) Case C. Top plots show matrix A components in space and bottom plots show
Welch PSD estimates of matrix B components.
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Figure 2.14: Simulation II: Welch PSD estimates of identified modes for (a) Case A,
(b) Case B, and (c) Case C using Method 1.

In Method 1 (matrix completion with PCA), the damping ratios for each mode

are calculated based on free vibration decay [Chopra, 2017]. After applying PCA, the

corresponding modal coordinates are plotted in time and the amplitude decay within

a certain number of cycles are measured and the modal damping is estimated. The

results shown in Table 2.2 indicate that the damping ratios are estimated properly.

Next, Method 2 is used, in which SOA is implemented after matrix completion.

This algorithm is very fast and converges in fewer than 20 iterations. In contrast
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to Method 1, after convergence, the mode shapes, damping ratios, and frequencies

are all calculated separately and there is no need for post processing. The identified

modes are not presented for brevity; however, the MAC values, damping ratios, and

frequencies are presented in Table 2.2.

Overall, the mode shapes are estimated accurately; MAC values in Table 2.2

exceed 0.92 in all cases (except for the fourth mode in case A). Note that the identified

modes from Method 1 consist of 5, 000 points, while Method 2 results in 100 points.

In terms of natural frequency estimates, Table 2.2 shows that both methods were

equally successful. Estimated damping ratios shown in Table 2.2 indicate that both

algorithms are successful in this aspect. SOA results in almost exact estimations for

first three modes while PCA estimates are not as accurate. The PSD estimates in

Figure 2.15 display four independent and smooth frequency plots for the structural

modes. In terms of the damping ratio estimates (presented in Table 2.2), those from

SOA are nearly exact.
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Figure 2.15: Simulation II: Welch PSD estimates of identified modes for (a) Case A,
(b) Case B, and (c) Case C using Method 2.

Until now, we showed that the proposed methods are successful for estimating

modal characteristics of a bridge (damped or undamped) subjected to the impulsive

load and using mobile sensors data. In the next simulation, a more realistic loading

case (ambient random load) is investigated.
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Table 2.2: Identification results for simulation II.

Case Method Mode 1 Mode 2 Mode 3 Mode 4

MAC

A PCA 0.9993 0.9986 0.9578 0.9582

SOA 0.9902 0.9948 0.9555 0.7996

B PCA 0.9959 0.9260 0.9579 0.9426

SOA 0.9875 0.9994 0.9554 0.9246

C PCA 0.9933 0.9929 0.9579 0.9700

SOA 0.9831 0.9988 0.9557 0.9572

Natural frequencies [Hz]

A PCA 0.2655 0.7325 1.4258 2.3500

SOA 0.2657 0.7318 1.4313 2.3495

B PCA 0.2606 0.7325 1.4307 2.3599

SOA 0.2655 0.7319 1.4313 2.3539

C PCA 0.2706 0.7429 1.4315 2.3653

SOA 0.2657 0.7319 1.4316 2.3550

Actual 0.2655 0.7322 1.4356 2.3731

Damping ratios [%]

A PCA 2.048 1.004 0.707 0.473

SOA 1.886 0.777 0.576 0.450

B PCA 2.101 0.976 0.619 0.521

SOA 1.783 0.751 0.574 0.535

C PCA 2.155 0.923 0.735 0.933

SOA 1.882 0.792 0.576 0.539

Actual 2.000 0.800 0.600 0.700
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2.7.4 Simulation III: Damped Bridge Subjected to Ambient

Load (Operational Condition)

In this section, Method 3 is used for SID using ambient vibration data. Based on

the results in the previous two simulations, it is concluded that SOA produces more

consistent SID results. Simultaneously, PCA excels at determining modes that are

orthogonal to one another; yet, it does not automatically produce true structural

modes as the condition for these is orthogonality with respect to the mass and stiffness

matrices. As a result, PCA performs ideally on single-span bridges with a uniform

mass because in these cases, the condition for component orthogonality is equivalent

to that for mass-stiffness orthogonality. SOA, on the other hand, is not built on

this assumption and is widely applicable to more generic structures. Based on these

considerations, SOA is recommended to be used with NExT for ambient vibrations

and was selected for this simulation. In this example, to further test the limits of

sparse data, a lower level of data completion case is added. The four cases, 50 scans,

75 scans, 100 scans, and 125 scans, correspond to data completion levels 0.50%, 0.75%,

1.00%, and 1.25%, respectively.

The bridge is excited randomly at nine locations while the mobile sensors scan

the response. This case is simulating the passage of a network of moving sensors over

evenly spaced potholes or expansion joints. However, other random loading patterns

with more loading points can be assigned with no loss of generality in the performance.

In addition, 5% white measurement noise is added to the mobile sensing data. The

first step is to apply ALS to complete the response matrix. To demonstrate this

process, Figure 2.16 compares the PSD estimates of the true responses at the 1, 000th

DOF with the ALS approximations for two extreme sparsity cases. Overall, the ALS

responses contain accurate frequency content - especially below 3 Hz. These plots do

not indicate any significant differences among the data completion levels.

After the matrix completion step, NExT is applied to the estimated signals (ac-
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Figure 2.16: Simulation III: Welch PSD estimates of completed vs. actual bridge
response signals: (a) 50 scans, (b) 125 scans.

cording to the procedure in Figure 2.6). Out of the 100 DOF available (reduced from

5, 000 to improve CPU speed), the 40th is selected as the reference signal since it

includes contributions from all four modes. then, a response matrix with decaying

signals in each column is constructed for SOA. Figure 2.17 shows the estimated modes

for each of the data availability levels. In general, the modal property estimates from

this simulation are more accurate than those from Simulation II.

The estimated mode shapes are evaluated using MAC values in Table 2.3. The

MAC values for the identified mode shapes, for all modes and all sparsity cases are

greater than 0.95, which indicates a strong agreement with the true mode shapes.

In particular, the shapes for the first and second modes were perfectly identified in

all incomplete data cases, as measured by MAC values over 0.99. Furthermore, it

is worth reiterating that Method 3 is successful in estimating high resolution mode

shapes (100 points each). Figure 2.18 illustrates the method’s accuracy in extracting

clear and independent modal frequencies without spectral leakage. This result can

be attributed to the structure imposed by SOA.

Lastly, by superposing identified modes and comparing with the completed re-

sponse matrix results, Figure 2.19 is created. This figure demonstrates that the

combined reconstructed signal from SOA ideally resembles the underlying natural

frequency contents of the bridge. In addition, by comparing figures, different cases
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Figure 2.17: Simulation III: mode shapes resulted from method 3: (a) 50 scans, (b)
75 scans, (c) 100 scans, and (d) 125 scans.
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Figure 2.18: Simulation III: Welch PSD estimates of identified modes using Method
3: (a) 50 scans, (b) 125 scans.
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Figure 2.19: Simulation III: Welch PSD estimates of optimal structured response vs.
ALS estimated signal: (a) 50 scans, (b) 125 scans.

(data availability variations) result in the same level of modal estimation accuracy.

Table 2.3 shows that the natural frequency estimations are all within 0.7% error range

which is promising. Damping ratio estimations from Table 2.3 agree closely with the

actual values, specially in the first three modes. The same level of accuracy is also

evident from MAC values of the estimated mode shapes presented in Table 2.3 (two

first modes are identified with MAC values higher than 0.99). By comparing accu-

racy of the estimated parameters in different data availability cases, it is evident that

MIMC performs consistently well within the tested range (50 to 125 scans). This is

important since it shows the robustness of the proposed method for different mobile

data availability. This robustness was also observed in two former cases and in SOA

results. In fact, in SOA the number of unknown variables reduces from (M +N)×K

for ALS step to (M + 3) × K (M × K for mode shape estimations and 3 × K for

modal coordinate estimates), and this lowers the sensitivity of the algorithm to the

observed data availability.

2.8 Discussion

In the previous sections, the proposed MIMC methods were applied to a set of ex-

amples for demonstration and validation. This section provides further information

to assist users with proper implementations of MIMC methods.

47



Table 2.3: Identification results from simulation III.

Scans Mode 1 Mode 2 Mode 3 Mode 4

MAC

50 0.9932 0.9981 0.9546 0.9527

75 0.9965 0.9978 0.9552 0.9542

100 0.9978 0.9980 0.9552 0.9549

125 0.9976 0.9972 0.9555 0.9573

Natural frequencies [Hz]

50 0.2654 0.7316 1.4311 2.3549

75 0.2654 0.7333 1.4312 2.3555

100 0.2654 0.7331 1.4311 2.3554

125 0.2654 0.7330 1.4311 2.3553

Actual 0.2655 0.7322 1.4356 2.3731

Damping ratios [%]

50 1.855 0.894 0.421 0.214

75 1.857 1.004 0.426 0.213

100 1.867 0.996 0.422 0.213

125 1.867 0.993 0.349 0.213

Actual 2.000 0.800 0.600 0.700
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Operations on high dimensional data are vulnerable to computational instabilities.

ALS and SOA are two optimization techniques based on sparse data whose perfor-

mances depend on a number of parameters. In the matrix completion with ALS, a

decaying step size was tuned for the gradient descent optimization provided an ade-

quate performance. A decaying step size is generally suitable for smooth and convex

objective functions. The SOA objective function is nonconvex; thus a line search al-

gorithm with strong Wolfe conditions [Wright and Nocedal, 1999] was implemented,

as presented in Algorithm 2.

In the optimization process (ALS step), the sparse matrix is more accurately

estimated if the model orderK is slightly more than the expected rank of the response

matrix (K = 5, 6). In general, the rank of the decomposition matrix is close to

the target number of modes to be identified (e.g., four in this study). However,

increasing the rank (model order) marginally can improve ALS optimization based

on the sparse data and produce beneficial SID results [Eshkevari and Pakzad, 2020a].

In all simulations, K is tuned to produce the best performance.

In Simulation II, Figure 2.14 shows that despite the fair accuracy of the identified

modes (shown in Table 2.2), the modes from PCA are not as well separated as the first

simulation (modal interactions are present). Figure 2.15 shows that this problem does

not exist in the modes identified with SOA. In SOA, modal interactions or spectral

leakage are unlikely, because the structure only accepts one set of frequency, damping

ratio, and phase shift parameters for each component; this constraint guarantees the

extraction of distinct and independent modes.

For a matrix completion problem, a range of data completion between 0.5% to

2.0% is reasonable [Candès and Recht, 2009]. This ratio is convertible to different

numbers of mobile scans according to the dimension of the response matrix. For

instance, in this study the response matrix is 5, 000 × 5, 000 which needs nearly 100

mobile scans to suffice 1.0% data completion rate. These 100 scans are divided in the
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number of lanes over the bridge (e.g., for the numerical case study, we can assume

three lanes in each direction). Therefore for each lane, 17 scans are needed within

the monitoring duration (25 scans for a four-lane bridge). Considering the sampling

rate, the vehicle speed, and the length of the bridge, this number is easily practical.

Important note here is that these 17 scans do not need to visit all DOFs within

the time frame, e.g., partial scans are acceptable. For crowded bridges, the number

of mobile scans are significantly more than this range, however, the operator can

randomly pick sufficient measurements and use for the matrix completion and modal

identification tasks.

To better understand the effect of model order K with respect to the data avail-

ability levels, various K values and scan levels were considered by Method 3. Table

2.4 shows the corresponding final objective function values of ALS and SOA and doc-

uments the runtimes and number of identified modes. In this table, ALS objective

function values are reported per observed matrix entry and SOA values are reported

over the entire response matrix after completion with normalization. A smaller ALS

objective function value indicates a more successful fit based on the observed entries

and suggests a more accurate signal reconstruction. Generally, as K increases, the

ALS objective function decreases. At the lowest data availability (50 scans), when K

grew from 5 to 6, the ALS objective function value increased slightly - which implies

that a limit had been reached. For the more complete data cases, the ALS objective

function always decreased asK increased. Similarly, the SOA objective function value

measures the success in imposing a structure over the response matrix; however, this

value was much less sensitive to changes in K or data availability.

The runtimes of each technique are compared in Table 2.4; while these are subject

to the processing units, the relative metrics are informative. At the lowest data level

(50 scans) and with K equal to 6, five modes were identified; however, the runtime

for ALS was significant. Alternatively, five modes can be identified over ten times
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faster, and about four times more accurately, when 100 or 150 scans were available

(see Table 2.4). Generally, when the number of scans increased from 100 to 150

there was no improvement in SID. These points demonstrate some of the trade-offs

between K, data availability, and the target number of identified modes. In certain

circumstances, more data does not improve the SID results.

There are numerous variables that influence the data collected by a vehicular

sensor network. In this study, the MIMC methods proposed were shown to produce

accurate SID results in the case of a random monitoring process. The speed of the

mobile sensors is an influential parameter that was not explicitly studied in this study

- instead it was linked to a particular data duration and the bridge’s length. It is

important to clarify that this example was presented for demonstration purposes

and to show that there are no aspects of the MIMC algorithms that restrict speed

variations of the mobile sensors. The velocities of the individual vehicles affect the

locations of the observed entries in the response matrix and, in turn, the shape of

the available data (see the first block of the proposed methods shown in Figures 2.5

and 2.7). Matrix completion literature [Candès and Recht, 2009] discusses how sparse

matrices with randomly arranged entries provide an ideal starting point for reaching

the global optimum, i.e., yielding the most accurate full response matrix. Thus, a

stochastic vehicular sensor network with various speeds, sampling rates, scanning

intervals, etc. is better suited to achieve this condition. In addition, speed variations

can help to better facilitate the proposed methods for shorter span bridges. For

instance, if the bridge span is 300 meters and vehicle network cross the bridge with

speed 10 km/hr, the same level of spatial discretization could be achieved. This

means that the response matrix will have the same dimensions and consequently,

the conclusions of the current case studies (e.g., high resolution natural mode shape

identification) are achievable.
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Table 2.4: Runtimes, number of identified modes, and objective functions for various
K and data availability.

Measure Scans K = 2 3 4 5 6

Runtime

[sec]

50 155 161 >1000 >1000 >1000

100 31 30 55 93 162

150 46 31 57 31 233

Identified

Modes

50 2 3 3 4 5

100 0 3 4 5 5

150 2 3 4 5 5

Objective function values

ALS

step

50 77.1751 40.6841 23.9679 11.0315 12.7113

100 90.8833 51.8795 29.3165 7.3299 3.6893

150 93.5409 51.0089 26.5513 9.0379 4.6717

SOA

step

50 0.0221 0.0479 0.0535 0.0025 0.0159

100 0.1313 0.0483 0.0476 0.0446 0.0404

150 0.0378 0.0549 0.0807 0.0469 0.0461

2.9 Conclusion

In this study, novel methods were proposed for a comprehensive modal identification

of a bridge based on data collected by a large number of moving sensors (vehicles).

Bridge response data collected by a vehicular sensor network are both sparse and

dynamic. The full (unobserved) bridge response is viewed as a very large data matrix

of which the aggregated mobile sensing data provide a sparse representation. The

modal identification using matrix completion (MIMC) methods proposed utilizing

matrix completion, i.e., alternating least square (ALS) [Jain et al., 2013], to complete

the full matrix based on sparse entries. Then, the completed matrix was analyzed

to extract a complete set of modal properties, e.g., frequencies, damping ratios, and

high-resolution mode shapes. For this, two algorithms, principal component analysis

(PCA) [Jolliffe, 2011] and structured optimization analysis (SOA) were proposed (the

latter was developed by the authors) and applied on the completed matrix (Methods

1 and 2, respectively). To extend the applicability of this technique to ambient
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structural vibrations, a third method was proposed based on the natural excitation

technique (NExT) [James et al., 1995] (Method 3).

The proposed methods were evaluated numerically in three different case studies

and results were presented. Method 1 was able to extract natural mode shapes of

the bridge under impulsive loading with 5, 000 points which are the densest identified

mode shapes in the existing literature. Alternatively, Method 2 can extract mode

shapes with a user-defined number of points. In Simulation III, Method 3 showed

that it is a robust and accurate SID solution for bridges using mobile sensor network

with minimal sensitivity to the data completion rate. However, the methods generally

improve in terms of computational costs and SID results when more data completion

rate is available. It was also shown that Method 2 and 3 could extract fully decoupled

modal components while Method 1 suffered from modal leakage in some modes. A

sensitivity study on the user-defined model order K (rank of the decomposition ma-

trices) was performed. The study showed that while larger K’s usually lead to better

signal reconstruction results, it will increase the computational costs. A balanced

configuration of K and data completion rate yielded the best performance.

The accuracy of estimated modal properties are promising in all three simulations

and methods (within 2% error in most cases). Method 1 was able to identify very

high-resolution fundamental mode with MAC value equals to 0.9999. Frequency

estimated in all three simulations are very accurate (e.g., Method 3 resulted in 0.07%

estimation error in the worst case on Simulation III). Method 2 and 3 showed a desired

performance in damping ratio estimation, especially on the first three modes. This

work further supports the practice of dynamic sensor networks for SHM applications,

especially system identification. MIMC methods are applicable to data collected

by vehicular sensor networks, which present new opportunities to monitor bridge

vibrations at unprecedented rates and scales. This proposed methodology paves the

way towards a fully autonomous and real-time bridge health monitoring platform
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using crowd-sourced data provided by smart devices.
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Chapter 3

Processing Acceleration

Measurements within Moving

Vehicles

3.1 Abstract

Vehicles commuting over bridge structures respond dynamically to the bridge’s vi-

brations. An acceleration signal collected within a moving vehicle contains a trace of

the bridge’s structural response, but also includes other sources such as the vehicle

suspension system and surface roughness-induced vibrations. This study introduces

two general methods for the bridge system identification using data exclusively col-

lected by a network of moving vehicles. The contributions of the vehicle suspension

system are removed by deconvolving the vehicle response in frequency domain. The

first approach utilizes the vehicle transfer function, and the second uses ensemble

empirical modal decomposition (EEMD). EEMD is a geometric based blind source

separation (BSS) tool that is able to extract sources out of a statically or convolution-

ally mixed signal. Next, roughness-induced vibrations are extracted through a novel
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application of second-order blind identification (SOBI) method. After these two pro-

cesses the resulting signal is equivalent to the readings of mobile sensors that scan the

bridge’s dynamic response. Structural modal identification using mobile sensor data

has been recently made possible with the extended structural modal identification

using expectation maximization (STRIDEX) algorithm. The processed mobile sen-

sor data is analyzed using STRIDEX to identify the modal properties of the bridge.

The performance of the methods are validated on numerical case studies of a long

single-span bridge with a network of moving vehicles collecting data while in motion.

The analyses consider three road surface roughness patterns. Results show that for

long-span bridges with medium- to high-ongoing traffic volume, the proposed algo-

rithms are successful in extracting pure bridge vibrations, and produce accurate and

comprehensive modal properties of the bridge. The study shows that the proposed

transfer function method can efficiently deconvolve the linear dynamics of a moving

vehicle. EEMD method is able to extract vehicle dynamic response without a-priori

information about the vehicle. In addition, proposed identification methods provide

secondary information about the roughness pattern and the vehicle. This study is the

first proposed methodology for complete bridge modal identification, including oper-

ational natural frequencies, mode shapes and damping ratios using moving vehicle

sensory data.

3.2 Introduction

Advancements in sensor technology and data acquisition techniques have played a ma-

jor role in bringing the civil engineering community towards more frequent and more

accurate condition assessments of structures. Structural health monitoring (SHM)

methods have been quick to evolve with technologies; most notably, wireless sensor

networks became promising alternatives to wired precedents [Lynch and Loh, 2006,
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Ni et al., 2009, Pakzad et al., 2008]. In terms of system identification techniques,

many statistical frameworks have been proposed and verified [Andersen et al., 1999,

Juang and Pappa, 1985, Gul and Catbas, 2009]. Yet, the measurement process in

SHM still adheres to the fixed sensor paradigm. In this framework, sensors are in-

stalled at certain locations on the structure, thus the spatial information in the data

is restricted to these particular points. Ultimately, this measurement approach can

limit researchers’ ability to understand structural condition and performance. For

example, in system identification (SID), it is known that the spatial resolution of the

identified mode shapes is directly impacted by the number of sensing nodes and their

arrangement [Matarazzo and Pakzad, 2016b].

SID applications that target higher resolution mode shapes have used dense ar-

rays of fixed sensor networks [Pakzad et al., 2008, Dorvash et al., 2014, Zhu et al.,

2012]; while such networks are able to provide an improvement in spatial information,

the equipment, setup, and maintenance costs associated with dense sensor networks

effectively make this type of information inaccessible. In addition, complex networks

have more complicated communication and processing tasks since more data need to

be transmitted and analyzed, requiring more advanced communication technologies.

Recently, real-time monitoring has been studied using internet of things (IoT) for

data transmission and storage clouding [Smarsly et al., 2011, Kijewski-Correa et al.,

2012, Zhang et al., 2016]. These technologies have eased the application of complex

sensing networks, while the spatial resolution problem is not addressed yet.

The cost inefficiency of highly dense sensor networks has motivated researchers to

determine more optimal sensor layouts, e.g., those that minimize network complexity

while attaining a level of information that is appropriate for the application. This

approach has been taken for both damage detection [Guo et al., 2004, Kim et al., 2000]

and structural modal identification [Chang and Pakzad, 2015, Meo and Zumpano,

2005] purposes. While important and highly practical, this strategy does not resolve
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the scalability problems that are inherent to fixed sensor networks because of two

concerns: requiring more sensors for more spatial information and requiring dedicated

sensor networks for each structure to be assessed.

Mobile sensor networks offer numerous advantages compared to the conventional

stationary sensing scenario. Overall, mobile sensors have low setup costs, collect spa-

tial information efficiently, and no dedicated sensors to any particular structure. Most

importantly, mobile sensors can capture comprehensive spatial information using few

sensors.

3.2.1 Toward Infrastructure Vibration Crowdsourcing

The advantages of mobile sensing combined with the ubiquity of smartphones with

IoT connectivity have motivated researchers to think of automobiles as large-scale

sensor networks. Recently, studies were conducted to show the suitability of mo-

bile sensors and smartphones for environmental assessment in urban areas. Recent

researches [Eriksson et al., 2008, Alessandroni et al., 2014, Kumar et al., 2016, An-

jomshoaa et al., 2018] have incorporated smartphone vibration data for road pothole

detection and road surface condition assessment purposes, and successfully examined

their platform experimentally. Feng et al. [2015] studied substitution of stationary

sensors with smartphones for identifying dynamic characteristics of structures. How-

ever, the sensing network consisted of fixed nodes. Matarazzo et al. [2018] studied

crowdsensing possibilities created by smartphone abundance. In this study, smart-

phones were used for data collection while driving over a bridge and by frequency-

domain analysis, bridge natural frequencies were identified. They showed that smart-

phones are viable moving sensors and easy to use; however, the result was limited to

frequency informations and was not a comprehensive SID. The study emphasized on

the huge information potential offered by ubiquitous smartphones in moving vehicles.

Despite the promises of scalability, there remains a need to develop practical
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analytical procedures for a comprehensive SID that are applicable to mobile sensor

and smartphone data. The recent studies considering mobile sensor networks have

mostly demonstrated partial modal identification(either frequency, damping, or mode

shapes). At this time, STRIDEX by Matarazzo and Pakzad [2018] is the one of the

procedure that is capable of performing a complete identification using mobile sensor

data. Sadeghi Eshkevari et al. [2020a] has recently proposed an alternative approach

as well with a different sensing setting.

3.2.2 Review of System Identification using Mobile Sensor

Networks

Mobile sensor networks offer more scalable and flexible data acquisition when com-

pared to fixed sensor networks; yet the resulting datasets are fundamentally different

and require special consideration [Matarazzo and Pakzad, 2016a]. Mobile sensing data

fall under the dynamic sensor network (DSN) data classification and can be mapped

exactly to the equation of motion through the truncated physical state-space model

(TPM). In a TPM, the fundamental assumption is that the measurements at physical

locations are truncated results of a coordinate transform from modal coordinates at

every time sample. Equation 3.1 shows the state-space model of a dynamic structure:

xk = Axk−1 + ηk

yk = ΩkCxk + νk

(3.1)

In this equation, xk (with x1 ∼ N(µ̂, V̂ )) is the state vector containing the

structural response at all degrees of freedom (DOFs), yk is the observation vector

which includes the structural responses at a subset of all DOFs. A ∈ R
pNα×pNα and

C ∈ R
N0×pNα are state and observation matrices, respectively. Nα is the number of
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virtual probing nodes and N0 is the size of observation vectors. p is a user-defined

model order, expanding number of observation channels to a desired number of states.

ηk ∼ N(0, Q) and νk ∼ N(0, R) are systematic and sensing noises, which are com-

monly modeled as uncorrelated Gaussian white noise with covariance matrices Q and

R. Finally, Ωk is called mode shape regression (MSR) function, and essentially is a

known 3D array that for each time step, maps moving sensors data to virtual prob-

ing data by an approximation. Further mathematical details for MSR function can

be found in Matarazzo and Pakzad [2016a]. In addition, a more advanced signal

reconstruction method is proposed by Eshkevari and Pakzad [2020b] which enables

data estimation on probing locations under high irregularities in the mobile sensors

network.

The governing state-space model (Equation 3.1) of the system is time variant

with six time-invariant parameters {A,C, µ̂, V̂ , Q,R} and one time variant param-

eter {Ωk}, which can be approximated using a sinc basis function. The structural

identification using expectation maximization (STRIDEX) method was proposed to

identify the parameters of the TPM and extract modal properties of the structural

system, which include high-resolution mode shapes. The accuracy and performance

of STRIDEX was validated using both synthetic and experimental data [Matarazzo

and Pakzad, 2018]. Most notably, it was shown that two mobile sensors can produce

a mode shape estimation with over 240 points.

The STRIDEX [Matarazzo and Pakzad, 2018] was developed to determine the

maximum likelihood estimates (MLE) of the TPM (Equation 3.1). This is achieved

using the expectation maximization, a method which computes iteratively the con-

ditional expectation of the unobserved state variable and its covariance matrices. In

STRIDEX, the time invariant parameters are combined into one super-parameter. In

the expectation (E) step, given the observed measurement data, state vectors are

estimated using Kalman filtering [Ristic et al., 2004] and Rauch-Tung-Striebel (RTS)

60



smoothing [Särkkä, 2008]. Then the conditional expectation of the log-likelihood

function of TPM is maximized to yield an updated super-parameter estimate (max-

imization (M) step). This procedure continues until log-likelihood function value

changes less than a predefined threshold. Detailed explanations and mathematical

proofs are available in Matarazzo and Pakzad [2018].

While successful, in previous applications of STRIDEX, it was assumed that the

mobility mechanism did not contaminate the measurement process. In other words,

considering the case of a sensor within a moving vehicle, the vehicle dynamics and road

profile effects were not considered. In practice, a sensor within a moving carrier cannot

capture the pure dynamic response of the bridge. These are a mixture from several

sources, primarily roughness-induced vibrations and vehicle suspension vibrations.

The following section presents an overview of relevant studies considered real-world

data subjected to the vehicle-bridge interaction problem.

3.2.3 Bridge System Identification using Dynamic Sensor Net-

work Data

Realistically, moving sensors are placed into a carrier, which itself is a mechanical

system. Vehicle-carried sensors in fact are collecting responses of a vehicle suspension

system under bridge vibrations entering via tires. Researchers have been studying

vehicle-bridge interaction, mostly assuming one passing vehicle as the loading of the

bridge [Cantero et al., 2019, Chang et al., 2014]. Indirect bridge monitoring considers

the extraction of bridge properties, in a general sense, from the response of a moving

vehicle; however, the specific objectives have varied throughout these studies. Some

have aimed to obtain partial modal information, e.g., frequencies only [Yang et al.,

2004a, Lin and Yang, 2005, Yang and Chang, 2009, Siringoringo and Fujino, 2012], or

mode shapes [Malekjafarian and OBrien, 2014b], or damping ratio of the fundamental

mode [González et al., 2012] given a special bridge excitation. Others have targeted
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attributes that are related to modal properties such as mode shape squares [Zhang

et al., 2012] and stiffness indicators [Malekjafarian and OBrien, 2017]. Very limited

studied have been done on bridge identification using mobile data under ambient

loading [Marulanda et al., 2016], with some constraints.

A frequency-domain bridge identification based on mobile sensor data was intro-

duced by Yang et al. [2004a], which used the acceleration time history of a vehicle

crossing a bridge to determine its fundamental frequency. A parametric study was

done to capture effects of vehicle speed and bridge mechanical properties and numer-

ically verified by finite element analysis. The bridge loading was moving point loads

applied by the data collector vehicle. The research was experimentally validated by

Lin and Yang [2005], in which a moving setup, consisting of a tractor and trailers

passing with various speeds over a bridge and further investigations were conducted

by Yang and Chang [2009]. A comprehensive finite element study was performed by

Siringoringo and Fujino [2012], in which a detailed bridge-vehicle interaction model

(VBI) was built and vehicle vibrations caused by bridge dynamic motions were used

for frequency-domain SID. The study also was backed up by an experiment on a

bridge in Japan. However, the methodology was only able to capture the first natural

frequency and limited to a given moving load scenario.

The same framework (VBI) was studied by González et al. [2012] in order to

estimate bridge damping ratios using moving acceleration records, assuming Rayleigh

damping. The bridge was loaded by a passing sensor carrier. The study suggests an

optimization procedure to tune the most fit damping ratio for the first mode of a

bridge based on its geometry and mechanical properties. A SID procedure to refine

identified mode shapes using time-frequency signal representation between fixed and

mobile sensors was proposed by Marulanda et al. [2016]. The algorithm showed high

resolution mode shapes extraction under numerical noise-free and experimental data.

However, mobile sensing data were assumed to be pure structural vibrations in both
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numerical and experimental cases. This study required stationary nodes, however, it

was assuming a more general loading scenario.

Zhang et al. [2012] proposed a method to extract mode shapes of a plate and beam

structures from acceleration response of a traveling device with a tapping instrument

as a loading apparatus. In this study, a single sensor was used and good mode shape

resolution could be achieved. The mode shapes are found by exciting the bridge by

frequencies close to known natural frequencies. In addition, the method does not

assume any contamination caused by other sources.

As a more realistic case, Malekjafarian and OBrien [2014b] used short time fre-

quency domain decomposition for estimating bridge mode shapes using vehicle-carried

sensing data. This study also considered the bridge under a special moving load re-

sulted by a passing vehicle. The method showed promising results in the case of a

very smooth roadway (no roughness considered). For the second phase, to eliminate

roughness-caused vibrations, the residual of axle signals from two successive trailers

was used as the input. The approach was successful for identifying mode shapes of

first two modes. However, the spatial resolution was low and vehicle properties were

not fully given. Alternatively, the same researchers extended the idea by adding a

tapping device exciting the bridge with the frequency close to the bridge natural fre-

quencies [Malekjafarian and OBrien, 2017]. For diminishing road roughness effect,

the same technique of subtracting measurements of two axles was used and higher

resolution mode shapes were identified. The method needs specialized vehicles that

are pulling auxiliary parts, which are not common. In addition, the study aimed to

identify mode shapes, not a complete modal identification. Note that neither of these

studies considered ambient bridge excitation.
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3.2.4 Problem Definition

Bridge vibrations are transmitted into the vehicle cabin as it travels across the bridge.

The goal is to extract bridge dynamic information from vehicle accelerations; how-

ever, these measurements are subject to the vehicle-bridge interaction problem, i.e.,

polluted by undesired signals. Mathematically, the TPM developed for the mobile

sensing problem shown in Equation 3.1 can be formulated to consider this particular

measurement process as shown in Equation 3.2:

xk = Axk−1 + ηk

yk = ybrk = ΩkCxk + νk

yvbik = ykbr + yifk

yactk = f(yvbik + yrghk , yengk )

(3.2)

where yk = ybrk and yifk are the pure bridge response and bridge response under

vehicle-bridge interacting force, respectively. The algebraic sum of these two compo-

nents constitute yvbik , when the bridge interacts with the vehicle. The bridge-vehicle

interaction in long span bridges can be modeled in detail as proposed in Zhou and

Chen [2015], Camara et al. [2019]. In this study since a bridge under ambient load is

considered, the vehicle-bridge interaction part yifk is significantly smaller that ybrk , re-

sulting yvbik ' ybrk . This approximation has been demonstrated by comparing coupled

and uncoupled responses of the bridge and the vehicle in the preliminary stage of the

analysis. In fact, as demonstrated in Sadeghi Eshkevari et al. [2020c], for long-span

bridges with random traffic load, the simplified uncoupled approach is very accurate

and computationally dramatically faster. However, as the sensing vehicle speed or

weight increases, the simplified simulation approach becomes less accurate. In this

study, the sensing vehicle is lightweight and moves with low speed, conforming with

the assumptions for an accurate estimation. Note that the low speed assumption is a
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widely-accepted practice for indirect bridge SHM [Yang and Chang, 2009]. The mobile

sensor measurement yactk is a complex mixture of multiple simultaneous phenomena

which includes the idealized mobile sensor data ybrk . yrghk is the profile roughness

displacements at time k. yengk is the engine-induced vibration, which presents in the

vehicle response, is often actively controlled and not sensible [Elliott and Nelson,

1990], thus is neglected in this study. Most importantly, the final response yactk is a

nonlinear function of the linear mixture of these three components. The function f(·)

is the convolution of the vehicle impulse response by the input signal.

Figure 3.1: Schematic illustration of vehicle-carried sensing

The objective is to extract ybrk from the actual vehicle response yactk and implement

STRIDEX to provide a complete bridge SID.

3.2.5 Motivation

Given the state of the literature, a method that can simultaneously process data from

multiple moving sensors within vehicles makes an important contribution to crowd-

based systems. Note that the study intends to propose methodologies for bridge

modal identification which are suitable for long and crowded bridges which have the

potential for crowdsensing. We found that the significant challenge in large-scale

“crowdsensing” campaigns is a methodological gap: the lack of an “end-to-end” sys-

tem identification process that accounts for unwanted vehicle vibrations. Therefore

the goal of this study is to present a set of methodologies that decompose the mea-

surements recorded within the vehicle cabin into individual components. Blind source
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separation (BSS) as a signal processing tool provides methodologies to decompose

statically or convolutionally mixed signals to original sources without any knowledge

about them in advance [Cardoso, 1998]. The BSS problem is ill-conditioned, since

both sources and mixing matrix are unknown; however, many assumptions have been

made to constrain the problem.

Recently, Eshkevari and Pakzad [2019a] showed that for a vehicle with a rigid

suspension system, second-order blind identification (SOBI) is capable of separating

roughness-induced vibration and bridge dynamics. That is, the bridge vibrations

were extracted from a pair of vehicle measurements collected over a certain portion

of the bridge length. However, the study did not consider realistic vehicle dynamics.

This study incorporates a vehicle dynamics model and the technical goal is to remove

both vehicle and roughness effects from raw acceleration measurements using signal

deconvolution and blind source separation (BSS) techniques, e.g., EEMD [Huang

et al., 1998] and SOBI [Belouchrani et al., 1997]. The objective of this phase is to

decompose the highly contaminated raw signal collected by the vehicle sensor and

extract bridge vibrations. Next, STRIDEX is implemented to process the mobile

sensing data extracted and determine the structural modal properties (frequencies,

damping ratios, and mode shapes).

In this study, two approaches are proposed to extract the bridge response from

vehicle measurements (as shown in Figure 3.2): the transfer function (TF) approach

and the EEMD approach. Each procedure consists of two phases: deconvolution of

the vehicle dynamical effect and removal of roughness-induced vibrations. The key

difference between the two approaches is the method by which the vehicle vibrations

are separated. The TF approach uses the vehicle’s frequency response function (FRF)

for the deconvolution, while the EEMD approach estimates the sources of a signal by

using trend extraction.

In either case, after deconvolution, the nonlinear function f(·) of Equation 3.2 is
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inverted, so that the remainder is the argument of the function i.e. a linear mixture

of the bridge dynamic vibrations ybrk and roughness profile yrghk , neglecting engine-

induced noises. Therefore, the signal still needs to be separated to extract ybrk . This

objective is being done by applying SOBI which is a robust solution for un-mixing

linearly superposed sources.

In the following sections, these procedures are detailed and their performances are

evaluated using realistic numerical simulations. The main contributions of this study

are as follows:

1. The proposed approaches are the first that provide a comprehensive modal

identification of a bridge using acceleration measurements from moving vehicles.

2. The approaches are proposed to be used for bridges under ambient loading,

with minimal assumptions on bridge type and vehicle characteristics.

3. The solution is potentially able to provide some insights regarding the road

roughness condition as a byproduct of the process.

4. These approaches are robust for severely rough road profiles as long as the

vehicle acts linearly within the frequency band considered.

In Sections 3.3 and 3.4, a simulation that has been used for numerical assessment

is demonstrated and processing methods are presented. Later in Section 3.5, the

procedures for signal decontamination are performed step by step and results are

presented. In the next section, the purified signals are fed into the SID algorithm,

STRIDEX, and results are discussed. In Section 3.7 the vehicle properties are changed

from a vehicle with customized mechanical properties that is suitable for sensing

(in terms of having disjoint frequency contents with the bridge) to a vehicle with

regular mechanical properties and results are presented. Finally, in Section 3.8 a more

practical version of the first method (deconvolution using vehicle FRF) is proposed

and evaluated.
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Figure 3.2: Flowcharts for two proposed pipelines

3.3 Approaches to Extract the Bridge Response

from Measurements within Moving Vehicles

This section presents two general approaches to extract the bridge acceleration re-

sponse from measurements within a moving vehicle. The primary differences in the

approaches lie within the deconvolution process. Both approaches implement second-

order blind identification (SOBI) after signal deconvolution. In addition to the system

transfer function approach, a modified version of that is presented in which the de-

convolution phase is eased significantly.
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3.3.1 Method 1: Deconvolution using the System Transfer

Function

To remove vehicle dynamics effect from the collected response, the direct approach is

to apply deconvolution in frequency domain, for which an accurate description of the

vehicle suspension system is needed. In cases where this information is not readily

available a vehicle SID must be performed. The vehicle suspension system can be

modeled efficiently as a linear quarter-car system, shown in Figure 3.3 [Cebon, 1999].

Figure 3.3: Quarter-car model for vehicle suspension system

where ms and mus are sprung and unsprung mass of a quarter-car. cs, cus and

ks, kus are corresponding damping and stiffness for masses, respectively. At each

time step, yrghk is the displacement input of the system caused by the road profile

roughness and vehicle response is collected while attached to the ms. For a regular

road, yrghk is the input of the vehicle system, while for a vehicle-bridge interacting

model, the vehicle input also contains the bridge vibrations ybrgk . The model is a two

DOF dynamic problem and a full description of the system can be expressed by a

two DOF state space equation set.

Equations 3.3 and 3.4 show the governing dynamic equations of a vehicle with

respect to the bridge vibrations and road profile roughness. In Equation 3.3, hk is the

quarter-car model impulse response in time domain, which in frequency representation

is equivalent to the system transfer function (TF). Given system model and responses

at both DOFs, the system can be identified using an output-only SID algorithm. After
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determining the vehicle’s modal properties, the TF can be generated in frequency

domain (H(ω)) and then using Equation 3.5, the vehicle input can be estimated. This

input is yet to be processed for extracting ybrgk , however, it is now a linear mixture of

two components shown in Equation 3.4. Note that the TF here is equivalent to the

frequency response function (FRF) in the structural dynamics control literature.

yobsk = hk ∗ (y
brg
k + yrghk ) (3.3)

yinpk = ybrgk + yrghk (3.4)

Y obs(ω) = H(ω)× Y inp(ω) (3.5)

3.3.2 Deconvolution using the Approximated System Trans-

fer Function

In Method 1, a complete description of the vehicle system is possible only when the

system response at all DOFs are collected. This means that in order to construct

the identified TF, measurements collect vehicle response not only inside the vehicle

(sprung channel), but on the unsprung mass level (tire channel), which is a hard task.

An alternative approach is to assuming vehicle suspension mode shapes as given,

collect data only inside the vehicle. In this scenario, the sprung channel is adequate

to generate vehicle TF, since output-only SID tools can identify natural frequencies

and damping ratios using only one data channel. This approach is practically more

desirable and will be analyzed in Section 3.8.
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3.3.3 Method 2: Deconvolution using Ensemble Empirical

Modal Decomposition

Separation of mixed signals to sources is the primary focus in the field of blind source

separation (BSS). BSS is a signal processing topic that has been widely studied for

both static and convolved mixtures [Cardoso, 1998]. The process of BSS was used for

structural dynamics application in Poncelet et al. [2007] and Kerschen et al. [2007]

and theoretical equivalence of the application to the classical signal un-mixing prob-

lem was explained. Empirical modal decomposition (EMD) [Huang et al., 1998] is a

single-channel source separation technique that ideally is able to extract convoluted

mixtures, as well as linear mixtures. The method is a geometrical based process for

single-channel source separation which in some special circumstances, is successfully

able to separate even non-stationary or nonlinearly mixed sources. Components ex-

tracted from EMD out of the signal represent embedded oscillatory trends in the

original signal. EMD in its initial form suffers from frequency leakage and aliasing

between components [Huang et al., 1998]. As an extension, an ensemble of EMDs

(EEMD) is proposed and is more common for blind source separation applications.

EEMD introduces additional noise to the signal and perform EMD procedure, and

repeat these steps multiple times. By averaging EMD results, final components are

found. In this study, EEMD is being used for extracting the vehicle dynamic re-

sponse out of the mixture. Methods 1 and 2 will be performed and discussed further

in Section 3.5.

3.3.4 Source Separation on the Linear Mixture

Following the implementation of one of the methods above, the residual signal is

a linear mixture of two sources, yrghk and ybrgk , as shown in Equation 3.4. At this

point, the goal is to extract the bridge response from this signal to enable SID. BSS
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techniques for linear/static mixtures are thoroughly studied in different scenarios

[Sadhu et al., 2017, Cichocki and Amari, 2002, Choi et al., 2005, Hyvärinen and Oja,

2000]. Second order blind identification (SOBI) [Tong et al., 1990, Belouchrani et al.,

1997] is a successful BSS technique for separation of linear mixtures, especially for

spectrally uncorrelated sources. The general mathematical description of a linear

mixture is demonstrated in Equation 3.6.

x(t) = As(t) + σ(t) = y(t) + σ(t) (3.6)

where A is a constant mixing matrix, s(t) is a vector matrix of sources and x(t)

is a vector matrix of mixed signals. σ(t) is also the additive noise in the observa-

tions. SOBI assume source uncorrelatedness, i.e., Rs(τ) is diagonal. In addition, for

simplicity, the covariance matrix of the sources is presumed to be an identity ma-

trix. The mathematical process is shown at the flowchart presented in Figure 3.4. In

the first step, a whitening matrix W should be calculated to diagonalize the obser-

vation covariance matrix. In the second phase, unitary matrix U shall be found to

satisfy Rw
z (τ) = URx(τ)R

w
z (τ). Given W and U , the mixing matrix can be found as

A = W−1U .

Figure 3.4: SOBI process flowchart
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In the SOBI formulation, τ is an arbitrary time-lag. For a more robust solution,

a set of time-lags is recommended [Belouchrani et al., 1997] to be considered for

diagonalization. In this manner, the unitary matrix U that maximally diagonalizes all

time-lagged covariance matrices in the set, is selected. In this study, SOBI is applied

to separate the bridge vibrations from the road surface effects so that STRIDEX can

be implemented as illustrated in Figure 3.2.

3.4 Generation of Vehicle Scanning Data

3.4.1 Bridge Finite Element Analysis

A 500m long bridge with rigid constraints at both ends is studied to evaluate the

performance of the proposed methods. The criteria for selecting the bridge model

are as follows: (1) maximum consistency in modal characteristics with the real-world

long-span bridges, (2) simplification of the analysis, and (3) generalization of the

model. The goal is to identify modal properties of this bridge from signals collected

by a mobile sensor network comprised of eight vehicles as shown in Figure 3.5. The

bridge is numerically modeled with elastic beam elements with 1728Kg nodal mass

at each DOF, 17.28m2 cross-sectional area, and 85.81m4 moment of inertia. These

characteristics are set in a way that the bridge shows realistic modal properties (i.e.,

operational natural frequencies, mode shapes, and damping ratios) compared to ex-

isting bridges [Abdel-Ghaffar and Khalifa, 1991, Weng et al., 2008]. Therefore, the

model yields four natural modes at 0.1357Hz, 0.3714Hz, 0.7213Hz, and 1.1710Hz for

the bridge. Simultaneously, three different road surface cases are analyzed: sinu-

soidal, expansion joints, and random. The bridge is excited by random white noise

acting on nine point equally spaced along the bridge to simulate collective effect of

random ongoing traffic. Numerical analysis of the bridge is performed in OpenSees

finite element (FE) program [McKenna et al., 2000]. The damping for the first and
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sixth modes are set as 2% using Rayleigh’s method. Numerically, the model has been

discretized into 10, 000 degrees of freedom, so will be called as 10K DOF model. As

demonstrated in Figure 3.5, the sensing scenario consists of eight vehicles, each trav-

eling 70% of the bridge span. Half of the vehicles travel right-to-left and the other

half go the opposite. The vehicles travel with 2.5m
s
velocity. This low speed has set

in order to minimize excitations of the vehicle suspension system, as suggested in

Siringoringo and Fujino [2012], Yang and Chang [2009]. Note that the vehicles shown

in Figure 3.5 are located in different lanes to demonstrate the vehicle layout possibili-

ties, however, since the 2D model of the bridge is considered, torsional modes are not

estimated in this study. In these figures (and many other figures in this chapter), the

x-axis is labeled by the number of the DOF within the length of the bridge from the

numerical model. In fact, DOFs associate with different locations over the modeled

bridge.

In order to produce signals collected by vehicles from the vehicle-bridge interac-

tion (VBI), the approach is to first, produce vehicle input as shown in Equation 3.4

and then, pass the input through a two DOF vehicle quarter-car model to generate

its response. In Equation 3.4, the vehicle input contains two components: bridge

response, and roughness displacement at vehicle locations. For the bridge part, at

the end of the FE analysis, a dense matrix of the bridge response at all 10K DOFs

and time steps is computed. Next, for each vehicle, the values of bridge response at

some DOFs and times are collected in accordance to the moving vehicle locations at

any time. After finding a vector of the bridge response according to the location,

corresponding roughness displacements are added location-wise to complete vehicle

input generation phase. Once the compounded input signal is generated, the vehicle

is subjected to it for vehicle response simulation. Figure 3.6 shows a displacement

time signal felt by one of the vehicles while traveling over different types of road

profiles.
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(a) side view of the sensing scenario

(b) Illustrative plan of the sensing scenario

Figure 3.5: Sensing vehicles layout
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Figure 3.6: Left) Road roughness profile, Right) Total displacement felt by tires.
From top to bottom: sinusoidal, expansion joints, and random white noise roughness
profiles.

Three roughness patterns are investigated to examine robustness of the suggested

methods. The first is a simple sinusoidal function; the second is a random white noise

sequence, and the last is an expansion joint (EJ) model consisting of a white noise

75



0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

d
B

/H
z
)

(a) Sinusoidal roughness
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(b) Expansion joints roughness
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(c) Random roughness

Figure 3.7: DFT of roughness cases - (b) indicates high amplitude fluctuations, will
be propagated later

signal with a series of impulses (0.5 meter wide drops). The sinusoidal roughness is

selected due to its simplicity in frequency domain, to verify the methods plausibility.

The second case is an estimation of a real pavement profile and the latest is designed

to simulate bridge expansion joints. This case also can be a representation of any

possible road obstacles, such as potholes or speed bumps. In the following sections,

the third pattern will be noted as EJ for brevity. The Welch’s power spectral density

(PSD) functions of the roughness profiles are also shown in Figure 3.7. The PSD of

sinusoidal roughness shows a single spike, while two other cases have more complex

frequency representations. Note that in the PSD of the expansion joints case, high

energy fluctuations are superimposed over a relatively smooth hill series. This effect

is intrinsic caused by the sudden drops in the time signal, and will be propagated and

observable later.

Note that in Figure 3.5 the mobile sensors are synchronized and start collecting

data simultaneously. In addition, roughness extraction using SOBI needs at least

two channels of data from the same portion of the bridge scanned by each vehicle to

produce two sources. These signals do not need to be synced. As a result, at least

one addition mobile sensing data for each vehicle path is needed. These additional

measurements can be collected before or after the main experiment (synchronized

data collection of eight vehicle, Figure 3.5), resulting minimal operational difficulties.
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3.4.2 Simulation of the Vehicle System

After generating the displacement input of the vehicles, these vectors are applied to

a quarter-car model of the vehicle, which is a simplified and common model of the

vehicular suspension system. Two factors are important for vehicle properties: fre-

quency band separation between vehicle and the bridge, and relatively low damping

for the vehicle. The first is a common preference for BSS methods, such as EEMD.

In fact, as per Rilling and Flandrin [2008], EEMD is not able to separate harmonics

with frequency ratio of greater than 0.6 (small frequency over the large frequency).

The second criterion also enables the SID of the vehicle in the preprocessing phase.

Qualitatively, for long-span bridges, stiff cars and for short bridges, flexible cars are

appropriate choices in terms of frequency bands separation, For example, for a bridge

with frequencies in the range of 8 - 25 Hz inspected by a vehicle with a frequency of

4 Hz or below, EEMD would successfully separate the vehicle dynamics. To demon-

strate this approach, a vehicle with properties shown in Table 3.1 is considered.

The dynamic response of the vehicle is assumed to remain linear throughout data

collection. In the following section, another vehicle, with more common dynamical

properties is analyzed. Note that these examples are generated using a generic vehicle

model and are presented to validate the proposed methods; this is not a comprehen-

sive report on how vehicle parameters influence identification results. The quarter-car

suspension model is attached to the ground via a point, meaning that the tire touches

every samples of the displacement input signal.

The quarter-car model for the vehicle is simulated using a state-space model with

inputs linked to the road profiles as shown in Figure 3.6. The simulation outputs for

three roughness profiles are shown in Figure 3.8 (plots show vehicle responses at both

DOF’s, tire and cabin levels).

The figure shows that the vehicle response of the vehicle under identical bridge

load cases, is highly sensitive to the road roughness profile. In the next step, these
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Table 3.1: Vehicle properties

Property Name Value Units
Unsprung Mass 49.8 Kg
Sprung Mass 466.5 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 1400 Ns/m
Tire Stiffness 720 kN/m
Suspension Stiffness 1,800 kN/m
Fundamental Frequency 5.14 Hz
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Figure 3.8: Vehicle normalized outputs resulted from simulation

vehicle responses are used as the input for the separation phases and will be processed

further to extract bridge modal properties.

3.5 Extraction of Bridge Vibrations from Vehicle

Scanning Data

3.5.1 Method 1 - Signal Deconvolution with FRF

In general, the problem can be revisited as two cascaded blocks; first a bridge which

is responding linearly to ambient random loads; the second, a vehicle which is excited

by both the instantaneous vertical vibrations of the bridge as well as the road surface

roughness, as illustrated in Figures 3.1 and 3.5.For vehicle simulation, the properties

shown in Table 3.1 has been introduced. The objective in this section is to remove the

effect of the vehicle suspension system on the signal and retrieve the vehicle input,

which is a linear mixture of other sources. As the most direct approach, deconvolution

of vehicle output using vehicle frequency response function is examined. FRF is a
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function of system dynamic properties and has to be identified in advance, knowing

that the existing conditions and properties of vehicles are different. With this in

mind, a preprocessing phase is adopted to identify the vehicle using output-only SID

methods.

Vehicle System Identification and Frequency Response Function

Output-only system identification is a well-studied field and there are many successful

methods that can identify linear systems under ambient random loads. A toolsuite is

developed by Chang and Pakzad [2013b] that has integrated some of these algorithms

for SID. In the application of vehicle SID, it has been assumed that the vehicle

response is recorded at both degrees of freedom (tire level and the cabin) while it is

passing over a rough pavement with a random Gaussian pattern. Figure 3.9 shows the

results of vehicle identification using its ambient response under random roughness.

Exact natural frequencies of the vehicle are 5.14 Hz and 36.78 Hz. The identified

frequencies shown in the table match well with these natural frequencies.
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Figure 3.9: vehicle identification results - SMIT package outputs

The next step is to construct the vehicle FRF from identified characteristics found

in the previous part. For this purpose, Equations 3.7 and 3.8 below are used [Bilošová,

2011]:

[α(ω)] =
[

K + iωC − ω2M
]

(3.7)
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αjk(ω) =
N
∑

r=1

Φrj.Φrk

Ω2
r − ω2 + 2iωΩrξr

(3.8)

where αjk is the FRF that maps an input load at DOF j to the response at DOF

k. Φ’s are mode shapes and Ωr is the undamped frequency of mode r. Equation 3.8

produces the vehicle FRF which is useful to find the vehicle input from its response

collected in the cabin (can reproduce the vehicle input). Using this equation, the

corresponding FRF is generated to be used for deconvolution, shown in Figure 3.10.

As pointed out, the first frequency spike happens at 5.142Hz which is very close to

the actual frequency of the car.
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Figure 3.10: vehicle FRF from inputs at tire level to response inside the room

Note that the transfer function can be derived in closed-form as well if the man-

ufactured properties of the vehicle is available. For instance, Sun et al. [2001] and

Bogsjö et al. [2012] have provided two sets of equations for the transfer function of the

sprung and unsprung DOF’s of a vehicle. Using the transfer function H(ω) (FRF),

simulation outputs can be deconvolved by Equation 3.5 via element-wise division

of the discrete Fourier transform (DFT). Figures 3.11 and 3.12 show the results of

deconvolution using the identified FRF.

Figure 3.12 shows that after deconvolution, the vehicle frequency content has been

perfectly removed (the sharp spike around 5Hz). In addition, a comparison of time

signals in Figures 3.8b and 3.11b (and other cases with less clarity) shows that the
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Figure 3.11: Time signals after deconvolution

impulse effects caused by roughness shocks in the vehicle response have also been

discarded. The remaining signal is a linear mixture of two sources; bridge vibrations

and roughness profile displacements. The next step is to apply second order blind

identification (SOBI) to separate these sources and extract the bridge vibrations.
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Figure 3.12: DFT of signals before and after deconvolution using FRF for random
roughness

3.5.2 Method 2 - Signal Deconvolution with EEMD
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Figure 3.13: IMFs in time domain

In this section, EEMD is applied to eliminate vehicle effects. Figure 3.13 shows the

oscillatory components of the signal called intrinsic mode functions (IMF). IMFs are
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the building components of a mixed signal that are extracted by the EEMD algorithm

[Huang et al., 1998]. In summary, EEMD algorithm detects the most major building

oscillation in a mixed signal by finding the envelope of the time signal. Then the major

oscillation which is the first IMF is removed from the original signal and the process

is repeated on the remaining signal to extract all IMFs. The frequency representation

of IMFs are presented in Figure 3.14. The first IMF is able to capture vehicle effect

and is presented in both time and frequency domains. This vehicle extraction is ideal

for the case with EJ roughness, shown in Figure 3.14b, yet is not as perfect for two

other cases. Figure 3.14a and 3.14c show traces of the vehicle response in their second

IMF as well (frequency content around 5Hz is high). Therefore, in order to remove

the vehicle effect from the signal, two first IMFs are subtracted from the original

signal; the resultant signals are represented in Figure 3.15. The deconvolution using

EEMD could not perfectly remove the vehicle frequency content, as shown in Figure

3.15, however, the remainder contains considerably less energy now. It will be seen

in the following sections that despite this imperfect deconvolution, it is adequate for

bridge modal identification purposes.
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Figure 3.14: IMFs in frequency domain

Note that the method is easier to perform compared to FRF method, since in

this approach, there is no need for a preprocessing step for identifying the vehicle in

advance. In fact, this method gives an estimate of the pure vehicle response (which

is equivalent to the vehicle identification) as one of the extracted IMFs. A drawback
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of this method is its inability to extract closely-spaced frequencies [Flandrin et al.,

2004]. However, in a general setting, the frequency contents of the vehicle and the

bridge may overlap. Thus, while EEMD is advantageous in its ease of use, it is not a

universal solution.
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(c) Random roughness
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Figure 3.15: Original signal before and after EEMD

In this case, the spatial frequency contents of the roughness cases are located

mostly within the same region as the bridge frequency content and EEMD was not

able to extract them as a separate source because of its disability for extracting

contents with closely-spaced frequencies. Thus, for roughness separation (regardless

of vehicle separation method), an extra step is necessary.

3.5.3 SOBI for Linear Un-mixing

Second order blind identification (SOBI) [Poncelet et al., 2007] is a method for unmix-

ing linearly mixed signals. In this problem, the remaining sources, bridge vibrations

and road profile roughness displacements are assumed to be unknown, however, some

assumptions regarding them hold, such as being uncorrelated. The SOBI algorithm

is implemented in MATLAB and used for separating roughness and bridge contents

of the signals derived from deconvolution. Results of SOBI applied on outputs of

both methods are shown in Figures 3.16 and 3.17 (bottom plots show the extracted

source corresponding to the bridge only). SOBI is successful in diminishing roughness-

induced peaks from the signal in both methods. The remaining signal is bridge vi-
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brations and can further be utilized for system identification using STRIDEX. Note

that the PSD of the signal resulted from FRF (Figure 3.16) has higher spectral res-

olution comparing to the other approach. This is because that in the FRF method,

there is a possibility to enhance the deconvolution quality by refining the frequency

range. However, it has been realized by authors that the technique is insensitive in

the EEMD method.
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Figure 3.16: SOBI on FRF output

To summarize, throughout these steps, the signal collected by a moving vehicle

over a bridge has been processed to extract the bridge vibration signal. In the next

step, these signals are analyzed by the system identification algorithm, STRIDEX,

for bridge modal identification. Note that while the extraction approaches discussed

were applied on the channels individually, STRIDEX can operate on multiple sensor

channels simultaneously.
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Figure 3.17: SOBI on EEMD output
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3.6 Bridge Modal Identification

In this simulated case, eight vehicles travel over a bridge modeled by 10K degrees

of freedom. Each vehicle trip (one direction) scans 7K of DOFs in one direction as

presented in Figure 3.5a. In this section, given extracted bridge dynamic vibration

signals from mobile sensors, the procedure of STRIDEX [Matarazzo and Pakzad,

2018] for bridge system identification is performed.

The methods create many outputs among which, mode shapes were selected man-

ually, which was a tedious task [Matarazzo and Pakzad, 2018]. As a contribution

of this study, an algorithm is proposed in Appendix B to do the process of mode

selection and superposition in an automated way and is implemented here. Identified

modal parameters from this algorithm are shown in Figure 3.18.

Table 3.2: Identified frequencies

values in Hz EEMD+SOBI FRF+SOBI
Mode ID Actual Sinusoidal EJ Random Sinusoidal EJ Random

1 0.1357 0.1345 0.1343 0.1366 0.1360 0.1354 0.1361
2 0.3714 0.3689 0.3689 0.3677 0.3691 0.3687 0.3689
3 0.7213 0.7218 0.7195 0.7204 0.7214 0.7227 0.7204
4 1.1710 1.1832 1.1804 1.1861 1.1836 1.1850 1.1782

Table 3.3: Identified damping ratios

values in % EEMD+SOBI FRF+SOBI
Mode ID Actual Sinusoidal EJ Random Sinusoidal EJ Random

1 2.00 3.26 1.49 2.04 4.30 3.91 4.18
2 0.80 0.92 0.76 0.94 0.82 0.78 0.84
3 0.60 0.69 0.55 0.14 1.59 2.00 0.70
4 0.70 0.95 0.32 0.35 0.90 1.46 0.31

3.6.1 Modal Property Results

Tables 3.2, 3.3 and 3.4 show natural frequencies and damping ratios comparing to the

actual values, and modal assurance criteria (MAC) values respectively. MAC is an
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Case A: STRIDEX output on EEMD+SOBI with sinusoidal roughness

Case B: STRIDEX output on EEMD+SOBI with WN+EJs roughness

Case C: STRIDEX output on EEMD+SOBI with random roughness
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Figure 3.18: Model identification results

indicator of fitting accuracy between estimated mode shapes and actual ones [Pastor

et al., 2012]. It is demonstrated in Table 3.2 and Figure 3.18 that both proposed
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Table 3.4: Identified modal assurance criteria (MAC)

values in % EEMD+SOBI FRF+SOBI
Mode ID Sinusoidal EJ Random Sinusoidal EJ Random

1 0.9991 0.9944 0.9829 0.9997 0.9996 0.9997
2 0.9914 0.9856 0.9640 0.9942 0.9922 0.9934
3 0.9825 0.9806 0.9612 0.9806 0.9816 0.9689
4 0.9605 0.9802 0.9443 0.9628 0.9612 0.9536

methods are successful in estimating natural frequencies and mode shapes of the

bridge. As Figure 3.18 case C demonstrates, in the case of random roughness, the

first mode is not ideally obtained, however, FRF method has extracted four modes

from data collected over this road condition. Table 3.3 shows that the damping values

are estimated precisely in most cases. Two methods (EEMD and FRF) are relatively

as successful in damping estimation. In the case of the first mode identified with FRF

method, damping values are not as close as others with respect to the exact values.

All estimated modes have MAC value within 0.9443 to 0.9997 range (Table 3.4),

which indicate the methods strength. In terms of mode shape accuracy, a comparison

between methods shows that the FRF method outperformed slightly. Note that the

identified MAC values are dependent to the threshold set for the automated mode

aggregation algorithm (Appendix B); if lower threshold is selected, higher MAC can

be found, however, the identified modes would have less resolution.

While the primary goal of this study is bridge modal identification using mobile

sensor measurements, the proposed methods are able to estimate other important

characteristics of the problem, e.g., the road surface roughness or the vehicle dynam-

ical properties. These capabilities are discussed and presented in Appendix C.
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3.7 Application using Mechanical Properties of Com-

mercial Vehicles

Regular vehicles commonly have a frequency range between 0.5 Hz to 1.5 Hz, as

recommended by Olley Criteria [Milliken et al., 2002] for a comfortable ride. This

frequency range is highly possible to overlap with bridge frequency band. In fact, some

special types of automobiles, e.g., heavy trucks, bicycles and sports cars [Giaraffa,

2017, Esmailzadeh and Taghirad, 1995, Champoux et al., 2007] have high fundamental

frequency close to the one derived from Table 3.1. The proposed methods work best

when the vehicle’s frequency do not overlap with the bridge frequency band of interest.

The vehicle with mechanical properties shown in Table 3.1 has a fundamental mode

with about 5 Hz frequency. Therefore, such a stiff vehicle is perfectly suitable for

sensing long and flexible bridges with first few natural frequencies below 3 Hz. In

contrast, the fundamental frequency of a commercial car is about 1.0 Hz which is

a good match for shorter and stiffer bridges with fundamental frequency above 2.0

Hz. In this section, a more common vehicle property set as shown in Table 3.5 is

considered to investigate the case of an overlapping frequency (The properties are

scaled for a unit sprung mass). Note that in this study, the scope considers flexible

bridges with stiff and commercial vehicles to emphasize the impact of various road

profiles as well as vehicle types on bridge modal identification. However, the generality

of the methods with respect to the bridge length has also been verified by considering

shorter bridges (e.g. Appendix A). By eigenvalue analysis of the vehicle properties

shown in Table 3.5, the natural frequencies are calculated as 1.64Hz and 11.01Hz.

For the brevity, the analyses plots are only shown for the case of random roughness

pattern. However, identification results for all three cases are illustrated.

First, the vehicle deconvolution is performed. In the FRF method (Method 1),

the frequency representation of the signal before and after deconvolution is shown
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Table 3.5: Common vehicle properties

Property Name Value Units
Unsprung Mass 0.162 Kg
Sprung Mass 1.0 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 1.86 Ns/m
Tire Stiffness 643 N/m
Suspension Stiffness 128.7 N/m
Fundamental Frequency 1.6 Hz

in Figure 3.19. Note that the vehicle transfer function was identified using output-

only methods, as explained before. A similar task is done in EEMD (Method 2) by

subtracting corresponding IMFs from the original signal to remove vehicle effects.

EEMD IMFs are presented in both time and frequency in Figure 3.20. The second

IMF shows the vehicle content at 1.64Hz, and is removed from the original signal.

The next step is to extract roughness-induced vibrations using SOBI. Results for

both methods are shown in Figure 3.21 (Top plots show SOBI inputs, while bottom

ones show the extracted bridge vibration source). Boxes in the plots are pointing

to the fundamental frequency of the vehicle. Since the bands are closely spaced,

both methods were not completely able to remove the vehicle content. However, the

content is significantly weakened and is suitable for the bridge identification purposes,

as shown in Figure 3.22 and Tables 3.6 to 3.8.

The identification results show accurate estimations of the mode shapes and nat-

ural frequencies, promising that the suggested methods are suitable for more general

types of vehicles. A comparison between the results of this vehicle and the previous

one indicate that as expected, the frequencies were estimated more accurately in the

previous case. In particular, the identified properties of the first mode (frequency,

damping ratio, and MAC value) are less desirable. An explanation for this obser-

vation is that since the energy carried by the first mode is less than others (lower

power compared to other peaks in PSD plots (Figure 3.21)), it is affected more by
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Figure 3.19: FRF deconvolution on common vehicle
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Figure 3.20: EEMD results on common vehicle
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Figure 3.21: SOBI on common vehicle

the vehicle contamination. The range of MAC values in Table 3.8 is 0.9656 to 0.9987

which is desirable. By comparing Figure 3.17 and Figure 3.21, it is noticeable that
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Figure 3.22: Modal identification results - common vehicle

the first peak is wider in the second case. This wideness results in very high esti-

mated damping ratios for the first mode, as shown in Table 3.7. The relatively lower

accuracy of this case compared to the previous case is originated as a result of the
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frequency band proximity issue and was expected.

Table 3.6: Identified frequencies using common vehicle

values in Hz EEMD+SOBI FRF+SOBI
Mode ID Actual Sinusoidal EJ Random Sinusoidal EJ Random

1 0.1357 0.1286 0.1250 0.1381 0.1423 0.1372 0.1404
2 0.3714 0.3686 0.3684 0.3688 0.3696 0.3696 0.3695
3 0.7213 0.7213 0.7213 0.7207 0.7196 0.7209 0.7211
4 1.1710 1.1800 1.1809 1.1801 1.1791 1.1923 1.1800

Table 3.7: Identified damping ratios using common vehicle

values in % EEMD+SOBI FRF+SOBI
Mode ID Actual Sinusoidal EJ Random Sinusoidal EJ Random

1 2.00 14.44 N.A. 7.14 15.85 14.36 14.95
2 0.80 0.70 0.82 0.40 1.01 1.43 1.02
3 0.60 0.47 0.72 0.29 0.45 0.77 0.54
4 0.70 0.37 0.46 0.51 0.33 1.11 0.38

Table 3.8: Identified modal assurance criteria (MAC) using common vehicle

values in % EEMD+SOBI FRF+SOBI
Mode ID Sinusoidal EJ Random Sinusoidal EJ Random

1 0.9724 0.9883 0.9977 0.9987 0.9969 0.9987
2 0.9924 0.9921 0.9933 0.9920 0.9918 0.9909
3 0.9836 0.9822 0.9812 0.9836 0.9783 0.9726
4 0.9769 0.9779 0.9760 0.9743 0.9709 0.9656

3.8 System Identification using Approximated Ve-

hicle Transfer Function

As a preprocessing part of the proposed method using FRF, sensing vehicles have to

be identified in advance, as shown in Figure 3.2. For this identification, a complete

description of the vehicle is needed for producing vehicle transfer function, hence the
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vehicle responses at both DOFs are collected and fed into the output-only SID tool-

box. The need to record the vehicle response at two locations simultaneously is a

potential drawback. For example, in a crowdsensing scenario, it may be impractical

to retrieve data at the tire level (unsprung mass) of the vehicle. Moreover, as men-

tioned in the former section, common vehicle suspension systems can have similar

modal properties, specifically natural frequencies and mode shapes. The mechanical

characteristics of various vehicles are shown in Table 3.9, and their tabulated modal

responses and their average are presented in Table 3.10. The properties shown in

Table 3.9 are selected from reference vehicles commonly used in the literature, which

covers a wide range of linear vehicles [Sun et al., 2001, Bogsjö et al., 2012, Florin et al.,

2013, Gillespie and Sayers, 1985]. The fundamental frequency range of the vehicles

also covers from 0.54 Hz to 36.78 Hz as shown in Table 3.10, which is considerable,

suggesting that these mode shapes are a good representation of available automobiles.

As a simple demonstration, the average mode shapes are set as the identified values in

the FRF. According to Equation 3.8, natural frequencies are also needed to produce

a vehicle TF, as well as the mode shapes. The frequencies can be identified from

the peaks of the PSD of the vehicle response at either DOF. In this section, bridge

identification is performed using averaged mode shapes for the common vehicle by

using FRF method.

Table 3.9: Mechanical properties of various vehicles

Vehicle ID
v1 v2 v3 v4 v5 Units

Suspension Stiffness 1.8e6 62.30 128.7 2.7e5 5700 N/m
Suspension Damping 1400 6.0 3.86 6000 290 Ns/m
Sprung Mass 466.5 1.0 1.0 3400 466.5 Kg
Unsprung Mass 49.8 0.15 0.162 350 49.8 Kg
Tire Stiffness 7.2e5 653 643 9.5e5 1.35e5 N/m
Tire Damping 0 0 0 300 1400 Ns/m

In addition to the natural frequencies and the mode shapes, Equation 3.8 requires
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damping ratio entries. In case of linear vehicles, like frequencies, these values are

also identifiable by output-only SID of the system using only one channel vibration

(sprung mass accelerations). A comparison between results shown in Figure 3.23 with

Figure 3.22 confirm that the approximated transfer function is as successful as the

actual one for the identification purposes. Identified frequencies shown in Table 3.11

show a very good match between estimated frequencies and actual ones. Estimated

dampings presented in Table 3.12 are acceptably accurate for modes 2 to 4, while

the first mode still is far large. A comparison between Tables 3.7 and 3.12 show that

the approximation for the mode shape slightly impacted negatively on the damping

estimations. MAC values of the identified modes are also introduced in Table 3.13.

The range of MAC values are as desirable as the former case, promising that the

approximation is generally successful.

These results show that using an approximated mode shape, the vehicle response

can be characterized sufficiently using only one sensor in the vehicle cabin. Of course,

it is preferable to utilize the mechanical properties provided by the manufacturer

whenever possible.

Table 3.10: Vehicle modal characteristics

1st mode 2nd mode
Natural

Frequencies
DOF1 DOF2 DOF1 DOF2 f1 f2

v1 0.73 1.00 -1.00 0.08 5.14 36.78
v2 0.09 1.00 -1.00 0.01 1.20 11.00
v3 0.17 1.00 -1.00 0.03 1.64 11.01
v4 0.23 1.00 -1.00 0.02 1.25 9.42
v5 0.04 1.00 -1.00 0.00 0.54 8.46

Average 0.25 1.00 -1.00 0.03 1.96 15.33

94



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized distance x/L

identified

actual

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized distance x/L

identified

actual

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized distance x/L

identified

actual

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized distance x/L

identified

actual

STRIDEX output on FRF+SOBI with random roughness

Figure 3.23: Modal identification results - approximated common car

Table 3.11: Identified frequencies using approximated common car

values in Hz FRF+SOBI
Mode ID Actual Sinusoidal EJ Random

1 0.1357 0.1324 0.1421 0.1327
2 0.3714 0.3687 0.3686 0.3702
3 0.7213 0.7211 0.7215 0.7196
4 1.1710 1.1861 1.1839 1.1793

Table 3.12: Identified damping ratios using approximated common car

values in % FRF+SOBI
Mode ID Actual Sinusoidal EJ Random

1 2.00 21.79 26.07 14.18
2 0.80 1.75 1.70 1.67
3 0.60 1.59 0.53 0.47
4 0.70 1.04 0.79 0.35

Table 3.13: Identified modal assurance criteria (MAC) using approximated common
car

values in % FRF+SOBI
Mode ID Sinusoidal EJ Random

1 0.9915 0.9888 0.9966
2 0.9922 0.9904 0.9893
3 0.9806 0.9737 0.9803
4 0.9722 0.9723 0.9761
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3.9 Conclusion

In this study, two methods were proposed for the comprehensive bridge system identi-

fication using vehicle-carried sensor data. In the first approach, vehicle deconvolution

using the vehicle frequency response function (FRF), along with second order blind

identification (SOBI) extracted bridge vibration from mixed signals collected by drive-

by vehicles. Empirical modal decomposition was proposed as an alternative approach

for vehicle deconvolution. Throughout the extraction phase, vehicle suspension effects

and roughness-induced vibrations were removed. Finally, for bridge system identifi-

cation (SID), resulting signal (from either the FRF or the EEMD method) represents

pure mobile sensing data and was processed by the extended structural identification

using expectation maximization (STRIDEX) algorithm for bridge modal identifica-

tion. Numerical case studies from a 500m long bridge were used to validate proposed

methods.

The methods were both successful in estimating first four modes of the bridge.

Modal assurance criteria (MAC) values for the estimated mode shapes from both

methods were all above 0.94. In terms of the estimated frequencies, estimated values

of FRF and EEMD methods had all less than 1.2% and 1.3% error from the actual

values, respectively. The accuracy of the damping ratios was generally on par with

traditional SID methods; in some cases, the estimates were near exact, e.g., the second

mode.

In order to investigate methods’ robustness to the sensing vehicle properties, a

second property set (properties of common vehicles) was evaluated. Both identifi-

cation methods were applied on the measured data from this vehicle. In this case,

modal identification results were not considerably affected with respect to the case of

the designated vehicle property. However, estimated damping ratios of the first mode

were affected significantly. The possible reasons were discussed.

The EEMD-based method operates without vehicle property information. Over-
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all, the FRF approach yielded more accurate SID results of the bridge. As a means

to circumvent the vehicle SID phase in the FRF method, a simplified procedure was

proposed to approximate vehicle transfer function using data exclusively collected

from within the cabin. The results showed that this method was successful in pro-

ducing accurate modal property estimate; the frequency error was at max 1.2% and

the MAC values were above 0.97.

The rate at which the SHM community can incorporate information extracted

from crowdsourced data depends on how its analytical tools can adopt to new, more

readily available data formats, e.g., mobile sensing data. The proposed methods

enable robust extraction of important bridge information using data types that are

compatible with large-scale vehicles networks. An ability to turn everyday vehicle-

based datasets into core SHM information fuels more regular observations on the

operational behavior of the bridge, which in turn supports more frequent condition

reports.
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Chapter 4

Simplified Vehicle-Bridge

Interaction for Medium to

Long-span Bridges Subject to

Random Traffic Load

4.1 Abstract

This study introduces a simplified model for bridge-vehicle interaction for medium- to

long-span bridges subject to random traffic loads. Previous studies have focused on

calculating the exact response of the vehicle or the bridge based on an interaction force

derived from the compatibility between two systems. This process requires multiple

iterations per time step per vehicle until the compatibility is reached. When a network

of vehicles is considered, the compatibility equation turns to a system of coupled

equations which dramatically increases the complexity of the convergence process. In

this study, we simplify the problem into two sub-problems that are decoupled: (a)

a bridge subject to a random excitation, and (b) individual sensing agents that are
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subject to linear superposition of the bridge response and the road profile roughness.

The study provides sufficient evidences to confirm that the simulation approach is

valid with minimal error when the bridge span is medium to long, and the spatio-

temporal load pattern can be modeled as random white noise. The latter assumption

is verified using a comparative study on a random traffic network. Quantitatively, the

proposed approach is over 1,000 times more computationally efficient when compared

to the conventional approach for a 500 m long bridge, with response prediction errors

below 0.1%.

4.2 Introduction

The problem of vehicle-bridge interaction (VBI) has been studied widely over recent

years due to the broad applications spanning from fatigue analysis and bridge mo-

bile sensing [Chen and Cai, 2007, Zhu and Law, 2015, 2016, Yang and Yang, 2018,

Sadeghi Eshkevari et al., 2020b] to ride comfort and safety analysis [Zhou and Chen,

2016, Camara et al., 2019]. The complexity of the problem has resulted in a reliance

on numerical modeling to evaluate research hypotheses [Yang et al., 2004b, Malek-

jafarian and OBrien, 2014b, Sadeghi Eshkevari et al., 2020d]. Consequently, today

various numerical tools for VBI modeling are available, yet the majority are geared

towards problems concerning individual vehicle dynamics, e.g., a single vehicle’s inter-

action with a simple bridge. Recent applications on vehicle fleets and crowdsensing

methods [O’Keeffe et al., 2019, Matarazzo et al., 2018] have provided insight into

the wealth of SHM information that can be produced by ubiquitous mobile sensors.

Such large-scale analyses call for interaction methods that can incorporate vehicular

networks and everyday traffic scenarios, and are computationally efficient.
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4.2.1 Crowdsensing the Built Environment with Mobile Sen-

sors

The growing adaptation of internet of things technologies and connected devices in

smart cities suggest a new sensing paradigm in which new information is regularly

gathered from the crowd, e.g., individual smartphones, vehicular sensor networks, etc.

Calabrese et al. [2010] proposed a real-time data aggregation solution for construct-

ing a dynamic urban map of large cities using crowdsourced smartphone data. Wang

et al. [2012] quantified traffic patterns and proposed management applications based

on large-scale mobile phone data. Yu et al. [2015] successfully utilized smartphone

sensors for structural health monitoring application due to its availability and inex-

pensive data acquisition. Feng et al. [2015], Ozer et al. [2015] also suggested novel

applications in post-event bridge vibration analysis using stationary smartphones as

sensors.

a) Real-world scenario: a bridge subject

to traffic load is being sensed by one 

sensing agent.

b) Equivalent scenario: random traffic 

load produces a response which is 

equivalent to bridge under ambient

random load.

Sensing Agent

Sensing Agent

Applied Load:

Figure 4.1: Crowdsourcing framework. The sensing agent is one (or more) particular
vehicle within a large pool of crossing vehicles. The problem is equivalent to a case
in which the bridge is subject to ambient random load while being scanned by the
sensing agent.

Crowdsensing inherently relies on mobile sensor networks, which is an emerging

data acquisition technique in structural health monitoring (SHM). Historically, ob-

servations of structural dynamics have been based on measurements collected by fixed

sensor networks. Alternatively, Figure 4.1 illustrates how a vehicle can act as a sensing

agent amongst bridge traffic. Matarazzo and Pakzad [2016c] presented the STRIDE
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modal identification algorithm and verified that mobile sensor data was suitable for a

comprehensive modal identification (frequencies, damping ratios, and mode shapes).

They proposed the truncated physical state-space model as an efficient approach for

representing time-space observations from a mobile sensor network. Later, Matarazzo

and Pakzad [2018] presented an identification algorithm called STRIDEX to identify

truncated physical model parameters, which enabled efficient and scalable modal iden-

tification using mobile sensors; the study showed that in an experimental case, one

mobile sensor provided a mode shape density comparable to 120 fixed sensors. As a

versatile alternative for STRIDEX, Sadeghi Eshkevari et al. [2020d], Eshkevari and

Pakzad [2020b] proposed a method called MIMC to consider vibration data collected

by multiple mobile sensors with uncontrolled motions which successfully identified

comprehensive bridge modal properties in different simulated applications.

The idea of smartphone data crowdsourcing for bridge system identification has

been recently tested on real bridges. Matarazzo et al. [2018] presented a real-world

application of mobile sensors, in the form of smartphones in moving vehicles. Signifi-

cant indicators of the first three modal frequencies of the Harvard Bridge were found

by aggregating data from about forty bridge trips. This study shows promising results

for the use of crowdsensing in bridge health monitoring. Yet further development is

needed, in particular, analytical and experimental studies on mobile sensing using

data crowdsourcing, to attain the sophistication and robustness of the traditional

modal identification methods based on fixed sensor data.

4.2.2 Vehicle-Bridge Interaction Modeling

More practical approaches for bridge health monitoring such as crowdsensing require

a computationally scalable numerical framework. A comprehensive literature review

of common VBI simulation approaches is provided by González [2010]. Initially, the

vehicle-bridge interaction was modeled using 1D continuous beam models subject to
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simple moving loads [Frỳba, 2013] which is solvable in closed-form. By further devel-

opment of computers and increasing use of the finite element method, the problem

was reframed as a multi degrees of freedom (MDOF) system for the bridge interact-

ing with simplified dynamical models of the vehicle. This approach has been broadly

adopted for VBI modeling, mostly for short to mid-span bridges subject to a very lim-

ited number of vehicles with controlled motions. In this approach, once the models for

the vehicle and the bridge are selected (based on required accuracy and fidelity), the

dynamic equations of each component are separately built, in which the interaction

forces between the vehicle and the bridge are coupled to the both sets of equations.

Therefore, a numerical solver is required to solve the problem either iteratively or as

a coupled system of equations.

The underlying principle of the approach, that is the interactive dynamic force

acting between the vehicle and the bridge, has remained consistent throughout the

literature. The uncoupled iterative algorithm is the most common method for VBI

problems [Lin and Yang, 2005, Kim and Kawatani, 2008, OBrien et al., 2010, González

et al., 2012, Yang and Yang, 2018]. Various versions of the algorithm have been

developed based on the problem requirements, e.g., different vehicle models, single

DOF, quarter-car, or half-car models as well as different bridge models with different

fidelity levels (such as 2D, 3D, with or without material or geometrical nonlinearities).

However, in the majority of these studies, a short- to mid-span bridge has been

considered. As mentioned in González [2010], when the vehicle mass is negligible

compared to the bridge mass (which is the case for medium to long bridges) and a

smooth pavement is assumed, the dynamic model of the vehicle can be replaced with a

moving mass model that simplifies the simulation process. Road irregularities increase

the contribution of vehicle dynamics to the interaction force, which emphasize on the

importance of a fully coupled model.

In the uncoupled iterative approach, the bridge model is analyzed multiple times
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(once at the beginning, and at least once for each time step inside the compatibility

convergence loop). In addition, as the bridge dimension grows, an accurate bridge

model requires more degrees of freedom, which increases the computational costs.

A limited number of studies have considered long-span bridges along with a dense

vehicle network for the simulation purpose. Camara et al. [2019] recently modeled

wind-bridge-vehicle interaction using the uncoupled iterative approach. The study

could accurately model the system by adopting complex models for each component.

The complexity of the approach implies that it requires great efforts to built such

a high fidelity model, which may neither be a feasible nor cost effective solution for

crowdsensing or other crude vehicle-bridge interacting scenarios. Moreover, bridge

standards recommend lower dynamic factors for live loads in medium to long bridges

compared to short bridges [AASHTO, 2008]; which means that the VBI interaction

force is less dynamic and more similar to a constant moving load. These challenges and

specifications suggest that it may not be required to use rigorous iterative solutions

for VBI simulation of medium to long bridges subject to high traffic loads. This

study intends to demonstrate that a simplified simulation approach inspired by the

conventional uncoupled iterative algorithm [González, 2010] is able to simulate VBI

problems with high accuracy and dramatically less computational effort.

Figure 4.1 shows how the same notion is applicable in the VBI simulation. This

figure demonstrates a scenario of interest in which the bridge is subject to a random

traffic network. The objective is to simulate the system and finally calculate the

collected response of the sensing agent. In a brute-force approach, the spatial coor-

dinates and mechanical properties of every single vehicle in the network are required

to fully determine the complex model. Such an accurate information setting is quite

impractical and unnecessary. Alternatively, one can simulate the collective loading

effect of the vehicle network (the sensing agent excluded) by ambient random load

(as shown in Figure 4.1 - b). If the spatio-temporal ambient random load is repre-
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sented as a matrix F0, the conventional algorithm for simulating the VBI problem is

as shown in Algorithm 4.

Algorithm 4 Conventional iterative VBI simulation.

1: Input: Mbrg,Cbrg,Kbrg,Mvcl,Cvcl,Kvcl,F0, rgh
2: Ybrg = Newmarkβ(Mbrg,Cbrg,Kbrg,F0)
3: for t = 1, · · · , T do

4: Initiate r := 0, rn := some large value

5: while abs(r − rn) < threshold do

6: r = Ybrg(t)
7: wv = rgh(t) + r
8: wv′ = rgh′(t) + Y

′

brg(t)
9: yvcl(t) = ODE45(Mvcl,Cvcl,Kvcl, wv, wv

′)
10: Ft = −Kvcl[2] ∗ (yvcl(t)− wv)−Cvcl[2] ∗ (y

′

vcl(t)− wv′)
11: R = −Mvclg − Ft

12: F = F0

13: F (t) = R
14: Ybrg = Newmarkβ(Mbrg,Cbrg,Kbrg,F )
15: rn = Ybrg(t)

16: F0 = F

17: Return Ybrg, yvcl

In this algorithm, Mbrg,Cbrg,Kbrg and Mvcl,Cvcl,Kvcl characterize mechanical

properties of the bridge and the vehicle, respectively. rgh is a vector of roughness

profile elevations at bridge DOFs. The algorithm performs the following steps:

1. The bridge is subjected to random ambient load F0 at different physical loca-

tions.

2. A vehicle starts moving from one side of the bridge and at each time instance,

the bridge response (displacement) from the previous step in addition to the

local roughness intensity (i.e., rgh(t)) is input to the vehicle system.

3. The vehicle response to the applied force from the previous step is then analyzed

using a MATLAB ordinary differential equation (ODE) solver to calculate its

displacement response (line 9 in Algorithm 4). Based on this response, the

interacting force between the sensing vehicle and the bridge is calculated as:

Ft = −Kvcl[2](yvcl(t)−wv)−Cvcl[2](y
′

vcl(t)−wv
′) (where [2] stands for the 2nd
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DOF of the vehicle, i.e., the tire). Note that if Ft < 0, it is replaced with zero

since it means that the vehicle lost its contact.

4. The interaction force from the vehicle to the bridge Ft upgrades the original

loading matrix F0 to produce F . At this location, the bridge is required to be

analyzed again with the updated force matrix. Here, Newmark-β method is

used for bridge dynamics analysis [Newmark et al., 1959].

5. If the difference between the updated bridge displacement and the one that was

applied in Step 2 is higher than a predefined threshold, the process should be

repeated from Step 2 onward by the updated bridge response. Otherwise, the

vehicle moves to the next DOF on the bridge.

Step 5 in this process (i.e., the while loop in Algorithm 4) is expensive since it

results in multiple full bridge analysis iterations within a time step. This is quite

significant when the bridge is discretized with a large number of DOFs or is modeled

with nonlinear elements. Figure 4.2 summarizes the approaches one can take for

calculation of the sensing vehicle’s measurement. In case (a), the brute-force approach

is shown in which all the vehicles are coupled with the bridge.

4.2.3 Simplified Model

This study proposes a fast and accurate simulation approach for VBI problems in

which: (1) the bridge span is medium to long and it is flexible, and (2) the vehicle

network load is modeled as a random spatio-temporal load over the bridge span. The

second condition refers to the ambient vibrations caused by a network of moving

vehicles [De Roeck et al., 2000, Ren et al., 2004, Ren and Zong, 2004, Pakzad et al.,

2008].

Figure 4.2b shows a simplified representation of Figure 4.1a, in which the traf-

fic network (the sensing agent excluded) is replaced with an applied ambient white
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noise load while the sensing agent is still interacting with the bridge in a coupled

fashion. While this approach is significantly computationally less expensive, the cou-

pled system still requires iterations to reach the compatibility between the vehicle

and the bridge at each time step. In this study, we present an approach in which

the compatibility calculations between two interacting components are not iterative,

as shown in Figure 4.2c. In this approach, we posit that the dynamical effect of an

individual sensing agent on a bridge response is negligible when the bridge is medium

to long and the cumulative effect of other loads (the individual vehicle excluded) is

significantly greater than a single vehicle. The approach is presented in Algorithm 5:

Algorithm 5 Simplified non-iterative VBI simulation.

1: Input: Mbrg,Cbrg,Kbrg,Mvcl,Cvcl,Kvcl,F0, rgh
2: Ybrg = Newmarkβ(Mbrg,Cbrg,Kbrg,F0)
3: for t = 1, · · · , T do

4: r = Ybrg(t)
5: wv = rgh(t) + r
6: wv′ = rgh′(t) + Y

′

brg(t)
7: yvcl(t) = ODE45(Mvcl,Cvcl,Kvcl, wv, wv

′)

8: Return Ybrg, yvcl

In this algorithm, the bridge is only analyzed once at the beginning under F0. The

bridge response is then linearly superimposed with rgh and then, applied to the ve-

hicle dynamical model. In fact, the approach is similar to the constant force method

proposed in González [2010]. However, in our approach the vehicle dynamics is incor-

porated in the vehicle response, which was not the case in a moving mass model. The

approach has not been proposed or utilized previously; yet needs to be fully justified

and evaluated. In the rest of this study, we first propose a theoretical proof on a sim-

plified case of the coupled VBI problem. This part intends to demonstrate that bridge

to vehicle mass and stiffness ratios are the keys to determine the coupling degree. In

the next step, VBI responses of multiple bridges with different characteristics and

vehicles are numerically simulated using coupled (i.e., conventional) and uncoupled

(i.e., simplified) procedures and results are compared. Discussions and comparison of
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the numerical results are also supplemented in the last sections.

a) Simulation approach 1:

consider a fully coupled system consisting

of multiple vehicles interacting with bridge.

b) Simulation approach 2:

consider a fully coupled system consisting 

of a single vehicle (sensing agent) interact-

-ing with bridge.

c) Simulation approach 3:

consider a decoupled system consisting of 

a bridge subject to ambient load. The bri-

-ge response is then input to the sensing 

agent system.

Sensing Agent

Sensing Agent

Applied Load:

Sensing Agent:

Applied Load:

Bridge Response (ubrg):

Vehicle Response

ubrg

Figure 4.2: Simulation approaches: a) a complex and coupled system of a vehicle net-
work interacting with a bridge; b) a coupled system of the sensing vehicle interacting
with the bridge. The bridge is separately subject to an ambient load to capture the
vehicle network’s load; c) the proposed approach in which the bridge is only subject
to the ambient load. The response is then applied to an uncoupled model of the
sensing vehicle to produce the vehicle output.

4.3 Theoretical Approach

In this section, a closed-form theoretical proof for validity of the simplified model

is presented. Generally, vehicle-bridge interaction is a complex model to be solved

in closed-form, however, simplified models can be used for proof of concept [Frỳba,

2013, Yang et al., 2004b]. The objective here is to show that a coupled VBI system

subject to external stochastic excitations produces bridge and vehicle responses that

are very close to the responses of an uncoupled system, especially if the bridge is

long and heavy. For this purpose, the mass and spring system shown in Figure 4.3

is considered in which the vehicle is located at the mid-span of the beam with no
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motion and in full interaction (no damping is considered for simplicity). The random

spatio-temporal load of the bridge is also lumped into an effective point load that is

applied to the bridge mass. In particular, the proof intends to show that the coupling

of the bridge response xb to the vehicle interaction decays as the bridge dimensions

grow.

f(t)

kv

kb

mb

mv

Figure 4.3: schematic of the coupled setup

From Figure 4.3, the beam is modeled as a unidirectional spring, while the vehicle

is a single DOF system. The bridge spring represents the first modal stiffness of the

beam. The bridge mass is lumped at the contact point of the two components. The

setup constitutes a 2 DOF coupled system with the equation of motion shown in

Equation 4.1. Using this simplified setup, both responses are calculated in closed-

form:







mb 0

0 mv













ẍb

ẍv






+







kb + kv −kv

−kv kv













xb

xv






=







f(t)

0






(4.1)

where mb and mv are the bridge and vehicle masses, respectively; Also, kb and kv

are the stiffnesses for two components. For further calculations, it is assumed that

mb = αmv = αm and kb = βkv = βk in which α and β are bridge to vehicle mass and

stiffness ratios, respectively, and α > β. Therefore, using relative mass and stiffness

ratios, Equation 4.1 can be states as:
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αm 0

0 m






Ẍ +







(1 + β)k −k

−k k






X =







f(t)

0






(4.2)

in which X = [xb; xv] contains the bridge and vehicle responses, respectively. In

order to solve this equation for X, the first step is to decouple it by using modal

transformation using eigenvalue analysis shown in Equation 4.3.

det







(β + 1)k − αmω2 −k

−k k −mω2






= ((β + 1)k − αmω2)(k −mω2)− k2 = 0 (4.3)

By assuming mω2

k
= λ and dividing both sides by k2 we have:

(β + 1)− (β + 1)λ− αλ+ αλ2 − 1 = 0

λ =
α + β ±

√

(α + β + 1)2 − 4αβ

2α
(4.4)

One can simply assume that α + β + 1 ≈ α + β since ratios are significantly

large (especially the mass ratio α) when considering commercial vehicles and mid- to

long-span bridges. This helps further simplifications as shown in Equation 4.5:

λ =
α + β ±

√

(α + β)2 − 4αβ

2α
=
α + β ± (α− β)

2α

λ1 = 1 ⇒ ω1 =

√

k

m
= ωv

λ2 =
β

α
⇒ ω2 =

√

β

α
ωv (4.5)
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It is worth noting that from Equation 4.5, one of the natural frequencies is equal

to the vehicle’s fundamental frequency. Once the eigenvalues are found, eigenvectors

can be derived to allow for modal superposition. For brevity, this calculation is

summarized and the final mode shapes are presented in Equation 4.6.

Φ =







1
β−α+1

α−β

α

1 1






=







φ11 φ12

φ21 φ22






(4.6)

In Equation 4.1, f(t) is the applied load function, which is ultimately assumed

as an ambient white noise for a random traffic network (i.e., Gaussian white noise

∼ N (0, σ2)). In order to calculate the response of the system to such loads, one

approach is to convert it to a sum of sinusoidal waves using Fourier transform. For

a white noise, the spectral density function is a continuous function of a constant

value (the value equals σ2). Therefore, for simplicity, the response of the system

subject to a single sinusoidal load is found in closed-form and then, the effect of

different frequencies is evaluated by parametric study to determine whether the same

conclusion is valid over the entire frequency band. Therefore, f(t) = Aesin(ωet) is

defined, in which Ae and ωe are the sinusoidal amplitude and frequency, respectively.

To convert the equation of motion shown in Equation 4.1 to modal coordinates, we

premultiply both sides by ΦT . The modal force vector and modal stiffness are then

calculated as shown in Equation 4.7:
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ΦTF (t) =







1
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1− β

α

1 1
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α
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]

k 0

0
[

β3+(1−2α)β2+βα2

α2

]
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xb = φ11q1 + φ21q2

m̂1q̈1 + k̂1q1 =
Ae

β − α + 1
sin(wet)

m̂2q̈2 + k̂2q2 =
Ae(α− β)

α
sin(wet) (4.7)

The steady-state responses of the single-degree of freedom systems subject to a

harmonic load have the following form shown in Equation 4.8:

q1(t) =

Ae

β−α+1

k̂1

1

1− γ2
.sin(ωet)

q2(t) =
Ae(α−β)

α

k̂2

1

1− α
β
γ2
.sin(ωet) (4.8)

in which γ = ωe/ωv. For a unit amplitude of the external load (i.e., Ae = 1)

and by substitution of stiffness from Equation 4.7 to Equations 4.8, the harmonic

amplitudes are calculated as follows:

amp(q1) =
β − α + 1

(γ2 − 1)(α2 − 2αβ − 4α + β2 + 3β + 2)k

amp(q2) =
α(α− β)

(β − αγ2)(α2 − 2αβ + β2 + β)k
(4.9)

Finally, by modal superposition of two modal responses, the amplitude of the total
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harmonic vibration of the bridge is calculated as shown in Equation 4.10:

amp(xb) = φ11 × amp(q1) + φ21 × amp(q2) =

1

k

[

1

(γ2 − 1)(α2 − 2αβ − 4α + β2 + 3β + 2)
+

(α− β)2

(β − αγ2)(α2 − 2αβ + β2 + β)

]

(4.10)

So far, the bridge response from the fully coupled setup is derived. In order

to find the bridge response using the second approach (i.e., the simplified model),

the setup shown in Figure 4.4 is assumed. The bridge model is individually subject

to the external load and responds to it. The response is then applied to an isolated

vehicle model to produce the vehicle response. The closed-form solution for the bridge

response in such an uncoupled setup is trivial and shown in Equation 4.11.

f(t)

kb

mb

kv

mv

step 1 step 2

xb(t)

Figure 4.4: schematic of the uncoupled setup

mbẍb + kbxb = Aesin(ωet)

xb =
Ae

kb
.

1

1− ωe

ωb

2 .sin(ωet)

amp(xb) =
1

k(β + αγ2)
(4.11)

Once Equations 4.10 and 4.11 are derived, the parametric study can take place.

Both equations are functions of α, β, and γ. By plotting the response error between

these two solutions for different ranges of these three parameters, the extent of the

error in the simplified decoupled model can be investigated. Intuitively, as the bridge
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size increases, the stiffness of the structure decreases (i.e., longer bridges are more

flexible), and the mass increases, resulting lower fundamental frequencies. The main

objective is to observe the sensitivity of the error to the bridge size. Therefore,

different mass and stiffness ratio pairs are plugged into both equations and errors are

calculated. In addition, different loading frequencies are also examined. The mass

and stiffness ratios (α and β) used for this purpose range [50 : 10, 000] and [500 : 10],

respectively, modeling short (stiff) bridges to long (flexible) ones. Loading frequencies

spread exponentially from 10−3Hz to 103Hz to envelope a sufficiently wide range of

loading frequencies. Figure 4.5 summarizes the outcomes of the parametric study.

Note that the x axis corresponds to different mass and stiffness ratio pairs, which is

normalized to better convey the qualitative aspect of the plot (i.e., 0 is the stiffest

bridge while 1 stands for the most flexible one).

Figure 4.5 demonstrates that based on the closed-form solutions, what would be

the extent of error in the simplified simulation method for different types of bridges.

As the bridge size increases, the error between two methods decays substantially (e.g.,

below 0.1% error for long bridges). This supports the idea that an uncoupled sim-

plified solution is accurate enough when the bridge length increases. The figure also

shows that there is a range of bridges in which the error is not negligible (for relatively

short bridges the error can be up to 50% when the loading frequency resonate with the

natural frequency of the vehicle). Also notice that the same trend occurs for different

loading frequencies, with maximum error near the vehicle resonance frequency.

In this part, using our simplified model we showed that the uncoupled simula-

tion approach yields accurate results when compared to the fully coupled approach,

especially when the bridge size grows. In the next section, the results from a more

detailed numerical simulation of the vehicle-bridge interaction are presented in order

to incorporate other aspects of the VBI problems, such as vehicle motions and road

roughness profile.
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Figure 4.5: Results of the theoretical approach: parametric study shows the extent of
the error for different bridge types and loading frequencies when using the simplified
bridge-vehicle simulation approach.

4.4 Numerical Analysis

In this section, the VBI problem is modeled numerically in MATLAB and the results

are compared with the signals from the simplified simulation approach. In this nu-

merical case study, six bridges with different span lengths are modeled in SAP2000

and two simulation approaches are implemented. The exact numerical approach for

modeling the bridge response interacting with a moving vehicle (roughness included)

is adopted from González et al. [2012] as presented in Algorithm 4.

The bridge setup is shown in Figure 4.6. The span varies from 15 m (very short

and stiff bridge) to 500 m (long and flexible bridge), with mechanical properties shown
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Figure 4.6: Schematic of simulated model - roughness profile is also included

in Table 4.1. The bridge is 3D modeled in SAP2000 using prismatic beams with box

cross-sections. Note that the considered single span simply-supported bridge is the

use case for the majority of numerical studies in the VBI community [Yang et al.,

2004a, OBrien et al., 2010]. Since one of the objectives of our study is to propose

a simplified numerical approach for VBI analysis, the same geometry and boundary

condition are considered in the first numerical case study. The reason for a 3D

model of the bridge is to have a physical sense of the dimensions of the deck section

and better visualization. The modeling process is as follows: The bridge geometry

and material are defined in the SAP model. The stiffness and mass matrices of the

SAP model are then exported to a MATLAB script within which bridge dynamic

analyses as well as vehicle-bridge interactions are held. The accuracy of the bridge

models is verified by examining bridge natural frequencies. The fundamental modes in

shorter bridges are vertical (longitudinal) while for very long spans, torsional modes

dominate. Note that the torsional modes are not within the scope of this study

and are excluded from modal analyses. In this case study, bridges are all simply-

supported; however, a different geometry is evaluated in Section 5. The structural

behavior is assumed linear elastic for consistency with operational modal analysis.

The study does not take large deformations and nonlinearities into account based on

the fact that the method is being proposed for numerical simulation of bridges under

operational mode. In particular, no material nonlinearity is expected here. In terms
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of geometry nonlinearity, we expect that it may be effective for very long bridges.

In this study, bridge models are deterministic and no uncertainty for material and

geometry is included. In fact, the study is focused on studying the extent of bridge-

vehicle interaction with respect to bridge dimensions and traffic level. Ni et al. [2019]

showed that by incorporating uncertainties in bridge modeling, the modal proper-

ties are changed, however, this variation is dramatically lower for the fundamental

modes compared to higher ones. In addition, Yang and Lin [2005] showed that in a

vehicle-bridge interaction scenario, the bridge response is highly dominated by the

first natural mode. Considering these, uncertainty propagation analysis is neglected

in this study. The road roughness profile is adapted according to ISO standard for a

road class ’A’ [de Normalización , Ginebra] which is the case for a well maintained

highway road condition. At each time instance, the bridge model is analyzed dy-

namically using Newmark-β method using matrices imported from SAP2000. For

the vehicle, first a quarter-car model is adopted with the properties shown in Table

4.2. This vehicle simulates suspension properties of a commercial vehicle with high

damping and low natural frequency (which are critical factors for a comfortable ride

[Milliken et al., 2002]). The second vehicle is a quarter-car model of a heavy truck

adopted from Harris et al. [2007], Elhattab et al. [2016] with properties shown in Ta-

ble 4.3. The second vehicle is selected to investigate the approximation error of using

the simplified method for heavy sensing agents when the weight is not negligible.

Table 4.1: Bridge spans and cross-section dimensions

Span length [m] 15m 30m 50m 100m 200m 500m

Outside depth [m] 0.60 1.10 1.60 2.40 3.00 5.00
Outside width [m] 0.3 0.50 1.30 2.00 2.50 4.00
Flange thickness [m] 0.04 0.05 0.10 0.15 0.15 0.50
Web thickness [m] 0.02 0.03 0.05 0.10 0.10 0.25
Fundamental freq. [Hz] 8.03 3.63 2.05 0.75 0.24 0.06

For a fair comparison, the vehicle’s speed is kept constant among all bridge spans
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Table 4.2: Commercial vehicle properties

Property Name Value Units

Unsprung Mass 69.9 Kg
Sprung Mass 466.0 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 2796.0 Ns/m
Tire Stiffness 3043.0 N/m
Suspension Stiffness 290.3 N/m
Fundamental Frequency 1.2 Hz

Table 4.3: Heavy truck properties

Property Name Value Units

Unsprung Mass 700.0 Kg
Sprung Mass 17,300.0 Kg
Tire Damping 0.0 Ns/m
Suspension Damping 1.0× 104 Ns/m
Tire Stiffness 1.75× 106 N/m
Suspension Stiffness 4.0× 105 N/m
Fundamental Frequency 0.69 Hz

(10m/sec). Finally, the traffic load is modeled as a random ambient load uniformly

applied over the span with the amplitude proportional to the number of vehicles. In

particular, for n vehicles, a random and sparse matrix is generated in which the sum

of forces in each row (i.e., for each time instance) is equal to n×2, 000×g N, assuming

2, 000 kg for the average weight of a commercial vehicle and g is the gravity accel-

eration. Four traffic levels are considered for each span length with n = 0, 10, 20, 50

(n = 0 models an isolated bridge while n = 50 models a bridge with 50 vehicles

moving while being scanned by the sensing agent). The bridge is modeled as a MDF

system with 0.1m spatial discretization (e.g., 15 m long bridge is modeled with 150

DOFs). The 0.1m discretization is selected based on a trade-off between computation

time and maximum avoidance for displacement interpolation when the vehicle’s loca-

tion falls inside a bridge segment. 0.1m-long bridge segmentation yields exact vehicle

displacement calculation when vehicles’ speed is set to 10m/sec. For vehicles moving
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faster than this speed, discretization of vehicle’s time and space coordinates causes

some gaps in locations of consecutive time steps. This gap causes a simplification in

the vehicle’s initial condition (particularly the initial speed) calculation. However, in

this study the damping of the unsprung mass is set to zero which disconnects the

vehicle’s dynamic analysis to its initial speed. For simulating responses using the

decoupled model, Algorithm 5 is adopted: the random traffic load is firstly applied

to the bridge with no consideration for the sensing vehicle. The bridge responses

at the vehicle locations are then aligned in space and applied to the model of the

sensing vehicle. The vehicle processes the input through its dynamical model (shown

in Tables 4.2 and 4.3) and produce the vehicle response.
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Figure 4.7: Bridge displacement simulation results for the commercial vehicle

The performance of the simplified model is evaluated in terms of the bridge re-

sponse as well as the vehicle response. From Section 4.3 it is expected that the

simplified model yield more accurate response estimations as the length of the bridge

span increases. For the conventional simulation approach, the acceptance threshold

for the bridge response is set to 1.5× 10−12 m. For each bridge span and traffic level

pairs, bridge and vehicle response signals are simulated using two approaches (in total

24 runs for each vehicle); and the errors between two signals are measured in time

and frequency domains using the mean squared error (MSE). For more consistency,

118



0 50 100 150

DOF id

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

n
o
rm

a
liz

e
d
 d

is
p
la

c
e
m

e
n
t

VBI decoupled

VBI coupled

(a) 15 m bridge

0 200 400 600 800 1000 1200 1400 1600 1800 2000

DOF id

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

n
o
rm

a
liz

e
d
 d

is
p
la

c
e
m

e
n
t

VBI decoupled

VBI coupled

(b) 200 m bridge

Figure 4.8: Bridge displacement simulation results for the heavy truck

the responses are scaled by the absolute maximum values of the displacement signals

found from the conventional method.

Simulated displacement signals for two spans (15 m and 200 m) are shown in

Figures 4.7 and 4.8. For both vehicle types, the bridge response differs noticeably be-

tween the conventional and simplified VBI simulations for the 15 m bridge. However,

as expected from Section 4.3, as the bridge length increases, the discrepancy between

two simulation approaches shrinks in bridge response estimation. The MSE values

versus bridge length are also presented in Figures 4.9 and 4.10 for the commercial

vehicle and Figures 4.11 and 4.12 for the heavy truck to further quantify this obser-

vation. Figures 4.9 and 4.11 (error in the bridge response simulations) show a strictly

decreasing MSE value as the bridge length increases. In addition, in both cases, as

the traffic level increases (i.e., from n = 0 to n = 50), the estimation error reduces.

This is more evident for the commercial vehicle. Note that the same patterns are

deduced from the frequency representation plots.

Figures 4.9 and 4.11 show the extent of error for simulating stationary sensors’

data that are attached to the bridge. However, what a mobile sensing agent records

while scanning the bridge, is not the bridge pure vibrations, but the vehicle response to

it. Therefore, Figures 4.10 and 4.12 show the accuracy of the vehicle response subject
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Figure 4.9: Bridge response comparison for the commercial vehicle in terms of the
MSE: The trends show more accurate simulation results as bridge span or traffic
volume increases.
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Figure 4.10: Vehicle response comparison for the commercial vehicle in terms of the
MSE: The trends show invariance to the span and the traffic level.

to the bridge motion when comparing the simplified model with the conventional

approach. In this case, two sensing agents (i.e., the commercial vehicle versus the

heavy truck) react differently. For the commercial vehicle, the responses are relatively

insensitive to the span and traffic level and the errors are consistently low for all cases.

However, from Figure 4.12, the truck response is simulated less accurately when the

bridge span grows from 15 m to 100 m (for longer bridges, a decaying error trend is

observed again). In particular, the frequency estimation error for the heavy vehicle

crossing a 100 m long bridge is quite noticeable when using the simplified model. From
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Table 4.3, the fundamental frequency of the truck is 0.69Hz which is near resonance

for the 100 m long bridge (from Table 4.1, f = 0.75Hz). Moreover, the vehicle weight

is significant, which results in higher interaction forces applied to the bridge and the

vehicle itself. In fact, this case highlights that when the bridge and the vehicle have

near resonance frequencies, the simplified model works more accurately when the

vehicle is lightweight. To validate this, the properties from Table 4.3 are downscaled

by a factor of 5 (i.e., the same natural frequency while being lighter) and simulation

for 100 m long bridge is repeated. The MSE value for n = 50 from 1.19×10−4 reduced

to 5.46× 10−6.
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Figure 4.11: Bridge response comparison for the heavy truck in terms of the MSE:
The trends show more accurate simulation results as the bridge span or the traffic
volume increases.

4.5 Computational Cost Evaluation

The main objective of the simplified model is to improve the computational perfor-

mance of simulations while having a minimal impact on the accuracy of the results.

In Figure 4.13 the computational runtimes for the commercial vehicle simulation case

are compared between two methods (the heavy vehicle yields a very similar plot as

well). The figure elaborates that while the runtime increases linearly in the simpli-
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Figure 4.12: Vehicle response comparison for the heavy truck in terms of the MSE:
The trends show that the error peaks when the bridge and the vehicle have close
fundamental frequency values.

fied model, it grows exponentially when using the conventional approach for longer

bridges. For instance, using a single Intel Core i5 CPU, the entire VBI simulation pro-

cess for the 500 m long bridge takes 1.8 sec using the simplified model, while the same

process takes nearly 2, 250.0 sec using the conventional method (more than 1, 000×

slower). This dramatic runtime difference is resulted by the inner iterations of the

conventional approach (see Algorithm 4) that guarantee the compatibility. Within

this iteration, the entire bridge model has to be analyzed repeatedly for the modified

interaction force as long as the stopping criterion is not met, which is computationally

very expensive. This is a bottleneck for the numerical computation, especially when

the bridge length increases or models with higher fidelity is of interest (i.e., MDF

model grows in size). Alternatively, the simplified model fully decouples the bridge

model from the vehicle systems, which yields a one-time bridge analysis (see Algo-

rithm 5). This significant speedup enables to perform VBI simulations for medium-

to long-span bridges with fine spatial discretization, which is required for numerical

studies on crowdsensing-based health monitoring.
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Figure 4.13: Runtime comparison between the conventional and simplified models:
the conventional approach is computationally > 1, 000× slower than the simplified
model for the 500 m bridge with no significant gain in the accuracy of response
estimations.

4.6 Fully Coupled Vehicle Network Simulation

In this section, a fully coupled network of vehicles is analyzed to verify the followings:

(1) the premise of ambient white noise on behalf of a random traffic load is valid and

(2) the simplified method yields accurate results for bridges with different geome-

tries. Regarding that, a continuous bridge with four 50m-long spans with elastic steel

material is modeled and shown in Figure 4.14 (beam cross-section is shown as well).

The bridge length is discretized with 0.1m grids, resulting a 2,001 DOF system. The

roughness profile is introduced with the same setup as before. In this case, instead

of applying a spatio-temporal random load to model random traffic loads, the bridge

is subjected to different levels of traffic caused by deterministic vehicle trajectories

(as shown in Figure 4.2a). All vehicles are interacting with the bridge in the same

fashion as given in Algorithm 4. In summary, the convergence loop continues until

all vehicles have reached acceptable displacement errors.

In these analyses, each vehicle in the network has certain speed and mechanical

properties. The mechanical properties are randomly selected with a lognormal distri-
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Figure 4.14: Geometry of four-span continuous bridge and cross-section.

bution. The mean values for each property is set to the values given in Table 4.2 for

the commercial vehicle. Standard deviation σ is also set to 0.35 for all components of

the property table. The map of vehicle network trajectories for two levels of traffic is

shown in Figure 4.15. In this figure, each column contains momentary response of the

bridge at all DOFs. Each trajectory is represented by a line in the spatio-temporal

response matrix. Different slopes show different directions and speeds (close to hori-

zontal shows very low speed vehicles while nearly vertical ones show very fast bridge

crossings). The random trajectory generator allows for fixed vehicles as well.

Figure 4.15: Random vehicles trajectory in the time-space matrix. Each solid line
represents a single vehicle’s motion over the bridge. Vehicles have different speeds
and directions and all are fully interacting with the bridge. Two levels of traffic are
shown.

The first objective is to show the spatio-temporal load determined by the vehicle

network and bridge interaction has statistical characteristics of a 2D white noise. The

resulted loading matrix for a random traffic case (with 200 random vehicle trajecto-

ries) is derived from the coupled dynamic analysis and the Fourier transform is shown
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in Figure 4.16 along with the same representation of a white noise loading matrix.

By comparison, both plots show uniform content everywhere with no coherent fre-

quency peaks. This implies that a realistic loading scenario with deterministic vehicle

motions has the similar effect to a random white noise.

a) white noise b) random traffic

Figure 4.16: Frequency representation of spatio-temporal load applied to the bridge.
(a) white noise spatio-temporal load considered in analyses in Section 3. (b) actual
load resulted from a traffic network of random vehicles with full consideration for
the vehicle-bridge interaction. Similarity between two representations confirm the
random nature of traffic load.

In the next step, a mobile sensing agent is added to the traffic networks and the

bridge interaction is considered with (1) conventional (Algorithm 4) and (2) simplified

(Algorithm 5) approaches and results are compared. Three different speeds for the

sensing agent are considered: 10m/sec, 20m/sec, and 30m/sec. The MSE error

between vehicle and bridge response estimations of the simplified and conventional

approach is calculated and plotted in Figure 4.17. In all three speed cases, the

error significantly drops when the network includes higher number of vehicles. This

figure confirms that even in a realistic simulation of the traffic network, the simplified

approach yields accurate estimations for the majority of cases (i.e., when the network

is sufficiently crowded). As for the sensing agent’s speed effect, except for a slightly

higher errors for higher speeds, other variations are not conclusive. By comparing

these plots with Figures 4.9 and 4.10, the trends are consistent. The variations in the

magnitude of the MSEs can be explained due to different bridge boundary conditions
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and more realistic loading pattern.
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Figure 4.17: Bridge and vehicle response comparison for a commercial sensing vehicle
in terms of the MSE: the plots confirm that as the number of traffic fleet increases,
the error in simplified approach reduces. In general, once the number of fleet tops 50,
the accuracy of the proposed method is very high.

4.7 Conclusions

In this study, a modified simulation algorithm was proposed for vehicle-bridge inter-

action (VBI) problems concerning medium- to long-span bridges with random traffic

excitation. The primary deliverable of this study to the SHM community is to enable

a fast and accurate numerical analysis method that can be used in different bridge in-

frastructure management levels, such as (1) evaluation of crowdsensing-based methods

for bridge modal identification and (2) probabilistic and life-cycle analysis of bridges

subjected to vehicle networks under various uncertainties (e.g., road profile, vehicle

dynamics, traffic level, and environmental variations). Our main contribution is the

result that as the bridge flexibility increases (longer spans), the degree of coupling

between the vehicle and the bridge reduces notably. Conventional VBI simulation

algorithms require iterations within each time step in order to reach a desired level of

compatibility between the vehicle and the bridge, which is computationally expensive.

We show that the proposed simple, decoupled model is efficient for simulations of the

vehicle-bridge interacting systems in such cases, with an accuracy that increases with

bridge flexibility. In particular, the theoretical analysis showed that the response
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of a coupled continuous beam and vehicle setup subject to a random load becomes

more independent to the vehicle dynamics as the bridge mass grows and the stiff-

ness reduces. Therefore, for longer or flexible bridges, the dynamics are practically

independent. Moreover, the numerical simulation validated that the bridge size and

traffic load intensity both affect the accuracy of the bridge vibration estimations using

the simplified model. For commercial vehicles, the simplified method yields accurate

response estimations. In the case of a heavy vehicle with a natural frequency near

the bridge’s fundamental frequency, e.g., heavy vehicles and flexible bridges, the er-

ror associated with the simplified model is noticeable. In terms of the computational

cost, a comparative study showed that the cost of the conventional model behaves

exponentially while the cost of the simplified model is linear.
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Chapter 5

Wavelet Platform for Crowdsensed

Modal Identification of Bridges

5.1 Abstract

This study presents a flexible approach for bridge modal identification using smart-

phone data collected by a large pool of passing vehicles. With each trip of a mobile

sensor, the spatio-temporal response of the bridge is sampled, plus various sources of

noise, e.g., vehicle dynamics, environmental effects, and road profile. This study pro-

vides further evidence to support the hypothesis that through trip aggregation, such

noise effects can be mitigated and the true bridge dynamics are exhibited. In this

study, the continuous wavelet transform is applied to each trip, and the results are

combined to estimate the structural modal response of the bridge. The Crowdsourced

Modal Identification using Continuous Wavelets (CMICW) method is presented and

validated in an experimental setting. In summary, the method successfully identifies

natural frequencies and absolute mode shapes of a bridge with high accuracy. No-

tably, these results are the first to extract torsional mode shape information from

mobile sensor data. Moreover, the influence of vehicle speed on the estimation accu-
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racy is investigated. Finally, a hybrid simulation framework is proposed to account

for the vehicle dynamics within the raw mobile sensing data. The proposed method

is successful in removing vehicle dynamic effects and identifying modal properties.

These results contribute to the growing body of knowledge on the practice of mobile

crowdsensing for physical properties of transportation infrastructure.

5.2 Introduction

Infrastructure is a vital component of transportation systems and a vibrant economy.

In many countries, monitoring and maintenance of existing infrastructure have turned

into a significant concern for urban planners and decision makers, especially in the

US, Europe, and Asia [Lancefield, 2017, Willsher et al., 2018, Pérez-Peña, 2018].

Nearly one of every nine bridges in the US is structurally deficient according to ASCE

[of Civil Engineers, 2017]. The global state of infrastructure indicates a demand for

large-scale health monitoring solutions with reduced setup costs that can rapidly

produce information on existing mechanical properties, damage location, and extent

of deterioration in bridges. Among available health monitoring methods, vibration-

based systems have become popular as data acquisition is relatively inexpensive and

the resulting data is an asset to a bridge management system.

5.2.1 Crowdsourcing for Urban Transportation Sensing

Through widespread presence of smart devices, datastreams are available that are

primarily collected for personalized, comfort-intended tasks, such as adaptive screen

lighting or navigation, but they can be further analyzed for widely-impacted socio-

economical secondary objectives. Smartphones are equipped with numerous sensors

for motion measurement and have an ability to continuously record data at high

rates. Of course, in comparison to more dedicated instruments, smartphone sensors
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are generally less precise and are expected to produce noisier data; nevertheless, the

datasets produced by phones can be extremely large and include simultaneous mea-

surements from dozens of sensing channels. In some cases, the vast size of these

datasets can help overcome shortcomings in data quality. Recent research explored

the possibility of using such data from vehicle networks for urban planning and trans-

portation applications. A real-time framework was introduced that is able to create

urban dynamic maps using smartphone data, such as traffic conditions and pedestrian

movements in Rome [Calabrese et al., 2010]. In Wang et al. [2012] by combining GIS

and smartphone data the patterns of road usage and origins of the cars were detected,

which are applicable for transportation planning. A crowdsourced-based algorithm

was proposed by Shin et al. [2015] for automated transportation mode detection us-

ing smartphone sensing data including acceleration. Other applications such as road

incident reporting and real-time parking space information based on crowdsourcing

data from drivers are proposed as well [Wang et al., 2017, Shi et al., 2018]. A re-

view study on smartphone data crowdsourcing for vehicle positioning and drivers’

behavior monitoring is conducted by Kanarachos et al. [2018]. The study elaborated

that smartphones are advantageous for crowdsourcing application due to the market

penetration, Internet of Things connectivity, and data sharing capabilities.

Smartphones as sensors is an emerging paradigm which is not limited to traffic

monitoring and has recently been applied towards health monitoring of transportation

infrastructure. The state of practice in vibration based structural health monitoring

(SHM) is to utilize dedicated accelerometers at fixed locations and periodically moni-

tor the output. However, mobile sensors have offered a great potential to dramatically

overhaul this conventional paradigm. Some studies proposed smartphone acceleration

and GPS data for real-time localization and characterization of road bumps from ve-

hicle networks [Mednis et al., 2011, Kumar et al., 2016, Mukherjee and Majhi, 2016].

More recently, a vision-based approach for road condition assessment based on images
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from dashboard-mounted smartphones has been proposed and experimentally tested

[Maeda et al., 2018]. These successful applications encourage SHM community to

develop crowdsensing-based methodologies for bridges.

5.2.2 Bridge Health Monitoring

Over the past twenty years, there has been extensive research on wireless sensor

networks for structural health monitoring (SHM) and nondestructive testing appli-

cations. These sensor networks are economical, easy to implement and can support

denser networks when compared with traditional wired systems [Pakzad et al., 2008,

Lynch and Loh, 2006, Kim et al., 2007, Harms et al., 2010, Hackmann et al., 2013].

There is a plethora of important studies that successfully implemented dense wire-

less sensor networks on real-world bridges and have shaped the SHM field [Kim et al.,

2007, Lynch et al., 2005]. With the emergence of wireless sensors, spatial coverage and

spatial density have become increasingly important features of any sensor network as

they broadly affect the veracity of key applications, e.g. damage localization, model

updating, etc. The primary approach for enhancing spatial density of the identified

modal properties is simply to design sensor networks with additional sensors [Lynch

and Loh, 2006, Kim et al., 2007]; the drawbacks of this approach are an increased

complexity in data acquisition and transmission systems and higher setup costs.

Mobile Sensing for Bridge Health Monitoring

Over the years, the capabilities of mobile sensor networks in SHM have been demon-

strated both in theory and in practice. Mobile sensors have outstanding benefits: (1)

the data can contain rich spatial information; (2) ubiquitous smartphones are great

candidates for mobile sensors. (3) when combined with vehicle networks or fleets,

mobile sensors routinely scane transportation infrastructure.

There has been progress in developing general purpose modal identification meth-
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ods for mobile sensor data that are not necessarily tied to vehicles. The structural

identification using expectation maximization (STRIDEX) [Matarazzo and Pakzad,

2018] utilized data from multiple mobile sensors for comprehensive modal identifica-

tion (frequencies, damping ratios, and determine mode shapes) and further quantified

the superior spatial information that can be produced with mobile sensor networks.

With only two mobile sensors, STRIDEX identified the fundamental mode shape

with 248 points - that is, two mobile sensors captured spatial information that was

comparable to 120 fixed sensors [Matarazzo and Pakzad, 2018]. The modal identifi-

cation through matrix completion (MIMC) method [Eshkevari et al., 2019, Eshkevari

and Pakzad, 2020b, Sadeghi Eshkevari et al., 2020d] is a sparse sensing approach for

processing large-scale sensing scenarios (mobile, fixed, or hybrid). A benefit of this

method is that it can handle data from a very large number of moving sensors with

arbitrary bridge trajectories.

Simultaneously, ”indirect monitoring” research has considered measurements of

vehicle vibrations collected while passing over bridges, which are subject to vehicle-

bridge interaction [Yang et al., 2004a, Lin and Yang, 2005, Yang and Chang, 2009,

Siringoringo and Fujino, 2012, González et al., 2012]. These studies have mostly

considered one vehicle, simplistic traffic cases, and have been limited to partial modal

identification of the bridge, e.g., frequencies only, damping ratios only. In these

studies, a coupled dynamical system including both the vehicle and the bridge is

usually developed, which is subject to a controlled load from the moving vehicle.

A recent study by Sadeghi Eshkevari et al. [2020e] showed that in certain traffic

scenarios, the vehicle dynamic response is nearly decoupled from the bridge system

when the collective traffic loads on the bridge are effectively random.
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Crowdsensing for Bridge Health Monitoring

The previous studies focused on mobile sensing for bridge health monitoring, yet

did not strictly analyze smartphones for crowdsensing. Early studies with on-board

smartphone acceleration sensors for structural health monitoring applications pro-

vided preliminary validation of smartphone sensor accuracy in a laboratory setting

[Yu et al., 2015, Feng et al., 2015, Ozer et al., 2015].

An advantage of smartphones is that they contain other useful sensors such as

GPS, gyroscopes, magnetometers, etc. which facilitates sensor data fusion and cross-

validation among reference sensors [Guzman-Acevedo et al., 2019]. For example the

integration of Intelligent Transportation Systems (ITS) including traffic video camera

and bridge structure instrumentation with dedicated sensor data was suggested in

order to enhance the estimation accuracy for structural health monitoring applications

[Gandhi et al., 2007, Khan et al., 2016]. A particular application of interest is of course

crowdsourcing smartphone data to assess the condition of existing infrastructure, e.g.,

bridges. Matarazzo et al. [2017] analyzed call detail record (CDR) data to estimate

the number of smartphones that cross the Harvard bridge each month. Such estimates

help quantify the crowdsensed data potential for specific urban infrastructure based on

human mobility patterns. A later study aggregated smartphone data collected from

forty-two vehicle trips over the Harvard bridge and extracted consistent indicators of

the first three modal frequencies [Matarazzo et al., 2018]. This study was the first

to support the hypothesis that smartphone data, collected within vehicles passing

over a bridge, can be used to detect several bridge modal frequencies. Other studies

involving mobile smartphone sensors have developed methods that can successfully

track damage-sensitive features in a laboratory setting [Mei and Gül, 2018, Liu et al.,

2020].

A recent study at MIT’s Senseable City Lab proposed a wavelet-based statistical

methodology which aggregates smartphone vehicle-trip data to estimate the most
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probable modal frequencies (MPMFs) of a bridge. The study considered a large

number of controlled and uncontrolled vehicle trips and successfully estimated the first

three modal frequencies of the Golden Gate Bridge using the proposed framework.

The method uses synchrosqueezed wavelet transformations to produce a stack of

spatial-frequency maps whose local maxima represent bridge modal properties. The

primary advantage of the proposed method is that it does not require synchronized

sensing. In other words, sensor data aggregation is performed regardless of the sensing

time for individual scans. This study builds on the same strategy by proposing a new

wavelet-based methodology that is able to identify the modal frequencies and absolute

mode shapes from crowdsourced mobile smartphone data.

5.2.3 Spatio-temporal Transformations

In this study, the primary objective is to estimate natural frequencies and absolute

values of mode shapes by crowdsourcing mobile smartphone data. As explained in

Eshkevari et al. [2019] and Matarazzo et al. [2018], bridge dynamics produce a spatio-

temporal response which consists of modal responses. For instance, a bridge under

a uniform ambient load produces a stationary signal at the fixed locations (since the

signal is not a function of space), while a mobile sensor that drives by a bridge collects

a nonstationary signal. Time-frequency transformations are designed to represent a

nonstationary or nonlinear signal by a map of its time-dependent frequencies. Short-

time Fourier transform (STFT) is a common approach that stacks FFTs (fast Fourier

transforms) of sliding windows of a signal to create a 2D time-frequency representation

(TFR) [Zhang et al., 2012, Malekjafarian and OBrien, 2014a]. Continuous wavelet

transform (CWT) is numerically more stable and computationally less expensive.

In CWT, a mother wavelet is applied on the signal to detect associated frequency

contents and then repeatedly scaled up to represent lower frequency contents. The

method has been extensively used for damage detection and modal identification.
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A modified version of wavelet-based methods is synchrosqueezed wavelet transform

(WSST), which was used in recent study at MIT’s Senseable City Lab, yielding

promising results. This algorithm is designed to remove the frequency smearing effect

of CWT by squeezing adjacent frequency ridges into the most powerful band.

The continuous wavelet transform of a signal collected by a mobile sensor creates

a 2D time-frequency representation, in which the time axis is interchangeable with

location since x = f(v, t) (where, x is the location, v is the vehicle speed, and t is

the time; when vehicle speed is constant, x = v × t). If the structural properties

remain linear, this 2D representation includes ridges at the natural frequencies of

the bridge. The magnitudes of the ridges are directly dependent on the location.

For instance, for a simple beam, the ridge associated with the second mode has zero

magnitude at the midspan since the second mode shape has zero magnitude there.

Expanding the same argument, it is deduced that the magnitudes of each ridge are

directly associated with the absolute amplitudes of the corresponding mode shape at

that location. The idea is better explained in Figure 5.1. In this figure, stationary

sensors collect signals and their CWTs are calculated (the complex Morlet wavelet

transform used in this example is equivalent to the Fourier transform [Bentley and

McDonnell, 1994]). Among all CWTs, the outstanding frequencies are identical, but

their magnitudes vary between locations. By stacking these frequency representations

in their spatial order, the envelopes of each modal frequency represents the absolute

natural mode shapes.

5.2.4 Motivations and Contributions

Previous studies on mobile sensing have proposed effective solutions for a variety of

mobile sensing scenarios [Matarazzo and Pakzad, 2018, Eshkevari et al., 2019]. De-

spite their appealing performance and high accuracy, they are limited to scenarios in

which higher quality accelerometers (not smartphones) are available. This study, pro-
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Figure 5.1: Spatial variation of CWTs: the simply-supported beam is equipped with
fixed sensors. The CWT plots of using signals from different fixed sensors are shown.
In each CWT plot, the modal bands have amplitudes that are proportional to the
spatial amplitude of the natural modes. Frequency bands are consistently color-coded
with respect to their intensity. By stacking these CWTs in spatial order, absolute
mode shapes are identified.

poses crowdsourced modal identification using continuous wavelets (CMICW) which

is designed to process smartphone data as a “collection” rather than, one-by-one. The

method is able to estimate both natural frequencies and the absolute natural mode

shapes (vertical and torsional). Notably, CMICW is the first method with an ability

to extract torsional mode shape information from mobile sensor data (in a generic

sense, not only smartphone data). The method also has beneficial computational

features as the estimation process is scalable with respect to the number of datasets.

The approach relies on complex Morlet wavelet transform to convert individual

mobile scans into a 2D map of bridge location versus frequency. By crowdsourcing a
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large number of one-way scans and producing a library of 2D CWT plots, aggrega-

tion minimizes estimation biases through canceling out trivial ridges and intensifying

consistent ridges, i.e., absolute natural mode shapes. In such a crowdsourcing sce-

nario, the number of scans in the aggregation pool is the controlling parameter and

directly influences the confidence and accuracy of the estimations. In Section 5.3,

an overview of the designed pipeline is introduced and its components are justified.

Section 5.4 will present the procedure and results of experimental case studies consist-

ing of a laboratory-scale beam setup. Smartphones moving at various speeds collect

vibration data when the beam is subjected to trains of random impulsive loads. The

effect of sensors speed variations is also demonstrated. Moreover, a hybrid simulation

procedure is designed to integrate vehicle suspensions effect to sensors measurements

and the effect is investigated. In section 5.5, results are further discussed and the

study is summarized.

5.3 Methodology

A schematic plan of the CMICW pipeline is shown in Figure 5.2. In this figure,

the starting point is data collection using passerby sensors over the bridge. Each

individual scan is fully independent and can happen with or without the presence

of other scanning devices. The mobile sensor collects a time history of the bridge

vibration responses at different time-location coordinates, depending on the speed of

the vehicle. In the next step, this signal is transformed into a time-frequency domain

using CWT. For a sensor with constant speed, the time axis can be linearly scaled

to a bridge location axis. The CWT yields a 2D map of instantaneous frequencies at

different bridge locations. For an individual signal, the 2D frequency map is highly

contaminated by trivial contents caused by ambient loads, measurement noises, and

stochastic events. Therefore, the process of collecting signals and applying CWT is
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repeated in order to populate a crowdsourced pool of CWT maps. Once the pool

is sufficiently large, an average of 2D maps converges to the frequency-location map

of the bridge, i.e., natural frequencies and absolute mode shapes. However, since

mobile sensors may have different speeds while sensing, the CWT maps have different

resolutions and may not be readily consistent in size (dimensions of the CWT map

depends on the length of the signal, which itself relies on the vehicle speed). Hence,

the CWTs are 2D interpolated to a predefined global grid. Despite its desired spatio-

temporal representation, CWT results in distorted values near the ends of the signal,

widely known as the edge effect [Montanari et al., 2015]. To minimize the distortion,

the proposed approach from [Montanari et al., 2015] is adopted. After aggregation,

the 2D map shows strong ridges on the natural frequencies and minimal noise bed

elsewhere, since the noisy contents cancel out each other. These intensified ridges

are then automatically detected using a peak-picking algorithm and the aggregated

map is section-cut at those frequencies. The final product of the pipeline is the

identified absolute mode shapes, which have very high spatial resolution (final output

of the procedure shown in Figure 5.2). The detailed components of the pipeline are

presented in Figure 5.3.

In addition to the vertical modes, the method is also capable of reconstructing

torsional modes and creating 3D representations. For this purpose, the pipeline is

implemented separately for different lanes of the bridge. For the torsional modes,

the values of the identified ridges vary between lanes. For instance, torsional modes

have zero amplitude when centerline of a beam is considered while the edges reflect

these modes with maximum amplitude. Extracting modal ridges in different lanes

and placing them in parallel with the same order as the actual lanes construct a 3D

representation of the torsional mode shapes.
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Figure 5.2: Crowdsourcing schematic for CMICW: each one-way vehicle scan collects
a bridge response signal in a mobile fashion. The CWT of each signal includes ridges
associated with natural modes that are severely mixed with noises (ambient ridges).
However, once a large pool of CWT maps from different signals is collected, the
average CWT map yields clear ridges on natural modes with minimal noisy contents.
Note that each scan is independent to the rest (temporally and spatially).
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Figure 5.3: Detailed components of the CMICW pipeline.

5.4 Experimental Case Study

This section presents the setup of the laboratory-scale experiment and the results

obtained from implementing the proposed method for modal identification along with

validating estimations using fixed sensors as a benchmark. The test mimics a bridge

subjected to random ambient load, monitored by moving sensors at random time

intervals that are independent. Results show that the procedure successfully identifies
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three vertical modes and two torsional modes using mobile smarthphone data.

5.4.1 Test Setup

The test setup consists of a steel beam that is 3.66m long, 0.635m wide and 6.35mm

thick with two 4.33kg weights attached at midspan. The steel plate is placed on pin

supports at 30cm to the both ends, and a hydraulic jack located below the bridge

applies an adjustable, horizontal, post-tensioning force. The post-tensioning system

allows for control over the stiffness of the model bridge. As seen in Figure 5.4, mobile

sensors traversed the bridge using a pulley system. An AppliedMotion STAC6-Si

motor towed mobile sensors on four different lanes. The application Si Programmer

was used for motion planning and scheduling.

Figure 5.4: Layout of the test setup: (top) side view of the beam, (bottom-left)
individual mobile sensing node, and (bottom-right) mobile sensors in motion.

Mobile sensors comprised of carts made from K’NEX with rubber bands binding

a smartphone to each cart. The phones used the application Sensor Kinetics Pro to

collect data at the maximum sampling rate (100 Hz) with no signal filtering. During

testing, six iPhones ranging in model from iPhone6 to iPhone10 were used. Although

the application set the sampling rate to 100 Hz, the actual sampling rate varied

between phones. Each test required a lab assistant applying moderate-sized, random

impulses along the bridge as the cart traveled down the bridge. The goal of the
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excitation was to simulate an ambient random loads. The cart motion was planned

to scan the bridge one way, then pause, and return to the starting position. Therefore,

each test consisted of two scans of the bridge by each mobile phone. After collecting

a large pool of one-way scans, the data passed through the pipeline shown in Figure

5.3.

In addition to the mobile sensing tests, the beam was monitored using stationary

sensors to create a baseline for validation. Two separate stationary sensing tests

were completed. For the first test, five smartphones evenly spaced in the longitudinal

direction collected data and then the phones were rearranged to capture torsional

modes along two parallel lanes in the transverse direction. The signals were trimmed

to 30-second segments for analysis. Finally, the data channels were processed using

SMIT [Chang and Pakzad, 2013b], a MATLAB-based modal identification software

to identify natural frequencies and modes shapes. The software allows for selecting

a desired SID method among multiple common algorithms. In this study, the ERA-

NEXT-AVG method [Chang and Pakzad, 2012] was used for processing the stationary

data. The resulting frequencies are found in Table 5.1 and the natural mode shapes

are presented as the baseline in multiple figures (e.g., Figures 5.5 and 5.6) and used

for MAC value calculations.

5.4.2 Mobile Scans with Constant Speed

In the first case, the test includes aggregation of mobile sensors with constant speed

to simplify and validate that the proposed pipeline functions properly. In order to

achieve this, 240 one-way scans of the bridge with the smartphone-equipped carts were

performed. The speed of the sensors was set to 11.38cm per second (one way scan

was 26.4sec). Aggregating the scans using the pipeline, the test yields the results

shown in Figure 5.5. This figure displays the aggregated CWT maps in 2D and

3D. Within these maps, the ridges are then picked automatically by a pick-peaking
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algorithm. The section-cuts of the maps at these peaks are presented in Figure 5.6.

Through aggregation, the undesired random noise in single scans diminishes, leaving

the consistently occurring mode shapes. Note that CWT calculates the absolute

amplitudes of instantaneous frequencies. In this case, phase information is unavailable

since the datasets are not recorded simultaneously. Therefore, the resulting ridges of

the CWT map represent the absolute mode shapes of the bridge.

Figure 5.5: Aggregated CWTs of 240 one-way scans on the edge lane of the model
bridge at medium speed
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Figure 5.6: Three vertical and two torsional absolute mode shapes from 240 scans at
medium speed on the edge and middle lane of model bridge.

The accuracy of identified modal parameters is presented in Table 5.1. The MAC

values for the first three modes are above 0.95 (first two modes above 0.99) when

compared to the fixed sensor baseline, indicating high accuracy in the estimation at

lower modes. The accuracy of the estimated mode shapes at two higher modes is also

fairly high. Additionally, all the identified frequencies are within 1.5% of the fixed
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Table 5.1: Identification accuracy measures for the single speed case. Est. stands for
estimation.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Reference freq. [Hz] 5.51 9.93 12.34 20.26 24.99
CMICW freq. [Hz] 5.57 10.07 12.32 20.13 25.36
Est. error [%] 1.09 1.41 0.16 0.64 1.48
Edge lane, MAC [%] 99.81 99.19 95.60 90.16 97.23
Mid lane, MAC [%] 99.43 99.26 94.69 98.67 82.64

sensor reference found in Table 5.1. These results confirm that CMICW functions as

expected and yields high accuracy.

5.4.3 Speed Variations Effect
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Figure 5.7: Identified absolute mode shapes with 80 one-way scans using slow sensors
(top row) and fast sensors (bottom row). Note that the fifth mode is not identified
using fast moving sensors.

Table 5.2: Identified accuracy measures for different speed cases. Est. stands for
estimation.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Reference freq. [Hz] 5.51 9.93 12.34 20.26 24.99
Slow CMICW freq. [Hz] 5.49 10.21 12.32 20.13 25.00
Fast CMICW freq. [Hz] 5.57 10.07 11.79 19.84 -
Est. error, Slow [%] 0.36 2.82 0.16 0.64 0.04
Est. error, Fast [%] 1.09 1.41 4.46 2.07 -
Edge lane MAC, Slow [%] 97.55 99.59 95.87 85.91 94.53
Edge lane MAC, Medium [%] 99.41 98.97 95.22 91.45 96.79
Edge lane MAC, Fast [%] 99.87 99.78 90.12 82.47 -

The previous experiment is limited to cases in which all scanning carriers retained

constant speed. To generalize the application, two additional pools of scans containing
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(a) 80 slower scans (9.50cm per second) and (b) 80 faster scans (14.53cm per second)

were collected. Three datasets (slow, medium, and fast speeds) are then processed

using CMICW (shown in Figure 5.3) and results are compared in Figure 5.7 as well

as Table 5.2. Plot in Figure 5.7 present the identified absolute mode shapes from slow

and fast datasets. All five modes were identified accurately in the case of slow speeds.

However, with carts moving faster the accuracy of higher modes rapidly decreases.

Examining the noise beds - detectable from the local minima of the identified modes

at the valleys of the mode shapes - are noticeably higher in the fast speed case (e.g.,

in the third mode). In other words, as the speed increases, the accuracy of sharp

curvature changes in the mode shapes reduce significantly. This can be explained by

the fact that faster carriers noticeably magnify noises (e.g., road bumps) compared

to slower counterparts. This observation will be further discussed in the following

sections and is consistent with existing literature [Yang and Chang, 2009].

CWT EstimateReference
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Figure 5.8: Identified absolute mode shapes through aggregating 80 slow, medium,
and fast signals (240 one-way scans total). Top and bottom rows show the edge and
middle lane results, respectively.

Table 5.3: Identification accuracy measures for the aggregated speed case. Est. stands
for estimation.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Reference freq. [Hz] 5.51 9.93 12.34 20.26 24.99
CMICW freq. [Hz] 5.50 10 12.25 20.25 25.25
Est. error [%] 0.18 0.70 0.73 0.05 1.04
Edge lane, MAC [%] 99.39 98.78 95.19 88.40 96.12
Mid lane, MAC [%] 99.17 94.93 95.01 97.94 90.73

144



5.4.4 Mobile Scans with Varying Speeds

The objective of this test is to show that the proposed method can incorporate generic

car speeds since each car is analyzed independently. A database of 240 CWT scans

is composed of 80 one-way scans with slow, medium, and fast speed. The speed-

dependent map is interpolated to a preset global space-frequency grid so that it can

be aggregated with other scans. Following the same process described in section 5.3,

the mode shapes are extracted and compared to fixed sensor results in Figure 5.8.

All five mode shapes that were previously identified in the slow and medium tests

are successfully identified in this random aggregation case as well. The aggregated

results from different speeds show a comparable accuracy with respect to the constant

medium speed test, which has the same sample size. This trial demonstrates that

CMICW is applicable for mobile sensors with generalized speeds. Note that the

sample pool using which these results are derived is still quite small compared to the

data collected on real-world bridges. Bridges that serve a large volume of vehicles

daily represent a wealth of information that can be captured by mobile smartphones.

It is expected that as the sample size grows, the variance of the estimated modal

properties decreases. This is discussed in Section IV.

Table 5.4: Mechanical properties of vehicles used in simulation.

V1 V2 V3 V4 Units

Suspension Stiffness 62.30 128.7 2.7e5 5700 N/m
Suspension Damping 6.0 3.86 6000 290 Ns/m
Sprung Mass 1 1 3400 466.5 Kg
Unsprung Mass 0.15 0.162 350 49.8 Kg
Tire Stiffness 653 643 9.5e5 1.35e5 N/m
Tire Damping 0 0 300 1400 Ns/m
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5.4.5 Incorporating Suspension Effect - a Hybrid Simulation

The mobile carts used in the experiments were stiff; in a real-world scenario with a

moving vehicle, the measured accelerations would be affected by the suspension sys-

tem. This section describes a technique to simulate smartphone-in-vehicle scenarios

using a quarter car suspension model to consider a more realistic dynamical response

[Malekjafarian and OBrien, 2014a]. The process is as described previously with a

new step preceding modal identification: the experimental mobile sensor measure-

ments are fed into a vehicle suspension model. Each individual signal is processed

through a linear state-space model which corresponds to the mechanical properties of

a quarter-car. To consider the case of multiple vehicle sources, the vehicle properties

were selected randomly from the candidates presented in Table (5.4) [Sun et al., 2001,

Bogsjö et al., 2012, Florin et al., 2013, Gillespie and Sayers, 1985]. With this model,

both vehicle speeds and suspension systems can be randomized to better simulate

real traffic on a bridge. The transfer functions of the four cars are found in Figure

5.10. Note that the candidate car types were adopted from other studies, mimicking

real-world vehicles in their dynamical properties. Due to the ride comfort concerns,

the fundamental mode of vehicle suspensions is around 1.0 Hz, and the highly damped

second natural frequency is approximately 10.0 Hz.

Figure 5.9 shows the absolute mode shapes identified by aggregating 80 constant

speed slow scans compared to aggregating 240 one-way scans with mix speed aggrega-

tion, as seen in Section 5.4.4. Additionally, the post-process for both tests remained

the same for a fair comparison. Results are consistent with previous experiments.

The first three modes are found with high accuracy as presented in Table 5.5. Due to

the shape of the transfer functions, certain ranges of the bridge frequency contents are

amplified and others diminish substantially, as depicted in Figure 5.10 (e.g., the fifth

mode, at 25 Hz, has nearly vanished). Overall, this effect reduced the contribution

of higher modes. In addition, Figure 5.10, includes a vertical pattern at five different
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locations, which is not present in Figure 5.5(a). This pattern corresponds to noise

generated by the bumps in the experimental setup. Because different speeds have

been aggregated, the bump-induced impulses affect the entire frequency spectrum.

When the vehicle speed is slow, the effect of these impulses on mode shape estima-

tion is less significant. The result is an accuracy that is comparable with an analysis

using only one-third the sample size. To mitigate the “bump effects”, an average of

the noise bed over the CWT map is removed from the aggregated map.
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Figure 5.9: Identified absolute mode shapes from hybrid simulation using only slow
moving sensors (top row) and aggregation of different speeds (bottom row).
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a) regular b) transfer functions c) hybrid

Figure 5.10: CWT map before and after the hybrid simulation. From (b), higher
frequency contents of the bridge are filtered out by the low amplitude tails of the
transfer functions, resulting no absolute bridge mode extraction within this high
frequency range in (c). This implies that sensing vehicles have to be chosen carefully
in order to observe desired frequency range.
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Table 5.5: Identification accuracy measures for the hybrid simulation. Agg. and est.
stand for aggregated and estimation, respectively.

Mode 1 Mode 2 Mode 3 Mode 4

Reference freq. [Hz] 5.51 9.93 12.34 20.26
CMICW slow freq. [Hz] 5.72 9.67 12.15 20.31
CMICW agg. freq. [Hz] 5.72 10.42 13.38 19.81
Est. error, Slow [%] 3.81 2.62 1.54 0.25
Est. error, Agg. [%] 3.81 4.93 8.43 2.22
Edge lane MAC, Slow [%] 99.52 99.35 94.16 87.76
Edge lane MAC, Agg. [%] 99.86 99.31 89.94 78.35

5.5 Discussion and Conclusion

5.5.1 Statistical Analysis

CMICW can operate exclusively from crowdsourcing. In the previous sections, it

was shown that when the sample size is large, more accurate results are expected.

However, the confidence of estimations with respect to the sample size has not been

investigated. Figure 5.11 presents the identification accuracy of the fundamental

mode using 20 samples versus 480 samples (selected from medium speed scans). The

lines show the average of mode shapes from all individual scans and the shady area

around centerlines indicate the 95% confidence intervals in the estimations. The fig-

ure demonstrates that by increasing the number of samples, not only the accuracy of

the estimations increase (i.e., shape of the mode), but also the confidence of estima-

tions. In the lower part of the figure, the trend of confidence interval width versus

the sample size is presented, consistent with this finding. The fact that the mode

shape identification result eventually becomes more reliable (e.g., 30% reduction in

CI when number of scans grow from 50 to 100) show the promising strength of this

crowdsourcing-based method.

To generalize the scalability of the method, in Figure 5.12, the trends of the

identified modes’ MSE and MAC values are analyzed with respect to the sample size.
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Figure 5.11: Identified fundamental mode using 20 scans versus 480 scans: the con-
fidence interval of the identified points has significantly narrowed by crowdsourcing
more data. Below the confidence interval width vs. number of aggregated scans is
plotted.

For maximum fairness of the trial, 100 random sample sets are picked for each sample

size, and results are averaged. In all cases, as the size of the aggregation pool increases,

it is more likely to predict modal properties accurately. Note that in some cases, one

may pick a very nice subset of the scans, using which the estimation outperforms the

estimations with more samples. This supports the idea that by aggregation of larger

pool of data, the reliability of estimations increases, because they gradually become

less and less sensitive to the quality of individual samples.
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Figure 5.12: Accuracy measures vs. sample size. Both figures confirm that as the
number of scans increases, the error reduces and the accuracy also improves.
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CMICW is prone to intrinsic biases when it comes to the spatial information.

These biases were visible in Figure 5.11 where the reference points (found using fixed

sensors) fall outside the band of confidence interval (e.g., with 480 scans). In other

words, the plot shows that in some locations, the aggregation yields a confident

estimation that is slightly inaccurate (e.g., the reference point at relative location

0.83 in Figure 5.11). In this context, the bias is explained as an unreducible error

in the mode shape amplitudes caused by consistent physical obstacles for a smooth

sensing, such as expansion joints and speed bumps (note that road irregularity is not

a consistent obstacle since it may or may not appear in a single scan). These obstacles

(among other variables) introduce an undesired content to every scan, causing a bias

in the final amplitude of the modal ridges at those location. Since this effect happens

in every scan, it is not reducible by adding more scans to the pool. To better examine

these, Figure 5.13 shows errors in identified mode shapes via different sample sizes.

The red lines indicate the errors in the estimated fundamental absolute mode shape

when compared with the stationary sensors result. The bias between small and large

sample sizes is reduced considerably (in particular, 92% bias reduction between 20

scans and 480 scans), nevertheless, the error is still present in the case with the larger

sample size.

In our experimental setup, there were transversal wires that act as speed bumps

and joints, which can explain the unreducible errors in those locations. To remove

this undesired content, blind source separation techniques can be applied as proposed

in Sadeghi Eshkevari et al. [2020b], Eshkevari and Pakzad [2019b]. In this approach,

given multiple scans over a certain portion of the bridge, algorithms such as ICA or

SOBI can extract the common content - consistent road bumps or joints - as one of

the sources. Once it is extracted, mobile scans can be filtered and the aggregation

will be performed on the filtered signals. The method is implemented here and the

final effect on the unreducible error is presented in Figure 5.14. In this figure, a
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comparison between error values before and after applying ICA demonstrate that the

decontamination technique enhanced the performance of the algorithm. In particular,

the effect on higher modes is more significant.

Relative Bridge Location

N
o
rm

a
li
z
e
d
 E

rr
o
r

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bias Region: 20 Scans

Bias Region: 480 Scans

Residuals: 20 Scans

Residuals: 100 Scans

Residuals: 200 Scans

Residuals: 300 Scans

Residuals: 480 Scans

Reference

Figure 5.13: Unreducible bias analysis based on the first mode shape. As the sample
size grows, the error at stationary locations reduces. However, the error does not reach
zero due to the presence of consistent physical obstacles (here, transversal wires).
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Figure 5.14: Identified mode shape error before and after applying ICA for separation
of the effects of consistent obstacles (here, wire bumps) for the first three modes.
For higher modes, ICA dramatically helped to reduce the error. In particular, the
accuracy of the third mode (right) has improved by 70% after ICA post-processing.

5.5.2 Final Remarks

This study presented and experimentally validated a novel crowdsensing approach for

bridge health monitoring using smartphones. In particular, CMICW method is able

to estimate natural frequencies and absolute mode shapes. The method aggregates

spatio-temporal maps of the individual signals collected by mobile smartphones to

estimate the modal properties of a bridge. In this study, we showed that the approach

has the following advantages:
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• CMICW is a fully crowdsourcing based approach using widely available smart-

phones for bridge modal identification.

• This method does not require synchronized or simultaneous sensors, which max-

imizes its implementation.

• The MAC accuracy of identified mode shapes enhances as more data become

available. In addition, by aggregating more data, the estimations become more

reliable (i.e., narrower CI).

• This method is adoptive over time. If bridge properties change over time,

CMICW gradually updates its estimations based on new data and identify the

variations.

• Vehicle suspension results in a loss of higher modes; however, as long as the

suspension properties of the vehicles that are used in a large dataset are random,

the frequency contents of the suspension itself vanish through the aggregation

process and the lower modes are accurately identified.

• By aggregation of results from different lanes of a bridge, a 3D representation

of the identified modes is achievable.

CMICW was validated using an experimental setup. In summary, the first five

natural modes of the beam setup were targeted for the modal identification (three

vertical and two torsional modes). Three test cases were conducted: (a) 240 medium

speed scans, (b) 80 scans with fast and slow speeds (each), and (c) hybrid simulation

of vehicle suspension. By aggregation of the samples with constant speeds, we were

able to identify all five modes for the slow and medium speed cases and first four

modes with the fast speed case (e.g., first two natural modes with MAC 99% and

frequency estimations within 1.4% error). In the second aggregation strategy, 80

scans from each speed were picked randomly to simulate a more realistic sample set.
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The aggregation resulted all five modes with MAC estimation of > 95% for the first

three modes and frequency estimations within 1.0% error. In the final aggregation

strategy, the same sample set described previously was passed through a random

group of quarter-car suspension models in order to simulate vehicle manipulation of

signals. From this hybrid simulation, the first four modes were identified (e.g., the

first three modes yielded MAC values > 90%). The fifth mode was not identifiable

due to its overlap with the low amplitude range of the vehicle transfer function. The

hybrid simulation also was repeated using only 80 slow scans, that resulted in higher

estimation accuracy (e.g., the first three modes yielded MAC values > 94%).

CMICW is a promising solution for large-scale, fully data-driven, crowdsourcing-

based method for the structural health monitoring of bridges.
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Chapter 6

DynNet: Physics-based neural

architecture design for linear and

nonlinear structural response

modeling and prediction

6.1 Abstract

Data-driven models for predicting dynamic responses of linear and nonlinear systems

are of great importance due to their wide application from probabilistic analysis to

inverse problems such as system identification and damage diagnosis. In this study,

a physics-based recurrent neural network model is designed that is able to learn

the dynamics of linear and nonlinear multiple degrees of freedom systems given a

ground motion. The model is able to estimate a complete set of responses, including

displacement, velocity, acceleration, and internal forces. Compared to the most ad-

vanced counterparts, this model requires smaller number of trainable variables while

the accuracy of predictions is higher for long trajectories. In addition, the architecture
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of the recurrent block is inspired by differential equation solver algorithms and it is

expected that this approach yields more generalized solutions. In the training phase,

we propose multiple novel techniques to dramatically accelerate the learning process

using smaller datasets, such as hardsampling, utilization of trajectory loss function,

and implementation of a trust-region approach. Numerical case studies are conducted

to examine the strength of the network to learn different nonlinear behaviors. It is

shown that the network is able to capture different nonlinear behaviors of dynamic

systems with very high accuracy and with no need for prior information or very large

datasets.

6.2 Introduction

Dynamic response prediction of structural systems has been a great tool for design

and assessment of individual buildings as well as reliability analysis of infrastructure

and large urban areas. Traditionally, this process is executed by building numeri-

cal models of dynamic systems and predicting responses using numerical differential

equation solvers such as Newmark-β method. However, this approach is suitable for

structures with known physical properties (i.e., mass, stiffness, and damping matri-

ces) with very accurate analytical modals for nonlinear components of the structures.

Structural health monitoring (SHM) methods have been effective in identifying me-

chanical properties of the existing structures. Yet, the dynamic response simulation

of an existing system requires a comprehensive SHM phase for model updating [Yuen

et al., 2006, Ching and Beck, 2004, Johnson et al., 2004, Shahidi and Pakzad, 2014].

In addition, for an accurate simulation of a structure with nonlinear components,

emerging technologies such as real-time hybrid simulation are proposed [Christenson

et al., 2008, Ahmadizadeh et al., 2008, Al-Subaihawi et al., 2020]. This approach

is also limited to individual nonlinear structural components and requires advanced
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experimental and numerical devices.

Artificial intelligence has been one of the most useful and promising tools in sci-

ence and technology over the past few decades. In particular, machine learning has

demonstrated a great potential for learning and predicting nonlinear behaviors and

trends in large and noisy datasets [Deng et al., 2014]. Neural Networks (NN) have

shown an exceptional potential as universal function approximators with minimal

need for prior information about the underlying knowledge of a problem [Cybenko,

1989, Leshno et al., 1993]. However, in engineering applications, black-box function

approximators are less favored due to the fact that for many of those, solid under-

lying equations/models exist. Knowledge-based machine learning approach intends

to bridge this gap by contributing governing equations into machine learning models

[Towell et al., 1990].

6.2.1 Artificial Intelligence in Civil Engineering

In general, the major applications of machine learning in civil engineering can be

divided into following categories: (a) system identification (SID); (b) damage de-

tection; and (c) dynamic response prediction of structures. A detailed overview of

machine learning algorithms for damage detection is given in Worden and Manson

[2007], Ying et al. [2013]. In summary, the methods use machine learning algorithms

(e.g., support vector machines (SVM) and multi-layer perceptrons (MLP)) for classi-

fication between damaged and undamaged states of structural components based on

low-level inputs (e.g., motion sensor data). A multi-stage damage detection method

is proposed by Yi et al. [2013] in which signal features are extracted using wavelet

transforms and an MLP network diagnoses whether damage has occurred. Gui et al.

[2017] proposed a method for feature extraction from sensor data time series and

damage classification based on these extracted features using SVM. More recently,

end-to-end damage detection algorithms are emerging in which feature extraction and
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damage detection stages are combined in a single estimator. Abdeljaber et al. [2017]

proposed a vibration-based convolutional neural network (CNN) for direct damage

detection and localization based on sensor time signals. Gulgec et al. [2019] proposed

a one-step vision-based damage detection and localization method via CNN which

uses 2D strain fields as input.

Fewer studies have investigated data-driven methods for system identification due

to the inherited model-dependency of this problem. Some efforts have been made

to reconstruct underlying equations using data-driven algorithms. Brunton et al.

[2016] proposed a look-up approach to reconstruct the governing equation of dynamic

systems using sparse identification. More recent studies investigate machine learning

solutions with model-guided constraints. Raissi and Karniadakis [2018] introduced

hidden physics models that are able to identify underlying physics of dynamic systems

using small datasets. In civil engineering, Sadeghi Eshkevari et al. [2020d] proposed a

data-driven approach for bridge modal identification using mobile sensing data. The

model is highly constrained by the modal superposition law of structural dynamics

and could successfully identify complete modal properties.

In addition to diagnosis and monitoring tasks that are objectives of the previous

studies, data-driven approaches for dynamic response prediction of structural systems

has been of great importance and interest. Finite element analysis (FEA) along with

nonlinear time history analysis (NTHA) has enabled very accurate dynamic response

estimations; however, both techniques are computationally expensive and require de-

tailed information of the system. By emergence of probabilistic reliability analyses of

individual and clusters of structures subject to hazards (e.g., earthquake), it is real-

istically impractical to carry out extensive FEA and NTHA analyses of increasingly

larger systems [Song and Ok, 2010, Mahsuli and Haukaas, 2013]. Therefore, faster,

more flexible, and reliable approaches are highly required.
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6.2.2 Data-driven Dynamic Response Prediction

Dynamic response prediction of structures using statistical methods have been widely

investigated over the last few years. The approaches span from model-based predic-

tions to data-driven models such as autoregressive moving average (ARMA) models

or neural networks. A model-based full state predictor is proposed that incorporates

a prior nonlinear model of the building for experimental response prediction [Roohi

et al., 2019]. Mattson and Pandit [2006] proposed an autoregressive model to predict

major trends of the dynamic response; however, the effect of exogenous input was

remained and considered as residual. In fact, despite their simplicity, ARMA-based

models are limited to stationary and linear systems. To address that, Bornn et al.

[2009] proposed an autoregressive SVM that incorporates nonlinear functionalities

within the prediction equation. Neural networks (NN) have been the most recent ap-

proach for dynamic response prediction due to their flexibility and great performance

in regression problems. The pioneer studies were focused on simple MLP models for

partial one-step ahead response prediction (i.e., predictions include some but not all

of the followings: displacement, velocity, acceleration, and internal force of all degrees

of freedom). Lightbody and Irwin [1996] proposed a single layer neural network in

which the output is a weighted sum of multiple trainable AR models with Tanh ac-

tivation. The study was a breakthrough that enhanced estimator complexities from

individual linear model to a nonlinear ensemble of linear models. By recent compu-

tational developments, deeper MLP networks were utilized for more comprehensive

dynamic response predictions of nonlinear cases. Lagaros and Papadrakakis [2012]

proposed a MLP for one-step ahead response prediction of nonlinear buildings. The

method showed great performance both numerically and experimentally, however, the

prediction was limited to displacement time histories. Note that in general there is no

guarantee for reasonable predictions of other response components (e.g., velocity and

accelerations) using a single component when using data-driven regression methods.
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Therefore, yet more comprehensive predictive models are required.

Theoretically speaking, MLPs are ideal when the input features are fully inde-

pendent. In dynamic response prediction problem, however, a high inter-dependency

between responses at consequent time steps exist. Therefore, other neural network ar-

chitectures have been also utilized for this specific problem. CNNs are known for their

strength in extracting local (e.g., spatial or temporal) features and inter-dependency

of input nodes [Sainath et al., 2015]. In addition, the state-space model of the train-

ing variables is dramatically reduced since fixed sized kernels are being trained rather

than large variable matrices from fully-connected layers. CNNs are mostly used for

computer vision applications in which 2D kernels are applied on pixel pallets. In sig-

nal processing, 1D kernels are more proper choices. A dynamic response predictor for

linear systems using CNNs is introduced in Sun et al. [2017]. More recently, Wu and

Jahanshahi [2019] introduced a CNN-based algorithm for different partial dynamic

response predictions. The most advanced case included prediction of acceleration

response at the roof level of a multi degrees of freedom (MDOF) system given the

ground motion.

Comprehensive dynamic response prediction of nonlinear systems has been inves-

tigated in a few recent studies. Zhang et al. [2019a] confirms that recurrent neural

networks (RNN) are structurally great candidates for structural dynamic response

modeling, however, technically they suffer from gradient-vanishing issue during train-

ing process. In fact, RNN models have been a frequently used architecture in the

previously mentioned models (i.e., all one-step ahead response prediction models are

basically RNN models). Based on this argument, Zhang et al. [2019b] proposes a

long short-term memory (LSTM) architecture for the response modeling in order

to address the gradient-vanishing issue. The primary difference of LSTM models

compared to vanilla RNN models is the special architecture that allows for learning

long-term temporal dependencies. The study successfully predicted displacements,
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velocities, accelerations, and internal forces using the ground motion in different non-

linear cases. However, the model consisted of a large trainable variable space and

required very long training process (i.e., 50,000 epochs).

The same research team has also recently introduced physics-guided models using

CNN and LSTM architectures for dynamic response prediction problem [Zhang et al.,

2019a, 2020]. The studies propose an additional term in the loss function of the

problem which penalizes deviations in the equation of motion when predicted outputs

are plugged in. The studies showed that imposing this new physical constraint helped

to enhance the prediction accuracy. Despite their high accuracy and completeness,

the NN architectures are vanilla versions of the common NN types with no guidance

from the physics. This results in over-complicated networks that require high number

of training epochs. In addition, LSTM model requires a fixed signal length which is

limiting.

In our study, we focus on designing architecture of a recurrent neural cell that

updates the state from current time step to the next (i.e., one-step ahead predictor)

with the neural connections that are inspired by exact numerical differential equation

solvers. We believe that an ideal network is able to predict a response merely based on

current time step of a full state space, as it is hardcoded in the simulation algorithms

such as Newmark-β.

6.2.3 Motivation

As the ubiquity of data-driven methods grows, the generalization and reliability of

these models become more important. The vast majority of the available research

train neural networks with no consideration for solid knowledge that governs the ac-

tual problem in hand. In addition, for engineering applications as opposed to data

science problems, the available data is not extremely large and does not cover the

entire domain of application possibilities (e.g., data is available for a limited domain
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of linear response in operational conditions). These two concerns demand for incor-

porating physics constraints into the architecture design of the NNs. On the other

hand, as the problem holds more constraints, the training process eventually becomes

harder. This study proposes a new approach to impose a special architecture that is

inspired by implicit equation of motion solvers into a recurrent cell for full response

prediction of nonlinear MDOF systems. The proposed network is called DynNet in

this article, standing for dynamic network. Moreover, this study recommends multiple

techniques so that the training process becomes smoother and more reliable.

DynNet is a recurrent cell that performs one-step ahead prediction of the full

state space of MDOF nonlinear dynamic system given a desired ground motion. The

schematic structure of the network is presented in Figure 6.1. This architecture has no

limitation for the length of the signal. Our contribution is to design the architecture

based on implicit dynamic simulation algorithms for nonlinear time history analysis

(e.g., nonlinear Newmark-β method). The key idea is that if the numerical algorithm

is suitable and exact for nonlinear response analysis, a similar architecture has to

be successful in learning the same nonlinear model from raw data. In addition, the

architecture design is inspired by Residual Networks (i.e., ResNet) [He et al., 2015]

that have shown outstanding performances in learning partial differential equations

from raw data. DynNet has significantly smaller dimension compared to the most

accurate counterparts.

In terms of network optimization, this study utilizes second order trust region

method which dramatically reduces required training iterations. Training dynamic

blocks for one-step ahead prediction is highly sensitive to instability. To overcome this

challenge, we introduce projection loss function. In addition, to accelerate learning

ability of the network for nonlinear transitions, a hardsampling technique is proposed

and implemented. Although DynNet is strongly constrained which results in harder

training, its smaller variable space and high constraints enable network training with
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Figure 6.1: Schematic diagram of DynNet and conversion from ground motion to the
structural response.

very limited amount of data. The physical interpretability of DynNet also helps to

model highly severe nonlinear behaviors as well as very long signals, as we will show

in the next sections.

In the following section, the detailed architecture of the network is elaborated. In

Section 6.4 the technical approaches for faster and more robust training process of

DynNet are presented (e.g., the optimization algorithm, loss function, and hardsam-

pling technique). In Section 6.5 two numerical case studies are presented in which

different types of nonlinearity are imposed. The summary of the method along with

the highlights are presented in Section 6.6.

6.3 Physics-based Neural Network Architecture De-

sign

6.3.1 Numerical Solution for Direct Problems

For simulation of dynamic systems, implicit solvers analyze responses at time step i to

derive response at time step i+1. In fact, regardless of the complexity and level of non-
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linearity of the problem, simulators require no further information for one-step ahead

prediction. Relying on this fact, an ultimate simulator that learns from data should

be a dynamic cell that is able to perform one-step ahead prediction with high accu-

racy and low cumulative error. In addition, considering the causality of the dynamic

system as well as its short memory (i.e., a few recent samples are sufficient for the

next step prediction), LSTM models seem unnecessarily over-complicated. DynNet

is a robust one-step ahead dynamic cell that is very sharp in learning nonlinearities

as well as robust to noise. In this study, we do not use a simplified version of existing

networks such as CNN or LSTM, but instead design the internal cell connections in a

way that conforms with common dynamic simulation solvers. The nonlinear version

of Newmark’s algorithm is shown in Algorithm 6 [Riddell and Newmark, 1979].

Algorithm 6 Newmark’s Method for Nonlinear Systems.

1: Input: ui, u̇i, üi, Si, ẍ
g
i , TangentStiffness(.), NonlinearForce(.)

2: a1, a2, a3, C1, C2, C3, C4, C5, C6,M,Γ := Constant
3: p̂i+1 = MΓẍgi + a1ui + a2u̇i + a3üi
4: R(0) = p̂i+1

5: j = 0
6: Kt

i =TangentStiffness(ui, u̇i, üi, Si)
7: while abs(R(j)) < threshold do

8: R(j) = p̂i+1 − S
(j)
i+1 − a1u

(j)
i+1

9: (Kt
i+1)

(j) = (Kt
i+1)

(j) + a1
10: ∆u(j) = ((Kt

i+1)
(j))−1R(j)

11: u
(j+1)
i+1 = u

(j)
i+1 +∆u(j)

12: S
(j+1)
i+1 = NonlinearForce(u

(j+1)
i+1 , S

(j)
i )

13: j = j + 1

14: ui+1 = u
(j)
i+1

15: Si+1 = S
(j)
i+1

16: u̇i+1 = C1(ui+1 − ui) + C2u̇i + C3üi
17: üi+1 = C4(ui+1 − ui) + C5u̇i + C6üi
18: Return ui+1, u̇i+1, üi+1, Si+1

In this algorithm, ui, u̇i, üi are displacement, velocity, and acceleration vectors of

current time step i, respectively. Si and ẍ
g
i are respectively the internal force vector

and ground motion acceleration at time i. In this algorithm, the detailed expressions
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for constant coefficients are discounted. The algorithm consists of a majority of linear

expressions and some nonlinear functions - TangentStiffness(.) and NonlinearForce(.)

- that depend on the defined nonlinearity of the system (the first function returns

tangent stiffness and the second function derives nonlinear story forces based on the

nonlinear model). In particular, the algorithm can be divided into three blocks: (a)

initialization; (b) equilibrium solver; and (c) post-processing. In this organization,

blocks (a) and (c) merely include linear operations. For instance, in Line 16, the

relationship between displacement and velocity of the future time step is a linear

expression.

In addition, block (b) contains a while loop which certifies the equilibrium (i.e.,

Newton-Raphson root finding solution). Intuitively, this while loop incrementally

adds up values to its estimation of ui+1 every time the loop runs. This mechanics

resemble the mechanics of Residual Networks (ResNet) [He et al., 2015] in which the

output of the network is added to the input and fed back to the network repeatedly.

Studies have shown that ResNets outperform other architectures in learning differ-

ential equations from data due to their inherited resemblance to the Euler’s method

[Lu et al., 2017, Chen et al., 2018].

6.3.2 DynNet Components

DynNet is designed to benefit from two intuitive ideas: (1) inspired by the structure of

numerical implicit simulators; and (2) ResNet structure for nonlinearity learning. The

architecture of the network is given in Figure 6.2. The input of the network is identical

to the Newmark’s algorithm. All connections in the network are linear expect for the

internal connections of the ResNet block. The network initially adjusts the dimension

of the input vector via a linear embedding layer. Then, velocity and acceleration of

the structure in addition to the ground motion acceleration of the current time step

are fed into a linear layer to produce Rn
u (equivalent to R in Algorithm 6). Then,
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Figure 6.2: DynNet recurrent cell components.

internal force, displacement, and Ru are concatenated and passed into the ResNet

block. The ResNet block is expanded in Figure 6.2 as well. This block is the sole

component of the network that is able to learn the nonlinear behavior of the dynamic

system. The block is conveniently arranged with stacked fully-connected layers that

are connected with leaky rectified linear units (i.e., LeakyReLU activation functions).

The output of the fifth fully-connected layer is added to the input of the ResNet block

to produce the terminal state of the ResNet block. This terminal state is fed back to

the ResNet block N times (N is a user defined parameter). After N repetitions, the

output is linearly mapped to Si+1 and Xi+1. Given Xi+1, the velocity and acceleration

of the next time step are derived by another linear map. Once the prediction of time

step i + 1 is found, it will be fed back to DynNet for the response prediction of the

consecutive time step (e.g., i+ 2).

The concentrated learning ability that is placed in the ResNet block enables easy

replacement of the simple MLP network with other nonlinear structures (e.g., CNN or

deeper networks). This feature decouples the nonlinearity learning and state transi-

tioning tasks of the network. In other words, for very involved types of nonlinearities,
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one simply requires to modify the structure of the ResNet block (e.g., add extra lay-

ers). However, in this study we found a five layer MLP sufficiently strong for the

test cases. The variable space of the network is highly dependent to the user-defined

embedding dimension. In this study, embedding size is set to eight for all cases, yield-

ing 5, 320 trainable variables. The dimension is significantly lower compared to other

recently developed networks for the same purpose.

6.4 Accelerating Techniques for the Training Phase

6.4.1 Selecting Optimizer

Stochastic first-order methods, including SGD [Robbins and Monro, 1951] and Adam

[Kingma and Ba, 2014], are currently standard optimization methods for training

neural network problems. These methods have a low per-iteration cost, enjoy optimal

complexity, and are easy to implement and applicable to many machine learning tasks.

However, these methods have several issues: (i) they are highly sensitive to the choice

of hyper-parameters (such as batch size and learning rate); and more importantly (ii)

they are not effective for ill-conditioned problems, meaning that for a small change

in the inputs, the outputs can change dramatically. The second issue is quite likely

when dealing with nonlinear structural systems. For instance, in an elasto-plastic

model, there is a bounded relationship between force and displacement within the

elastic range. However, the variations of displacements become extremely large when

the system experiences larger forces (i.e., forces beyond the elastic limit).

On the other hand, second-order methods by utilizing second-order (i.e., curva-

ture) information can address the aforementioned issues. One class of second-order

methods are Hessian-free methods, in which no Hessian is needed to be constructed

explicitly, and only Hessian-vector multiplications are needed in order to update the

neural network parameters. In our study, we utilize a method in the Hessian-free
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Figure 6.3: Optimization trends using different optimizers.

class which is called Newton trust-region approach (TRCG). This is motivated by the

results presented in Figure 6.3 that illustrate the performance of TRCG and some

of the well-known stochastic first-order methods with different choices of hyperpa-

rameters. As is clear from the results, the performance of TRCG by utilizing the

curvature information is noticeably better than the stochastic first-order methods in

terms of loss function value with respect to both iteration and epoch number. Similar

behaviour is also observed in Berahas et al. [2019], Xu et al. [2020]. In every iteration

of TRCG, the following non-convex quadratic sub-problem needs to be solved:

pk ∈ argmin
p∈Rd

Qk(p) =p
T gk +

1
2
pTHkp

s.t. ‖p‖ ≤ ∆k,

(6.1)

where gk is the (stochastic) gradient, Hk is the (stochastic) Hessian, and ∆k is the

trust-region radius at iteration k. The above sub-problem can be approximately and

efficiently solved using CG-Steihaug [Nocedal and Wright, 2006] which is summarized

in Algorithm 7. The output of Algorithm 7, pk, is the search direction in order

to update the neural network parameters. In other words, assume we are at kth

iteration, and the neural network parameters are updated as ωk+1 := ωk + pk. More

details regarding the trust-region algorithm, the strategy for updating ∆k, accepting

or rejecting the steps can be found in Nocedal and Wright [2006].
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Algorithm 7 CG-Steihaug [Nocedal and Wright, 2006].

Input: ε (termination tolerance), gk (current gradient).

1: Set z0 = 0, r0 = gk, d0 = −r0
2: if ‖r0‖ < ε then
3: return pk = z0 = 0

4: for j = 0, 1, 2, ... do
5: if dTj Hkdj ≤ 0 then

6: Find τ ≥ 0 such that pk = zj + τdj minimizes mk(pk) and satisfies ‖pk‖ = ∆k

7: return pk

8: Set αj =
rTj rj

dTj Hkdj
and zj+1 = zj + αjdj

9: if ‖zj+1‖ ≥ ∆k then

10: Find τ ≥ 0 such that pk = zj + τdj and satisfies ‖pk‖ = ∆k

11: return pk

12: Set rj+1 = rj + αjHkdj
13: if ‖rj+1‖ < εk then

14: return pk = zj+1

15: Set βj+1 =
rTj+1rj+1

rTj rj
and dj+1 = −rj+1 + βj+1dj

6.4.2 Projection Loss

In order to train a recurrent block for one-step ahead prediction, the simplest approach

is to minimize the residue between the predictions and the actual values over a mini-

batch in each iteration. However, this approach for training produces very unstable

networks, which are prone to divergence when predicting a long trajectory of responses

given the initial conditions. To address this issue, we introduce and utilize projection

loss that is the basis for the training process in this study.

Projection loss is calculated as the mean squared error of a sequence of responses

predicted by DynNet when compared with the corresponding actual responses. To

produce the sequence of predicted responses, the only given value is the initial condi-

tions at some randomly selected time step. This initial condition is then fed into the

DynNet and the responses are fed back for N times to predict a trajectory starting

from the random initial condition (N is a user-defined projection length). Compared

to the conventional loss function, the projection loss can effectively control the insta-
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bility issue of the neural network. Figure 6.4 demonstrates the effect of loss functions

with different projection lengths on the testing loss.
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Figure 6.4: Optimization trends using different projection lengths.

As shown in Figure 6.4, the length of the projection directly affects the robustness

of the optimization. In fact, when the projection length is two, the network’s infer-

ence diverges (i.e., after multiple steps of recurrence, DynNet outputs explode and it

is outside the shown range in the figure). The best results on the testing data are

observed when the projection length equals to 25. Note that as the projection length

in the loss function increases, the model becomes more optimal for longer trajectory

predictions, however, the training time linearly increases as well. In fact, for loss func-

tions with longer projection lengths, the forward pass and backpropagation steps take

longer and these computations cannot be distributed over the processing resources

(due to the sequential nature of the network inference). In addition, by comparing

results from projection length = 5 and projection length = 25, it is observed that the

former performs better initially (i.e., in lower iterations) while the latter shows its

advantage later on. From this observation, we adopt a sequentially increasing projec-

tion length model in this study. In the following section, the models are trained for

loss functions with projection lengths equal to 5, 10, and 25, respectively; for each,

the models are trained for a fixed number of iterations.
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6.4.3 Hardsampling Technique

For learning highly nonlinear systems, samples may be distributed extremely unevenly

in different behavioral regions. For instance, elasto-plastic systems normally respond

linearly to the major portion of a ground motion, regardless of the intensity of the

motion. In other words, the system undergoes nonlinear deformations occasionally

when a large impact occurs in the input. As a result, the portion of one-step ahead

response transitions that are within elastic region is dramatically larger than the

inelastic region. This induces a severe imbalance in the training data distribution,

which turns out to be detrimental for model’s robustness. Importance sampling is

a technique for online batch selection that is used to circumvent the problem with

unevenly distributed data.

A review of more common batch selection methods are given in Section 7 of

Loshchilov and Hutter [2015]. One of the simplest and most effective approaches for

adaptive batch selection is rank-based selection [Schaul et al., 2015, Loshchilov and

Hutter, 2015]. In this method, during the training phase, samples of each batch are

sorted in descending order based on their function value, and then, their probability

of re-selection is updated based on their ranking. The idea was first employed for

reinforcement learning using temporal difference (TD) as the reference for sample

sorting, and later was adopted for deep learning applications and based on loss func-

tion value. In this study, a similar approach is introduced which is inspired by the

notion of ranked-based batch selection.

In the implemented hardsampling technique, a hardsampling rate r is defined

which is the proportion of samples in the batch that are eventually selected from the

hardsamples. The model starts with randomly selected samples in the first iteration.

At the end of the iteration, the N (is a user-defined hyperparameter) samples with

the maximum contributions in the total batch loss are added to a list of hardsamples.

In fact, the list of hardsamples is a bag of samples that are not learned well by the
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model yet. In the next iteration, the batch samples are selected such that b1 samples

are randomly selected from the entire training samples and b2 samples are randomly

selected from the the list of hardsamples and b2 = br × (b1 + b2)c. At the end of the

iteration, the list of hardsamples is updated and passed to the next iteration. The

process continues accordingly.
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Figure 6.5: Optimization trends using different hard sampling ratios.

To evaluate the effectiveness of the technique, the optimization process is per-

formed with and without hardsampling technique and results are compared in Figure

6.5. In this example, the rate of hardsampling r is 50%. The result clearly confirms

the advantage of hardsampling technique in fast learning and better learning of the

model. Therefore, in this study this technique is also used in the training process of

the models. The approach is adaptive, meaning that the training process automat-

ically picks hardsamples throughout the training process. In engineering problems,

we may have an a-priori hypothesis about the hardsamples. For instance, in the

elastoplastic models, it is expected that one-step ahead response transitions that are

beyond the elastic limit are hardsamples. In the next section, we will confirm that

our adaptive hardsampling technique automatically detects these samples.

171



6.5 Numerical Case Studies

In this section, two case studies are considered to validate the strengths of DynNet

in response prediction of different nonlinear systems. These case studies differ in

terms of the type of introduced nonlinearity to the systems. The first case is a four

degrees of freedom (DOF) system with elastic perfectly plastic springs. The second

model consists of a four-DOF system equipped with nonlinear (3rd order) elastic

stiffeners (schematics of the force displacement behaviors are shown in Figure 6.6).

The governing equations of motion (EOM) for these two nonlinear systems are shown

in Equations 6.2 and 6.3.

mẍ+ cẋ+ f(x) = −mΓẍg. (6.2)

f1(x) =















k0x x ≤ ∆y,

Fy x > ∆y.

f2(x) = k1x+ k2x
3.

(6.3)
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Figure 6.6: Force-displacement relationships of two nonlinear cases.

For the numerical simulation, Newmark’s method for nonlinear systems is used

in MATLAB. For this purpose, 20 strong ground motions are randomly selected

from Center for Engineering Strong Motion Database (CESMD) [Haddadi et al.]. In

addition to that, 10 band limited random time series are synthesized and added to
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the the library of input signals. The earthquake ground motions are scaled using the

wavelet algorithm proposed by Hancock et al. [2006]. The target matched spectra for

twenty earthquake ground motions as well as the mean matched and target spectra

are shown in Figure 6.7. The algorithm scales the time histories in a way that the

response spectrum optimally matches with the target spectrum within the range of

0.2T1 to 1.5T1 (T1 is the structure’s natural period of the first mode).
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Figure 6.7: Earthquake response spectra matched with respect to the target spectrum
and the mean spectrum.

For each case study, the scaled earthquake ground motions as well as random time

histories are simulated to predict structure’s responses (i.e., displacement, velocity,

and acceleration) at all four DOFs. This data include both training and testing

datasets. From 30 simulated ground motions, eight ground motions are randomly

picked to be used as the training dataset and the rest for testing. Note that since

DynNet is heavily constrained by the physics of the problem and enjoys low training

variable space, it is expected that the model is easily trainable with small amount of

training data and also is desirably generalized for a wide range of testing data.

6.5.1 Case 1: Elastic-Perfectly Plastic Model (NL type 1)

In this section, the results on the first test case - a four DOF shear building with

elastic-perfectly plastic stiffness - are presented. The mechanical properties of the
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structure is presented in Table 6.1. In this table, M1 − M4 and K1 − K4 stand

for mass and elastic stiffness values of DOF1 to DOF4, respectively. Fy shows the

stories’ yielding force. To consider the robustness of DynNet, three levels of noise are

also considered (0%, 5%, and 10% noise levels). The network is trained to predict

the full response at all DOFs including displacement, velocity, and acceleration time

histories given the earthquake ground motion.

Table 6.1: Mechanical properties for NL type 1.

Mechanical props. Values Units

M1 0.259 kip.s2/in
M2/M1 1 -
M3/M1 0.75 -
M4/M1 0.5 -
Fy 50 kips
K1 168 kips/in
K2/K1 7/9 -
K3/K1 1/3 -
K4/K1 1/4 -

As concluded in the previous section, the network is trained in a multilevel manner:

1000 iterations with 10-step projection loss, then 1000 iterations with 25-step projec-

tion loss, and finally, 1000 iterations with 50-step projection loss. During the training

process, batch size was set fixed at 1024 (i.e., 1024 one-step ahead transitions). In

total, the network is trained for less than 100 epochs using TRCG optimizer. The

learning curve is presented in Figure 6.8 (nonlinear (NL) type 1). The figure demon-

strates that by increasing the length of projection in the custom loss function, a sharp

drop in the loss function occurs.

As previously explained, the training phase incorporates the proposed hardsam-

pling technique. To evaluate the physical interpretation of automatically selected

hard samples, Figure 6.9 is presented. In this figure, the entire training dataset (in-

cluding eight signals) are shown and divided by vertical lines. The signal portions

that are labelled as hardsamples are color coded in red. Interestingly, hardsamples
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Figure 6.8: Loss function reduction versus iteration: the projection length for loss
function calculation changes at iteration 1000 and 2000 (length equals to 10, 25, and
50 for each portion). The sudden drops in the loss function values at those iterations
show the effectiveness of the proposed training technique.
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Figure 6.9: Locations of hard samples for adaptive sampling in the nonlinearity type
1: as expected, the majority of hard samples are located when large residual displace-
ments occur.

are mostly found when a sudden drop (due to a severe nonlinear behavior) has hap-

pened. This observation confirms that the algorithm reuses highly nonlinear samples

to intensify its learning ability.

To evaluate the prediction performance of the trained network, the prediction

results on one randomly picked testing signal with 5% noise for short and long tra-

jectories are presented in Figures 6.10 and 6.11. The predictions are compared with

the reference signals in both time and frequency domains (velocity predictions are ne-

glected for brevity). For short trajectories (i.e., five second prediction in Figure 6.10),

the performance is promising. Note that the nonlinear baseline variations are accu-
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rately predicted in the displacement time signals. In terms of frequency, the accuracy

of predicted signal is very high. For longer trajectories (i.e., 40 second prediction in

Figure 6.11), the prediction accuracy is as high. The modal peaks in frequency do-

main are captured accurately. Notably, all the baseline variations in the displacement

time signal are predicted accurately using the trained network. Such high accuracy

for predicting severely nonlinear responses are unprecedented in the literature.
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Figure 6.10: Predicted signals for 5 seconds with 5% noise. The plots show that the
network is very accurate in predicting responses for a short future. The same level of
accuracy is visible in both time and frequency representations of the signals.

To further quantify the accuracy of the predictions in all the testing signals, Pear-

son correlation coefficients (PCC) are calculated between predicted and ground truth

signals (40 second predictions) and presented in Figure 6.12. PCC is a measure to

quantify the fitness of predicted trajectories with respect to the ground truth signals

[Weisstein, 2006]. The results for all three noise levels are presented. The histograms

demonstrate the distribution of different prediction accuracy. In general, for all pre-

dicted quantities (i.e., displacement, acceleration, and internal force) and all noise

levels, more than 90% of DynNet’s predictions have PCC above 0.8. Particularly,

force and acceleration predictions are exceptionally accurate. Note that in the noisy

176



NN predicted

actual

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25

0 5 10 15 20 25 30 35 0 5 10 15 20

0 5 10 15 20 25 30 35 0 5 10 15 20

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25

0 5 10 15 20 25 30 35 0 5 10 15 20

0 5 10 15 20 25 30 35 0 5 10 15 20D
is

p
la

c
e

m
e

n
t

A
c
c
e

le
ra

ti
o

n
F

o
rc

e
NN predicted

actual

time (sec) frequency (Hz)

NL Type 1 NL Type 2

time (sec) frequency (Hz)

Figure 6.11: Predicted signals for 40 seconds with 5% noise. The plots show that the
network is still accurate in predicting responses for a longer time. The same level of
accuracy is visible in both time and frequency representations of the signals. Notice
that the displacement prediction for the NL type 1 is strongly nonlinear. However,
the network successfully estimated it.

cases, the likelihood of having very high PCC is inevitably low due to the irreducible

noise. Still, DynNet shows a very good performance in response predictions subjected

to these highly nonlinear signals.

In general, recurrent networks are prone to instability in longer trajectories [Sale-

hinejad et al., 2017]. Error accumulation due to feeding the output of the network

back is reported as the main source of this instability [Holden et al., 2017]. In this

study, by physically constraining the network as well as utilizing projection loss for

training, the model enjoys stability for longer trajectory predictions. Figure 6.13

shows prediction errors for different noise levels with respect to different projection

lengths. For the noiseless case, the mean squared error (MSE) gradually increases as

the trajectory lengthens. However, the error is still very low for very long trajectories

(i.e., 10, 000 one-step ahead predictions equivalent to 200 seconds). Interestingly, for

two noisy cases, except for the lower range of trajectories, the error remains constant

for longer trajectories. This implies that: (1) DynNet is quite stable regardless of the
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Figure 6.12: Pearson correlation coefficient histogram for predicted responses - non-
linearity type 1.

trajectory length; and (2) noisier data tends to discount the increasing error issue for

longer trajectories.
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Figure 6.13: MSE error of the predicted signals vs. the length of projection. As
expected, the error increases as the projection length is longer. However, in all cases
after a rapid jump in the error at the beginning, the error flattens for longer projec-
tions. Notice as expected, noisier signals have higher MSE errors.
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Finally, to verify the strength of DynNet in identifying the nonlinear behavior,

hysteresis diagrams for a randomly picked signal and different noise levels are shown

in Figure 6.14. The DynNet estimated signals could very accurately capture the linear

tangent of the spring force. In addition, the transition to nonlinear region is learned

very accurately (normalized force values are exactly bounded within -1 to 1). The

same level of accuracy is noticeable in all noise cases.

− 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3 0.4

− 1.0

− 0.5

0.0

0.5

1.0

10% noise

− 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3 0.4

− 1.0

− 0.5

0.0

0.5

1.0

− 1.00 − 0.75 − 0.50 − 0.25 0.00 0.25 0.50 0.75 1.00

− 0.2

− 0.1

0.0

0.1

0.2

5% noise

displacement (scaled)

− 1.00 − 0.75 − 0.50 − 0.25 0.00 0.25 0.50 0.75 1.00

− 0.2

− 0.1

0.0

0.1

0.2

displacement (scaled)

− 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1 0.2 0.3 0.4

− 1.0

− 0.5

0.0

0.5

1.0
NN predicted

actual

− 1.00 − 0.75 − 0.50 − 0.25 0.00 0.25 0.50 0.75 1.00

− 0.2

− 0.1

0.0

0.1

0.2

s
p
ri
n
g
 f

o
rc

e

0% noise

displacement (scaled)

re
s
to

ri
n
g
 f

o
rc

e

N
L
 T

y
p
e
 1

N
L
 T

y
p
e
 2

Figure 6.14: Hysteresis diagram in two nonlinearity cases at the first floor and for
different noise levels. Both sets of results confirm the promising performance of the
network in learning different nonlinear behaviors.

To further investigate the scalability and generalization of the trained DynNet, the

nonlinear responses of the structure subjected to different magnitudes of a selected

earthquake ground motion are inferred and compared with the numerical solutions.

Four levels of magnitude are considered in this analysis: 0.5x, 0.85x, 1.0x, and 1.2x

(compared to the normalized ground motion). The results are presented in Figure

6.15. In this plot, dotted lines show exact simulation results while solid lines rep-

resent DynNet predictions. Results of internal forces and displacements for the 1st

DOF are shown for brevity. Internal forces are very accurately predicted in all four

levels of magnitude of the ground motion. The accuracy is lower in the displacement

predictions, however, the relative trends and lower amplitudes are carefully captured

by DynNet. Note that the selected ground motion contains a strong shock-wave at
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∼ 380th time step which causes severe nonlinear response and baseline shift (residual

deformation) in the displacement predictions. The model, however, is still successful

in following the exact variations of the building responses.
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Figure 6.15: Response predictions for a ground motion with different magnitudes.
This figure demonstrates the generalization of the trained NN model. Note that
dashed lines show the actual responses from the numerical simulation. Despite strong
nonlinear behavior, all four different magnitudes are predicted very accurately.

6.5.2 Case 2: Nonlinear Elastic Model (NL type 2)

In the second case study, a 4-DOF structure with nonlinear elastic springs is studies.

For the nonlinear springs, a 3rd order polynomial behavior is introduced which can

model a hardening after initial pseudo-linear phase (see Figure 6.6). Due to the

elasticity of the model, no residual displacements are expected here. Mechanical

properties of the building are presented in Table 6.2. In this table, M’s and K’s are

defined as explained before. k1 and k2 are coefficients of the 3rd order restoring force

equation (Equation 6.3). The training process is identical to the previous case study.

DynNet requires no pre-processing or special accommodation for different nonlinear

models. The model is trained for the same number of iterations and epochs as the

previous test case. Loss function variation over the iterations is shown in Figure 6.8.

Again, sudden drops in loss values are detected when the projection length of the

custom loss increases.
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Table 6.2: Mechanical properties for NL type 2.

Mechanical props. Values Units

M1 0.340 kip.s2/in
M2/M1 0.8 -
M3/M1 0.75 -
M4/M1 0.6 -
K1 100 kips/in
K2/K1 3/4 -
K3/K1 1/2 -
K4/K1 1/4 -
k1 1 -
k2 10 in2

The nonlinear response predictions for a randomly picked ground motion from

testing data are presented in Figures 6.10 and 6.11 (short and long trajectories, re-

spectively). As before, DynNet shows a promising performance in nonlinear response

predictions, both in time and frequency domains, regardless of the length of trajec-

tory. To evaluate the predicting performance of the trained neural network on the

entire testing data, PCC coefficients are calculated and the distributions are shown

in Figure 6.16. Note that similar to the previous test case, three levels of measure-

ment noise are considered for both training and evaluation phases of the network loss

function.

In Figure 6.16, the general note is that the number of very high accuracy predic-

tions (i.e., with PCC above 0.8) is not as high as the previous case, especially when

measurement noise is introduced. However, for noiseless and 5% additive noise cases,

the results show high accuracy. Histogram of displacement and internal force re-

sponse predictions show a unimodel distribution with the mode at PCC ∈ [0.95, 1.0].

In terms prediction stability for longer trajectories, regression MSE error with respect

to length of prediction trajectory is presented in Figure 6.13. Again, as observed in

the PCC histograms, two lower noise cases show a steady trend of MSE loss as the

trajectory length increases while the 10% noise case is not as stable. Notice that the
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values of MSE errors generally are significantly lower in the NL type 2 (nonlinear

elastic case) compared to the NL type 1 (elastic-perfectly plastic) while histograms

show higher accuracy for prediction of the latter model. This observation is explained

by the inelastic behavior of the NL type 1 model which can cause baseline shifts (i.e.,

residual deformations). We showed that DynNet is successful in capturing baseline

variations, even though a small discrepancy causes much larger MSE errors for these

response predictions. The baseline variations are not expected in the elastic model.
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Figure 6.16: Pearson correlation coefficient histogram for predicted responses - non-
linearity type 2.

Finally, in order to validate the ability of the neural network to predict nonlinear

elastic behavior of the spring forces, hysteresis diagrams are plotted in Figure 6.14.

The restoring force here includes both the elastic spring force and the damping force

(i.e., cẋ + f(x) in Equation 6.2). According to these plots, DynNet predictions very
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accurately match with the simulation results. The 3rd order behavior of the spring as

well as the small energy dissipation area caused by the damper force is identified and

correctly predicted. In higher noise levels, the prediction shows higher fluctuations

around the exact plots which can be simply explained by the high level of noise.

6.6 Conclusion

In this study, we proposed a data-driven approach for comprehensive prediction of

nonlinear dynamic responses of multi degrees of freedom (DOF) systems using Neural

Networks. In particular, inspired by common implicit dynamic analysis algorithms,

DynNet block is designed as a one-step ahead response predictor. By repeatedly in-

ferring the block, long response trajectories are predicted. Compared to the most

advanced data-driven methods, DynNet has significantly smaller variable space, re-

sulting less computational effort per iteration. Due to physics-based constraints of the

proposed architecture, the network required more advanced optimizers for a smooth

and efficient learning process. With this regard, trust-region approach using CG-

Steihaug (TRCG) algorithm was implemented. In addition, for more efficient learn-

ing, a simple hardsampling technique as well as trajectory loss function was developed

and implemented which resulted in faster learning of severely nonlinear transitions.

For verification, DynNet was tested in two nonlinear case studies: a four DOF

shear building (1) with elastic perfectly plastic stiffness, and (2) with nonlinear elas-

tic (3rd order) stiffness. For each test case, three levels of measurement noise were

included to evaluate the noise propagation characteristics of the proposed network.

The networks were trained using less than 30% of the available data and evaluated

using the remaining 70%. In both test cases, we showed that the network quite

successfully was able to predict a complete set of nonlinear responses including dis-

placement, velocity, acceleration, and internal force time histories at all DOFs given
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the applied ground motion only. The stability of the predictions for longer trajectories

was analyzed and concluded that for the majority of cases, DynNet holds the error

level stably as the trajectory length grows. In addition, using hysteresis diagrams,

we showed that the performance of DynNet in capturing nonlinear behaviors of the

springs is promising.

Data-driven function estimators are extremely popular in science and technology,

however, in engineering applications due to the availability of accurate governing

equations and numerical solutions, fully black-box function estimators are less ac-

cepted. This study tries to bridge the gap between black-box models and available

exact solutions to create a fast learner function estimator. It is believed that Dyn-

Net can create a great potential for faster regional disaster sustainability and health

monitoring analyses.
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Chapter 7

Input Estimation of Nonlinear

Systems using Probabilistic Neural

Network

7.1 Abstract

Mobile sensors that are carried by drive-by vehicles are great candidates for crowdsens-

ing of transportation infrastructure. The primary challenge for free and widespread

utilization of such sensors is low signal to noise ratio. Vehicle scans are highly con-

taminated by road profile roughness as well as the dynamics of the vehicle suspension

system. In this research, a learning-based filter is designed to decontaminate the

vehicle-collected signals in order to extract the input. In other words, the neural

network is a nonlinear deconvolution filter for a specific vehicle. Given this filter,

one can simply collect data within the vehicle cabin and deconvolve it to achieve its

input, which is a more pure version of structural dynamics. The proposed network

architecture is trained and tested with real data collected by different vehicles and

simple set of sensors. The study demonstrates that the proposed recurrent architec-
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ture successfully estimates the input of the vehicle systems. In general, the proposed

methodology is for estimating a nonlinear transfer function between two locations

of a dynamical system in which the sensing-desired location is inaccessible while the

other location is in reach.

7.2 Introduction

7.2.1 Vehicle Input Estimation using Neural Networks

The problem of input estimation has been of great interest among researchers in

many fields, such as mechanical, structural, and aerospace engineering. In this prob-

lem, the objective is to estimate the driving forces of a dynamic system (e.g., linear

or nonlinear) given a subset of the system’s state. As expected, the problem can be

formulated in a variety of complexities: single input and single output (SISO), mul-

tiple input and multiple output (MIMO), and any combinations in between. In case

of a building subjected to a base excitation (e.g., an earthquake), a full state vector

includes vibration responses at all degrees of freedom (e.g., story accelerations) while

the input is applied on only one degree of freedom (e.g., the ground level), resulting

a single input and multiple output (SIMO) system. With the same logic, a vehicle

suspension system can be observed as a MIMO system considering each tire as an

input point and cabin translational and rotational accelerations as outputs.

The applications of input estimation vary depending on the nature of the prob-

lem and the field. In earthquake engineering, it is desired to estimate the ground

motions in the buildings that are not comprehensively instrumented on the ground

level. This problem has been thoroughly investigated, mostly by using structural

models (e.g., finite element) as the baseline. One popular approach to this problem

is to concatenate the input vector to to the state vector to produce an augmented

state and perform state tracking algorithms such as various versions of Kalman Filter
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[Gillijns and De Moor, 2007, Lourens et al., 2012, Maes et al., 2016]. Despite the

wide applicability of the methods, they are found to be susceptible to instability and

un-observability issues [Naets et al., 2015]. One primary challenge for the applica-

tion of such methods is their reliance on an available baseline model of the structure.

This can be partially overcome with preliminary or simultaneous system identifica-

tion. Nevertheless, the baseline model is not always available and additional system

identification may not be possible.

For the main application of this thesis (e.g., mobile sensing using vehicle-carried

sensors), the vehicle input is considered to be significantly less contaminated by the

vehicle suspension and less noisy, resulting in more suitable signals for bridge health

monitoring or road condition assessment. In fact, in the field of indirect bridge health

monitoring, contact point (CP) response is found significantly more informative and

less disrupted [Yang et al., 2018, Nayek and Narasimhan, 2020, Eshkevari et al., 2020].

In fact, the vehicle suspension acts as a band-limited transfer function that filters out

and manipulate the content that enters the systems through the CPs at the tire

level. Therefore, by reversing this filter, a substantially more informative data can be

extracted.

Recently, a few studies proposed input estimation methods based on simplified lin-

ear vehicle models. Yang et al. [2018] proposed a closed-form solution for calculating

the contact point input of a SDF vehicle suspension model given its cabin response.

The solution is based on a fully known vehicle model. Despite the simplifying assump-

tions, the study could demonstrate the substantial improvement in the bridge system

identification results when CP estimations are used instead of the cabin responses.

The improvements could minimize the detrimental impact of high speed sensing as

well the overlap between vehicle and bridge modal frequencies. The study has been

fully based on numerical analysis. A Gaussian process latent force model is proposed

to jointly estimate the state and the input of a known MDF vehicle system by Nayek
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and Narasimhan [2020]. The proposed model is evaluated using numerical trials and

found beneficial for bridge modal identification, in particular, to retrieve information

regarding the higher bridge modes that were overshadowed by the vehicle transfer

function.

However, due to the nonlinearity, complexity, and variety of the vehicle physical

models, it is preferred to design an approach that accomplishes the the input estima-

tion with no need for a baseline model or simplifying assumptions such as a simplified

and linear vehicle suspension and fully known vehicles. However, the majority of com-

mercial vehicles are equipped with nonlinear suspension systems (nonlinear stiffness

and damping) [Demir et al., 2012] in order to maximize the ride comfort. The same

argument is also valid for built structures; modern controlling and lateral resisting

systems are nonlinear. Considering these, In this study a recurrent neural network

framework is introduced that is able to learn the nonlinear transformation between

the input and the output of dynamic system and exploits the learned information to

estimate future inputs of the system in order to expand the applicability and minimize

the limiting constraints.

7.2.2 Network Architecture and Training

Deep learning has shown great potential as universal function approximators for learn-

ing complex relationships and patterns from raw data. In particular, recurrent neural

architectures have been widely used for signal regression tasks over the past years. In

linear time invariant dynamic systems, the exact transfer function of a system can be

replaced with a finite impulse response (FIR) filter. However in nonlinear systems,

the previously mentioned impractical. The state transition equation of a dynamic

system is shown in Equation 7.1.

Xk+1 = AXk +Bpk (7.1)
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where Xk is the full state vector of the system at time step k, A and B are

characteristic matrices of the system, and pk is the applied load at time step k.

For nonlinear systems, A and B are not constant matrices but functions of time

or a transformation of the state vector. This state equation usually pairs with an

observation equation using which the measurement vectors and full state vectors are

related. In the direct problem, given pk and initial state X0, we showed in Chapter

6 that the full state space can be estimated in a data driven fashion with no need

for available estimates for A and B. In this chapter, the idea is to study the inverse

problem: given Xk for k ∈ 1 : T and a prior estimate for pT , it is desired to estimate

pk for k ∈ 1 : T − 1. This problem is equivalent to deconvolution of the system’s

response. Note that in case of linear systems, the methods proposed in Chapter 3 or

Yang et al. [2018] are right candidates. Here, the proposed neural network functions

as a nonlinear deconvolution filter to estimate the system’s input.

A schematic overview of the proposed framework is given in Figure 7.1. In this

figure, the neural network is represented as a recurrent neural network (RNN) block

that at each time step, processes the input and output values inside the L-shaped

binder to predict the one-step backward estimation of the input (e.g., contact point

force in vehicle systems). This process is repeated until the maximum possible length

of the input signal is estimated. In this framework, the input and output signals

correspond to the CP and the cabin accelerations, respectively. Note that the figure

depicts a SISO case in which the number of response channels equals to one. However,

in multi degrees of freedom systems, the network dimensions grow accordingly with

no change in the structure or the pipeline.

As it is shown, the network unravel the input signal in a reverse order. This

is not a necessity, however, it is more practical to estimate the initial force at the

same time as the latest entry of the response slice. On the other hand, the forward-

unraveling option is more desired for real-time input estimation. In this study, the
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Figure 7.1: Schematic diagram of the input estimator network.

reverse-unraveling approach is adopted due to its slightly better performance. The

structure of the RNN block is given in Figure 7.2.

The architecture incorporates fully-connected layers for transitioning between two

consecutive time steps. The data flows through two stages in the network: shared lay-

ers and channel-specific layers. Channels can be either different output axes, degrees

of freedom, or types (here by output we refer to the network. However, physically

speaking, the output of the network is the input of the dynamic system). By using the

shared layers, the number of trainables is reduced significantly. In contrary, our pre-

liminary experiments showed that by solely defining shared layers, the performance
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Figure 7.2: Details of the network architecture.

is noticeably lower.

A general shortcoming of the learning-based regression models is that the pre-

diction is a deterministic tensor (e.g., a scalar or a set of values). In classification

task, however, the final output of the network is class probabilities which is useful for

uncertainty analysis. For example, In case of risk-averse problems, by setting higher

bars for the classification probabilities, it is possible to enhance the accuracy of the

classification predictions with the expense of lowering the recall. Such estimation

reliability analyses are not possible when the neural network outputs deterministic

results. To address that, we introduce a probabilistic learning-based regression model

that estimates a normal distribution, instead of a single value, for the regressed pre-

diction. During the training process, the optimization objective is to push the mean

values of the normal distributions to the actual labels and shrink the variance for

highly confident estimations. For inference, one can either sample randomly from the

normal distributions or merely pick the mean values (i.e., the most probably estima-

tion value). From Figure 7.2, the last layer of each channel-specific network predicts

µ and σ using which the normal distribution is constructed. The standard deviation

σ is a good indicator of network’s confidence regarding a regression prediction.
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7.2.3 Training Process and the Objective Function

To train the novel probabilistic regression model, conventional loss functions are not

applicable. In contrast, the loss function has to follow the same formulation as of the

policy gradient methods in reinforcement learning applications [Sutton and Barto,

2018]. The RNN block can be interpreted as a policy network in which the state is

defined as the input of the neural network (i.e., a slice of the system’s response) and

the action is the best estimate of the neural network’s output (i.e., the system’s input

- base excitation or CP vibration) at the previous time step. With this analogy, the

loss function is defined as the following:

L(θ) = − log(p(a|πθ(s))) + Lproj(π
θ, nproj) (7.2)

p(a|πθ(s)) is the probability of taking action a in state s given policy πθ. The sec-

ond term of the loss function is the projection loss (introduced previously in Chapter

6) with the projection length of nproj and using policy πθ. In the first term, s in-

cludes the inputs of the neural network and a is the corresponding output values. As

this term becomes smaller, we ensure that the network’s output distribution is more

likely to predict values that are close to the actual outputs. The second term of the

loss function also attempts to enhance the regression results for longer projections

in a conventional MSE minimization manner. In this term, an increasing geometric

factor is element-wise multiplied to the outputs to put more weight on the accuracy

of further estimations.

For the training using this loss function, Newton trust-region approach is adopted

due to its outstanding performance compared to linear methods such as Adam. The

training process consists of two phases: 50 epochs with projection length of five and 20

epochs with projection length of 50. Depending on the experiment, the architecture of

the network is modified in order to handle the proper number of output channels. This
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variation causes different number of trainable parameters. Regardless, the dimension

of the RNN has been always less than 15K.

In the following sections, different case studies are investigated and results are dis-

cussed. In Section 7.3, a quarter-car model is numerically simulated and the input is

estimated. In Section 7.4, a real-world building is studied and the ground excitations

are estimated. Finally, in Section 7.5, the experimental data collected by a real-world

vehicle is analyzed and the input prediction task is performed.

7.3 Case One: Numerical Vehicle Input Estima-

tion

To evaluate the performance of the proposed network, a linear quarter-car model of a

commercial vehicle is simulated in MATLAB for synthetic data generation. The model

car travels over different rough roads with roughness profiles generated in accordance

to the ISO8608:2016 spectrum [ISO, 2016] (road class C). in each simulation, the

vehicle drives over a 1000 meters long road with a fixed speed of 5.0 meters per

second. The vehicle’s cabin acceleration as well as the input vibration (tire level

acceleration) are saved respectively as the output and the input of the system. The

objective is to predict the tire level accelerations given the cabin acceleration respond

using the trained neural network.

In total, five scans are simulated: four used for training and one for testing.

In addition, to investigate the noise effect the network is trained for three different

signal-to-noise ratios.

As shown in Figure 7.1, the input of the RNN block includes a slice of the cabin

vibrations and one value of the vehicle input. The slice length is a hyper-parameter

of the proposed method. Based on our preliminary trials, slice length of 10 is found

to outperform other values. In Figures 7.3 and 7.4 the estimated input signal for
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Figure 7.3: Input estimation at different noise levels. Time window is 200.0 seconds.
From left to right: SNR = 100, SNR = 20, and SNR = 10.
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Figure 7.4: Input estimation at different noise levels. Time window is 1.0 second.
From left to right: SNR = 100, SNR = 20, and SNR = 10.

the testing case are compared with the original signal in two different scales. The

frequency domain comparison is also presented in Figure 7.5. In general, the input

estimation is very accurate in all cases. An expected drop in accuracy is noticed with

the SNR decreases. Root mean square error (RMSE) values of the power spectral

density (PSD) differences are also given in Figure 7.5 which confirms higher accuracy

in less noisy cases.

To quantify the uncertainty of the regression estimations of network, the proba-

bilistic neural network predicts an standard deviation for each estimation. This value

is associated to the confidence level for that estimation. In other words, when the

standard deviation of a prediction is lower, the network estimates the value with

higher confidence. In Figure 7.6, histograms of standard deviations are plotted for

different noise levels. The spike with the lowest range corresponds to the least noisy

case and the range increases for noisier cases, confirming that the model is quite

confident about its regression predictions when the model is less noisy. This finding
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is anticipated when the additive noise is manually included. However, when dealing

with real data, the histogram of standard deviations enables to quantify the confi-

dence of regression predictions or to distinguish less noisy channels of data, to name a

few application. Consequently, due to the recurrent nature of the network inference,

as the extent of standard deviation values increases, the neural network estimations

accumulate larger errors.
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Figure 7.5: PSD of the input estimations at different noise levels. From left to right:
SNR = 100, SNR = 20, and SNR = 10.
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Figure 7.6: Histogram of standard deviations for different noise case: as the noise
level increases, the standard deviations increase implying less confident regression
estimations.

Learning-based solutions for engineering problems are often being criticized for

their lack of interpretability. In recent years, deep learning community has been

focused on developing fair methods to interpret and attribute the outputs of the

network directly to its input features. Doing so, one can analyze whether the trained
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network make predictions by heavily relying on theoretically-related features or not.

In this study, we use integrated gradients which represents the integral of gradients

with respect to the inputs throughout the network’s depth from a given output back

to the input layer [Sundararajan et al., 2017]. The final product of this method is

a relative importance map of the input features with respect to one channel of the

output. The results of this analysis is presented in Figure 7.7.

In this case study, the input and output signals are unidirectional, meaning that

the system’s input has only one channel and therefore one importance map can be

produced. The feature importance analyses of all three noise levels are presented in

the same figure. From Equation 7.1, it is expected that in a noiseless scenario, given

the full state vectors in two consecutive times (e.g., Xk+1, Xk), the input pk can be

estimated (in a linear time invariant system). Since the used signals in this case study

are accelerations, the full state vector can be derived by numerical integration. There-

fore, in a noiseless case, it is expected that the network only requires a few sequential

acceleration samples right before time k in order to predict pk. Interestingly, this can

be confirmed in Figure 7.7. In case of SNR 100 (the lowest noise), the accelerations

at the three latest time steps almost fully determine the network prediction. As the

noise level increases, however, the effect of previous output (ut−1) value as well as

more distant acceleration samples increase. This finding is fully in accordance to our

expectation from the physics of the problem.

7.4 Case Two: Real-World Building Input Esti-

mation

The application of interest in this study is to propose a data-driven solution for ve-

hicle input estimation since it is a critical step for indirect bridge health monitoring.

Yet, in this case study a real-world multi degrees of freedom building is considered
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Figure 7.7: Feature importance analysis of the trained neural network: as the noise
level increases, the importance of samples with further time differences increase.

to elaborate on the application of the proposed network for input estimation of other

types of dynamic systems. For this purpose, the vibration data from a six-story Hotel

in San Bernardino, California is exploited which is provided by the Center for Engi-

neering Strong Motion Data (CESMD). The database provides building vibrations in

two horizontal axes for multiple earthquake incidents, among which, 12 earthquake

recordings are used for this case study. The data is split equally to training and

testing. The building geometry as well as the sensor layouts are presented in Figure

7.8.

Since the ground motion is not available from the sensing data, the vibrations of

first floor is considered as the the input to the upper stories (channels 1 and 3 from

Figure 7.8), and data collected at the roof and the third floor is used as the output

(channels 4, 5, 7, and 8 from Figure 7.8). The objective is to predict the earthquake

acceleration in the first floor given the response at the roof and the third floor. The

acceleration slice window is set as 10 as before. The network training process is also

exactly as explained in the previous case study. After training, the input estimation

results for one of the testing earthquakes is plotted and presented in Figures 7.9 to

7.10.

As the figures present, the accuracy of earthquake estimation is remarkably high in
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Figure 7.8: Six-story hotel building in San Bernardino, CA: plan and sensor layout
(adopted from www.strongmotioncenter.org).
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Figure 7.9: Input signal predictions in two horizontal axes. Long time projection is
presented (∼ 60 seconds).

both channels. The prediction comparison in the frequency domain also demonstrates

that the prediction captures peaks and valleys quite precisely, especially in lower half

of the frequency band. By visual inspection of the figures, it is noticeable that the
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Figure 7.10: Input signal predictions in two horizontal axes. Short time projection is
presented (4 seconds).
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Figure 7.11: PSDs of the input signal predictions in two horizontal axes.

predictions in channel 0 are slightly more accurate compared to channel 1. To quantify

the input estimation performance of the trained network for all testing signals, the

network is inferred repeatedly with the different testing earthquakes, random starting

points, and projection lengths. The accuracy measures of all these test cases are

presented in Figure 7.12.

The figure shows that the correlation coefficients of the input estimations are al-

most always near one (i.e., exact). In terms of the MSE of the time signals, the

distribution is located very close to zero while the range of values in channel 0 is

significantly narrower compared to channel 1. The same pattern is found also in

the frequency domain MSEs. The near perfect input estimations for this real-world

case study confirms that the proposed learning based method is quite feasible for

input estimation in different mechanical systems. In terms of different levels of accu-
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Figure 7.12: Histograms of the accuracy measures over the testing signals: (top)
correlation coefficinet, (center) MSE in time domain, and (bottom) MSE in frequency
domain.

racy between input channels, one can judge the network’s performance by evaluating

the confidence of the network predictions. For that, the histograms of predictions’

standard deviations for both channels are presented in Figure 7.13.

From Figure 7.13, one can realize that the network is less confident about re-

gressing values of channel 1 compared to channel 0. This result is consistent with

the previous findings in Figure 7.12. Again, the probabilistic nature of the regres-

sion predictions in our proposed method enables to quantify prediction confidences

in different channels with no need for evaluation with labelled data.

Finally, to interpret the contributions of the neural network features, the inter-
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Figure 7.13: Histograms of standard deviations for two axes.

pretability analysis in accordance to Sundararajan et al. [2017] is performed on the

trained network. The importance maps for both channels are presented in Figures

7.14 and 7.15. Channel ids match the indices previewed in Figure 7.8. As expected,

for predicting building input at channel 0 (east-west direction), the output channels

that are in parallel to it contribute more noticeably (e.g., channels 4 and 7). The same

is also true for the perpendicular channels. In addition to that, it is found that the

importance decreases for the output samples with more distant times. Interestingly,

this decaying importance observation is less obvious in channel 1. This can suggest

that the building response in the north-south direction is not as linear as the other

direction which results in a stronger dependency to the distant outputs.
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Figure 7.14: Importance map of the network features with respect to channel 0.
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Figure 7.15: Importance map of the network features with respect to channel 1.

7.5 Case Three: Real-World Vehicle Input Esti-

mation

In the final case study, an experiment was designed and conducted in order to collect

data from a real-world vehicle at two locations: vehicle cabin and in proximity to

the contact point. The contact point of the vehicle is practically inaccessible for a

sensor device. Therefore, a practically feasible location is chosen and a manually

assembled sensor bundle was attached to that location. The sensor was wirelessly

communicating with a computer which was held by the operator in the passenger’s

front seat. The cabin sensor was attached to the dashboard of the vehicle. The sensor

layout is presented schematically in Figure 7.16. As it is show in this figure, sensor

2 is mounted on the lower control arm which is found to be one of the most suitable

locations for the vehicle input collection. The arm is a solid beam attached to the rim

and is located right before the spring and the shock absorber throughout the pathway

starting from the tire’s contact point to the vehicle cabin.

The sensor bundle used for vehicle input sensing is shown in Figure 7.17 (similar

configuration is used for the cabin sensor). The bundle consists of three components:

(1) Raspberry Pi board, (2) ADXL345 accelerometer, and (3) power source. The

Raspberry Pi is selected for data processing and storage due to its low cost, easy
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Figure 7.16: Schematic view of quarter-car model and sensor locations.

programming, and wireless connectivity. ADXL345 is a low cost 3-axis accelerometer

which is compatible with Raspberry Pi and easily programmable. The acceleration

range and sampling frequency can be tuned based on the application and required

accuracy. To select these parameters, a lab-scale experiment was conducted on a single

degree of freedom system and the accuracy of network predictions were compared for

data collected with different sensor settings. Based on this preliminary study, the

sampling frequency of 500Hz and acceleration range of ±16.0g were set for the final

experimental trial.

For the road test, a Kia Forte 2020 was equipped with the sensor sets. The instru-

mented vehicle was driven over roads with different roughness conditions, including

recently paved, poor condition, and gravel roads near Lehigh University campus area.

In total, 23 scans of 50, 000 samples were collected. The vehicle speed was mostly

kept within 10− 12.5mph, however, in rare situations of traffic accumulation behind

the testing car, the speed varied. The collected data were then preprocessed to be

prepared for the training. The preprocessing phase included the following steps: (1)
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Figure 7.17: Assembled sensor setup: the main board is a Raspberry Pi and the
sensing device is an ADXL345 accelerometer.

signal resampling in order to even the time intervals between samples, (2) signal fil-

tering using a band-limited filter, and (3) downsampling to 100Hz. Filtering and

downsampling steps reduce high frequency noise as well as measurement drifts in the

collected signals. After preprocessing, signals are normalized linearly by a factor of

ai = µi + 3σi in which i is the index of a randomly picked signal. µi and σi are mean

and standard deviation of the samples in signal i. This approach for normalization is

found to yield better performances compared to other conventional methods.

7.5.1 Results

The training process of the real-world vehicle experiment is the same as the previous

case studies. From 23 scans, 10, 1, and 12 are randomly picked for training, eval-

uation, and testing, respectively. Note that the majority of data are kept unseen

for better performance assessment. As an important note, in this experiment the

vehicle’s suspension system is assumed as a quarter-car. Based on this assumption,

the objective is to predict 3-axis vibrations at sensor 2 given collected responses at

sensor 1. However to be more accurate, the vehicle can receive input from all four
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tires, meaning that a more realistic scenario is to train the network based on inputs

at all four tires given a complete set of vehicle cabin vibrations. In this study, the

simplified version of the problem is investigated in expense of a lower input prediction

accuracy.
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Figure 7.18: Input signal predictions in three axes. Long time projection is presented
(70 seconds).

To evaluate the performance of the input estimations, the reconstructed input

signals for one of the testing samples are presented in Figures 7.18 to 7.20. Figures

generally confirm that the input estimation is performed quite accurately in all three

axes. The nonstationary nature of the input is evident in the time signals (e.g.,

several high amplitude spikes). Still, the trained network successfully estimated the

patterns. Figure 7.20 presents a comparison between predicted and original signals

in the frequency domain. The trends, peaks, and baselines of the original PSDs are

carefully represented in the predicted signals as well.

To quantify the accuracy of the input estimations, from each testing sample, 50

input projections with randomly picked length and starting point are made. In this

analysis, the lower bound of the projection length is set to 200. For each projection,
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Figure 7.19: Input signal predictions in three axes. Short time projection is presented
(4 seconds).
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Figure 7.20: PSDs of the input signal predictions in three axes.

the accuracy is measured using the correlation coefficient, the MSE of the signal in

time domain, and the MSE of the signals in frequency domain. The accuracy mea-

sures from this analysis are presented in Figure 7.21. Figure 7.21 (top) demonstrates

that the distributions of the correlation coefficients are located in different ranges de-

pending on the axis. For instance, in channel 2 the upper bound of the coefficients is

0.9 with an average near 0.75. These numbers are lower for channel 0 and channel 1,

respectively. The correlation coefficient is a good measure to quantify the general co-

herence of two signals. However, for more detailed comparison, the MSE histograms

are also presented.
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Figure 7.21: Histograms of the correlation coefficients (top), the MSEs in time (cen-
ter), and the MSEs in frequency (bottom) from 50× 12 random projections. Results
are presented for three different axes.

From Figure 7.21 (center and bottom), it is hard to distinguish the channel with

the most accuracy in the time and frequency predictions since the range and mean

values are quite similar. This implies that the trained network should have had

nearly the same confidence for predicting regression values in all three channels. To

investigate that, the histograms of standard deviations are presented in Figure 7.22.

In this figure, in contrast to the case shown in Figure 7.6, the standard deviations are

not very different. One can notice that channel 0 is marginally inclined to the left

(implying higher confidence in this channel), however, the difference is not strong.

In other words, given the histograms of Figure 7.22, it is expected that performance

of the trained network in all three axes is nearly identical. More importantly, this
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finding is not a result of post-analysis using an available or labelled dataset, but it is

readily available through the inference of the probabilistic network.
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Figure 7.22: The histograms of standard deviations for three axes.
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Figure 7.23: Input signal prediction with 95% confidence interval band: low confident
points are marked with circles.

In addition to general confidence assessment over the entire signal or output chan-

nel, the resulted standard deviations are useful to detect low confidence predictions in

a local scale. Figure 7.23 present the predicted and original signals and also highlight

the 95% confidence interval of the predictions. The strong majority of the predicted

samples fall inside the confidence band which confirms the strength of the trained
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network. The outliers marked with circles indicate samples that the model cannot

predict successfully, even considering the confidence interval. The number of such

points can also be a good measure of the network performance. Finally, the inter-

pretability of the trained network is analyzed. Figure 7.24 presents the importance

factors of the network’s input features. As expected, due to the highly nonlinear

nature of the vehicle suspension, severely noisy data, and the contribution of vehi-

cle inputs from other tires, the importance patterns are not as explainable as in the

previous cases. Yet, in all three channels the importance of the more distant time

steps decreases. This is consistent with our general expectation regarding causal dy-

namic systems. In addition, the cross-channel contributions are quite common in

the experimental case (i.e., the contributions of channels perpendicular to the output

channel are high). For instance, all three channels of the vehicle’s input are strongly

contributing in predicting neural network output at channel 1 (Figure 7.24b) which

is dissimilar to the findings of the previous test cases. In this test, the alignment of

sensors at the two locations (Figure 7.16) were dictated by the best available attach-

ing surface; therefore, the sensors are mounted with arbitrary angles with respect to

each other. As a result, the projections of multiple channels are expected to influence

the prediction of each sensor channel in the vehicle’s cabin.

In comparison to Figures 7.7 and 7.14, it is noticed that the real vehicle case has

higher dependency to the input of the last time step (ut−1). Intuitively, in all three

case studies, the proposed neural network has two objectives: (a) to estimate the

different of vehicle’s inputs in two consecutive times steps (i.e., ut−1 − ut−2) and (b)

to estimate the vehicle’s input at the unavailable time step given the available input

value (e.g., to predict ut−2 given ut−1). When ut−1 is available, the second task is

quite trivial. Still, in the two first case studies the importance factors of ut−1 were

comparatively small meaning that the networks were easily able to to predict the

unavailable vehicle’s input directly from the vehicle’s output (i.e., the networks did
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not require the supplemented ut−1 to find ut−2). Nevertheless, in the third case, the

critical role of the given vehicle’s input is more clear. The trained network learned

to fulfill task (a), but was disabled to estimate the initial vehicle’s input directly.

Therefore, the supplemented initial value could play a critical role and contribute

significantly in the regression accuracy.

7.6 Conclusion

In this chapter, the inverse problem is dynamical systems was investigated in which

the objective is to estimate the input given the dynamic response of the system. The

problem is of great importance in different engineering fields. In particular, to achieve

a realistic and accurate framework for bridge health monitoring using vehicle data

crowdsourcing, the estimation of the vehicle’s contact point input is critical. Thus,

a probabilistic neural network architecture is proposed to learn the nonlinear and

complex connection between the output and the input of the dynamic system with

no prior characteristic information about the system. The network is then a robust

filter for estimating the input of the dynamic system. The findings of this chapter

are as follows:

• the study showed that the idea of using neural networks for input estimation of

nonlinear systems is feasible and can yield to high accuracy input estimations.

• Compared to the alternatives, (1) this method is not limited to linear systems,

(2) is fully based on practically available data types such as acceleration, and

(3) requires no prior information of the physical system.

• The common approach for signal estimation is to utilize regression models.

A probabilistic neural network is proposed to enable probabilistic perspective

towards the predictions of regression models. Using this approach, one can

quantify the certainty of the model for a given prediction.
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• Using network interpretability methods, the importance maps of input features

were presented and intuitively explained.

• Three case studies were explored, among which two were based on real-world

structures (a building and a vehicle). In both applications, the proposed method

resulted in accurate input predictions in all available data channels.

• In the case of real-world vehicle, an inexpensive sensor bundle is introduced

and assembled. The Raspberry Pi based sensor bundle can be easily used for

vibration analysis of structures in other research areas.

211



y t � 10 y t � 9 y t � 8 y t � 7 y t � 6 y t � 5 y t � 4 y t � 3 y t � 2 y t � 1 u t � 1

ch0

ch1

ch2

(a) channel 0

y t � 10 y t � 9 y t � 8 y t � 7 y t � 6 y t � 5 y t � 4 y t � 3 y t � 2 y t � 1 u t � 1

ch0

ch1

ch2

(b) channel 1

y t � 10 y t � 9 y t � 8 y t � 7 y t � 6 y t � 5 y t � 4 y t � 3 y t � 2 y t � 1 u t � 1

ch0

ch1

ch2

(c) channel 2

Figure 7.24: Importance map of the network features with respect to different chan-
nels.
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teristic dynamic increment for extreme traffic loading events on short and medium

span highway bridges. Engineering Structures, 32(12):3827–3835, 2010.

Albert-Laszlo Barabasi. The origin of bursts and heavy tails in human dynamics.

Nature, 435(7039):207, 2005.

H. Wang, F. Calabrese, G. Di Lorenzo, and C. Ratti. Transportation mode inference

from anonymized and aggregated mobile phone call detail records. In Intelligent

Transportation Systems (ITSC), 2010 13th International IEEE Conference on In-

telligent Transportation Systems, pages 318–323, 2010.

Pu Wang, Timothy Hunter, Alexandre M Bayen, Katja Schechtner, and Marta C

González. Understanding road usage patterns in urban areas. Scientific reports, 2:

1001, 2012.

Lauren Alexander, Shan Jiang, Mikel Murga, and Marta C González. Origin–
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Amin Anjomshoaa, Fábio Duarte, Daniël Rennings, Thomas Matarazzo, Priyanka

de Souza, and Carlo Ratti. City scanner: Building and scheduling a mobile sensing

platform for smart city services. IEEE Internet of Things Journal, 2018.

Mohammed M Vazifeh, P Santi, G Resta, SH Strogatz, and C Ratti. Addressing the

minimum fleet problem in on-demand urban mobility. Nature, 557(7706):534, 2018.

Kevin Robert Gurney, Paty Romero-Lankao, Karen C Seto, Lucy R Hutyra, Riley

Duren, Christopher Kennedy, Nancy B Grimm, James R Ehleringer, Peter Mar-

cotullio, Sara Hughes, et al. Climate change: Track urban emissions on a human

scale. Nature News, 525(7568):179, 2015.

Emanuele Massaro, Chaewon Ahn, Carlo Ratti, Paolo Santi, Rainer Stahlmann, An-

dreas Lamprecht, Martin Roehder, and Markus Huber. The car as an ambient

sensing platform [point of view]. Proceedings of the IEEE, 105(1):3–7, 2017.

Sandeep Sony, Shea Laventure, and Ayan Sadhu. A literature review of next-

generation smart sensing technology in structural health monitoring. Structural

Control and Health Monitoring, 26(3):e2321, 2019.

Shamim N Pakzad, Gregory L Fenves, Sukun Kim, and David E Culler. Design

and implementation of scalable wireless sensor network for structural monitoring.

Journal of infrastructure systems, 14(1):89–101, 2008.

Jerome P Lynch and Kenneth J Loh. A summary review of wireless sensors and

sensor networks for structural health monitoring. Shock and Vibration Digest, 38

(2):91–130, 2006.

215



Masahiro Kurata, Junhee Kim, Yilan Zhang, Jerome P Lynch, GW Van Der Linden,

Vince Jacob, Ed Thometz, Pat Hipley, and Li-Hong Sheng. Long-term assessment

of an autonomous wireless structural health monitoring system at the new carquinez

suspension bridge. In Nondestructive Characterization for Composite Materials,

Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011, volume

7983, page 798312. International Society for Optics and Photonics, 2011.

Thomas J Matarazzo, Paolo Santi, Shamim N Pakzad, Kristopher Carter, Carlo

Ratti, Babak Moaveni, Chris Osgood, and Nigel Jacob. Crowdsensing framework

for monitoring bridge vibrations using moving smartphones. Proceedings of the

IEEE, 106(4):577–593, 2018.

Qipei Mei, Mustafa Gül, and Marcus Boay. Indirect health monitoring of bridges using

mel-frequency cepstral coefficients and principal component analysis. Mechanical

Systems and Signal Processing, 119:523–546, 2019.

Qipei Mei and Mustafa Gül. A crowdsourcing-based methodology using smart-

phones for bridge health monitoring. Structural Health Monitoring, page

1475921718815457, 2018.

AJ Kleywegt and KC Sinha. Tools for bridge management data analysis. Transporta-

tion Research Circular, (423), 1994.

Ian FC Smith. Studies of sensor data interpretation for asset management of the built

environment. Frontiers in Built Environment, 2:8, 2016.

CW Lin and YB Yang. Use of a passing vehicle to scan the fundamental bridge

frequencies: An experimental verification. Engineering Structures, 27(13):1865–

1878, 2005.

YB Yang and KC Chang. Extracting the bridge frequencies indirectly from a passing

vehicle: Parametric study. Engineering Structures, 31(10):2448–2459, 2009.

216



Jennifer Keenahan, Eugene J OBrien, Patrick J McGetrick, and Arturo Gonzalez.

The use of a dynamic truck–trailer drive-by system to monitor bridge damping.

Structural Health Monitoring, 13(2):143–157, 2014.

Patrick J McGetrick, Chul-Woo Kim, Arturo González, and Eugene JO Brien. Experi-
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Appendix A

Discussion on the Generality of the

Methods

In this part, we implement the proposed pipelines on a shorter bridge (300m single

span) with a road roughness profile adopted from ISO8608:2016 [ISO, 2016] (consid-

ering road class C). In this case, the possibility of the methods is examined in (a)

a shorter bridge, (b) with a realistic road profile roughness spectrum, and (c) with

closely-spaced vehicle and the bridge frequency contents. The bridge is supported by

rigid constraints from both ends and is modeled as a 5, 000 DOF concrete beam in

Opensees. The nodal mass of each DOFs is set to 1039 Kg with 10.4m2 and 51.5m4

cross-sectional area and moment of inertia, respectively. Based on these mechanical

properties, the first four natural modes of the bridge have the following frequencies:

0.40 Hz, 1.11 Hz, 2.18 Hz, and 3.61 Hz. The vehicle properties are adopted based

on Table 3.1 and the sensing pattern is identical with the previous cases. From the

frequency values, the vehicle natural mode is located closely after the fourth natural

mode of the bridge which adds complexity, especially for applying Method 2.

Figure A.1 shows the deconvolution effect on the vehicle response FRF and Figure

A.2 presents identification results from applying Method 1. Deconvolution using the

241



0 1 2 3 4 5 6 7 8 9 10
10

4

10
6

10
8

0 1 2 3 4 5 6 7 8 9 10
10

2

10
4

10
6

10
8

frequency (Hz)

DFT of vehicle response after deconvolution

DFT of vehicle response inside the room

Figure A.1: FRF deconvolution results for ISO8606 roughness and 300m bridge
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Figure A.2: FRF+SOBI with ISO8606 roughness and 300m bridge

transfer function could extract the highly-damped mode at frequency about 5Hz that

associates with the vehicle fundamental model. In addition, from Figure A.2, the

natural mode shapes are acceptably identified (MAC values ranging from 0.9195 to

0.9718).

For Method 2, the primary challenge is that the 4th natural mode of the bridge is

very close to the frequency content of the vehicle and EEMD is not able to perfectly

extract the vehicle mode out the mixed signal. To address this problem, frequency

shifting approach [Senroy and Suryanarayanan, 2007] can be adopted. In this ap-

proach, the frequency contents can be modulated into a lower range while keeping

their distance. This helped to escape the undesired frequency ratio ([Rilling and

Flandrin, 2008]) and allows EEMD to separate modes. Modal identification results

from Method 2 are presented in Figures A.3 and A.4. Figure A.3 demonstrated

that EEMD-based method can be successful for the deconvolution tasks in cases

with closely-spaced frequencies. Identification results also are fairly acceptable with

MAC values ranging from 0.7870 for the fourth mode to 0.9185 for the first mode

(as expected, mode 4 has the least accuracy because of its closeness to the vehicle
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frequency). Generally it is concluded that the proposed methods are suitable for a

wide variety of bridges, however, the frequency contents proximity or overlap has a

detrimental effect on the final output. In addition, note that the simulation algorithm

used in this study is a simplified method which is very accurate for slowly-moving

vehicles that cross long bridges in operational mode [Sadeghi Eshkevari et al., 2020c].

This sensing situation is a very practical case; however, further analyses are required

to generalize the applicability of the proposed SID algorithms for scenarios that are

different from our base case.
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Figure A.3: EEMD deconvolution results for ISO8606 roughness and 300m bridge
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Figure A.4: EEMD+SOBI with ISO8606 roughness and 300m bridge
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Appendix B

Modal Aggregation

In STRIDEX, MSR function maps mobile measurements to stationary virtual probing

locations (VPLs) and iteratively calculate the best estimate for structural parameters

using expectation maximization (EM) algorithm. In the original studies of STRIDEX,

the minimum model size is selected such that the number of VPLs is equal to the

number of moving sensors. The number of VPLs can be set to p×N , where N is the

number of mobile sensors and p is the model order. With an increased p, a higher

spatial resolution is produced for the identified mode shapes can be achieved. For

this study, however, the same number of VPLs as mobile sensors has been considered.

Four model orders, p = 1, 2, 3, and 4 have been analyzed here. For each model

order, 11 VPL sets have been presumed and superposed to enhance mode shape

resolutions. Each VPL set consists of eight VPLs with equal spacing, and with

a certain eccentricity. In total, for each analysis, 11 × 4 = 44 output sets exist,

each consists of estimated modal properties. For aggregating these, an automated

algorithm has been adopted. For a certain desired mode, the algorithm automatically

produces a perfect sine-shaped mode shape estimation (e.g., half-sine for mode one,

full-sine for mode two), and check the dissimilarity between identified mode shape and

this preliminary estimation for each file. Those sets that have dissimilarity measures
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less than a certain threshold (used 0.72 to 0.74), are selected and combined to shape

the final identified mode shapes. The dissimilarity measure used in this study is

the second norm of y − ỹ or y + ỹ. If the second expression governs, it means that

the mode shape is accurate but inverted. In addition to the dissimilarity condition

for output selection, sets with damping ratios over %30 are excluded as well. This

automated algorithm accelerate mode shape reconstruction process significantly and

keep it more controlled.
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Appendix C

Auxiliary Identifications - Road

Profile and Vehicle Suspension

The procedure of bridge signal extraction consists of distinct steps for vehicle effect

separation and roughness-caused vibration separation. With this notion, one may be

interested to exploit byproducts of the processes for different objectives, i.e. road

roughness profile estimation and vehicle suspension identification. SOBI as the linear

mix separator of both methods computes two signal channels, one of which was used as

bridge vibration for SID. The other channel theoretically shall correspond to the road

roughness profile. In Figure C.1 the second extracted channels from SOBI (identified

roughness profiles) are compared with three predesignated profiles.

Location domain shown in Figure C.1 is just a small portion of the entire path that

is selected for more clarity. FRF approach is more successful in accurately estimating

roughness profile. In fact, in the case of random profile, EEMD method does not

extract an acceptable signal as the road profile estimation. An important difference

between the two approaches in this study is the necessity of pre-identification of

the vehicle. In fact, FRF approach needs vehicle characteristics as a given which

was created by a preliminary SID of the vehicle while traveling over normal roads.
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Figure C.1: Roughness profile estimation - FRF method on left, EEMD on Right

However, in EEMD approach, vehicle identification is not required and the method

can produce the vehicle effect as an IMF. Therefore, this IMF is assumed to be the

pure vehicle response and by representing it into the frequency domain, the vehicle

natural frequencies shall be identified. Figure C.2 shows these analyses for the three

cases of interest.
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Figure C.2: IMF corresponding to vehicle - spatial and frequency representation

Figure C.2 illustrates that the IMF extracted as the vehicle response is exactly

showing a large spike on the location of the vehicle fundamental mode. Note that
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because of the low sampling frequency for the discrete simulation of the vehicle, the

second natural frequency is not clearly visible.
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