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ABSTRACT

The reactivity and selectivity of a chemical reaction may be significantly enhanced

by the confining effects of hierarchically structured, heterogeneous, porous frame-

works. While the composition of such frameworks span organic, metal-organic, and

inorganic building units, their underlying feature is the presence of unique microp-

orous topologies, which have a propensity for stabilizing adsorbates mainly through

long-range dispersive interactions. Upon adsorption, the molecule is confined to the

space of the framework’s pore, where it sacrifices its degree of freedom (entropy)

in favor of stabilizing interactions (enthalpy) with the framework structure. Under

isothermal-isobaric conditions, the balance between entropic loss and enthalpic gain

is dictated by the extent of confinement, which regulates the spontaneity, or ther-

modynamic favourability of the process. Excessive entropic loss may promulgate

frameworks to act as molecular sieves, where prohibitively large species that can-

not fit within their voids are excluded from adsorption and/or the reaction space.

Likewise, insufficient confinement may result in the adsorbate merely equilibriating

with the bulk gas phase, lacking the stability necessary to catalyze a particular pro-

cess. Optimal confinement occurs when the geometry of the adsorbate matches the

framework topology, acquiring enough stability to promote their respective reactions

without limiting the product’s rate of desorption, the reactants rate of adsorption,

or limiting the formation of reactive intermediates. The continued discovery of new

frameworks, and the hypothetical existence of hundreds of millions of others, make it

conceivable and even likely that the optimal framework for many catalytic processes

has yet to be discovered. Confinement driven heterogeneous catalysis is therefore a

multifaceted problem; and despite our detailed understanding on an individual ba-

sis, our mechanistic understanding and ability to make empirical predictions remains

limited.
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In this thesis, we elucidate the phenomena of confinement by: 1) presenting its

geometric relationship with the adsorption entropy, and the ability to make empirical

predictions through interpretable linear correlations, 2) measuring confinement from

a kinetic perspective on a zeolite promoted reaction system, and evaluating factors for

framework optimization, 3) identifying readily quantifiable, geometric features of the

adsorbate/framework system for rapid prediction of the adsorption entropy within

zeolites.
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CHAPTER 1

INTRODUCTION

Heterogeneous porous frameworks promote the reactivity and selectivity of reactions

through their internal porous structures. Zeolites are a class of crystalline microp-

orous frameworks which consist of channels with diameters on the order of 1-10Å. On

the atomic level, their building units are composed of silicon atoms which are tetrahe-

drally coordinated to four oxygen atoms. In their purely siliceous forms, zeolites are

charge neutral and have a propensity for gas adsorption with the ability to catalyze

reactions through the confining nature of their channels.[1] Brønsted acid sites may

be incorporated into the structure to further enhance reactivity; and they are formed

by substituting the central silicon atom with an aluminum atom, which imparts a

partial negative charge on the surrounding oxygen atoms that is compensated by a

Bønsted proton. A Bønsted acid site is illustrated in Figure 1.1, where the transition

state for a Diels-Alder reaction is stabilize by interacting with 1) the proton of the

Brønsted acid, and 2) the framework channel of a zeolite named H-ZSM-5. Naturally,

molecules with geometric diameters larger than the channel dimensions cannot adsorb

or be generated within the framework. However, this effect may be much more subtle,

such that the reaction becomes selective toward species that better "fit" within the

channels.-a phenomena termed "Confinement".[2]

Despite there existing only a handful of unique zeolite frameworks (only 232 in

2017.[3]), determining the optimal zeolite for catalyzing a particular reaction con-

tinues to be a major challenge in the field. The extent of zeolite catalysis depends

upon the degree of stability among rate enhancing intermediates and/or transition

states. Although the reaction space of a system is multi-dimensional, it may be il-

lustrated by a free energy diagram, where the peaks and troughs are dictated by the

system’s thermodynamic free energies as a function of the reaction coordinate. Figure
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1.1 shows the free energy diagram for the Diels-Alder cycloaddition reaction between

ethene and isoprene, with corresponding thermodynamic free energies plotted on the

y-axis against each step of the reaction. Five products are possible between the re-

actants, which are color-coded according to their meta-/para- regiochemistries. The

bold lines represent the unpromoted gas-phase reactions, which show two equilibrium

states: the reactants and products, and a single non-equilibrium state: the transition

state. In order to generate the product, the reactants must traverse through this

transition state, which is also the largest thermodynamic free energy point along the

path. The difference in free energy between the transition state and the reactants

dictates the rate of product formation, which can be optimized by modifying the tem-

perature (the probability that the reactants are in a high energy state) and pressure

(probability that the reactants will collide). However, this transition state barrier is

fundamentally determined by nature, and therefore the rates of product formation

across all temperatures and pressures of the system are predefined.

Confinement imparted by the zeolite directly changes this free energy diagram,

such that frameworks which better accommodate the shape of the transition state

have smaller barriers. This is illustrated by the dashed lines in Figure 1.1, which show

the zeolite promoted transition state free energies for each reaction are smaller relative

to their unpromoted gas-phase reactions. Therefore, by manipulating the free energy

surface, a catalyst can further accelerate the rate of a reaction. The promoted paths

in Figure 1.1 also include two additional equilibrium states: the adsorbed reactants

and products, which are typically assumed to be barrierless relative to the transition

state. However, despite the smaller transition state barrier, there is the possibility of

the zeolite over-stabilizing the reactants or products, such that the intrinsic barrier

between the transition state and reactants is too large, and the reactants withold

from reacting, or the products fail to desorb. Confinement is therefore multi-faceted;

4



where the optimal environment favors stabilizing rate controlling intermediates and

transition states, while allowing reactants and products to adsorbed/desorb.

Figure 1.1: Free energy diagram of the Diels-Alder reaction between ethene and iso-
prene. the bold lines represent uncatalyzed gas-phase reactions, dashed lines represent
zeolite catalyzed reactions. The reaction products, and corresponding coordinates are
color-coded by their regio-chemistry.

An adsorbate’s free energy can be deconstructed into contributions from ener-

getic and entropic effects, where the former is a measure of the favorable molecule-

framework dispersive interactions with the framework, and the latter is a measure

of the unfavorable loss in the degrees of freedom of the molecule upon adsorption.

Chemical reactions are typically ran under conditions of constant pressure and tem-

perature, where the free energy of a closed system is defined by the Gibbs free energy:

∆G0 = ∆H0 − T∆S0 (1.1)

where ∆G0, ∆H0 and ∆S0 are the Gibbs free energy, the enthalpy, and the en-

tropy, respectively; where the superscript 0 indicates that the change is measured

at some standard state (usually 298 K and 1 bar). Reactions can therefore be opti-
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mized through the manipulation of these thermodynamic quantities by selecting the

appropriate zeolite framework. Apart from the few documented zeolite frameworks,

millions of hypothetical structures have been proposed based purely on geometric and

energetic considerations[4]. It is therefore likely that the best frameworks for many

reactions have yet to be discovered.

Within the uncatalyzed, ideal gas-phase, the entropy of a molecule can be rigor-

ously calculated through fundamental statistical mechanical expressions. Ultimately,

a molecule’s entropy can be dissected into its respective vibrational, rotational, and

translational degrees of freedom. Upon adsorption the molecule experiences a frac-

tional loss in these modes commensurate to the size and shape of the framework struc-

ture, with the largest contributions to the entropy (translations and rotations) being

impaired first; while the smallest contributions (vibrations) being largely preserved.

It is therefore conceivable that geometric descriptors of the adsorbate/framework

system should be capable in characterizing the adsorption entropy. In Chapter 2 we

discuss the recent discovery of linear correlations between the entropy of the molecule

in the adsorbed state and its standard gas-phase entropy within two dimensional

catalytic surfaces[5, 6], and acidic/siliceous zeolites[7, 8]. We demonstrate how these

entropic trends within zeolite frameworks can be computationally reproduced through

Monte-Carlo simulations; and show that they are governed by physical, geometric,

and readily quantifiable characteristics of the adsorbate/framework system. The work

in this Chapter has been published within "The Journal of Physical Chemistry C"

by Rzepa et al.[8]

The relationship between the adsorption entropy and the geometric aspects of the

adsorbate/framework system suggest that machine-learned models, based on con-

veniently obtained physical descriptors, can be used to predict the thermodynamic

quantities of rate determining intermediates and transition states. Consequently, the
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extent of catalysis for a particular reaction may be readily predicted across many

zeolite frameworks and thereby optimized. In Chapter 3 we determine the extent

of confinement for a zeolite promoted reaction, and subsequently perform a kinetic

analysis to determine the rate inhibiting intermediates and transition states. Ulti-

mately, our analysis serves to establish a reference point for the kinetics and ther-

modynamics of the reaction, from which one may apply future models to optimize.

In this chatper, we investigate the [4 + 2] Diels Alder (DA) reaction, henceforth

called "DA reaction", which couples conjugated olefins to form six-membered cyclic

products with various regio-chemistries. This particular reaction was chosen because

it makes for an excellent archetype to study confinement-driven catalysis. Namely,

this class of reactions has been well studied and extensively used within the pharma-

ceutical, agro-chemical, and oleochemical industries. DA reactions can occur uncat-

alyzed, being thermally driven to completion, but homogenous Lewis/Brønsted acid

salts have been shown to promote them.[9, 10, 11, 12] Instinctively, acidic zeolites

make for an excellent candidate to study their promotion; and recent experimental

and computational studies have demonstrated this, but have been largely limited to

furans.[13, 14, 15, 16, 17, 18, 19] The preservation of regio-chemistry throughout the

reaction allows for precise control over the bulkiness of the reaction intermediates and

transition states. In other words, a judicious choice of reactants can tailor transition

states and products that "better fit" within the zeolite channels. The collection of

computationally identified intermediates, transition states, and their thermodynamic

values may then be fed into a reactor model, where macroscopic values such as the se-

lectivity and rate controlling intermediates/steps can be determined. The work in this

Chapter is currently under peer review within the "Catalysis Science and Technology

Journal" published by the "Royal Society of Chemistry". In Chapter 5 section 5.1

we discuss a future outlook on how machine learned models may be used to optimize
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this reaction.

Linear correlations are inevitably limited in their predictive capabilities; and given

the vast realm of framework structures and candidate molecules, it becomes apparent

that more predictive models are necessary in capturing complex structure-entropy

relationships. Novel machine learning approaches based on topological features and

atomistic graphs appear promising. In particular, machine learning models have

shown to be adequate in predicting candidate structures for applications such as

adsorption capacity[20, 21] and gas separations[22]. In Chapter 4 we show the limita-

tions of the linear correlations from Chapter 2 through an expanded data set of almost

four thousand zeolite-adsorbate systems. We transcend the predictive capabilities of

linear correlations by building neural network models using readily-quantifiable geo-

metric descriptors of the adsorbate/framework systems. Finally, we perform a local

sensitivity analysis across each system in our data set to determine the most signif-

icant descriptors in predicting the adsorption entropy and infer their relationship to

the principle of confinement.
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CHAPTER 2

COMPUTATIONAL INVESTIGATION OF

CORRELATIONS IN ADSORBATE ENTROPY FOR

PURE-SILICA ZEOLITE ADSORBENTS

2.1 Motivation

Zeolites are crystalline, microporous frameworks that consist of unique channels and

cages and have a propensity for gas adsorption. They have been historically used

in light-gas separations and cracking of petrochemical feedstocks [23, 24]. More-

over, millions of hypothetical structures of zeolites have been proposed purely based

on geometric and energetic considerations [4]. As a result, much work has been

devoted to optimizing additional applications, such as methane storage [25, 26], car-

bon capture [27] and flue-gas treatment [28]. However, due to the large number of

frameworks, identifying a zeolite whose geometry is well-suited to adsorb a particular

molecule is difficult. This is further exacerbated by diffusion limitations [29], the real-

ities of framework synthesis [30], thermal and mechanical stability, and postsynthesis

treatment [31, 32]. Amidst these practical challenges, a reasonable first criterion for

finding a suitable candidate is based on the thermodynamic spontaneity of the ad-

sorption process, which is provided by the free energy of adsorption or, equivalently,

the contributions from energetic and entropic effects.

Within siliceous zeolites and other neutral frameworks, the adsorption enthalpy

is related to the strength of the van der Waals interactions between the molecule

and pore [33]. On the other hand, the adsorption entropy can be interpreted as

the measure of confinement associated with adsorption [7, 34, 35], where a molecule

loses mobility and its degrees of freedom become hindered. The largest contribu-

tors to the entropy, translation and rotation, are the first to be impaired, while the
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smallest contributor, vibration, is commonly assumed to be preserved. Techniques,

such as gravimetry [36], chromatographic adsorption [34], and infrared operando

spectroscopy [37], provide experimental routes in measuring the adsorption entropy.

However, performing experiments for many molecule-framework combinations is im-

practical. Computational experiments of adsorption therefore make for an attrac-

tive alternative. Nevertheless, there remain caveats. For example, quantifying the

entropy using ab initio-based methods (such as density functional theory) is com-

putationally demanding [38, 39, 40, 41, 42] or relies on approximations [39]. Such

approximations include (1) limiting translation to the surface area of the zeolite [43],

which artificially restricts the entropy to a surface term; (2) invocation of the "har-

monic approximation" based on the assumption of a very strong fluid–solid interaction

that renders translations and rotations unimportant; or (3) employing the hindered

translator/rotor model [44]. On the other hand, (classical) Monte Carlo (MC) and

molecular dynamics simulations have proven successful in accurately calculating the

adsorption entropy [45], with the primary limitation being the number of force fields

available to accurately model the adsorbate–adsorbent interaction.

Although these simulations are numerically cleaner compared to experiment be-

cause they involve analyzing efficiently a greater number of molecule–zeolite com-

binations, it remains overwhelming to apply them to the millions of hypothetical

frameworks. Novel topology-based, data-driven approaches have been shown to be

adequate in predicting specific features such as adsorption capacity [27] and selectiv-

ity [22]. However, there are currently no similar models for entropy.

The use of empirical correlations offers an expedient route in predicting sensible

thermodynamic quantities without resorting to experiments or simulations. De Moor

et al. [33] used ab initio simulations to show that adsorption enthalpies and entropies

for n-alkanes within acidic zeolites are linearly correlated with their carbon number.
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Campbell and Sellers compiled a collection of experimental alkane entropies on two-

dimensional catalytic surfaces [5, 6]. The key finding of their work was that the ratio

of the adsorbed-phase entropy to the gas-phase entropy was approximately two-thirds.

They proposed a general and elegant explanation, suggesting that the adsorption of

a molecule from an unhindered gas phase onto a two-dimensional (2D) surface would

eliminate a dimension of translational freedom, i.e., the adsorbate behaves as a 2D

gas. This correlation was found to hold across many molecules, spanning 50R of

entropy space with a standard deviation of only 2R (where R is the universal gas

constant). Campbell and Sellers’ correlation was observed for other two-dimensional

surfaces: Otyepková et al. calculated the adsorption entropy of a chemically diverse

set of molecules adsorbed onto organic "van der Waals" materials using inverse gas

chromatography and ab initio simulations [46, 47]. Their results showed an entropic

loss of approximately 40 % relative to the gas-phase entropy. Likewise, Budi et al.

calculated the adsorption entropy of a set of chemically diverse molecules adsorbed

on mineral surfaces using density functional theory [48]. Although predicting a

larger entropic loss relative to Campbell and Sellers’ correlation, their data showed

a strong linear dependence between the adsorbed-phase entropy and the gas-phase

entropy. Dauenhauer and Abdelrhaman [7] expanded this idea to three-dimensional

frameworks by compiling experimentally determined adsorption entropies for alkanes

adsorbed in nine aluminosilicate zeolites. They showed that the entropic loss upon

adsorption can be linearly correlated with the molecule’s gas-phase translational and

rotational entropies and that the occupiable volume of a zeolite is a useful descriptor

in predicting such losses.

While the simple elegance of this nearly linear correlation of entropies is suggestive

of an underlying physical origin, the extent of its applicability is unknown. This is

of special concern considering that the aforementioned data is almost entirely for
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industrially relevant alkanes. Therefore, within this Chapter, we avoid this practical

constraint by using Monte Carlo simulations to quantify the adsorption entropies for

a diverse assortment of molecules in zeolite-like materials. In particular, we use the

Transferable potentials for Phase Equilibria (TraPPE) [49] force fields to calculate the

adsorption entropies for 37 molecules across 10 functional categories within five pure-

silicate zeolites. Our simulation results for this broad set of adsorbate molecules reveal

that the correlation of the adsorbed-phase and gas-phase entropies persists, suggesting

that these correlations may be much more broadly applicable than reported thus

far. As a result, such correlative relationships may be exploited to predict sensible

adsorption entropies for a wide range of industrially relevant fluids in zeolites and

possibly other host materials.

2.2 Thermodynamics of Gas Adsorption

The thermodynamic quantity of primary interest here is the adsorption entropy,

henceforth ∆sads, which is the change in entropy of the adsorbate species upon trans-

fer from the bulk (unconfined) state to the adsorbed (confined) state, on a molar basis.

Quantification of ∆sads from laboratory or computational measurements depends on

both the thermodynamic constraints on the starting and ending states (e.g., fixed

pressure, fixed volume, etc.) and the thermodynamic conditions of the measurement

(e.g., low pressure or infinite dilution, high pressure or near-saturation loading). The

entropy results presented in ref [7] are obtained from various approaches, often based

on either the Langmuir adsorption model or a modification thereof using the Henry’s

law constant [50, 51] or a high-level quantum-mechanical calculation [33], among oth-

ers. Comparison between varying sources for the adsorption entropy is facilitated

by the historical belief that ∆sads is largely unaffected by temperature [52, 53] and,

for the purposes of those papers, by ignoring the effect of adsorbate loading. As a
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generalization, however, the adsorption entropy can be defined through the principal

thermodynamic relationship

∆G0
ads = ∆H0

ads − T∆S0
ads (2.1)

where ∆G0
ads and ∆H0

ads are the Gibbs free energy of adsorption and the en-

thalpy of adsorption, respectively, where the superscript 0 indicates that the change

is measured at some standard state (usually 298 K and 1 bar). From an experimental

perspective, one can obtain ∆H0 and ∆G0 through measurements of the isosteric

heat of adsorption (Qst) and an adsorption equilibrium constant, respectively, which

can then yield ∆s0ads by manipulation of eq 2.1.

For example, and as done for some of the data presented in ref [7], eq 2.1 may

be manipulated by introduction of the Langmuir isotherm to express the adsorption

entropy as [54, 55]

∆s0ads
R

=
∆h0ads
RT

+ ln

(

kHp0

Γ∞

)

(2.2)

in which kH is the Henry constant, p0 = 1 bar is the standard-state pressure,

and Γ∞ is the adsorption capacity; lowercase s and h identify those thermodynamic

quantities as intensive molar quantities.

Inherent in the transformation of eq 2.1 to eq 2.2 are a number of assumptions,

including (1) the aforementioned Langmuir isotherm describing the adsorbed phase,

(2) ideal gas behavior for the bulk adsorptive phase, and (3) p >> p0 such that the

adsorption condition approaches the maximum loading Γ∞. (Additionally, we note

that eq 2.2 is derived from an excess view of adsorption, with the usual caveat that

the excess adsorption is an acceptable representation of the absolute adsorption [54,

56, 57].)
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Equation 2.2 and similar expressions (cf. ref [55]) are, of course, not the only

routes to quantification of the adsorption entropy. An alternative limiting case is

that of infinite dilution or the Henry’s law regime which facilitates the use of statis-

tical mechanics for defining a version of ∆sads that, in turn, is easily implemented

in numerical calculations. For a full discussion of the statistical mechanics and ther-

modynamics of adsorption in the Henry limit, we point the reader to the work of

Sarkisov [58]. In particular, Sarkisov presented the key results for the Henry coeffi-

cient and differential enthalpy of adsorption for a system composed of a nondeformable

adsorbent and a rigid (no internal degrees of freedom) adsorbate:

kH =

〈

exp
[

−βUfs (r,ψ)
]〉

RTρS

∆h∞ads = −R

[

∂ ln kH
∂(1/T )

]

Γ
=

〈

Ufs (r,ψ) exp
[

−βUfs (r,ψ)
]〉

〈

exp
[

−βUfs (r,ψ)
]〉 −RT (2.3)

(We note that ∆h∞ads = −Q∞
st , where Qst is the isosteric heat of adsorption.) In

eq 2.3, R is the universal gas constant, ρS is the density of the adsorbent, Ufs is

the adsorbate–adsorbent (i.e., fluid–solid) potential energy, and (r,ψ) identifies the

adsorbate positions and orientations, respectively. Additionally, the ⟨⟩ brackets in this

case indicate an average over all positions and orientations. Finally, the superscript

∞ notation denotes the limit of infinite dilution.

The expressions in eq 2.3 show that the Henry coefficient and infinite dilution

differential enthalpy of adsorption can be computed from spatial averages of terms

related to Ufs. It is easy to compute these quantities in the context of (classical)

molecular simulation after introducing some model of the fluid–solid potential energy

(e.g., an all-atom Lennard-Jones (LJ) model, point charges, and appropriate combin-

ing rules [59]). In fact, no actual molecular simulation is necessary as both expressions
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in eq 2.3 are spatial averages that may be computed via Monte Carlo integration.

Given the limit of infinite dilution (N/V → 0), we may represent the adsorption

process as the transfer of a single adsorbate molecule from a bulk gas state to a

confined (adsorbed) state, where both states are represented by canonical ensembles

at the same T and volume V , i.e.,

∆s∞ads = Sads (N = 1, V, T )− Sgas (N = 1, V, T ) (2.4)

As we describe in the Appendix section, the entropy S can be related to the

canonical ensemble partition function, eventually resulting in the following expression

for the adsorption entropy in the limit of infinite dilution:

∆s∞ads
R

=
∆h∞ads
RT

+ ln [RTρSkH ] + 1 (2.5)

where kH and ∆h∞ads are identical to the definitions in eq 2.3. We point out

the similarity of the above equation to the adsorption entropy given in eq 2.2; the

adsorption enthalpy and logarithm of the Henry constant appear in both. In contrast,

however, the standard state chosen for our expression for ∆s∞ads is the low-pressure

limit, which may be interpreted as one adsorbate per simulation cell. In this low-

pressure regime, the adsorbate entropy is highly sensitive to coverage. In particular,

Campbell, Sprowl, and Árnadóttir have shown that the molar entropy of adsorbates

on Pt(111) increases by 2.303 R for every factor of 10 decrease in its coverage [60].

Our expression for the adsorption entropy offers an important computational ad-

vantage over the Langmuir-based approach in eq 2.2: all of the terms may be com-

puted in a single Monte Carlo integration. As mentioned earlier, after selecting models

of the adsorbent and the adsorbate–adsorbent potential energy, one can compute the

adsorption entropy via straightforward integration. These integrations are rapid in
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comparison to full Monte Carlo simulation (which would be necessary to compute

both the Henry constant and adsorption capacity that are used in the Langmuir

theory).

Finally, since the calculations we present in the following sections are actually

for the adsorbed-phase entropy (s∞ads) as a function of the gas-phase entropy (s0gas),

it is necessary to clarify how those quantities are calculated. First, the molar bulk-

phase entropy for our model molecules is calculated from a sum of rigorous statistical

mechanical expressions for the single-molecule translational and rotational entropies

for rigid molecules (denoted s0trans and s0rot in this work) [61, 62] and the molar

vibrational entropies (s0vib) as obtained from the NIST CCCBDB [63]. We note that

the translational entropy is computed using a volume corresponding to one molecule

of an ideal gas at the selected standard state of 300 K and 1 bar. We admit that this

is a mixing of reference states (a nonzero-pressure standard state for the gas phase,

but infinite dilution for the adsorbed phase), but some choice along these lines is

necessary to avoid a divergence in the gas-phase entropy that would appear at zero

pressure. This convention is similar to that used in refs [5] and [7].

Finally, the adsorbed-phase entropy is estimated by

s∞ads = s0gas +∆s∞ads (2.6)

Before proceeding, we briefly reiterate our reasoning for the use of our entropy

approximation in eq 2.6. The adsorption entropy of the infinitely dilute state, e.g.,

one adsorbate per simulation cell, serves as a proxy for the actual, concentration-

dependent adsorption entropy. Use of this adsorption entropy is a computationally

advantageous choice, as it allows for the use of rapid Monte Carlo integration for

the computation of the Henry constant and isosteric heat, as opposed to the com-

paratively lengthy simulation of the full adsorption isotherm that would be necessary
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at a nondilute adsorbate concentration. Consequently, the Monte Carlo integration

approach allows us to investigate many more adsorbates than would be possible via

full simulation.

2.3 Computational Models and Methods

The following section describes the computational techniques that we used to calculate

the adsorption entropy and, hence, the adsorbed-phase entropy from a relationship

given in eq 2.5, as derived in the Appendix section. Our technique requires the

selection of models for the zeolite adsorbents and adsorbate species and adaptation

of a Monte Carlo integration technique (cf. Widom test particle method [64, 65]) to

our adsorption system.

The adsorption system for our calculations is composed of a zeolitic adsorbent

material and an adsorbate species. The adsorbents used here are the faujasite (FAU),

Linde type A (LTA), mordenite (MOR), mordenite framework inverted (MFI), and

ferrierite (FER) zeolite topologies, in their pure-silicate forms (i.e., no aluminum

substitutions). The idealized structure of each silicate was obtained from the IZA

database [66], and then periodically replicated to form an adsorbent cell of adequate

size (cf. discussion of the cutoff radii below). The adsorbent framework was kept

entirely rigid.

The adsorbate species used within this study were selected on the basis of (1)

having an implicit hydrogen-based TraPPE force field, (2) the availability of vibra-

tional entropy from the NIST Computational Chemistry Comparison and Benchmark

Database (CCCBDB) [63], and (3) the ability to physically fit within our smallest

cage framework (i.e., omitting molecules such as cyclo-octadecane and 2-ethylhexyl

acrylate). The geometry of each adsorbate was obtained by using Open Babel [67] to

convert the SMILES strings of each molecule into three-dimensional coordinates and
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relaxing the structure by minimization of the GAFF potential [68]. These energy-

minimized structures were used for the subsequent test particle insertions in the

unaltered form, which allowed us to ignore energy terms related to bond bending,

stretching, or rotation. The respective gas-phase entropies were calculated by sum-

ming the ideal gas equations for translational, rotational, and vibrational entropies

at the same conditions (see Sec. 2.2). The gas-phase vibration entropy was obtained

from the CCCBDB [63] with a CCSD(T) level of theory and a cc-pVDZ basis set and

was assumed to be preserved upon adsorption.

As mentioned previously, the adsorbates were modeled using the TraPPE force

field [49, 69] (i.e., Lennard-Jones parameters and point charges for constituent pseudo-

atoms), while the adsorbents were modeled using the TraPPE-Zeo [70] force field. As

specified in both TraPPE and TraPPE-Zeo, Lorentz–Berthelot combining rules were

used to determine the cross-site Lennard-Jones parameters. The Ewald sum technique

was used to compute the Coulomb energy of adsorbates whose TraPPE parameters

include point charges, with consistent Ewald damping parameter α = 6.0/Lmin (Lmin

is the smallest side length of the simulation cell) and Fourier vectors with k2 < 27.

The calculation of the adsorption entropy (as defined by eqs 2.3 and 2.5) was done

via Monte Carlo integration (equivalent to the Widom test particle method [64, 65]),

in the same mode described by Sarkisov [58]. First, a position and orientation of

the adsorbate is generated randomly, and the adsorbate–adsorbent potential energy

Ufs (r,ψ) for that position/orientation is computed for the TraPPE-derived model.

Then, the appropriate terms in eq 2.3 are accumulated, and the procedure is repeated

for 107 random positions and orientations. This number of trials was satisfactory for

numerical convergence for nearly all adsorbent/adsorbate combinations, where the

∆s∞ads measurements were considered converged when the change in the measured

value associated with an order-of-magnitude increase in the number of trials was less
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than 5 %. The two exceptions to these convergence criteria were FAU/1,3,5-dioxane

and MOR/ethyl-methyl-ether which were still varied by approximately 10 % when the

number of trials was increased from 107 to 108. Subsequent calculations at 109 trials

for these two systems reduced the variation to less than 6 %. More importantly, the

longer runs for these two systems did not affect any of the trends or conclusions that

we discuss in the following sections. Finally, we also computed appropriate moments

of the accumulated terms to allow for the estimation of uncertainty in the Monte

Carlo integrals (which was not visible on the scale of plots presented here).

The actual Monte Carlo integrations were done using the FEASST [71] molecu-

lar simulation package developed at NIST. FEASST is primarily designed for Markov

chain Monte Carlo molecular simulation, but its library functions may also be utilized

for the position/orientation generation step and the subsequent energy calculations.

Essentially, our program used conventional FEASST operations to build the system

model and then run a loop that generated trial positions/orientations and called the

energy calculator for the specified number of trial insertions. An example script im-

plementing the Monte Carlo integration (Widom insertion) routine in FEASST v0.6.0

for the TraPPE Ethane/LTA silicate system is provided in the Appendix. Finally, we

used conventional molecular simulation choices in our calculations: periodic bound-

aries were applied at all edges of the replicated zeolite cell, Lennard-Jones and Ewald

real-space energies were cut at 15Å, and the zeolite unit cells were periodically repli-

cated to ensure that the length of each side of the simulation cell was at least twice

this cutoff distance. By constructing the simulation cell to be at least twice the cutoff

distance in each Cartesian direction, an adsorbate cannot interact with its periodic

image and, thus, the spatial averages in eq 2.3 are truly the infinitely dilute limit,

i.e., the partial occupancy of a unit cell does not affect the partition function [60].
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2.4 Results and Discussion

2.4.1 Linear Correlation of Adsorbed- and Gas-Phase Entropies

Figure 2.1: Plots of the adsorbed-phase entropy (s∞ads = s0gas + ∆s∞ads) versus the
respective gas-phase standard entropy (s0gas = s0trans+ s0rot+ s0vib) for the adsorbates
listed below, adsorbed in FAU, LTA, MOR, MFI, and FER, at T = 300K, as calcu-
lated using the infinitely dilute adsorption entropy described in Section 2.2. Points
are the raw calculations from Monte Carlo (MC) integration, and lines are linear re-
gressions of the MC data forced through the origin. The set of adsorbate molecules
used to generate the plots consisted of 37 species in the following categories: alde-
hydes (2), alkanes (8), alkenes (7), ethers (5), sulfides (5), ketones (2), nitrile (1),
cyclic alkanes (2), cyclic ethers (4), and aromatic molecules (1). The 95 % confidence
interval of each regression is represented by the shaded region of the corresponding
color. The 95 % confidence intervals for the fitted slopes (η) are FAU, 0.84–0.89;
LTA, 0.86–0.88; MOR, 0.83–0.85; MFI, 0.76–0.77; FER, 0.73–0.75.

The adsorbents for our calculations consisted of the pure-silicate forms of FAU,

LTA, MOR, MFI, and FER. The set of adsorbates consisted of 37 species among

10 functional categories: two aldehydes, eight alkanes, seven alkenes, five ethers,

five sulfides, two ketones, one nitrile, two cyclic alkanes, four cyclic ethers, and one

aromatic species; this yields 185 adsorbent-adsorbate combinations. Tabular results

of ∆s∞ads from our Monte Carlo integrations, the components of s0gas, and the resultant
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s∞ads are given within the Appendix of Rzepa et al.[8] Figure 2.1 shows our calculated

adsorbate entropies defined by eq 2.5, and plotted against their respective gas-phase

entropies at the same temperature. The confidence intervals in s∞ads were below 0.02%

of ∆s∞ads, and were therefore omitted. The primary and most important observation

is that, for the most part, the adsorbed-phase entropy shows a remarkable degree of

linear correlation with the gas-phase entropy.

Based on this visual linearity, we performed a least-squares regression of our data,

with the requirement that the trend line passes through the origin, e.g., s∞ads = ηis
0
gas.

Similar to ref [7], this added constraint is based on the conjecture that the adsorbed-

phase entropy must be both positive and smaller than the gas-phase entropy, i.e.,

0 < ηi < 1. The R2 correlation coefficients 1, except for that of FAU, are close to

unity, indicating low deviation from the linear trend lines; the notable deviations for

FAU will be discussed later.

Linearity in the correlation of s∞ads with s0gas is the key feature of the results in

Fig 2.1, as it corresponds to qualitatively similar observations in the entropy corre-

lations disclosed in refs [7], [48], and [5]. More importantly, though, our results

show that apparent linearity in the correlation of s∞ads with s0gas persists for a larger

set of chemically diverse adsorbates than was previously seen. As discussed in those

references, such a simple correlation is an obvious opportunity for the development of

an engineering correlation that allows for prediction of the adsorption entropy from

a limited set of measurements (whether experimentally or computationally derived).

Furthermore, we aim to build on the conclusions in refs [7], [48], and [5] by examin-

ing our own data in light of the physical arguments presented previously. As a brief

review, the apparent linearity in adsorption entropy correlations derives from funda-

mental physical considerations. In ref [5], where their linear trend in the entropy

1. R2 = 0.85, 0.97, 0.98, 0.96, and 0.91 for FAU, LTA, MOR, MFI, and FER, respectively.
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correlations was approximately two-third, the authors offered a simplified explanation

that the linear trend reflected a loss of approximately one-third of the translational

and rotational entropies owing to adsorption. Dauenhauer and Abdelrahman [7] ex-

tended this argument to acidic zeolites by considering an additional loss of rotational

entropy dependent on the adsorbate size and the pore volume. (Pure linear corre-

lation of s∞ads with s0gas is broken by the arguments in ref [7], but a visual linear

correlation persists. We return to this point later in our work.) Before proceeding,

we also note that a numerical comparison between our entropy values and those of

ref [7] must be done with care; the gas-phase rotational and translational entropies

(i.e., the x-axis of Fig 2.1) of our TraPPE-model molecules differ from experimental

values. This is because the TraPPE molecules include pseudo-atoms, which represent

hydrogens implicitly. Although the mass of the TraPPE-model molecules does not

change, the symmetry number and principal moments of inertia within the rotational

entropy equation are different.

The linear trend lines in Fig 2.1 yield the following slopes: FAU:0.86, LTA:0.87,

MOR:0.84, MFI:0.76, FER:0.74. The slopes appear to be related to zeolite size as

this sequence of decreasing slope corresponds to the sequence of decreasing pore size.

Further discussion on this point is reserved for later in this paper (cf. Section 2.4.2).

We immediately point out that all of these slopes are larger than the proposed two-

third based on adsorption to a flat surface. Given that the x-axis is the total entropy,

not just translational and rotational contributions, we should not expect a precise

slope of two-third. These slopes are, additionally, larger than the slopes for linear

trend lines computed from the data of Dauenhauer and Abdelrahman (not present in

their paper, but easily obtained using data in the Appendix of ref [7]): FAU: 0.80,

MOR: 0.75, MFI: 0.65, and FER: 0.59 (and other topologies not studied here).

As a specific example, Fig 2.2 reproduces the entropy correlation for MFI (same
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Figure 2.2: Comparison of the linear correlation of adsorbed- and gas-phase entropies
for MFI adsorbent, from the present simulation/model-based results (at 300 K) and
experimental calculations (at various temperatures) from Dauenhauer and Abdelrah-
man. As noted in the figure, the slopes of the linear trend lines are 0.76 and 0.65
for the simulation and experimental data sets, respectively. The simulation/model
results are for the diverse set of adsorbates studied here, whereas the experimental
results are for alkanes of up to eight carbons, with propane as the smallest adsor-
bate (and the corresponding smallest s0gas). We note that the model-based entropies
are offset compared to the experiment due to the pseudo-atom structure of TraPPE
molecules mentioned in the text.

as Fig 2.1) but includes the data from ref [7] for the same material; the slope based

on experimental measurements is 0.65 versus 0.76 for our model-based measurements.

Qualitatively identical differences were found for FAU and MOR, the other two zeolite

structures common to the two sets of results. We highlight two points in examining

this difference. First, our results are for stock (i.e., nontuned), model-based represen-

tations of the adsorbates (e.g., rigid molecules composed of TraPPE pseudo-atoms)

and adsorbents (e.g., LJ and point charge representations of silicon and oxygen).

Second, the adsorbents are nonacidic, pure silicates in our models, versus aluminum-

substituted (with varying Si–Al ratios) and cation-balanced zeolites in the experi-

ments. From our perspective, the most critical result is that the linear scaling appears

for a wide range of adsorbate species even without specifically tuning the potential

energy models for our adsorption systems or simulating the actual zeolites. This is
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again suggestive of the arguments for systematic entropy loss given in the previous

works. However, the difference in slopes highlighted in Fig 2.2 is an important dis-

tinction between our work and that referenced above. Our results suggest that while

the appearance of a linear trend in the correlation of adsorbed-phase and gas-phase

entropies may derive from underlying, common physical effects, the strict details of

the total entropy loss function for our model systems differ from the experiment.

2.4.2 Correlation of Adsorbed-Phase Entropy with Adsorbent

Characteristics

Figure 2.3: Ratio of the adsorbed-phase to gas-phase entropy, s∞ads/s
0
gas, for each

adsorbate molecule identified by an integer label. Connecting lines are simply an aid
to the eye, with no physical interpretation implied. The symbol and connecting line
colors identify the adsorbent framework type and correspond to the color scheme in
Fig 2.1. As discussed in the text, the outliers are small adsorbates and chemically
unique cyclic ethers.

In this subsection, we discuss the variance of the linear correlations in Fig 2.1
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across the set of adsorbates and adsorbents studied here. The first metric we exam-

ine more closely is the ratio s∞ads/s
0
gas for each adsorbate–adsorbent combination, as

forcing the trend lines in Fig 2.1 through the origin is analogous to taking this ratio

to be constant for each adsorbent. In doing so, we look more closely at how constant

that ratio actually is. Figure 2.3 plots s∞ads/s
0
gas for all 185 adsorbate–adsorbent com-

binations, with the adsorbate species identified by an integer on the x-axis according

to the Appendix of Rzepa et al.[8] and the adsorbents identified by the same color

coding as in Fig 2.1. Adsorbates are also grouped by chemical type (See Appendix

of Rzepa et al.[8]) though we stress that the x-axis integers should not be used to

draw any correlative conclusions; the purpose of this figure is to put every entropy

ratio from our calculations on a single plot. As expected from the results in Fig 2.1,

for a given adsorbent, the entropy ratio is remarkably uniform across the adsorbates,

with only a few noticeable outliers. Furthermore, the data in the figure appear to

be clustered into three adsorbent groupings. Based on the "largest cavity diameter"

(LCD) descriptor of First et al. [72] (the LCD being the diameter of the largest sphere

that the adsorbent can accommodate), our zeolites are grouped into the following ad-

sorbent categories: (1) spherical pores with an LCD of ≈ 7 Å (FER and MFI), (2)

cylindrical channels with an LCD of ≈ 7 Å (MOR), and (3) spherical pores with

an LCD of ≈ 12 Å (FAU and LTA) 2. The implication is that the entropy ratio is

effectively a constant for materials with similar characteristic pore size and shape

and that (again, except for a few prominent outliers) the adsorbate characteristics

are relatively unimportant. This raises the possibility that models based primarily on

adsorbent characteristics may be an effective tool for modeling the adsorbed-phase

entropy.

2. The pore size descriptors for FAU, LTA, MOR, MFI, and FER are MSD = 11.24, 11.05, 6.7,
6.36, and 6.31 Å [73]; LCD = 11.9, 11.7, 6.5, 7.0, and 7.0 Å [72], Vocc = 370.0, 311.4, 223.0, 177.4,
and 198.8 Å

3

[73]
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While the predominant trend in Fig 2.3 is a roughly uniform entropy ratio for each

adsorbent across our set of adsorbates, there are some noticeable outlier adsorbates,

particularly for the FAU and LTA topologies. For example, adsorbates 1, 5, 8, 11,

and 26 are acetaldehyde, methane, ethane, ethylene, and dimethyl ether, respectively;

these are all relatively small molecules. Furthermore, the adsorbents (FAU and LTA)

have small secondary pores that are connected to the primary pores (LCD ≈ 12 Å)

via inaccessible apertures. It is known that these small pores can be accessed by

small adsorbates in Monte Carlo-type simulations since the adsorbate positions are

generated randomly rather than by physical trajectories [74], resulting in unphysically

large adsorption, which would be reflected in a larger entropy of adsorption and,

hence, smaller entropy ratio. Our integration technique also relies on the random

generation of adsorbate positions; we have confirmed by direct visualization that

these outliers result from adsorbates accessing pores that are actually inaccessible.

The other group of prominent outliers are adsorbates 22, 24, and 32, corresponding

to 1,3-dioxolane, 1,3,5-trioxane, and acetonitrile, respectively. These adsorbates are

two cyclic ethers and one nitrile. In this case, we suspect that the unique chemical

functionality of these adsorbates, in comparison to the other TraPPE species, results

in a larger-than-expected entropy loss.

Finally, the η slopes in Fig 2.1 and the examination of adsorbate-specific entropy

ratios in Fig 2.3 are suggestive of an entropy loss model based primarily on certain

adsorbent characteristics. As pointed out above, η is roughly the same for (1) FAU and

LTA and (2) FER and MFI; the adsorbents in each of these two groups have roughly

the same LCD and predominantly cage-like, spherical pores. The MOR topology

has, as mentioned previously, an LCD similar to FER and MFI but with channel

pores. Other pore descriptors are, of course, available as well, and we examine two

others here. First, as a compliment to the LCD descriptor, we include the "maximum
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Figure 2.4: Plot of η from Fig 2.1 versus the LCD, MSD, and occupiable volume (see
the main text for definitions and values2). Symbols are color-coded as follows. Blue:
materials with an LCD of ≈ 7 Å, with spherical pores; orange: material with an LCD
of ≈ 7 Å, with cylindrical channels; purple: materials with an LCD of ≈ 12 Å, with
spherical pores. Connecting lines are an aid to the eye to identify the MSD (solid
green), LCD (dotted green), and occupiable volume (solid red) for each material.
Zeolite graphics are from the Zeomics online database.

included sphere diameter" (MSD), which is the largest sphere pore identified in a

calculated pore size distribution [73]. Second, we also include a different type of

geometric descriptor, the "occupiable volume" (Vocc), which is defined as the volume

per 1000 Å of the crystal cell that can be accessed by the center of probe molecules

with diameter 2.8Å [73]. These three pore size descriptors capture both the size of

the largest pore features and the overall pore volume.

In Fig 2.4, we plot the η slope for each adsorbent as a function of these three pore

metrics; diameter-based metrics are on the lower x-axis and occupiable volume is on

the upper x-axis. The important result shown in Fig 2.4 is that, regardless of the

27



metric used to characterize the zeolite adsorbent, the slope of the entropy relationship

in Fig 2.1 follows the same qualitative trend. Starting at the largest pore adsorbents in

terms of any of the three metrics, η decreases slowly with decreasing pore size, before

decreasing more rapidly to values in the vicinity of η = 0.75. Despite plotting all

three metrics on the x-axes of Fig 2.4, we imply no quantitative relationship between

MSD/LCD and Vocc; the purpose is to show the common trend in the correlation of

η with different size metrics. (As an aside, we note that the upper and lower x-axes

have common scaling, i.e., they share a common x = 0 origin [though not visible]

given the upper bounds of LCD/MSD = 12 Å and Vocc = 408Å3; we acknowledge

that the trend in the figure can be distorted by adjusting the scale and/or origin.

Our plot attempts to avoid biasing the interpretation of the data by using a common

origin.) Based on Fig 2.4, one may be motivated to construct an empirical fit of η as

a function of one or more pore size metrics, from which one could then approximate

the adsorbed-phase entropy from the gas-phase entropy. However, we suggest that a

larger set of zeolites with more variation in pore size be examined computationally

to provide a better basis for generating an empirical predictor of η.

Overall, we wish to stress that the entropy ratio is primarily a function of the

adsorbent characteristics and that it may be quite adequate for engineering purposes

to approximate the adsorbed-phase entropy as a fraction of the gas-phase entropy,

with that fraction being largely independent of the adsorbate identity. This sim-

ple, fractional scaling of s∞ads with s0gas is, of course, a highly simplified model of

the adsorbed-phase entropy and includes minimal physical insight or intuition. As

shown in the next section, one can introduce physically intuitive arguments into more

complicated models of entropy than that presented above.
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2.4.3 Empirical Model of Entropy Based on Adsorbent Identity

While the linear entropy scaling in Figures 2.1 and 2.3 is quite successful for the

TraPPE-based adsorption systems, it is ultimately an oversimplified correlation. We

seek a physics-based structure–topology–entropy relationship that is generic and ap-

plicable across molecule classes and zeolites. As a first step to this end, motivated

by the arguments in refs [5] and [7], we considered a simple linear model wherein

each contributor to the entropy is affected differently. However, it has been argued

that the translational contribution to the adsorbate entropy (for alkanes) is relatively

uniform across frameworks, with the emphasis being on the disparate rotational con-

tributions [7, 75]. For example, Denayer et al. have demonstrated that the driving

force behind the zeolitic separation of alkane/isoalkane mixtures is exclusively the

difference in rotational loss, represented by a ratio between the molecule’s radius of

gyration with the cavity’s largest inscribed van der Waals radius [75]. Therefore,

we consider a model where s∞ads is composed of (1) two-third translational entropy

(equivalent to the loss of one-third of the gas-phase translational entropy) and (2) a

fraction of the gas-phase rotational entropy. As mentioned previously, the vibrational

entropy is assumed to be unaffected by adsorption or confinement.

We propose the simplest model consistent with the proposition that the adsorbed-

phase entropy is composed of the translational and rotational entropies and all of the

vibrational entropy of the gas state. Mathematically, this may be stated as

s∞ads = αs0trans + βs0rot + s0vib where α = 2/3 and 0 < β < 1 (2.7)

Then, motivated by our previous results, which showed that the linear correlation of

adsorbed- and gas-phase entropies could be based primarily on adsorbent identity,

we make the further approximation that β is constant for each adsorbent species
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irrespective of the adsorbates. In other words, the loss in rotational entropy is dictated

exclusively by the adsorbent characteristics and the loss in translational entropy is

the aforementioned one-third of the gas-phase term. We make this approximation

owing to the results in the previous sections showing the predominant effect of the

adsorbent in correlations for the adsorption entropy.

Figure 2.5: Plot of the adsorbed-phase entropy s∞ads/R as computed from the mul-
tilinear regression in eq 2.7 versus that calculated in the Monte Carlo integration
("simulation") described in Section 2.3. Particular zeolite topologies are identified
by the color codes in the legend. The y = x line is plotted for evaluation of the
multilinear fit.

Topology MSD(LCD) β
FAU 11.2(11.9) 1.00
LTA 11.1(11.7) 1.00
MOR 6.7(6.5) 1.00
MFI 6.4(7.0) 0.80
FER 6.3(7.0) 0.71

Table 2.1: Fitting Parameters for β (α = 2/3) for the Multilinear Regression of s∞ads
to eq 2.7 for Each Zeolite Popology Studied Here with It’s Respective MSD

Based on these arguments, we performed a simple multilinear least-squares re-

gression of our entropy data with eq 2.7 and the constraints shown. The full set of

results are shown in Fig 2.5, where the calculated ("simulated") s∞ads is on the x-axis

and the predicted value (eq 2.7 is on the y-axis. The β values from the regressions
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are given in Table 2.1, with the α parameter held constant at two-third. As is hoped

for this type of model, the data are clustered around the y = x line, with only a

few prominent outliers. In fact, the three most noticeable outliers are for the FAU

material, and these correspond to 1,3,5-trioxane, acetaldehyde, acetonitrile outliers

already pointed out in our discussion of Fig 2.3. The RMSE of the multilinear fits are

2.6, 1.8, 1.1, 1.4, and 1.8 for FAU, LTA, MOR, MFI, and FER, respectively. The α

and β coefficients may be thought of as survival coefficients for the translational and

rotational entropy, so trends in them may be helpful for physical interpretation of the

predicted results. First, we note that the zeolite materials are in order of decreasing

MSD in Table 2.1. The table then reveals that β decreases with decreasing pore size.

The simplified model thus offers the following physical interpretation: decreasing pore

size results in a proportionately larger loss of rotational entropy, entirely consistent

with the previous results [7]. In other words, smaller pores are a hindrance to free

rotation of an adsorbate, resulting in the loss of rotational entropy.

However, we stress that further work is needed to clarify whether the trend in

β is a real effect or an artifact of an oversimplified model. By the same token, we

emphasize that our pool of molecules excludes especially large species; we anticipate

that data sets with extraordinarily hindered molecules will have much lower β values,

but will ultimately follow a similar trend.

Ultimately, we find that the adsorbed-phase entropy can be fit to a simple model

based on the survival of components of the gas-phase entropy and that this model is

quite accurate except for a few outliers. Thus, in addition to the extremely simple

linear correlation of the adsorbed- and gas-phase entropies presented in Fig 2.1 and

associated discussion, we offer a more complex, but more physically intuitive, model

based on eq 2.7 that may be used to predict the adsorbed-phase entropy solely from

the gas-phase entropy with a satisfactory degree of accuracy.
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2.5 Summary and Conclusions

The entropy of an adsorbed molecule is an important thermophysical property in

evaluating the use of adsorbent for applications including, but not exclusive to, gas

separation, catalysis, and energy storage. The number of actual and hypothetical

zeolite materials, as only one example of a class of industrially relevant and resilient

adsorbent materials, necessitates the provision of predictive models for the adsorbed

entropy, whether those models are based on robust physical principles or engineering

correlations. Previous works [5, 7, 33] have demonstrated that the adsorbed-phase

entropy may be predicted with good accuracy by applying straightforward loss func-

tions to the gas-phase entropy, though the extent of those correlations was not clear

as the correlations were generated for a limited set of adsorbates, primarily alkanes.

Here, we examined a larger and more chemically diverse set of adsorbates by

computing the entropy in a model-based approach using 37 adsorbates available in

the TraPPE force field library and five pure-silicate zeolites, for a total of 185 unique

calculations. Our results show that linear correlation of the adsorbed- and gas-phase

entropies persists for adsorbates and adsorbents not previously considered, though

the form of the linear correlation differs from previous work [5, 7]. Furthermore,

the correlation may be cast as a highly simplified linear scaling function applied to

the gas-phase entropy, where the scaling coefficient is a constant for a particular

adsorbent material, independent of the identity of the adsorbate species (Fig 2.3).

Additionally, our data suggest that the scaling coefficient correlates with pore size

characteristics (Fig 2.4), though more adsorbent materials need to be evaluated to

confirm the observed correlation.

Beyond the simple linear scaling of s∞ads with s0gas, we also fit the adsorbed-phase

entropy to a multilinear expression based on physical arguments about the loss of

translational and rotational entropies (eq 2.7). The multilinear fitting model success-
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fully reproduced the TraPPE-model-based entropy calculations, which offers an alter-

native approach to modeling the adsorbed-phase entropy. In addition, this multilinear

model is suggestive of opposing trends in the translational and rotational entropies

(decreasing rotational entropy and increasing translational entropy with decreasing

pore size), but more work is needed to determine whether this is a mathematical

artifact or a real trend. Regardless, our model is consistent with prior approaches

that model the adsorbed-phase entropy according to survival functions applied to the

rotational and translational entropies.

Finally, as an overall summary, our results suggest that simple linear models can

be used to approximate the entropy of an adsorbed phase, whether through a single

scaling factor (η in eq 2.5) or through a more complicated multilinear expression

(eq 2.7). In either case, our results point to engineering correlations based on a

limited set of actual measurements; for example, evaluation of a new material could

be done by measuring the Henry constant and isosteric heat of a few adsorbates

and then using that limited set of data to generate η or α and β, based on the

trends identified here. While these correlations have been identified specifically for

pure-silicate zeolites, it is anticipated that the resultant trends may also appear for

materials such as metal-organic frameworks and microporous polymers, which should

be the objective of future work.
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CHAPTER 3

DFT BASED MICROKINETIC MODELING OF

CONFINEMENT DRIVEN [4+2] DIELS-ALDER

REACTIONS BETWEEN ETHENE AND ISOPRENE IN

H-ZSM5

3.1 Introduction

One of the most successful advancements within the petro-chemical industry has

been the application of zeolites, which are crystalline, alumino-silicate frameworks

that consist of ordered, cage-like structures. Their utility arose from their distinct

microporous topologies, which typically consist of subnanometer channels with var-

ious dimensionalities. Historically, they have been applied in the catalytic cracking

of hydrocarbons[76] and light gas separations[77]; but have shown function in the

conversion of methanol to olefins[78, 79], Friedel-Crafts alkylation[80], Beckmann

rearrangement[81], Fischer-Tropsch synthesis[82], among others.[83] To an extent,

all of these processes are promoted by the principle of confinement; or how well

the molecules fit within the zeolite’s pores and active site. This concept suggests

that the adsorbates conform to the curvature of the channel, becoming stabilized by

maximizing their van der Waals interactions with the framework while limiting their

entropic loss.[2] Consequently, confinement promulgates zeolites as molecular sieves,

where prohibitively large species that cannot fit within their voids are excluded from

adsorption and/or the reaction space. Likewise, smaller species paired with large

framework features may not incur any significant stability; and merely equilibriate

with their bulk gas phase.[84] Optimal confinement occurs when the geometry of the

reaction intermediates and/or transition states "match" their channel dimensions, ac-
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quiring enough stability to catalyze their respective reactions. For example, the rates

of dimethyl ether carbonylation have been shown to be significant within zeolites con-

taining eight-membered ring (8MR) channels, but were undetectable within zeolites

containing 10+ MR channels exclusively.[85] Such specificity was attributed to the

enthalpic stabilization of carbo-cationic transition states by the closer proximity of

the surrounding framework’s oxygen atoms within the 8 MR than 10+ MR channels.

Yet configurations which maximize the adsorbate’s van der Waals interactions with

the framework (enthalpic stability) may not be preferred due to the entropic penalty

incurred from the adsorbate’s loss in mobility; and as a result, adsorbates have been

shown to prefer non-intuitive arrangements within the zeolite channel. For example,

high-temperature alkane activation reactions[85] have shown a preference toward 8-

MR channels, but contain transition states too large to be fully encompassed within

them. It was discovered that these transition states were only partially confined,

extending the majority of their geometries into the adjacent 12 MR channel. Such

"loose" configurations were preferred because they provided enough entropic free-

dom to exceed the enthalpic stability otherwise gained through complete adsorption

within the 12 MR channels. Overstabilizing adsorbates is also possible, and has been

shown to impede reaction rates through increased diffusion limitations[86, 87], re-

strained product desorption, and increased intrinsic reaction barriers[14]. However

confinement is not exclusive to zeolites; and has been shown to be a significant factor

in catalyzing the oxidative dehydrogenation of hydrocarbons within mixed metal-

oxides[88, 89] and manganese oxide based octahedral molecular sieves[90], as well as

catalyzing Diels-Alder reactions within macromolecules.[91] Understanding confine-

ment is therefore a multifaceted problem; and despite our detailed understanding

on an individual basis, our mechanistic understanding and ability to make empirical

predictions remains limited.
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In this work, we explore the effects of zeolite confinement on a set of Diels-Alder

cycloaddition reactions. These reactions are an excellent archetype to study con-

finement because, 1) they can occur uncatalyzed, allowing for the effects of the zeo-

lite framework to be separated from the reaction chemistry, and 2) their capability

in producing cyclic regio-isomers provides a span of variously sized, but chemically

identical, species. These reactions have been well studied and applied in the pharma-

ceutical, agro-chemical, and oleo-chemical industries for many decades.[92] Recently,

tandem Diels-Alder-dehydration chemistries have been suggested for the synthesis of

aromatic monomers from bio-mass based alternatives.[93] The [4 + 2] Diels Alder

reaction, henceforth called "DA reaction", is particularly interesting because it forms

a six-membered cyclic product (the cycloadduct) by coupling a 1,3-conjugated olefin

(diene) with a double bonded moiety (dienophile). The cycloaddition reactions of such

a diene + dienophile, followed by tandem dehydrogentation on a multifunctional cat-

alyst, has been shown to result in valuable aromatic products.[16, 18] At the core of

this reaction, four π-electrons from the diene and two π-electrons from the dienophile

are broken, forming two new σ-bonds that enclose the product’s six-membered ring.

This reaction typically occurs through a concerted mechanism, with the formation

of the two σ-bonds occuring simultaneously through a single, pericyclic transition

state. However, a stepwise mechanism is also possible, involving the formation of a

diradical or zwitterionic intermediate.[94] Although they may be thermally driven to

completion, the incorporation of homogeneous Lewis and Brønsted acids have been

shown to not only catalyze these reactions, but also promote the selectivity of cer-

tain stereo and regio-isomers.[9, 10, 11, 12] Zeolites are particular for this endeavor,

because they offer Lewis/Brønsted acidity alongside confinement; which can limit un-

desirable byproducts or isomers and promote catalysis with particular selectivity.[84]

Moreover, the preservation of regio-chemistry throughout the DA reaction allows one
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to control the bulkiness of the products and/or transition states, meaning a judi-

cious choice between zeolite and reactants, whose products and/or transition state

geometries appear to better fit within the channels, can be posited a-priori.

Despite being relatively unexplored, zeolites have been shown to catalyze DA

reactions. However, the research has been largely focused on the DA cycloaddi-

tion between 2,5-dimethylfuran and ethene with subsequent dehydration to form

xylenes; particularly due to the readily available synthesis of furans from bio-mass.[95]

Williams et al.[17] have studied this reaction within zeolite HY, achieving a 75% se-

lectivity toward para-xylene. Their findings suggest that the DA reactions occurred

without a catalytic active site; rather, the reaction was promoted by confinement

and the role of the Brønsted acid site was instead attributed to the catalysis of the

dehydration step. Nikbin et al.[96, 16] have studied the application of HY and vari-

ous alkali-exchanged Y zeolites for the same reaction using a combination of density

functional theory and hybrid quantum mechanics/molecular mechanics calculations.

Interestingly, their calculated DA activation barriers in HY were larger than their

respective gas phase reactions, suggesting that they occurred uncatalyzed at the

Brønsted active sites. Moreover, their results showed that alkali-exchanged Y ze-

olites (LiY, NaY, KY, RbY, CsY), in the form of Lewis acids, exhibited marginal

catalytic activity toward DA reactions. On the contrary, the dehydration steps were

shown to be significantly catalyzed at the Brønsted sites; and therefore they advo-

cated that a bifunctional catalyst, one comprised of both Lewis and Brønsted acids,

might better catalyze the overall process. Rohling et al.[13, 14] have investigated the

role of low-silica, alkali-exchanged Y zeolites (LiY, NaY, KY, RbY, CsY) on the same

reaction using Density Functional Theory and microkinetic modeling. The scope of

their work was to determine the collaborative effect of multiple cation sites on the DA

cycloaddition/dehydration reactions against the standard, single site model. Their
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results suggest that low-silica alkali-exchanged Y zeolites are highly active catalysts

for these reactions, owing to a combination of confinement-induced initial-state desta-

bilization and transition state stabilization via ionic interactions with the collective

alkali cations. In a subsequent work, Rohling et al.[15] have computationally inves-

tigated the catalytic effect of d-block cation exchanged high-silica Y zeolites on the

DA cycloaddition step; and concluded that cations with less filled d-shell orbitals

exhibited lower activation barriers. Apart from the familiar concerted single-step

DA cycloaddition path; they also found a two-step path, which ultimately depended

on the relative size of the cation. Other DA cycloaddition reactions have also been

catalyzed by zeolites. For example, Bernardon et al.[19] have experimentally inves-

tigated DA reactions between isoprene and methyl-acrylate within different zeolite

frameworks of various acid site densities. Among those frameworks, H-ZSM5 had the

highest productivity and upwards of 91% selectivity toward the para- over the meta-

cycloadduct. Ultimately, this catalytic effect was attributed to confinement. Apart

from zeolites, macromolecules have also been shown to act as potential DA catalysts.

Chakraborty et al.[91] have investigated the application of the macrocyclic molecule

"cucurbit[7]uril" (CB[7]) as a catalyst for the DA reactions between benzene, furan,

cyclopentadiene, and thiophene with ethene using Density Functional Theory. All

reactions exhibited enhanced rate constants within the CB[7] molecule relative to

their free state. However, the activation energy for each reaction was less favorable

within CB[7] than their respective free state, suggesting that the activation entropy

facilitated these reactions.

The objective of this work is to use periodic Density Functional Theory (DFT)

based microkinetic modeling (MKM) to study the effects of confinement on the kinet-

ics of the DA cycloaddition reactions between ethene (C2) and isoprene (C5) within

H-ZSM5. The resulting DA cycloadducts are outlined within Figure 3.1, and there is
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a single C7 product formed between isoprene and ethene (IUPAC: "1-methylcyclohex-

1-ene"); there are four C10 products that are formed from two isoprene molecules, and

we have organized them by their "para-" and "meta-" regiochemistry. For brevity,

we will be referring to the C10 products (and corresponding reactions) as "C10-para-

1,2" and "C10-meta-1,2" with the exception of 1-methylcyclohex-1-ene which will be

referred to as "C7". Our choice of reactants provides an array of variously shaped

(meta- vs. para-) and sized (C7 vs. C10) transition states/products whose corre-

sponding reactions can occur uncatalyzed. This allows us to gauge the extent of

confinement relative to their uncatalyzed gas phase reactions; and infer discriminat-

ing factors based on the specie’s size/shape. We have chosen to work with H-ZSM5 in

view of its well studied applications as a catalyst for light olefin reactions[97, 98, 99],

pervasive use in industry[76], and superiority in catalyzing similar DA reactions.[19]

3.2 Methods

The adsorption calculations have been simulated using one full periodic unit of

the ZSM-5 orthorhombic structure taken from the International Zeolite Database

(IZA).[3] The unit cell consisted of 192 Oxygen and 96 Silicon atoms with 12 distin-

guishable tetrahedral sites (T-sites); we follow the nomenclature of IZA to identify

the T-sites. The Brønsted site was formed by substituting a single Si atom with Al

and adding a hydrogen on the most stable adjacent oxygen. Based on the work of

Ghorbanpour et al.[100], the T7 site was chosen as the Brønsted site; it was consid-

ered to be energetically favorable, providing good access due to its location at the

intersection of the straight and sine channels. The effects of topologically identical

locations on adsorption within the zeolite supercell were deemed negligible based on

a prior work.[101]

All electronic structure calculations were performed using the Vienna ab initio
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Figure 3.1: The DA cycloaddition reactions between ethene and isoprene considered
within this work. a) The DA cycloaddition reaction between ethene (diene) and trans-
isoprene (dienophile) to form the C7 cycloadduct, IUPAC: "1-methylcyclohex-1-ene".
b) The possible DA cycloaddition reactions between cis-isoprene (diene) and trans-
isoprene (dienophile) to form four possible C10 cycloadducts. The cycloadducts were
segregated based on their respective para- and meta- regiochemistries.

simulation package (VASP)[102, 103] through plane wave density functional the-

ory (DFT). PAW potentials[104] with generalized gradient approximation (GGA)

using the Perdew-Wang-Ernzerhof (PBE)[105] exchange correlation functional with

Grimme-D2(DFT-D2)[106, 107] dispersion corrections were used in view of its accu-

racy for small adsorbates in other zeolites.[101, 108] The convergence criterion for

electronic relaxation was 10−4 eV with a plane-wave energy cutoff of 400 eV; ionic

convergence was set with the criteria that the force on each ion be smaller than 0.02

eV/Å. Gaussian smearing with width 0.1 eV was used; all energies were extrapolated
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Figure 3.2: The lone structure of H-[Al]ZSM-5, where the Brønsted proton is bond
to O17 pointing along the straight channel toward an adjacent O17. The O16 oxygen
is also emphasized. Key: silicon (yellow), oxygen (red), hydrogen (white), aluminum
(pink).

to 0 K. Gas-phase calculations were performed with a minimum of 10 Å of vacuum

between periodic images. Transition states were identified by using the climbing im-

age nudge elastic band method (NEB)[109] with seven images between the reactants

and product. The ionic convergence for the NEB calculations was set with the cri-

teria that the force on each ion within each image be smaller than 0.1 eV/Å. As a

consequence of the large unit cell size, the Brillouin zone was sampled using only the

gamma point. Keeping atoms constrained, optimization of the zeolite cell parameters

resulted in: (20.2 × 19.9 × 13.3 Å,α,β,γ=90◦).

The enthalpies, entropies and Gibbs free energies for reactants, products, and

transition states were derived using statistical thermodynamics. The harmonic nor-

mal mode approximation was used in determining the vibrational frequencies; for

which the Hessian was calculated using finite difference implemented in VASP, with
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displacement steps of ± 0.015 Å and a convergence criterion of 10−6eV. The trans-

lational and rotational modes for the bulk-phase species were decoupled from the

vibrational modes and their thermodynamic contributions were calculated according

to the formal statistical thermodynamic treatment of an ideal gas. For adsorbed

states, all imaginary frequencies were replaced with a 100cm−1 cutoff, based on a

sensitivity analysis from a previous work.[108] For transition states with more than a

single imaginary frequency, the respective modes were visualized and replaced. The

enthalpies were calculated by taking the sum of the DFT-calculated ground state

electronic energy, the zero point vibrational energy, and temperature contributions

from the constant pressure heat capacity, which was derive by fitting the entropy to

a set of Shomate Parameters. Finally, the standard Gibbs Free Energy was derived

from it’s classical definition of the enthalpy and entropy. (See equations 3 and 4 in

A.2 of the Appendix.)

The thermodynamic quantities for adsorbed species were also calculated using

this method, but were given in terms of an upper and lower bound based on ap-

proximations of the adsorbate entropy outlined in A.2 of the Appendix. The reality

is that our thermodynamic adsorbate quantities fall somewhere between these two

approximations[110, 111]; we therefore report both values as bounds for our ther-

modynamic and kinetic parameters. Within this paper, these approximations are

defined as "Free translator" and “Harmonic Oscillator” for the upper and lower en-

tropic bounds respectively. Adsorption/desorption steps were constructed by forming

pseudo-transition states which have the entropy of their corresponding adsorbate un-

der the Free Translator approximation, and the enthalpy of their ideal-gas state, this

derivation and rationale is outlined within A.3 of the Appendix. The derivation of

our MKM and relative analyses (conversion, selectivity, yield, apparent activation

energy, apparent reaction order) can also be found in A.4 of the Appendix.
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3.3 Results and Discussion

3.3.1 Reactant adsorption

Figure 3.3: The most energetically stable adsorption configurations of our reactants.
The Brønsted proton is bond to O17 for each image; and the aluminum, proton,
and oxygen (O17) were emphasized using spheres. The reactant atoms were also
represented as spheres, with double bonds emphasized using thicker diameters. Key:
silicon (yellow), oxygen (red), hydrogen (white), aluminum (pink), carbon (turquoise)
a) Ethene physisorption, where there is a distinct interaction between the Brønsted
proton and ethene’s double bond. b) Ethene chemisorption, where the primary car-
bon has been protonated; and an alkoxide bond has formed between O17 and the
remaining carbon. c) Trans-isoprene physisorption, where the Brønsted proton at
the acid site is interacting with the double bond between the primary and tertiary
carbons. d) Isoprene chemisorption, where the primary carbon "C4" has been pro-
tonated and an alkoxide bond has formed between the tertiary carbon "C3"" and
O17. e) Carbenium isoprene chemisorption, where the tertiary carbon "C3" has been
protonated.

We begin our analysis by validating the adsorption of our stable intermediates

at standard conditions against available results. Table 3.1 shows our reactant DFT

energy (non ZPE corrected), enthalpy, entropy, and Gibbs free energy change upon

adsorption at standard conditions (298.15 K and 1 atm). Adsorption was defined

by equation 3.1, where "X" represents the thermodynamic quantity of interest and

the subscripts molecule∗, molecule(g), Zeolite, represent the adsorbed, gas and lone

zeolite states respectively. Due to the propensity of olefins to undergo oligomerization

reactions within acidic zeolites (see section 3.3.3), we have investigated three possible
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Adsorbate ∆EDFT [kJ/mol] ∆H0 [kJ/mol] ∆S0 [J/mol/K] ∆G0 [kJ/mol]

physisorbed
ethylene -63 -58(-59) -143(-107) -15(-27)

trans-isoprene -100 -96(-98) -191(-147) -39(-54)

alkoxide
ethene -108 -96 -171 -45

isoprene -90 -80 -208 -18
carbenium isoprene -70 -67(-68) -179(-136) -13(-27)

Table 3.1: Standard enthalpy (kJ/mol), entropy (J/mol/K), and Gibbs free energy
(kJ/mol) of adsorption at 298.15 (K) and 1 (atm) with the Free Translator approx-
imation quantities housed within parenthesis

scenarios for the adsorption of each reactant: 1) A physisorbed π-complex, where

the Brønsted proton is interacting with the olefin but no distinct bond is formed;

2) Protonation of the olefin, resulting in the formation of a covalent alkoxide bond

with an oxygen atom at the acid site; 3) Protonation of the olefin, resulting in a

stable carbenium ion. Theoretically, protonation may occur on any of the carbon

atoms involved in its π-bonds. Moreover, the Brønsted proton at the acid site has

been shown to be mobile, capable of migrating among adjacent oxygen atoms.[112]

As a result, the alkoxide bond may theoretically be formed with any of the adjacent

framework oxygen atoms. We have examined each of these possibilities, but only the

most favorable states are discussed here.

∆Xadsorption = Xmolecule∗ −Xmolecule(g)
−XZeolite (3.1)

Ethene

Our relaxed complex for the physisorbed state of ethene is shown in Figure 3.3 a).

Consistent with other works[108, 113], the Brønsted proton is attracted to the center

of the π-bond of ethene. The formation of this physisorbed structure is exergonic, with

a Gibbs free energy of -15(-27)kJ/mol. The most favorable chemisorbed structure of

ethene is shown in Figure 3.3 b), with the alkoxide bond formed with oxygen O17
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(also the most stable oxygen for the Brønsted site). The chemisorption of ethene

was found to be more favorable by -18(-30) kJ/mol than physisorption, with a Gibbs

Free Energy of -45 kJ/mol. No stable carbenium ion was found for ethene, which is

consistent with other works which suggest that small olefins exist as carbeniums only

through transition states during chemisorption.[114, 115]

Nguyen et al.[113] have computationally investigated the adsorption of C2-C8

linear alkenes in various acidic zeolites at the QM-Pot(MP2//B3LYP:GULP) level of

theory. Specifically, they have calculated the standard enthalpy, entropy, and Gibbs

free energy change for the physisorption, chemisorption and protonation of ethene

within H-ZSM5. Their calculated Gibbs free energy of ethene physisorption was -20

kJ/mol, which falls within our range of -15(-27) kJ/mol. Their entropy and enthalpy

are also consistent with our values. On the other hand, their Gibbs free energy

of chemisorption was -69 kJ/mol, approximately 24 kJ/mol less than our value. A

direct comparison between our chemisorption energies (non ZPE corrected) shows

that DFT-D2 dispersion corrections predict a higher binding energy by 22 kJ/mol.

In a separate study[108], we assessed the interactions between the π-bond of ethene

with the active sites of Brønsted and cation exchanged ZSM-5 zeolites by measuring

its heat of adsorption using microcalorimetry and periodic DFT calculations at low

temperature. As a comparison, the adsorption of ethane was also quantified, given

its lack of a π-bond but otherwise similar physical properties to ethene. While both

adsorbates showed identical experimental heats of adsorption within siliceous ZSM-5,

ethene showed a significantly stronger adsorption within H-ZSM5 (8 kJ/mol) than

the adsorption of ethane (2 kJ/mol). These results suggest that while ethene and

ethane share similar confinement effects, ethene exhibits additional Brønsted-π inter-

actions at the active sites within H-ZSM5. The PBE(DFT-D2) functional correctly

captured this enhanced stability of ethene, but it overestimated its experimental
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heat of adsorption by 20 kJ/mol. A comparison among different DFT functionals

(Grimme-D2[106, 107], Grimme-D3[107], Tkatchenko-Scheffler[116], DDsC[117, 118],

vdw-Df(2)[119, 120, 121]) for this system showed a wide variation in the binding en-

ergies of ethene/ethane (almost 32 kJ/mol), but all correctly captured that ethene

interacts more strongly than ethane at the Brønsted acid site. Accordingly, while

our DFT calculations may overpredict experimental values, we expect our model to

correctly capture qualitative differences.

Isoprene

Our relaxed physisorbed complex of isoprene is shown in Figure 3.3 c). The Brønsted

proton resides on O17; and is directed toward the center of the π-bond between

the primary and tertiary carbons (labelled as "C1" and "C2" within Figure 3.3 c)

respectively). This configuration is consistent with other physisorbed olefins of similar

size within acidic zeolites.[122, 113, 123, 124] The adsorption was exergonic, with a

Gibbs free energy of -39(-54)kJ/mol.

The most stable chemisorbed state of isoprene is shown in Figure 3.3 d), where

the primary carbon "C4" has been protonated; and an alkoxide bond formed between

the secondary "C3" carbon with the host oxygen O17. The Gibbs free energy of this

chemisorbed state was -18 kJ/mol. Unlike ethene, we have found a stable tertiary-

carbenium ion; and its relaxed structure is shown in Figure 3.3 d). Adsorption of

this tertiary-carbenium was also found to be exergonic, with a Gibbs free Energy of

-13(-27) kJ/mol. The resulting alkoxides from this tertiary-carbenium were found

to be very energetically unfavorable. (See Figure 3.9 of Section 3.3.3) Ultimately,

the physisorbed state of isoprene was found to be more thermodynamically favorable

than the chemisorbed and carbenium states by 12(40) kJ/mol and 26(25) kJ/mol

respectively.
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Nguyen et al.[123] have looked into the physisorption, chemisorption, and protona-

tion of isobutene in various acidic zeolites using periodic density functional theory at

the PW91-D//PW91 level of theory. On the basis of their calculations, the standard

Gibbs free energy of formation for physisorbed isobutene within H-ZSM-5 is slightly

more stable than it’s tertiary-butyl carbenium ion, but significantly more stable than

its chemisorbed counterparts.

Moreover, Cnudde et al.[125] have computationally studied the temperature de-

pendent stability of C4-C5 alkene cracking intermediates within H-ZSM-5 using ab-

initio and molecular dynamics simulations. The results of their static simulations (non

MD) have shown that physisorption is more stable than chemisorption, regardless of

the alkene (branched vs. linear) or temperature (323-773 K).

Their dynamic simulations (MD) at 323 K showed systemic deprotonation for

linear carbenium species, whilst the physisorbed and alkoxide species remained sta-

ble. However the MD simulations of branched intermediates have shown that the

physisorbed and chemisorbed species experienced prompt protonation into stable car-

benium ions.

These studies are somewhat consistent with our results, because we have found

that the physisorbed complex of isoprene is more stable than its chemisorbed and

carbenium counterparts. However, our tertiary-carbenium state is only "significantly"

more stable than chemisorbed isoprene if we assume our entropy approximation is

more accurately described by the Free Translator. While MD simulations to analyze

the stability of isoprene adsorption are outside the scope of this paper, we postulate

that the range of our thermodynamic approximations encompasses the stability of

these higher free energy states.
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Figure 3.4: The most energetically stable adsorption configurations of our Diels-Alder
products. The Brønsted proton is bond to O17 for each image; and the aluminum, pro-
ton, and oxygen (O17) were emphasized using spheres. The reactant atoms were also
represented as spheres, with double bonds emphasized using thicker diameters. Key:
silicon (yellow), oxygen (red), hydrogen (white), aluminum (pink), carbon (turquoise)
a) Product C7 physisorption, where the Brønsted proton interacts with C7’s double
bond. b) Product C10-meta1 physisorption, where the Brønsted proton interacts
with C10-meta1’s external double bond. c) Product C10-meta2 physisorption, where
the Brønsted proton interacts with C10-meta2’s external double bond. d) Product
C10-para1 physisorption, where the Brønsted proton interacts with C10-para1’s in-
ternal double bond. e) Product C10-para2 physisorption, where the Brønsted proton
interacts with C10-para2’s internal double bond.

3.3.2 Diels-Alder product adsorption

The most stable configurations of our adsorbed DA products are shown in Figure

3.4; and their respective DFT energy (non ZPE corrected), enthalpy, entropy, and

Gibbs Free energy change upon adsorption (defined by equation 3.1) at 298.15 K and

1 atm are given in table 3.2. Synonymous with the configurations of the physisorbed

reactants, each product exhibited an interaction between the Brønsted proton on

O17 with one of its π-bonds. For the C7 product this interaction occurred with its

lone π-bond; but for the C10 products, it was observed with either the π-bond of

the dienophile (external to the six-membered ring) or with the π-bond of the diene

(internal to the six-membered ring). The C10-meta products preferred this interaction

with their external π-bond, while the C10-para products preferred to interact with

their internal π-bonds. The Gibbs free energy of adsorption for the C10-para products
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adsorbate ∆EDFT [kJ/mol] ∆H0 [kJ/mol] ∆S0 [J/mol/K] ∆G0 [kJ/mol]
C7 -127 -121(-123) -203(-157) -61(-76)

C10− para1 -146 -138(-140) -224(-175) -71(-88)
C10− para2 -155 -150(-151) -218(-169) -85(-101)
C10−meta1 -141 -135(-136) -226(-177) -67(-83)
C10−meta2 -145 -138(-140) -218(-169) -73(-89)

Table 3.2: Standard enthalpy (kJ/mol), entropy (J/mol/K), and Gibbs free energy
(kJ/mol) of adsortpion at 298.15 (K). The lower and upper bounds are given by the
harmonic and Free Translator approximations defined in section A.2 of the Appendix,
with the Free Translator quantities housed within parenthesis

were on average 8 (kJ/mol) more favorable than the C10-meta products, with the

C10-para2 product being most strongly adsorbed by an average of 14 (kJ/mol).

3.3.3 Reaction pathways

The adsorption of small olefins at the Brønsted acid sites of zeolites have a propen-

sity to oligomerize at temperatures as low as 300 K.[126, 127, 128, 129, 130, 131]

At higher temperatures, these oligomers have been shown to further undergo cy-

clization reactions, which can subsequently dehydrogenate to form a myriad of cyclic

products.[132, 133] In particular, our C7 product may be formed via the 1,6 ring

closure/dehydrogenation of a primary alkoxide, formed by the oligomerization be-

tween isoprene and ethene (see Figure 3.5). The extent that these reactions may

compete with DA cycloaddition is otherwise unknown; but Bernardon et al.[19] have

run similar DA reactions (isoprene with methyl-acrylate) within H-ZSM5 at temper-

atures between 293.15 to 363.15 K without appreciable formation of such byproducts.

Therefore to limit these unwanted reactions while maintaining sufficient catalytic ac-

tivity (see section 3.3.4), the conditions for our analysis were chosen to be 368.15 K

and 1 atm.
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Figure 3.5: Proposed mechanism for the oligomerization of primary isoprene alkoxide
with ethene, with subsequent cyclization and dehydrogenation to form product C7.

Diels-Alder cycloaddition

Figure 3.6 displays the Gibbs free energy surface (Data given in Table A1 of the Ap-

pendix) of our adsorbed and gas-phase DA reactions at 368.15 K and 1 atm. The pri-

mary and most important observation is that the apparent barrier for each adsorbed

DA cycloaddition reaction is substantially smaller than their gas-phase analogs, sug-

gesting that this reaction is catalyzed within H-ZSM5. All DA reactions showed an

average 37(56) kJ/mol lower apparent activation barrier within H-ZSM5 relative to

their bulk gas phase. The apparent activation barrier for the C7 reaction was on av-

erage 6(26) kJ/mol smaller relative to the other DA reactions, but its bulk gas phase

barrier was also 26 kJ/mol smaller among the bulk gas phase reactions. However, the

C10 reactions showed a more significant change in their apparent activation barriers

relative to their bulk gas phase reactions, being on average 46(66) kJ/mol and 22(35)

kJ/mol lower, with C7 being only 8(8) kJ/mol lower. Among the C10 reactions, the

meta regio-isomers both exhibited lower apparent activation barriers by 9 kJ/mol

relative to the para regio-isomers. Because the entropic approximations are largely

cancelled when comparing among these reactions, we attribute such stability differ-

ences to the DFT energies. Therefore, our data show: 1) The larger C10 TSTs are

more stabilized by the framework than the C7 TST, and 2) The meta regio-isomers

are more stabilized by the framework than the para regio-isomers, relative to their

unctalyzed gas-phase reactions.

The enhanced stabilization of these TSTs relative to their gas phase phase is
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Figure 3.6: The Gibbs free energy surface of our adsorbed (dashed line) and gas
(solid line) DA reactions at 368.15 (K). The x-axis represents the reaction coordinate,
which is segregated between the adsorbed and gas states; represented by "*" and "(g)"
super/subscripts respectively. All path energies have been normalized relative to their
respective gas-phase reactants. The adsorbed reactants are non-interacting and their
energies were taken as the sum of their most stable physisorbed configurations from
Table 3.1 with their corresponding secondary reactant from the bulk gas phase. The
product energies were taken from their most stable configurations outlined in Table
3.2. The shaded regions represent the thermodynamic limits defined by the harmonic
and Free Translator approximations, with each state representing an average between
those two limits.)

largely attributed to the favorable confinement induced by the H-ZSM5 framework

rather than the Brønsted-π interaction with the acid site. In Figure 3.8, we show the

apparent (non ZPE corrected) DFT energy barriers for the catalyzed and gas phase

DA cycloaddition reactions, previously outlined within Figure 3.6 and following the

same color scheme. These energies were separated into their Kohn Sham (PBE) and

Grimme-D2 contributions (defined in section 3.2) and plotted within Figure 3.8 using

cross hatches and hatches respectively, while the uncatalyzed gas-phase and catalyzed

adsorbed phase reaction energies were plotted with solid line and dash-dot borders

respectively. The most significant observation from Figure 3.8 is that the differences

in PBE energy barriers for the catalyzed and gas phase are much smaller than for the
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Grimme-D2 dispersion correction energies. This suggests that the TSTs are mainly

stabilized by the long-range van der Waals forces provided by the framework (i.e

confinement), rather than the covalent interaction between the Brønsted proton and

the π-bond of the TST.

The TST configurations corresponding to our DA reactions are shown in Figure 3.7

and in all cases it was found that the most energetically stable configurations preferred

cis-isoprene (the diene) to reside at the acid site. These structures largely resemble

their co-adsorbed states rather than their products, which was also observed in the

gas-phase (see Figure A1 of the Appendix). Unlike the configurations of the adsorbed

products shown in Figure 3.4, the Brønsted proton preferred to interact more closely

with one of the carbon atoms involved in a π-bond rather than the π-bond itself. In

particular, the Brønsted proton preferred to interact with the secondary carbon of

the cis-isoprene (diene) for the C7 TST, represented within Figure 3.7 a). However,

for the C10 TSTs, this interaction ranged between the primary and tertiary carbon

atoms of the cis-isoprene (diene), ultimately depending on whether the final product

was para or meta. The C10-para TSTs are represented within Figure 3.7 b) and c);

and it can been seen that the Brønsted proton preferred to interact with the tertiary

carbon. However, for the C10-meta TSTs (represented within Figure 3.7 d) and e)),

the Brønsted proton preferred to interact with the primary carbon.

Competitive chemisorption and cyclization pathways

Historically, two pathways for olefin oligomerization have been considered: 1) a con-

certed mechanism in which protonation and C-C coupling occur simultaneously, or

2) a step-wise mechanism, where protonation results in the formation of an inter-

mediate alkoxide before coupling with an additional olefin. Svelle et al.[134] have

investigated both pathways using DFT in the dimerization of linear alkenes; but the
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Figure 3.7: The most energetically stable adsorption configurations of our Diels-
Alder transition states (TST). The Brønsted proton is bond to O17 for each image;
and the aluminum, proton, and oxygen (O17) were emphasized using spheres. The
reactant atoms were also represented as spheres, with double bonds emphasized using
thicker diameters. Key: silicon (yellow), oxygen (red), hydrogen (white), aluminum
(pink), carbon (turquoise) a) Product C7 TST, where the Brønsted proton interacts
with the diene’s secondary carbon "C2". b) Product C10-para2 TST, where the
Brønsted proton interacts with the tertiary carbon "C2" on the diene. c) Product
C10-para1 TST, where the Brønsted proton interacts with the tertiary carbon on
the diene. d) Product C10-meta1 TST, where the Brønsted proton interacts with
the diene’s primary carbon "C1". e) Product C10-meta2 TST, where the Brønsted
proton interacts with the diene’s primary carbon "C1".

prevailing pathway was inconclusive. On the other hand, Shen W.[135] have con-

cluded that while the concerted mechanism for ethene dimerization is preferred in

large pore zeolites, both pathways are competitive for smaller pore zeolites (i.e H-

ZSM5). Without claiming exclusivity, we have investigated the step-wise mechanism;

which has been predominantly chosen in works concerning olefin cyclization and β-

scission.[130, 132, 136]

Unlike oligomerization, the mechanism for olefin chemisorption is well established,

and is illustrated within Figure 3.9.[122, 131, 113, 123, 130] The path begins with a
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Figure 3.8: The apparent DFT energy barrier (non ZPE corrected) for the catalyzed
(alternating line-dot border) and gas phase (straight-line border) DA cycloaddition
reactions outlined within Figure 3.6. The apparent barrier was defined as the differ-
ence between the TST and the sum of zeolite structure with the gas phase reactants.
The DFT energy has been separated between the Perdew-Wang-Ernzerhof (PBE)
energy (cross-hatch filled) of the exchange correlation functional and the Grimme-D2
dispersion correction energy (line-hatch filled). The differences between the catalyzed
and gas phase PBE energies are small for each reaction. However, the differences be-
tween the catalyzed and gas phase dispersion energies are large for each reaction.

physisorbed complex, where the Brønsted proton interacts with the π-bond of the

olefin. Chemisorption is initiated by protonation of either π-bonded carbon in the

olefin, ultimately traversing through a cationic TST before forming a covalent alkoxide

bond with the adjacent oxygen atom in the framework. The rate of this step has been

shown to depend upon the stabilization of this cationic TST, with tertiary carbons

preferring to house the positive charge over secondary or primary carbons.[113, 123]

However, protonation of olefins containing tertiary carbons (i.e isoprene) have been

found to form stable carbenium intermediates in the form of physisorbed carbocationic

states. For example, Ngueyn et al.[123] have shown tert-butyl carbeniums to be more

stable than their alkoxide analogs at temperatures as low as 300 K.[123]

In Figure 3.10 we show the Gibbs free energy surface for the physisorption, pro-
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Figure 3.9: General mechanism for olefin chemisorption at a zeolite’s Brønsted site.
The formation of the alkoxide bond is formed with an adjacent framework oxygen.

tonation, and subsequent chemisorption of ethene and isoprene at 368.15 K and 1

atm. Although we have considered many possible adsorption configurations at these

conditions, the most thermodynamically favourable states remained those discussed

within section 3.3.1. In particular, the Brønsted proton preferred to reside at O17,

being 10 (kJ/mol) more stable than at O16. Physisorbed ethene and trans-isoprene

continued to be preferred at O17 than O16 by 16 and 19 (kJ/mol) respectively. In

their chemisorbed states, both ethene and isoprene preferred to form their alkox-

ide bond with O17 rather than O16 by 39 and 19 (kJ/mol) respectively. Stable

carbenium intermediates were only found for isoprene, with protonation occurring

on the primary carbon such that either a secondary or tertiary carbenium ion was

formed. The tertiary carbenium was found to be 15 (kJ/mol) more stable than the

secondary carbenium, however the subsequent tertiary alkoxide was 15 (kJ/mol) less

stable than the secondary alkoxide. Overall, the two most thermodynamically fa-

vorable adsorption configurations; and therefore most likely to occupy the acid site,

were: 1) trans-isoprene physisorbed at O17, and 2) chemisorbed ethene at O17. The

favourablity between these two states depended upon the thermodynamic approx-

imation used. In particular, physisorbed trans-isoprene can be 10 (kJ/mol) more

favorable (Free Translator), or 7 (kJ/mol) less favourable (harmonic oscillator) than

chemisorbed ethene. Despite being thermodynamically similar at these conditions,

the physisorption of trans-isoprene was found to be the kinetically favored adsorbate.

The minimum energy path for chemisorption occurs through the formation of a
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covalent alkoxide bond with an adjacent oxygen atom at the acid site. Therefore,

the path for ethene chemisorption at O17 requires: 1) an initial proton migration

between O17 to O16, 2) physisorption of ethene at O16, and 3) protonation of ethene

with chemisorption at O17. The Gibbs free energy surface for this mechanism is

represented by the pink colored path in Figure 3.10. The barrier for the proton

to migrate from O17 to O16 is represented by the path connecting states "0" to

"1" in Figure 3.10; it had an electronic DFT (non ZPE corrected) barrier of 69

(kJ/mol) and a Gibbs free energy barrier of 58 (kJ/mol). Sierka and Sauer have also

investigated proton mobility in ZSM-5 by performing QM-POT calculations at the

CCSD(T) level of theory.[137] Likewise, they considered the T7 O17 Brønsted site

as the most energetically stable (labeled as O7 within their paper); and found the

electronic barrier for proton migration to be 80.7 (kJ/mol), close to our predictions.

Upon physisorption of ethene at O16, the barrier for protonation is represented by

the path connecting states "5" to "4" within Figure 3.10. For this step, both the

intrinsic Gibbs free energy and electronic DFT barriers were 64 (kJ/mol). Early

ab-initio calculations using general zeolite models have shown intrinsic barriers for

ethene chemisorption to be between 68-129 (kJ/mol).[138, 139, 140] More recently,

Shen W.[135] and Chu et al.[141] have seperately investigated ethene dimerization

within H-ZSM5 using DFT methods on variously sized cluster models. Both models

had the aluminum atom located at the T12 position and the Brønsted proton residing

at O24. Shen W. found the intrinsic energy barrier for the chemisorption of ethene

from the physisorbed state to be 70-98 (kJ/mol); while Chu et al. have found barriers

between 68-80 (kJ/mol). Work by Gleeson D.[142] using DFT based cluster models

calculated an instrinsic barrier between 78-119 (kJ/mol). Based on these results, our

calculated intrinsic barrier of 64 (kJ/mol) was slightly underpredicted. Nevertheless,

our underprediction reinforces that ethene chemisorption will be kinetically limited
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relative to trans-isoprene physisorption.

Figure 3.10: The Gibbs free energy surface at 368.15 K and 1 atm of the physisorption
and subsequent chemisorption of ethene (Left) and isoprene (Right). The grey and
turquoise path show olefin physisorption at O17 with chemisorption occurring at O16
for ethene and trans-isoprene respectively. The pink and olive paths show proton
migration form O17 to O16 followed by physisorption of the olefin at O16 with sub-
sequent chemisorption at O17 for ethene and trans-isoprene respectively. The num-
bering scheme for each state is as follows: 0) Brønsted site at O17, 1) Brønsted site
at O16, 2) physisorbed ethene at O17, 3) chemisorbed ethene at O16, 4) chemisorbed
ethene at O17, 5)physisorbed ethene at O16, 6) physisorbed trans-isoprene at O16, 7)
secondary carbenium isoprene, 8) physisorbed trans-isoprene, 9) tertiary carbenium
isoprene, 10) secondary alkoxide isoprene at O16, 11 secondary alkoxide isoprene at
O17. Only the most stable physisorbed/chemisorbed states were shown, with the
exception of tertiary isoprene alkoxides whose states are not connected, but are listed
above states 10 and 11. The shaded regions represent the thermodynamic limits
defined by the harmonic and Free Translator approximations, with the state repre-
senting an average between those two limits. The "†" superscript represents TSTs.

Given its small chemisorption barriers (relative to DA cycloaddition) and occu-

pancy at the Brønsted site, we expect rapid equilibriation of trans-isoprene among its

protonated states. As such, we reckon with a possible cyclization/dehydrogenation

pathway for the formation of our C7 product. We based our mechanism on a low-

energy route proposed for the cyclization between ethene and propene by Vandichel

et al.;[132] which consisted of: 1) chain growth through oligomerization between a
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chemisorbed olefin with a co-physisorbed olefin, 2) cyclization of the formed chain.

The necessary chain to undergo cylization into our C7 product may only be generated

through the oligomerization between a primary isoprene alkoxide with co-adsorbed

ethene. This primary alkoxide is formed by the initial protonation of the secondary

carbon of isoprene "C3"; with the alkoxide bond formed between the primary "C4"

carbon of isoprene with the framework oxygen O16. We have found two transition

states and a stable cationic cyclo-propyl intermediate along this path (see Figure 3.11).

Although stable cyclopropane intermediates have been found in steps such as ethene

methylation[127] and skeletal isomerization of alkenes[143, 144], their cationic forms

have only been predicted as TSTs preceding ring closure or isomerization. However,

such TSTs were not larger than di-methyl-cyclopropane and we rationalize the stabil-

ity of our intermediate through the additional hydrogen bonding with the framework

from its larger carbon number (C7 vs. C5).

The Gibbs free energy surface at our nominal conditions for the oligomeriza-

tion/cyclization pathway to form our C7 product is shown in Figure 3.11. For compar-

ison, we have also included the DA cycloaddition barrier, beginning with physisorbed

trans-isoprene. It is evident, by Figure 3.11, that the DA cycloaddition barrier is

not only kinetically favored; but is also thermodynamically preferred. In particular,

the oligomeric intermediates along the cyclization path are almost equivalently less

stable than physisorbed trans-isoprene, while the barriers for TST1 and TST2 with

respect to physisorbed trans-isoprene are larger than DA cycloaddition. Based on

these results we conclude that the DA cycloaddition is the dominant path toward C7

formation; and have disregarded the competitive oligomerization/cyclization pathway

from our MKM.
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Figure 3.11: The Gibbs free energy surface at 368.15 K of isoprene oligomerizing with
ethene to form the C7 product (Black) and the DA cyloaddition reaction outlined in
Figure 3.6 (Blue). The shaded regions represent the thermodynamic limits defined
by the harmonic and Free Translator approximations, with the state representing an
average between those two limits.

3.3.4 Microkinetic modeling and sensitivity analysis

We begin our analysis by first comparing our DFT based MKM against experimental

results. Apart from furan chemistry, zeolite catalyzed DA reactions have been rela-

tively unexplored. The most comparable experiment is that reported by Bernardon et

al.[19], who investigated DA reactions between isoprene (diene) and methyl-acrylate

(dienophile) within many acidic zeolites at 348.15 K and 1 atm. They have con-

cluded that H-ZSM5 zeolites had the highest activity for DA reactions, achieving

site time yields (STY) between 0.05-0.219 (mmol − product/mmol − H + /hour)

toward their most selective product (para-cycloadduct). Under the HO approxima-

tion with an identical temperature and reactant ratio (2:1 for dienophile:diene), our

MKM predicted a STY of 0.01 (mmol − C7/mmol − H + /hour), with C7 being

most selective. Under the Free Translator approximation, the rates of product for-

mation drop significantly; and the catalytic flux was an order of magnitude smaller

than the gas-phase flux. The reason for this phenomenon is discussed later, but

was ultimately due to the overprediction of the cycloadduct binding energies. To

improve our catalytic performance while mitigating competitive oligomerization re-
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actions, our preferred nominal condition included a higher temperature and larger

dienophile:diene feed ratio. Our reaction conditions were chosen as 368.15 K at 1

atm with a reactant ratio of 4:1 (dienophile:diene). At these conditions we obtained

a STY of 0.4 (mmol − C7/mmol − H + /hour), with the catalytic flux of isoprene

consumption toward product formation being 3400% larger than the gas-phase flux;

which accounted for less than 4% toward product formation. In a previous study[108],

we concluded that the PBE(DFT-D2) functional overestimated the experimental heat

of adsorption of ethene within H-ZSM5 by 20 kJ/mol at 195 K. To address how this

discrepancy would impact our results, we ran our MKM under a destabilized reaction

system where intermediates and TSTs which explicitly interact with the Brønsted

acid site were destabilized by 20 [kJ/mol]. The resulting catalytic flux became 7000%

larger than the gas-phase flux, owing largely to the increased desorption rates of our

products.

We would like to briefly emphasize that Bernardon et al. achieved upwards of

90% selectivity toward their most favourable cycloadduct (the para- regioisomer),

whereas under identical conditions and using an identical reactant diene (isoprene),

we only obtained 61% toward our most favourable cycloadduct (C7), and our most

favourable C10 product was the meta- regioisomer (C10-meta2). Such increased se-

lectivity and preference toward the para- regioisomer by Bernardon et al. can be

explained by the difference in functionality between our dienophiles. In particular,

methyl-acrylate contains an electron withdrawing ester group, which is known to

lower the HOMO/LUMO energy gap in normal electron demand DA reactions and

increase the corresponding reaction rate. Additionally, such an explanation would

support the larger STY observed by Bernardon et al.

The results of our MKM are shown in Table 3.3, which include reactant conver-

sion, product selectivity/yield, and surface coverage. Two results were listed for each
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quantity, corresponding to the HO and Free Translator approximations discussed in

A.2 of the Appendix. Each case was run separately, keeping reactant conversion at

approximately 1%. Only adsorbates with the most significant coverage were listed;

but accounted for at least 99% of the surface species. The reaction network imple-

mented within the MKM and its corresponding kinetic parameters are given within

Figure A2 and Table A1 of the Appendix.

Under the HO approximation, the C7 product was most selective at 70% with

respect to isoprene. Between the C10 products the meta isomers were favored, ex-

hibiting at least 9% more selectivity relative to the para products. This preference

is related to their intrinsic barriers being on average 7 (kJ/mol) smaller than for

the para cycloadducts. Overall, the DA products dominated the surface, accounting

for at least 93% of the coverage, with chemisorbed ethene and physisorbed trans-

isoprene mostly accounting for the remainder. The most abundant surface interme-

diate (MASI) was the C10-para2 product, with a coverage of 60%. The C10-para2

product was also the most stable C10 cycloadduct, it had a DFT energy that was 11

(kJ/mol) more favourable than the other C10 products and a desorption barrier that

was 11-27 (kJ/mol) larger than all other products.

Under the Free Translator approximation, there was a precipitous drop in reactant

conversion and product yield among all cycloadducts. Furthermore, the selectivity

toward C7 had substantially increased, while the selectivity for the C10 products had

decreased. Surprisingly, the catalytic flux for the formation of all cycloadducts was

reduced by two orders of magnitude relative to the HO approximation. For the C7

product in particular, the gas phase flux was an order of magnitude larger than its

catalytic flux, implying that its selectivity is primarily the result of reactions occurring

in the gas phase. Moreover, its smaller gas phase activation barrier (See A1 of the

Appendix) relative to the formation of C10 products supports its large selectivity.
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The coverage of ethene and isoprene was also reduced, accounting for less than 0.01%

of the surface species. On the other hand, each cycloadduct experienced an increase

in coverage, now accounting for over 99% of the surface species. Consequently, it

was determined that the desorption of products was rate limiting, being directly

caused by the enhanced stability accrued by the Free Translator approximation. As

intended, the Free Translator approximation serves as an upper-bound for the entropic

freedom of the adsorbates, but likely overestimates the stability of our products and

underestimates the rate.

The molecular surface area for translational entropy used within this study (200

x 600 pm) was derived by Moor et al.[145] for C2-C8 n-alkanes. The surface area

was calculated with their physisorbed configurations having been oriented along the

straight channel; with the Brønsted proton interacting with one of the carbon atoms.

Unlike n-alkanes, no orientation of our cyclic products along the straight channel can

afford such freedom. Moreover, the presence of Brønsted-π interactions for our prod-

ucts at the acid site (orientations shown in Figure 3.4) introduces enhanced stability

relative to n-alkanes of an identical carbon number. We therefore presume that the

actual entropy falls closer to the HO approximation; and have included a compari-

son among MKM results (See Table A1, Table A2, Table A3 in the Appendix) from

the HO, Free Translator, and Free Translator/HO hybrid where only the product

entropies were approximated by the HO. Ultimately, the results from the Free Trans-

lator/HO hyrbid were largely similar to the HO, and we, therefore, performed the

remainder of our kinetic analysis considering only the HO approximation.

Kinetic analysis and selectivity

Table 3.4 shows the apparent order (derived by equation A19 of the Appendix) and

inferred rate expression for each DA cycloaddition reaction under the HO approxi-
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adsorbate Conversion % Yield % Selectivity % Fractional Coverage
ethene 0.2(0.01) - - 6.8× 10−2(5.7× 10−7)

isoprene 1.1(0.04) - - 1.6× 10−3(1.8× 10−6)

C7 - 0.8(0.03) 69.9(97.7) 2.0× 10−2(6.2× 10−3)

C10-para1 - 0.01(<0.001) 0.7(0.09) 9.5× 10−3(1.2× 10−2)

C10-para2 - 0.1(<0.001) 10.3(0.79) 6.0× 10−1(6.6× 10−1)

C10-meta1 - 0.01(<0.001) 1.0(0.08) 4.1× 10−2(5.1× 10−2)

C10-meta2 - 0.2(<0.001) 18(1.4) 2.6× 10−1(2.8× 10−1)

Table 3.3: The conversion, selectivity, and coverage per adsorbate quantified from
the MKM. The isoprene conversion included both isomers (cis− and trans−). The
coverage for ethene and isoprene included their physisorbed, chemisorbed, and carbe-
nium states on O17 and O16, including both isomers of isoprene (cis− and trans−).
Free Translator quantities are housed within parenthesis

mation. The formation of C7 was found to be first order in ethene, following from its

preference to react with the physisorbed trans-isoprene rather than acting as a com-

petitive adosorbate that would otherwise saturate the surface. Much to our surprise,

the formation of C7 was found to be inhibited by isoprene, having a negative appar-

ent order of approximately -0.5. As discussed in the next subsection, cycloadduct

desorption was found to be rate limiting and ultimately the cause behind isoprene

inhibiting C7 formation. The inferred rate expressions for C10 production were all

essentially identical, being zero order with respective to ethene, and approximately

half order with respect to isoprene. The C10 cycloadducts are formed by the reaction

between two isoprene molecules, justifying the zeroth order in ethene. Moreover, ph-

ysisorbed trans-isoprene was the preffered adsorbate at the acid site, therefore ethene

adsorption had little to no effect as a competitive adsorbate. The half-order of iso-

prene in C10 production suggests that, much like in C7 production, the desorption

of cycloadducts is also inhibitory.

Figure 3.12 shows: 1) the selectivity of C7 cycloadduct and 2) the ratio of product

formation rates (C7/C10), as a function of the reactant feed ratio, as predicted by

the model. For each plot, the catalytic flux was ensured to be at least an order of
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magnitude larger than its respective gas phase flux. The selectivity toward C7 can

be defined by the ratio of product formation to isoprene consumption (rC7/rC5), as

defined by equation 3.2. At high ethene partial pressures, the consumption of isoprene

by the formation of C10 products diminishes relative to C7 formation, driving the

selectivity toward unity. This phenomena offers a reactor engineering solution for

controlling the selectivity toward C7. The selectivity toward C10 is also defined by

equation 3.2; and is justified by the plot of product formation rates (C7/C10) as a

function of the reactant partial pressure ratio within Figure 3.12. In particular, the

ratio of inferred rate expressions for C7 against C10 (see table 3.4), produces a linear

function with slope 1
2(kC7/kC10) and a y-intercept of 0. This is replicated within

Figure 3.12, suggesting that the selectivity defined within equation 3.2 is valid for

C10 formation.

nC2 nC5 Inferred rate expression
rC7 0.93 -0.54 ∼ (kC7)pC2p

−0.5
C5

rC10P1 -0.08 0.47 ∼ (kC10P1)p
−0.5
C5

rC10P2 -0.08 0.47 ∼ (kC10P2)p
−0.5
C5

rC10M1 -0.08 0.47 ∼ (kC10M1)p
−0.5
C5

rC10M2 -0.08 0.47 ∼ (kC10M2)p
−0.5
C5

Table 3.4: The apparent order (ni) under the HO approximation for each DA cy-
cloaddition reaction with respect to ethene (C2) and isoprene (C5), as defined by
equation A19 in the Appendix

S(C7/C5) =
kC7

pC2√
pC5

kC7
pC2√
pC5

+ 2kC10
√
pC5

S(C10/C5) =
2kC10

√
pC5

kC7
pC2√
pC5

+ 2kC10
√
pC5

(3.2)
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Figure 3.12: Plots of: 1) the Selectivity, predicted by the MKM, of C7, and 2) the
ratio of C7 to C10 reaction rates, as a function of reactant ratio: (ethene/isoprene),
otherwise (dienophile/diene).

Global sensitivity analysis

The degree of rate control (DORC) defined by Campbell[146, 147] offers a robust

approach toward finding the kinetically controlling steps in a reaction network. The

notion behind this technique is to quantify the response of the overall reaction to a

perturbation in the free energy of the TST or reaction intermediate and therefore

the intrinsic barrier of that particular step. The outcome is a collection of quantities

defining the enhancement/inhibition that each step within the network has on the

overall rate. A limitation of this technique however, is that it only captures local

sensitivities; since there are intrinsic errors in applying the DFT-D2 functional and

uncertainty in calculating the entropy, we prefer a global estimate of sensitivities.

A variance-based global sensitivity analysis for catalytic reactions has recently

been developed by Tian and Rangarajan[148], and we have applied their approach
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to our system. Although the formulation of this method is outside the scope of this

paper, we summarize the resulting quantities and how they can be used to infer ki-

netic relationships. In particular, the individual influence of an elementary step or

reaction intermediate "i" on the overall rate is defined by "Si", while the combined

influence between "i" with elementary step or reaction intermediate "j" is defined by

"Sij". The "Sij" variable encapsulates the nonlinearity of the MKM, as well as the

extent to which the instantaneous change in the overall reaction rate with respect

to parameter "i" (or "j") is dependent on the value of the other. In theory, the

combined influence of every step and reaction intermediate within the network may

be calculated (Sijk...N ), however this is typically not necessary and would require

significant computational resources. Upon observing that the DA products dominate

the surface coverage, we have limited our analysis to: 1) our catalyzed DA cycload-

dition steps and the adsorption/desorption of their respective cycloadducts; 2) their

adsorbed reactant/product intermediates (physisorbed ethene, isoprene, and each cy-

cloadduct). The rate of isoprene consumption (limiting reactant) was defined as the

overall rate, and the free energies of the TSTs and intermediates were perturbed to

quantify the sensitivities. The perturbation range specified by the user has a signif-

icant impact on the resulting sensitivities, with small deviations from the nominal

point encompassing local information (similar to DORC), while larger perturbations

encompass global information, such as the correlation among parameters. It should

be noted that while the DORC can be negative for some catalytic systems, the global

sensitivities are always non-negative by definition.

Figure 3.13 shows the individual "Si" and total "STi " global sensitivities of the

catalyzed DA cycloaddition reactions, their corresponding product adsorption steps,

and their corresponding reaction intermediates under perturbation ranges from [-0.05,

0.05], [-5.0, 5.0], and [-7.5, 7.5] (kJ/mol) at 368.15 (K), 1 (atm) using the HO approx-
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Figure 3.13: Global sensitivity values Si and STi for each catalyzed reaction step "R"
and adsorbed intermediate "I", where the "DA" and "ads" superscripts correspond
to the DA cycloaddition and corresponding product cycloadduct adsorption steps: C7
(R7, I7), C10-para1 (RP1,IP1) , C10-para2 (RP2,IP2), C10-meta1 (RM1,IM1), C10-
meta2 (RM2,IM2), and adsorbed reactants ethene (IC2), isoprene (IC5) at 368.15
(K) and 1 (atm) under the HO approximation for perturbation ranges ([-0.5,0.5] to
[-7.5,7.5] kJ/mol).

imation. The "STi " variable captures the net influence of parameter "i", including

it’s contribution toward the other parameters; and therefore must always be larger

than the individual contribution "Si". Under small perturbations about the nominal

point ([-0.5,0.5] (kJ/mol)), the sensitivities are qualitatively identical to the DORC.

The overall reaction was most sensitive to the C7 DA cycloaddition step (RDAC7 ); this

result is consistent with C7 being the most selective product and exhibiting the lowest

apparent reaction barrier. Therefore, stabilizing the C7 TST would most influence the

overall rate of this network. Following C7, the reaction rate was most sensitive to the
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formation and desorption of C10-para2 (RDAP2 , RadsP2 , IP2), which also exhibited the

most exergonic adsorption step among the cycloadducts, and largest surface coverage

(60%) among all adsorbed species. Among these parameters, the overall rate was

most sensitive to the stability of the C10-para2 intermediate (IP2). This result coin-

cides with the precipitous drop in catalytic flux and upsurge in C10-para2 coverage

(97.7%) under the Free Translator approximation, implicating that destabilizing the

adsorbed C10-para2 product would increase the catalytic rate. The remaining sensi-

tivities were marginal; and included the rate of adsorption of C10-meta2 (RadsM2) and

it’s adsorbed intermediate (IM2). Similar to C10-para2, the rate was more sensitive

to adsorbed C10-meta2, which was also the second most abundant surface intermedi-

ate (26%). Therefore in addition to C10-para2, the destabilization of the C10-meta2

adsorbate would increase the catalytic rate. As the range of allowed deviation is in-

creased ([-5.0,5.0], [-7.5,7.5] (kJ/mol)), more parameters become important and the

individual sensitivities of the C7, C10-para2, and C10-meta2 DA cycloaddition and

adsorption steps/intermediates decrease, but the general rank of sensitivities remains

unchanged. Moreover, we begin seeing that Si < STi , indicating that a combined

contribution of multiple reactions steps and intermediate species affects the overall

rate.

Figure 3.14 shows the heat map of Sij , which can be thought of as a 2D correla-

tion plot, where Sij quantifies the extent to which the combination of parameters "i"

and "j" influence the overall rate. The average magnitude of Sij values progressively

increase as the range is expanded from [-0.5, 0.5] to [-7.5, 7.5] (kJ/mol). This is

consistent with Si decreasing relative to STi as the perturbation range is increased

within Figure 3.13. The strongest correlations among the parameters are the DA

cycloaddition step, adsorption step, and adsorbed intermediate of C10-para2 and of

C10-meta2. Each of these parameters are kinetically related and consistent with the
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Figure 3.14: Heat maps of Sij values for each of the catalyzed DA reactions and cor-
responding adsorbed intermediates defined in Figure 3.13 at 368.15 (K) and 1 (atm)
for perturbation ranges ([-0.5,0.5] to [-7.5,7.5] kJ/mol). Note, the map is symmetric,
such that Sij = Sji and Sii is not defined. As the parameter range is broadened,
more Sij values become significant.

influence of C10-para2 and C10-meta2 on the overall rate. But apart from reinforcing

our observations from Figure 3.13, the heatmap of Figure 3.14 shows that the forma-

tion of C7, formally the most influential independent parameter toward the reaction

rate, is relatively uncorrelated with any species. This is also illustrated in Figure

3.13, where the difference between "STi " and "Si" are much smaller for C7 than for

C10-para2 or C10-meta2. A possible explanation would be that C7 had the smallest

apparent free energy barrier, such that it’s formation and desorption rates were at

least an order of magnitude larger than any other cycloadduct (See Table A3 of the

Appendix). Therefore perturbations to C7 significantly impact the overall reaction

(rate of isoprene consumption) by increasing/decreasing the rate of C7 formation, but

do not significantly impact other steps/intermediates. Additionally, the formation of

C7 was found to faintly correlate with the formation of C10-meta2, which exhibited

the smallest apparent activation barrier and largest formation/desorption rate among

the C10 products.
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3.4 Conclusions

We performed a mechanistic study on the DA cycloaddition reactions between ethene

and isoprene within H-ZSM5 using dispersion corrected DFT calculations. Tempera-

ture corrections were implemented using the HO and Free Translator approximations,

offering a lower and upped bound on our MKM results respectively. The product cy-

cloadducts produced a range of cyclic regio-isomers, which were the basis for studying

how zeolite confinement would impact their stability and selectivity based on size and

shape. The products included a smaller C7 cycloadduct produced from the coupling

between ethene and isoprene, as well as four larger C10 cycloadducts produced by the

coupling between two isoprene molecules. These corresponding C10 products were

categorized based on their para- and meta- regiochemistry.

Our DFT results have shown adsorbate configurations and adsorption values con-

sistent with available works. It was found that the DA cycloaddition reactions within

H-ZSM5 were catalyzed with respect to their gas phase reactions; but with C10-para

products having on average 7 (kJ/mol) larger intrinsic barriers than the C10-meta

products. The driver for catalysis was determined to be the stability of the DA

TSTs caused by their favourable van der Waals interactions with the framework (i.e

confinement).

Oligomerization and cyclization mechanisms were also considered as potentially

competitive pathways. In particular, we have investigated the chemisorption of our

olefins via the formation of covalent alkoxide bonds with the oxygen atoms of the

framework. Chemisorbed ethene was found to be thermodynamically competitive

with physisorbed trans-isoprene; but it’s intrinsic barrier rendered it kinetically un-

favourable. A subsequent cyclization pathway for C7 formation was also investigated,

beginning with olgiomerization ocurring between a primary isoprene alkoxide with co-

adsorbed ethene and concluding with dehydrogenation of a six-membered cyclic prod-
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uct. However, this pathway was found to be both kinetically and thermodynamically

unfavourable relative to DA cycloaddition.

Our DFT results were fed into a differential CSTR based MKM, with conditions

replicated from an experimental work studying the DA reactions between isoprene

and methyl-acrylate.[19] Our model was able to capture similar site time yields to

experiments; but to enhance our catalytic flux we settled upon a larger reactant feed

ratio and temperature. Under the Free Translator approximation, the gas phase flux

for the formation of C7 was found to be an order of magnitude larger than it’s re-

spective catalytic flux. Under this approximation, the desorption of cycloadducts

was found to be rate limiting, with the Free Translator approximation presumably

under-estimating the entropic loss of adsorbed intermediates. Consequentially, com-

bining the Free Translator approximation with the HO approximation for adsorbed

cycloadducts produced largely similar MKM results to the HO approximation. Fur-

ther analysis using the HO approximation has shown appreciable selectivity toward

the C7 product (70%); and this approximation was used for the remainder of our

analysis.

The apparent order for the formation of our C7 product was found to be first

order in ethene but negative half order with respect to isoprene, suggesting that iso-

prene inhibits C7 formation. The apparent orders for formation of our C10 products

were largely similar, all being zero order with respect to ethene; but half order with

respect to isoprene. A global sensitivity analysis was implemented on our MKM,

which showed that isoprene consumption (limiting reactant) was most sensitive to

1) the formation of C7, 2) the DA cycloaddition and adsorption steps of C10-para2

and C10-meta2 and their corresponding adsorbed state (the two most abundant sur-

face intermediates). Surprisingly, the formation of C7 was largely uncorrelated with

any other parameters, despite contributing the greatest individual influence on the
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overall rate. It was posited that because C7 had the smallest apparent free energy

barrier, with formation and desorption rates at least an order of magnitude larger

than the other cycloadducts, that perturbations to the C7 TST resulted in significant

consumption of isoprene but otherwise insignificant contributions to the other steps.
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CHAPTER 4

ELUCIDATING ENTROPY DRIVEN

STRUCTURE-PROPERTY RELATIONS USING NEURAL

NETWORKS

4.1 Motivation

The adsorption entropy of molecules within microporous frameworks is a crucial quan-

tity in our understanding of heterogeneous catalysis, hydrocarbon separations, and

molecular storage. Traditionally, the entropy of an adosorbate has been illustrated

through the notion of confinement, dictated by how well the molecule fits within the

pores and active site of the framework.[2] The change in adsorption entropy "∆sads"

can therefore be described as the loss in the degrees of freedom by the molecule upon

a change of state from an unconstrained gas, to a confined adosorbate. Without the

explicit formation of bonds with the framework structure, adsorbed molecules may

retain the ability to partially translate, rotate, and vibrate within the framework.

Naturally, such limitations are imposed by the size and shape of the pore. Molecules

which retain translational motion will be constrained to the occupiable volume of

the framework, while molecules whose length surpasses the diameter of the pore will

be prevented from rotating about certain axis. Significant size/shape discrepancies

between the framework topology and molecule can prevent adsorption altogether,

while subtle differences may be exploited for a particular application, such as in the

separation of alkanes,[75] and cracking of hydrocarbons.[149]

The adsorption entropy is a theoretical concept that can be experimentally mea-

sured by techniques such as gravimetry,[36] chromatographic adsorption,[34] and

infrared operando spectroscopy.[37] Nevertheless, these techniques quickly become

impractical for studying the many possible sorbate-framework combinations. Sim-
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ulations offer an expedient route, being capable of predicting the entropy of ad-

sorbed intermediates to within 10 J/mol-K error using a number of sophisticated

approaches. These include computing anharmonic corrections to the quantum vibra-

tional partition function,[38, 39] ab initio molecular dynamics simulations to calcu-

late the adsorption free energy and thereby the entropy change upon adsorption,[40,

41] and configurational-bias Monte-Carlo simulations to generate entire adsorption

isotherms.[42, 150] However, the use of such methods is computationally prohibitive;

consequently, approximations are used as a compromise. For instance, knowledge of

the physical behavior of the adsorbate may merit treating any mobility as purely vi-

brational, or invoking the hindered translator/rotor model.[44] However, such approx-

imations are limited to the adsorbate-framework system. For example, the addition

of two-dimensional free translations depend on a coverage term, which is particular

to the dimensions of the active site of the framework and has been validated only for

a subset of hydrocarbons.[151, 152, 110, 145]

The use of empirical correlations offers an expedient route in predicting sensible

adsorption entropies without resorting to experiments or simulations. De Moor et

al. [33] used ab initio simulations to show that the adsorption entropies for n-alkanes

within acidic zeolites are linearly correlated with their carbon number. Campbell

and Sellers compiled experimental alkane entropies on two-dimensional catalytic sur-

faces [5, 6]. The key finding of their work was that the ratio of the adsorbed-phase

entropy to the gas-phase entropy was approximately two-thirds. Otyepková et al. cal-

culated the adsorption entropy of a chemically diverse set of molecules adsorbed onto

organic "van der Waals" materials using inverse gas chromatography and ab initio

simulations [46, 47]. Their results showed a constant entropic loss of approximately

40% relative to the gas-phase entropy. Likewise, Budi et al. calculated the adsorption

entropy of a set of chemically diverse molecules adsorbed on mineral surfaces using
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density functional theory [48]; and their data showed a strong linear dependence

between the adsorbed-phase entropy and the gas-phase entropy.

The relationship between confinement and the adsorption entropy suggests that

geometric descriptors may be suitable in developing empirical correlations. Denayer

et al.[75] have demonstrated that the difference in rotational entropies was the driving

force behind the zeolite separation of alkane/isoalkane mixtures, which correlated with

the ratio the molecule’s radius of gyration to the framework cavity’s largest inscribed

van der Waals radius. Dauenhauer and Abdelrhaman [7] compiled experimentally

determined adsorption entropies for alkanes adsorbed in nine aluminosilicate zeolites.

They showed that the entropic loss upon adsorption can be linearly correlated with the

molecule’s gas-phase translational and rotational entropies; and that the occupiable

volume of a zeolite is a "universal" descriptor in predicting such losses. In a separate

study[8], Rzepa et al. have qualitatively reproduced the trends found in Dauenhauer

and Abdelrhamen’s work for a larger set of molecules within pure-silica zeolites using

Monte-Carlo simulations of the adsortion entropy at infinitely dilute conditions. The

key findings of their work were: 1) the entropy ratio is remarkably uniform across the

adsorbates for each framework, and 2) regardless of the metric used to characterize the

zeolite adsorbent, the slope of the entropy relationship follows the same qualitative

trend. The implication of their findings is that the entropic loss is effectively constant

across adsorbates within materials with similar characteristic pore size and shape.

This suggests that (except for a few prominent outliers) the adsorbate characteristics

are relatively unimportant, and raises the possibility that models based primarily on

adsorbent characteristics may be an effective tool for modeling the adsorbed-phase

entropy.

Structure-entropy relationships within microporous frameworks offer rapid, yet

sensible predictions of adsorption entropies, but constitute a challenge with a need
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for discovering effective descriptors. Here, we build upon our previous work[8] by

expanding our data set to 3965 molecule-zeolite systems, which includes 92 molecules

and 89 framework combinations. We show that although the linear correlations be-

tween the adsortpion and gas phase entropies are largely preserved, their relationship

with the framework’s size metrics are much more complicated. To capture this non-

linearity, we train a neural network model on a set of rapidly accessible/quantifiable

geometric descriptors. We subsequently perform a local sensitivity analysis to iden-

tify the most prominent descriptors toward predicting the adsorption entropy, and

rationalize their relevance through the lens of confinement.

4.2 Methods

4.2.1 Adsorption Entropy

The following section describes the computational techniques that were used to cal-

culate the adsorption entropy, ∆s∞ads, as derived in our previous work.[8] Our tech-

nique requires the selection of models for the zeolite adsorbents and adsorbate species

and adaptation of a Monte Carlo integration technique (cf. Widom test particle

method [64, 65]) to our adsorption system.

The adsorption system for our calculations is composed of a zeolitic adsorbent

material and an adsorbate species. The adsorbents used here are in their pure-silicate

forms (i.e., no aluminum substitutions) and listed in table A4 of the Appendix. The

optimized structure of each silicate was obtained from Calero et al.[74], and then

periodically replicated to form an adsorbent cell of adequate size (cf. discussion of the

cutoff radii below). The adsorbent framework was kept entirely rigid. The adsorbate

species used within this study are listed within table A5 and were selected on the basis

of having an implicit hydrogen-based TraPPE force field.[69] The geometry of each

76



adsorbate was obtained by obtaining the lowest energy three-dimensional conformer

from PubChem[153]. These molecular structures were used for the subsequent test

particle insertions in the unaltered form, which allowed us to ignore energy terms

related to bond bending, stretching, or rotation. The respective gas-phase entropies

were calculated at the B3LYP level of theory with a cc-pVTZ basis set using Gaussian

09 software.[154] The zeolite frameworks were blocked according to the inaccessible

voids characterized by Calero et al.[74] using methane as the probe molecule within

frameworks of reduced oxygen radii (1.37 Å). These blockages were chosen based

on our smallest adsorbate, methane, which is represented by a single sphere with

Lennard-Jones σ of 3.7 Åby the TraPPE forcefield. Additionally, reduced radii were

implemented as an approximation of the framework’s flexibility, which allowed for a

more robust assessment of inaccessible sites.

As mentioned previously, the adsorbates were modeled using the TraPPE force

field [49, 69] (i.e., Lennard-Jones parameters and point charges for constituent pseudo-

atoms), while the adsorbents were modeled using the TraPPE-Zeo [70] force field. As

specified in both TraPPE and TraPPE-Zeo, Lorentz–Berthelot combining rules were

used to determine the cross-site Lennard-Jones parameters. The Ewald sum technique

was used to compute the Coulomb energy of adsorbates whose TraPPE parameters

include point charges, with consistent Ewald damping parameter α = 6.0/Lmin (Lmin

is the smallest side length of the simulation cell) and Fourier vectors with k2 < 27.

The calculation of the adsorption entropy (as defined by eqs 2.3 and 2.5) was done

via Monte Carlo integration (equivalent to the Widom test particle method [64, 65]),

in the same mode described by Sarkisov [58]. First, a position and orientation of

the adsorbate is generated randomly, and the adsorbate–adsorbent potential energy

Ufs (r,ψ) for that position/orientation is computed for the TraPPE-derived model.

Then, the appropriate terms in eq 2.3 are accumulated, and the procedure is repeated
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for 107 random positions and orientations. This number of trials was satisfactory for

numerical convergence for nearly all adsorbent/adsorbate combinations (Subsequent

calculations at 108 trials were performed for unconverged adsorbates), where the

∆s∞ads measurements were considered converged when the change in the measured

value associated with an order-of-magnitude increase in the number of trials was 1)

less than 0.1R, 2) the associated isosteric heat was positive, and 3) the ∆s∞ads was

negative.The actual Monte Carlo integrations were done according to the methodology

outlined in Chapter 2 Section 2.3.

4.2.2 Neural network model

We have employed a multi-layer, feed-foreword, artificial neural network (NN) model

to predict our simulated "∆s∞ads" values using the "pytorch" package[155]. The loss

function L for training this model is given by:

L = ΣNi (wi[yi − ŷi])
2 (4.1)

where y denotes the simulated adsorption entropy ∆s∞ads and N denotes the num-

ber of data points (i.e the 3965 framework-molecule combinations). Furthermore, ŷ

denotes the predicted values of ∆s∞ads. The weights wi are used to scale the impor-

tance of the individual runs, and are inversely proportional to the convergence of y.

To circumvent numerical overflow and limit the magnitude of wi, a regularization

value, λ = 0.5 was added to the denominator.

wi = | 1

∆yconvi + λ
| (4.2)
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We posit that by including this weight, the model will be less influenced by the

lesser converged data. As mentioned in section 4.2.1, the convergence criteria for

our simulated adsorption entropy ∆s∞ads was satisfied when the measured value asso-

ciated with an order-of-magnitude increase in the number of trials was 1) less than

0.1R (J/mol/K), 2) the associated isosteric heat was positive, and 3) the ∆s∞ads was

negative.

∆yconvi = |y10
6
trials

i − y
107trials
i | ≤ 0.1R (4.3)

The convergence value of 0.1R (J/mol/K) was deemed suitable because it was

lower than the mean absolute error (MAE) of all of our NN and linear models; and

therefore limited the models from capturing numerical inaccuracies of the simulation

while permitting a sizable data set of 3965 systems.

Three hidden layers were chosen for the NN (see Figure 4.1). The input layer con-

sisted of 14 neurons corresponding to a set of 9 molecular and 5 framework descriptors,

listed in table 4.1. The molecular descriptors were obtained using Rdkit[156], which

were calculated from the three-dimensional conformers used in our simulations. Be-

cause the hydrogen atoms within the TraPPE forefield are implicit, descriptors which

characterize the rotational aspects of the molecule would otherwise be inconsistent

with the conformer used in our simulation. For example, methane is represented as a

single sphere and therefore lacks any rotational inertia. To circumvent this issue, the

hydrogen atoms of our conformer were removed prior to calculating the descriptors,

but otherwise maintaining its hydrogen explicit molecular weight. Prior to calculat-

ing the framework descriptors, the number of Monte-Carlo trials and probe radius

for the Zeo++ software was optimized by calculating the occupiable volume, occupi-

able surface area, and largest included sphere diameter for zeolite frameworks with
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the largest and smallest occupiable volumes: IWV and JSW respectively (structures

taken from IZA database[66]). Our rationale is that the framework with the largest

occupiable volume will determine the minimum number of Monte-Carlo trials nec-

essary for sampling a large space, while the framework with the smallest occupiable

volume (and among the smallest cavity diameters) will determine the maximum ra-

dius of the probe. Calculations were run at probe radii of 0.5 to 2.0, in increments

of 0.1 Å; and subsequently, Monte-Carlo trials from 25,000 to 500,000 samples (in

increments of 25,000 trials) for each probe radius were ran. The smallest error oc-

curred with a probe radius of 1.1 Åat 75,000 Monte-Carlo trials. At these conditions,

the percent change with respect to the IZA database was: 3.3%/1.0% for the occu-

piable surface area, 0.71%/4.8% for the occupiable volume, and 4.7%/7.4% for the

largest included sphere diameter of IWV/JSW respectively. The hidden layers of

the NN consisted of 81, 71, 91 neurons respectively, and the output consisted of a

single neuron corresponding to the adsorption entropy. The NN was trained on the

absolute value of the adsorption entropies, and the rectified linear unit (ReLU) was

used as the activation function to ensure this criteria. The data set was randomly

split into 20% testing and 80% training sets. The ADAM optimizer[157], using the

full training set as the batch, was implemented at a learning rate of 10−4 for a total

number of 4000 epochs. This architecture of the neural network was determined after

a systematic evaluation of over one-thousand structures with varying number of neu-

rons per layer (1-100), activation functions (CELU, ELU, Hardshrink Hardsigmoid,

Hardswish, Hardtanh, logSigmoid, RELU, ReLU6, RReLU, SELU, SIGMOID, Soft-

plus, Softshrink Tanh, Tanhshrink), and learning rates (10−3, 10−4, 10−5), to identify

the best model in terms of the mean absolute error of the testing set.
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Figure 4.1: Structure of the artificial neural network model developed here. The
output is the simulated adsorption entropy at infinite dilution ∆s∞ads. The input is
an array of 14 descriptors, consisting of 9 molecular, and 5 framework descriptors.
Color code: Molecular descriptors (blue), Framework descriptors (red), adsorption
entropy (purple).

4.2.3 Local Linear Models

Here, we derive the local linear models used to determine the most significant de-

scriptors for our NN model predictions. Let fnn(x⃗i) be our NN model, expressed

as:

fnn(x⃗i) = ŷi (4.4)

where "ŷi", corresponds to the output and represents a single prediction of the ab-

solute value of the adsorption entropy |∆s∞ads/R| for a particular adsorbate-framework

system "i". Vector x⃗i = {xi,1, xi,2, ..., xi,N} of size N denotes our molecular and

framework descriptors (listed in table 4.1). The local sensitivity "Sxi,j" of fnn(x⃗i)

to a small change in xi,j can be approximated by:
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Sxi,j =
∆ ˆyi,j
∆xi,j

|xi,z ̸=j (4.5)

where "j" represents a particular descriptor of system i and ∆ ˆyi,j represents the

predicted response to ∆xi,j . We would like to emphasize that by virtue of the univer-

sal approximation theorem[158], finite neural networks may only approximate smooth

continuous functions, and therefore are not analytically differentiable. Equation 4.5

may be viewed as an approximation of the partial derivative of fnn(x⃗i) with respect

to xi,j , which holds the more general form:

∆ŷi =
∆ ˆyi,1
∆xi,1

|xi,j ̸=1∆xi,1 +
∆ ˆyi,2
∆xi,2

|xi,j ̸=2∆xi,2 + ...+
∆ ˆyi,N
∆xi,N

|xi,j ̸=N
∆xi,N

∆ŷi = Sxi,1∆xi,1 + Sxi,2∆xi,2 + ...+ Sxi,N∆xi,N

(4.6)

The sensitivities in equation 4.6 measure the individual influence of each descrip-

tor on the prediction, and can be determined by performing a linear least squares

regression on ∆x⃗i. This is done by exploring the local behavior of fnn(x⃗i) about

the vicinity of system i by sampling a perturbation ∆x⃗i = {∆xi,1,∆xi,2, ...,∆xi,N}

around x⃗i such that ∆x⃗i ∈ IN = [−a, a] with the prediction

fnn(x⃗i +∆x⃗i) = ŷi +∆ŷi (4.7)

Sampling "M" instances around the nominal point x⃗i for system i gives
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(4.8)

where Xi and Ŷi correspond to the M perturbations of x⃗i and their predicted de-

viations ∆ŷi respectively. For small perturbations (|a| ≈ 0) the relationship between

Xi and Ŷi is approximately linear

Ŷi ≈Xiβi + ϵi (4.9)

with weights βi = {βi,1, βi,2, ..., βi,N} and intercept ϵi. We emphasize that the

intercept for this linear relationship is necessarily 0, because ∆x⃗i = 0 will result in

∆ŷi = 0. To capture this linearity, we apply the least absolute shrinkage and selec-

tion operator (LASSO), which extends the standard linear least-squares regression

by including a penalty value "λ" into the objective function of the linear regression.

Although the derivation is outside the scope of this work[159], the theory may be illus-

trated by the following equation, where the coefficients βi of system i are determined

by

βi = argmin
βi

{ 1

M
∥Ŷi −Xiβi∥22 + λ∥βi∥1} (4.10)

The penalty λ controls the extent of sparsity, and is a hyperparameter of the

model (Note, λ = 0 returns the definition of the standard least squares regression).

Large values of λ drive insignificant features to zero but diminish the accuracy of the

model, while smaller values of λ may be incapable of discarding truly insignificant
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features. Therefore the penalty λ is system specific, and must be tuned to balance

between model accuracy and model compactness. Our motivation behind applying

the LASSO was to minimize the cumulative influence of correlated descriptors on

|∆s∞ads/R|. As a consequence, the resulting weights βi of the LASSO are not identical

to the sensitivities Sxi,j defined in equation 4.6. Rather, they are regularized, sparse,

representations of Sxi,j .

In this work our perturbation space was −0.01 ≤ a ≤ 0.01, the number of samples

were M = 4096, the penalty for the LASSO was λ = 1× 10−6.

4.3 Results and Discussion

Figure 4.2 shows the distribution of the simulated adsorption entropies |∆s∞ads/R| for

the 3965 molecule-framework systems. The mean, maximum, and minimum adsorp-

tion entropies of the distribution were 7.0R, 14.2R, 1.2R (J/mol/K) respectively. The

system which exhibited the smallest entropic loss of 1.2R (J/mol/K) was methane

within zeolite RWY, as shown in Figure 4.4 a) and b). Methane is the smallest

molecule within our dataset, represented by a single sphere with Leonnard Jones di-

ameter of 3.7 Å. The characteristics of framework RWY are among the largest within

our data set, exhibiting the second largest lsd_p (diameter of the largest sphere along

free path) of 15.1 Åand the largest accessible volume of 0.66 cm3/g. Systems with

significant entropic losses (below two standard deviations from the mean) consisted

almost exclusively of small adsorbates: methane, ethane, ethene and perfluoroethane

within large pore frameworks: RWY, FAU, SAO, and TSC (each of which have lsd_p

≥ 7.7 Å), with the exception of propane and propene within framework RWY.

The system which exhibited the largest entropic loss of 14.2R (J/mol/K) was

ethyl-methacrylate within framework SZR, as shown in Figure 4.4 c) and d). Ethyl-

methacrylate was not the largest adsorbate within our dataset, exhibiting a geometric
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Figure 4.2: Histogram of the 3965 simulated adsorption entropies |∆s∞ads/R|. The
mean, max and min of the distribution were 7.0R, 14.2R, 1.2R (J/mol/K) respectively.

diameter (maximum distance between two atoms, "GeDi") of 6.2 Å, while the largest

adsorbate, n-perfluorodecane, exhibited 11.8 Å. Moreover, framework SZR had an

lsd_p of 5.3 Åand an accessible volume of 0.043 cm3/g, both of which were larger

than the smallest framework, CAS, which exhibited 0.01 cm3/g and 3.8 Åfor the

accessible volume and lsd_p respectively. We would like to highlight that not every

molecule is capable of adsorbing within every framework, and in retrospect, ethyl-

methacrylate within SZR was simply the limit for the largest adsorbate within the

smallest framework per our convergence threshold of 0.1R (J/mol/K). This system

reflects the prevalent characteristics of large entropic loss systems in general: long

molecules within tight channels. Figure 4.3 illustrates this trend, where we plot two

metrics of framework size (accessible volume and lsd_p) against the GeDi of the adsor-

bate with the corresponding entropic loss represented by the blue/red color gradient.

Additional systems with similar entropic loss (above two standard deviations from
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the mean) include: pentanal (5.0 Å), n-perfluorohexane (7.1 Å), 2-ethylhexylacrylate

(8.9 Å), and pentane-1,5-diol (6.3 Å) within frameworks with lsd_p and accessible

volumes: NPT (5.7Å/0.15 cm3/g), MFI (5.7 Å/0.063 cm3/g), MOR (6.0 Å/0.064

cm3/g), ATN (5.3 Å/0.034 cm3/g) respectively.

Figure 4.3: Largest distance between two atoms of an adsorbate (GeDi Å) plotted
against a) the accessible volume of the framework (AV_cm3̂/g) and b) the diameter
of the largest sphere along a free sphere path (lds_p Å) of the framework with cor-
responding adsorption entropies |∆s∞ads/R| represented by a color gradient (blue/red
smallest/largest). Both metrics of framework size, AV_cm3̂/g and lsd_p follow the
same trend with respect to adsorbate GeDi: long molecules within tight channels
correspond to large entropic loss.

4.3.1 Limitations of Linear Correlations

The standard gas-phase entropy of a molecule "S0
gas" was shown to be an excel-

lent descriptor in predicting the entropy of an adsorbate "S0
ads" on two-dimensional

catalytic, mineral, and van der Waals surfaces[60, 5, 6, 46, 47, 48]. Each of these

relationships showed strong linear correlations of the form S0
ads = ηS0

gas + b0, span-

ning as much as 50R of entropy space with a standard deviation of as little as 2R

(where R is the universal gas constant).[5] These linear relationships were also shown

to hold for industrially relevant hydrocarbons within nine distinct aluminosilicate

zeolites[7], with slopes η depending on the relative size of the framework. In our pre-
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Figure 4.4: Systems corresponding to the maximum and minimum |∆s∞ads/R| of our
dataset. a) & b) Two perspectives of methane within framework RWY, the system
with the smallest entropic loss |∆s∞ads/R| = 1.2R (J/mol/K) c) & d) Two perspectives
of ethyl-methacrylate within framework SZR, the system with the largest entropic
loss |∆s∞ads/R| = 14.2R (J/mol/K). Colors represent: carbon(blue), oxygen(red),
silicon(yellow), hydrogen(white).

vious work[8], we have qualitatively reproduced these linear trends for a larger set of

molecules within pure-silica zeolites using the simulations outlined in this work. The

implication of our findings was that the entropic loss was effectively constant across

adsorbates within frameworks of similar size characteristics, and that the slopes of

their linear relationships η followed the same qualitative trend against various frame-

work size metrics. Herein we revisit these conclusions from the perspective our larger

data set, and show the limitations of these linear relationships.

Equivalent to our previous work[8], we have performed linear least squares regres-

sion of the adsorabte entropies "s∞ads/R" with the form s∞ads/R = ηis
0
gas/R for each

framework "i" in our data set. In Figure 4.5 a), we show the coefficient of determi-
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nation (R2) for each regression against two metrics corresponding to the framework

size: 1) the occupiable volume in units of Å3 and 2) the diameter of the largest ac-

cessible sphere along a free sphere path (lsd_p) Å. Additionally, Figure 4.5 b) and

c) show regressions of framework LOV, and AET, which illustrate systems with poor

and excellent fits, having R2 values of 0.25 and 1.0 respectively (Their correspond-

ing placements within Figure 4.5 a) have been emphasized with cyan borders). To

avoid cluttering the data, we have omitted significant outliers from Figure 4.5 a),

which had at most three data points in the regression and consisted of frameworks:

SOS, SIV, AEN, LTJ, PHI, and APC with respective R2 values of -18.7, -11.2, -5.0,

-3.5, -1.6, and -0.5. The key aspect of Figure 4.5 a) is that linear correlations hold

for many adsorbent systems, but break down for frameworks with small features. In

general, systems with smaller R2 values also consisted of less data points for the re-

gression, which was a consequence of their smaller framework features being unable

to accommodate many adsorbates.

In Figure 4.6, we plot the slope "η" of our least squares regressions against the

framework size metrics from Figure 4.5 a). For comparison, we have included the

frameworks considered from our previous work: FAU, LTA, MOR, MFI, FER[8],

where we performed an identical analysis. Despite applying framework blockages

and utilizing energy-optimized structures by Calero et al.[74] (as opposed to using

IZA structures previously), the same qualitative trend as in our previous work was

reproduced in Figure 4.6. In particular, beginning at the frameworks with larger

pore characteristics, η begins to slowly decrease with decreasing pore size before

precipitously collapsing in the vicinity of η = 0.85 toward η = 0.74. As evident

by the other datapoints within Figure 4.6, this trend was not followed by the many

frameworks regardless of their goodness of fit (R2). The important result shown in

Figure 4.6 is that the relationships between η and the framework size metrics are
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Figure 4.5: a) Coefficient of determination (R2) corresponding to linear least squares
regression of the form s∞ads/R = ηis

0
gas/R plotted against 1) the occupiable volume in

units of Å3 (shown in red) and 2) the lsd_p Å(shown in blue) for each framework "i".
This figure excludes frameworks: SOS, SIV, AEN, LTJ, PHI, and APC with respective
R2 values of -18.7, -11.2, -5.0, -3.5, -1.6, and -0.5. Frameworks LOV and AET have
been emphasized with diamond and cross markers with cyan borders respectively. b)
Linear least squares regression fit (orange) with corresponding data points (cyan) for
framework LOV, representative of a poor fit (R2 = 0.25). c) Linear least squares
regression fit (orange) with corresponding data points (cyan) for framework AET,
representative of an excellent fit (R2 = 1.0).
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much more complicated than previously anticipated; and therefore a more predictable

model is necessary to learn their relationships. In the following section, we discuss

employing an artificial neural network (NN) to predict the adsorption entropy using

geometric descriptors of the adsorbate-framework system.

Figure 4.6: Slopes η of the linear least squares regression from Figure 4.5 plotted
against 1) the occupiable volume in units of Å3 (shown in red) and 2) the lsd_p
Å(shown in blue). The trends for frameworks: FAU, LTA, MOR, MFI, FER (rep-
resented by the star, triangle, diamond, square, and pentagon markers respectively)
are connected by a black line.

4.3.2 Neural network predictions and descriptors

The molecular and framework descriptors applied in the NN model are listed in Table

4.1, and were based primarily on the relationship between "∆s∞ads" and the geome-

try of the adsorbate and framework. Herein, we describe these descriptors and our

rationale for choosing them.

The molecular weight is a non-derivable, fundamental, physical quantity with a

presence in: 1) the statistical mechanical expression of the translational entropy for
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Molecular Descriptors

Abbreviation Description Units

MW Molecular Weight. g/mol
PBF Plane of Best Fit. Å

LabuteASA Labute’s Approximate Surface Area. Å2

Vol Van der Waals Volume. Å3

PMI1 Princple Moment of Inertia about first axis. Å2amu
PMI2 Princple Moment of Inertia about secound axis. Å2amu
PMI3 Princple Moment of Inertia about third axis. Å2amu
SPAN Radius of smallest sphere completely enclsoing all atoms of the molecule from the center of mass. Å
GeDi Largest distance between two atoms. Å

Framework Descriptors

Abbreviation Description Units

Density Number of tetrahedral sites per 1000 Å3 of unit cell volume. Å−3

ASA_m^2/g Surface area accessible to the center of a spherical probe of a defined radius normalized by unit cell mass. m2/g
AV_cm^3/g Volume accessible to the center of a spherical probe of a defined radius normalized by unit cell mass. cm3/g

lsd_f Diameter of largest free sphere. Å
lsd_p Diameter of largest sphere along free sphere path. Å

Table 4.1: Descriptors used for training the artificial neural network, with correspond-
ing abbreviations, descriptions, and units.

an ideal gas, 2) the hindered/free translator entropy approximation for adsorbates

within protonic zeolites[151, 152, 110, 145, 44], 3) is related to the number of heavy

atoms (non-hydrogen) of the molecule, which has been shown to linearly correlate

with the adsorption entropy of alkanes within protonic zeolites.[33] Under standard

conditions, the translational entropy is the most significant contribution toward the

absolute entropy of a molecule; and predictably experiences the most significant loss

upon adsorption.

The rotational moments of inertia make for excellent descriptors toward distin-

guishing among spherical, linear, and non linear adsorbates. Namely, molecules rep-

resented by a single sphere exhibit no rotational inertia, while linear and non-linear

molecules rotate about two and three axes respectively. Collectively, the princi-

ple moments provide additional information about the shape of the molecule. For

example, the ratio of the principle moments (i.e I1/I3 and I2/I3) describes the

molecule as being ‘rod-like’, ‘sphere-like’, ‘disc-like’, or ‘envelope-like’.[160, 161] More

complicated expressions, such as the "Molecular eccentricity"[162], "Inertial Shape

Factor"[161] and "Spherocity Index"[163] provide additional information about the

shape of the molecule. The rotational freedom of a molecule is generally the second
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largest contributor to the standard ideal-gas entropy of the adsorbate, and the princi-

ple moments of inertia are explicitly present in the rotational entropy equation. The

principle moments are also found within the hindered/free rotor approximation for

alkanes within protonic zeolites and organic molecules on two-dimensional catalytic

surfaces.[44, 113, 123]

The "Labute Approximate Surface Area" descriptor is an efficient approximation

of the surface area of a molecule based on its covalent radius.[164] To complement the

surface area, we have also included the volume of a molecule based on a grid-encoding

of the molecule’s shape.[156] Our motivation behind applying these descriptors is: 1)

they provide a general metric for the relative shape and size of the molecule, 2) they

can be further used to create interpretable dimensionless quantities (i.e the ratio of

framework accessible volume to the volume of an adsorbate provides a rough estimate

of the maximum adsorption capacity).

The "Plane of Best Fit" (PBF) descriptor is the average distance of the atoms of

a molecule from a flat, two-dimensional plane, optimized to intersect the maximum

number of its atoms.[165] Mathematically, the PBF has a range of [0,∞), with small

values describing "2D rod" or "disc-like character" (i.e PBF of ethene and toluene

< 6.8 × 10−8 Å) and large values describing "sphere-like 3D" molecules (i.e PBF of

sarin > 0.5 Å).

As mentioned previously, Dauenhauer and Abdelrahman have identified the oc-

cupiable volume of protonic zeolites as a "universal" descriptor toward predicting

the adsorption entropy of alkanes.[7] In addition to the occupiable volume, their ex-

pression for the adsorption entropy depended upon the "critical volume", which was

an adjustable parameter defined as the volume at which all rotational freedom of

the adsorbate is lost. Consequently, we have decided to incorporate: 1) the radius

of the smallest sphere enclosing all atoms of the molecule from its center of mass
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"SPAN", and 2) the largest distance between two atoms in the molecule "Geometric

Diameter".[161] Although the SPAN correlates with the GeDi (2 ∗ SPAN ≈ GeDi),

this linear relationship breaks down for long chain molecules which provides the model

with information to distinguish long molecules. Moreover there is no mathematical,

one-to-one relationship between the two descriptors.

Figure 4.7 shows the histogram distributions of our molecular descriptors encom-

passing our data set. To assess the generality of our descriptors, and thereby the ap-

plicability of our NN model to foreign molecules, we have also included the histogram

distributions for an equivalent number of quasi-randomly selected (92) molecules from

the PubChem database.[153] We consider our data set of molecules from PubChem

as "quasi-random", because we have refrained from considering molecular isotopes,

radicals, and charged species.-which are outside the scope of this work. To avoid bi-

asing our histograms toward significantly larger molecules (which predominate Pub-

Chem), we also preserved the heavy-atom (non hydrogen) distributions of our native

data-set within our PubChem sampling. Both histogram distributions are plotted

within Figure 4.7 for each molecular descriptor, including their calculated coefficient

of intersection "K".[166] The significant overlap between our native and PubChem

distributions shown in Figure 4.7 suggests that our data set of molecules and their

corresponding descriptors resemble the broader amalgam of organic molecules; and

therefore our NN model should be capable in adequately predicting their adsorption

entropy. The histograms corresponding to our dataset of molecules show a bias to-

ward medium-to-small (GeDi similar to 1,3-butadiene), flat molecules (flatter than

diethyl-ether) with mass on the order of n-heptane (≈ 100 g/mol). Additionally,

for each descriptor there appear to be a small number of significant outliers, which

were determined to mainly consist of fluorocarbons (i.e n-perfluorodecane), with the

exception of the SPAN which also included acrylates (i.e n-octyl-acrylate).
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Figure 4.7: Histogram distributions of the molecular descriptors for 1) our native data
set (orange) and randomly chosen PubChem molecules (blue), with corresponding
histogram intersections "0 ≤ K ≤ 1.0".

As mentioned previously, our framework structures and their blockages were taken

from Calero et al.[74], who have implemented the Zeo++ software[167] in determin-

ing the inaccessible regions of each structure. To remain consistent with this source,

our descriptors were also calculated using Zeo++. We have omitted all descriptors

defining the inaccessible characteristics of our frameworks to minimize the correla-

tion among descriptors (i.e the accessible surface area was found to inversely cor-

relate with many non-accessible descriptors). Moreover, these inaccessible regions

have been blocked from our simulations. Zeo++ provides the framework accessible

surface area and volume in absolute units (i.e Å2), or normalized by the unit cell vol-

ume (m2/cm3) or mass (m2/g). Additionally, the user has the option of calculating
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"accessible" (space available to the center of spherical probe) or "pore occupiable"

(space accessible the entire volume of the spherical probe) descriptors.[168] To further

minimize descriptor correlation, we have limited our framework descriptors to: 1) the

framework "Density", which is the number of tetrahedral sites per 1000 Å3 of unit cell

volume, and has been shown to correlate with pore size, 2) the accessible surface area

normalized by the unit-cell mass "ASA_m2̂/g", 3) the accessible volume normalized

by the unit cell mass "AV_cm3̂/g", 4) the diameter of the largest sphere along a free

sphere path lsd_p, and 5) the diameter of the largest free sphere lsd_f. Figure 4.8

shows the histogram distributions of our framework descriptors within our dataset.

Analogous to the analysis of our molecular descriptors, we assessed the generality of

our framework descriptors by including histogram distributions for an equal number

of quasi-randomly selected (89) frameworks from 1) the IZA database [66], and 2)

predicted Crystallography Open Database (PCOD)[169] (a database of hypothtical

zeolite frameworks). We consider our sampling as being quasi-random because we

have omitted frameworks which lacked any accessible volume (see section 4.2.2). All

three histogram distributions are plotted within Figure 4.8 for each framework de-

scriptor, including the coefficient of intersection K for each data set. The overlap

between our native and IZA distributions were marginally better relative to the over-

lap with the PCOD distributions, but were in general worse than the intersections

among the molecule distributions. Our native data set (consisting of only orthorhom-

bic frameworks) is therefore less general of the broader space of zeolite frameworks

and consequently more limited in predictability. The outliers within the histogram of

our native dataset consisted primarily of frameworks similar to RWY, which exhib-

ited an AV_cm3̂/g of 0.66, an ASA_m2̂/g of 2874.75, a lsd_f of 6.3, and a lsd_p of

15.1. The majority of our data set consisted of frameworks with descriptors similar

to MFI: AV_cm3̂/g of 0.063, an ASA_m2̂/g of 817.70, a lsd_f of 4.7, and a lsd_p
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of 5.67.

Figure 4.8: Histogram distributions of the framework descriptors for 1) our native
data set (green) and randomly chosen hypothetical zeolite frameworks from the PCOD
database (blue), and randomly chosen frameworks from the IZA database (orange)
with corresponding histogram intersections "0 ≤ K ≤ 1.0".

The predictions for the test and training sets of our optimized NN model are

shown in Figure 4.9, with test/training set RMSE, MAE, and R2 of 0.88R/0.5R,

0.61R/0.35R, and 0.87/0.95 respectively. The model was trained on an 80/20 train/test

random split, and the model details are provided within section 4.2.2. We observe

that most of the deviations from the y = x line in the test and training set occur for

large entropic loss 10R ≤ |∆s∞ads/R| systems, implicating that the model had diffi-

culty learning that region. Systems with the largest residuals showed no clear pattern

of outliers (apart from significant entropic loss), and included: RWY/cyclooctadecane

(6.5R), CON/2-methyl-1-propanethiol (5.5R), NPT/perfluoroethane (4.4R), LTA/1-

octene (4.3R), AWW/n-pentane (3.5R), and BOG/2-hydroxyethyl-acrylate (3.3R).

We would like to emphasize that the NN consistently under-predicted this region

among training thousands of models. The distribution of |∆s∞ads/R| in Figure 4.2

shows that only ≈ 450 or 10% of data points comprise a range of 10R ≤ |∆s∞ads/R| ≤
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14.2R data. Implying that the sparsity within this region may have affected the model

performance. Additionally, we may have missed an important descriptor for charac-

terizing large entropic loss systems. Nevertheless, our model is capable of predicting

|∆s∞ads/R| within a MAE of 0.61R, which outperformed over ≈ 80% of the linear

models within section 4.3.1 with 0.3R ≤ MAE ≤ 1.6R.

In the following section, we apply local linear models to rank the importance of

our descriptors in predicting the adsorption entropy.

Figure 4.9: Parity plot of the NN predicted and true |∆s∞ads/R| values. The training
(blue) and test (orange) sets show that the model has difficulty learning systems with
large entropic losses. The RMSE, MAE, and R2 correspond to the test set. The black
line represents y = x.

4.3.3 Local linear models

Despite their exceptional predicative capabilities, NN models remain mostly opaque

(i.e difficult to interpret); and understanding the reasons behind their predictions is

challenging. Such difficulties impede establishing trust in the model, which is imper-
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ative if one plans to initiate further research based on their predictions. For example,

we should be skeptical if hypothetically the foremost descriptor of our NN were to

be the framework’s code (an otherwise random three letter sequence). The demand

for trust in opaque models has stimulated research in interpretable machine learning,

which introduced many novel interpretation methods.[170] Some of which include: 1)

"SHapley Additive exPlanations" (SHAP), which computes the contribution of each

feature toward the model’s prediction using coalitional game theory,[171] 2) partial

dependence plots[172] (PDP), which shows whether the relationship between a feature

and model target is linear, monotonic, or more complex, and 3) Local Interpretable

Model-Agnostic Explanations, which applies a highly interpretable surrogate model

to capture the local importance of features surrounding a prediction.[173] Herein, we

adopt a unique approach based on the LIME method to provide an interpretable ex-

planation for the local predictions of our NN model. Although several other methods

may have performed comparatively well, the implementation and theory behind our

approach are more straightforward (See section 4.2.3).

Figure 4.10 shows the LASSO weights "<βi>" for each descriptor across all sys-

tems "i" averaged across 10 different NN models. The most important aspect of Figure

4.10 is that the framework occupiable volume is the single most significant descriptor

in predicting the adsorption entropy. This result coincides with the work of Dauen-

hauer and Abdelrahman[7], who considered the occupiable volume as "a universal

descriptor" in predicting the entropy of adsorbed molecules in aluminosilicate zeolite

frameworks. Each <βi> also reveals the general relationship between each descriptor

with the entropic loss. Negative weights correspond to inverse relationships, which

suggest that as: LabuteASA, PBF, Vol, AV_cm3̂/g, lsd_f, and lsd_p descrease, the

entropic loss increases (the molecule becomes more confined). Likewise, an increase

in: MW, PMI(1,2,3), SPAN, GeDI, and density increase the entropic loss. These
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relationships show that in addition to determining the significance of each descriptor,

the natural relationship between confinement and entropic loss was captured.

Figure 4.10: Average of the LASSO weights "<βi>" for each descriptor across all
systems "i" for 10 different models. Red/blue values represent negative/positive
weights respectively.

4.4 Conclusions

In this Chapter, we have built upon our work from Chapter 2 by expanding our

data set to include 3965 adsorption entropies, consisting of 89 orthorhombic zeolite

frameworks and 92 adsorbates. We have shown that this expanded data set continues

to follow the general relationship between adsorbate confinement and entropic loss

"|∆s∞ads|". We have repeated our analysis of the linear correlations between s∞ads vs.

s0gas of Chapter 2 for our expanded data set and concluded that although these lin-

ear trends were largely held, they failed for frameworks with small features (-18.7 ≤

R2 ≤ 1.0). The relationship between the slope "η" of the linear regressions against

the framework occupiable volume and largest sphere diameter were essentially re-

produced for the five frameworks considered in Figure 2.4 of Chapter 2. However,

this relationship proved to be much more complicated for the majority of frameworks

than previously anticipated (See Figure 4.6). To capture this relationship, we instead
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trained a neural network model using fourteen purely geometric descriptors of the

adsorbate-framework system to predict |∆s∞ads|. Our optimized model was capable of

predicting |∆s∞ads| with a mean absolute error of 0.61R. To understand the sensitivity,

and thereby the significance of each descriptor in predicting |∆s∞ads|, we built linear

models on the local perturbations of the neural network descriptors. Our results show

that the framework descriptors were more significant in predicting |∆s∞ads| than the

adsorbate descriptors, reflecting the conclusion inferred from Figure 2.3 of Chapter 2,

where the entropic ratio of each adsorbate "s∞ads/s
0
gas" clustered about the framework

rather than the molecule type. The most significant framework descriptor was the

accessible volume, which is closely related to the "Occupiable Volume" deemed to be

a universal descriptor in the prediction of adsorption entropies for molecules within

aluminosilicate zeolites.[7] Finally, assessing the most significant geometric descrip-

tors in the prediction of |∆s∞ads| paves the way for determining highly interpretable,

analytical expressions for the prediction of |s∞ads|; and is the objective of a future

work.
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CHAPTER 5

FUTURE OUTLOOK

5.1 Machine intelligent framework selection for Diels Alder

promotion

In Chapter 3, we applied a combination of Density Functional Theory (DFT) and

microkinetic modeling (MKM) to study the kinetics of [4+2] Diels-Alder reactions

between ethene and isoprene within the aluminosilicate zeolite H-ZSM5. Our choice

of reactants provided an array of variously shaped (meta- vs. para-) and sized (C7

vs. C10) transition states/products whose corresponding reactions may occur un-

catalyzed. This allowed us to gauge the extent of confinement relative to their un-

catalyzed gas phase reactions; and infer discriminating factors based on the specie’s

size/shape. The conclusions of that work were: 1) the reactions were mainly catalyzed

by the dispersive interactions with the zeolite framework rather than the Brønsted

proton at the acid site, 2) reactions forming the meta products were most catalyzed

relative to their respective uncatalyzed gas-phase reactions, 3) the overall reaction

(consumption of isoprene) was inhibited by the formation of the C10-para2 and C10-

meta2 products, owing largely to their high stability at the active site which limited

their desorption and therefore dominated the coverage. Because catalysis was largely

driven by the framework structure rather than the Brønsted acid at the active site,

the Diels-Alder reactions should be capable of being catalyzed using all-silica zeolite

frameworks, and modeled using the techniques applied in Chapter 3. Specifically, one

may implement DFT to determine the ground state energies of the reaction system,

subsequently build a MKM to predict reaction rates, and perform a global sensitivity

analysis to determine rate controlling steps and/or intermediates. The results estab-

lish a nominal point for optimizing the reaction which then becomes contingent upon
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selecting a framework that destabilizes rate inhibiting intermediates/reactions while

stabilizing rate facilitating intermediates/reactions. However, the number of candi-

date frameworks is enormous, with hundreds having been synthesized[3] and billions

proposed on geometric and energetic considerations.[174] In this section, we describe

how the neural network model (NN) of Chapter 4 can be leveraged to intelligently se-

lect frameworks for the promotion of the Diels-Alder reactions from Chapter 3 within

all-silica zeolites.

Transition state theory defines the rate of an elementary reaction step by the

frequency of reactants crossing a free energy barrier. The barrier height is dictated

by the relative free energy difference between the transition state and the reactant(s),

which are assumed to be quasi-equilibriated.[175] Consider the following catalytic

reaction:

1) A+ S ⇌ AS

2) AS +B ⇌ CS

3) C + S ⇌ CS

(5.1)

where "A" and "B" are the reactants, "C" is the resulting product, and "S" is an

unoccupied adsorption site within a heterogeneous catalyst. Adsorbed reactants and

products are represented by "AS" and "CS" respectively. For an ideal gas system,

the activity coefficients of the corresponding species are unity, this allows for the

rate of an elementary step to be expressed in terms of the reactant partial pressure

and/or coverage, and their respective equilibrium constant with the transition state.

Under reaction conditions, the adsorption/desorption steps are typically barrierless

relative to the product formation step, which also suggests that product formation is
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approximately irreversible. This is defined by the following expressions:

r1 = 0, K1 =
[AS]

PA[S]

r2 = νK‡[AS]PB , K‡ =
[ABS‡]
[AS]PB

r3 = 0, K3 =
[CS]

PC [S]

(5.2)

where "ri" and "Ki are the rate and equilibrium constant of reaction step "i", "ν"

is a frequency factor, "Pj" is the partial pressure of species "j" with concentrations

and transitions states denoted by brackets, and "‡" respectively. Equation 5.2 shows

that the equilibrium constants are the primary quantities necessary in determining the

reaction rates. In principle, the reaction system may be optimized if these equilibrium

constants are determined across a database of potential catalysts.

The Henry’s constant provides the concentration of an adsorbate within an adsor-

bent (zeolite framework) at a corresponding partial pressure within the low-loading

regime. Formally, the Henry’s constant for gas adsorption is defined by the following

equation:

KH(T ) =
1

ρSVS
lim
p→0

[

< Nads >

p

]

(5.3)

Where "KH" is the Henry’s constant, "T" is the temperature, "ρS = 1/VP " is the

adsorbent density (VP is the specific pore volume), "VS" is the bulk volume, "p" is

the bulk pressure, and "<Nads>" is the average amount of adsorbate. Theoretically,

KH provides an approximation to the equilibrium constants defined in equation 5.2.

We consider this relation "theoretical" because the KH of a transition state has
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no physical basis, but is otherwise necessary in the determination of reaction rates.

The KH of stable species on the other hand, is well established both experimentally

and computationally. We consider KH an approximation because it is measured

without the chemical transformation of the adsorbate, which ultimately influences

the equilibrium concentrations.

In reality, the limit of zero partial pressure within equation 5.3 cannot be reached,

and the thermodynamic quantities associated with Henry’s constant are calculated at

a reference pressure. Namely, equation 5.4 may be expanded to include the adsorption

entropy and isosteric heat as:

∆s0ads
R

=
∆h0ads
RT

+ ln

(

KHp0

Γ∞

)

(5.4)

where "∆s0ads" is the adsorption entropy, "∆h0ads" is the isosteric heat, "R" is the

ideal gas constant, and "p0" is the reference pressure such that the loading is far below

the maximum "Γ∞". The adsorption entropies calculated in Chapter 2 and Chapter

4, were also extracted from their corresponding Henry adsorption constants, which

were the primary quantities computed in the Monte-Carlo simulations and exhibit a

similar form to equation 5.4:

∆s∞

R
=

∆h∞

RT
+ ln

(

RTK∞
H

VP

)

+ 1 (5.5)

We would like to emphasize that although equations 5.4 and 5.5 appear similar,

K∞
H was calculated within the canonical ensemble at the theoretical reference state of

infinite dilution for an adsorbate without internal degrees of freedom. It is certainly

invalid to apply it quantitatively, but it nevertheless captures the dominant physical
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effects of confinement, which can be qualitatively useful. We instead propose that

K∞
H may be applied as a surrogate to KH , which can efficiently be used to scan a

database of candidate catalysts with the intent to optimize a given reaction system.

Despite the efficiency of calculating K∞
H , it remains implausible to scour through

billions of hypothetical frameworks. Moreover, it is unlikely that the forcefields de-

veloped for stable intermediates will be applicable to transition state structures. But

based on the conclusions of Chapter 4, we demonstrated that the adsorption entropy

may be predicted within 0.6R MAE using a NN trained entirely on geometric de-

scriptors of the adsorbate/framework system. We therefore propose that a model

of similar performance may be built to predict the corresponding K∞
H . Ultimately,

applying geometric descriptors circumvents the issue of simulating transition state

structures. Although we admit that the model was trained without any such struc-

tures, transition states which are geometrically similar to their reactants/products

typically exhibit similar relative stabilities (a geometric interpretation of the Bell-

Evans-Polanyi relationship).

In conclusion, we posit that the Diels-Alder reactions, discussed in Chapter 3,

may be catalyzed within all-silica zeolite frameworks based on the conclusion that

these reactions were primarily catalyzed by the framework of H-ZSM5 rather than

the Brønsted acid. The kinetic analysis also discussed in Chapter 3 may be applied to

determine the rate controlling intermediates and reaction steps within MFI (all-silica

analog of H-ZSM5). We propose that this reaction may be optimized by qualitatively

predicting the Henry adsorption constants of the rate controlling species among a

database of all-silica zeolite frameworks. Namely, an optimal framework would exhibit

selective Henry’s constants of the rate facilitating species, and unfavorable constants

of rate limiting species. Based on the success in predicting the adsorption entropies

using a NN trained on the geometric descriptors of the adsorbate/framework system
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in Chapter 2, we propose training a similar NN to predict the Henry’s constants (the

primary quantity calculated in the simulations of Chapter 2). The geometric rela-

tionship between transition states with their reactants/products and corresponding

stability suggests that the NN may be capable in also predicting transition state struc-

tures. The application of a NN makes scanning large databases of zeolite frameworks

feasible. Although the deductions made in this section were not formally derived,

they follow from the conjectures of each Chapter.

5.2 Covalent Organic Frameworks

Covalent organic frameworks (COFs) are rapidly emerging as a novel class of crys-

talline, multi-dimensional porous materials with unprecedented designability. They

arise from the bonding of organic "building-units” which can produce highly tun-

able skeletons and meso/micro-pores by reticular chemistry. It should be noted that

while the number of as yet successful chemistries appear to be few, the number of

possible materials that can be formed is still very large. Depending on the choice

of the building blocks and its structure, a variety of COF topologies can be formed;

and the composition of COFs can be further tuned at essentially any stage of the

synthesis process.[176, 177] The dimensions of the pores in a COF can also be tuned

by varying the size of the linker even while preserving the fucntional groups and

the shape/symmetry of the building blocks. Thus, COFs can have nano-, micro-,

or mesoporosity; COFs can also be designed to have multiple types of pores. They

generally offer robust thermal and mechanical stability, which make them suitable

candidates for catalyzing organic reactions.[178] Moreover, pore surface engineering

enables the integration of functional groups into their channels, which may further en-

hance the reactivity/selectivity of organic reactions. In particular, COF’s are capable

in accommodating various Brønsted/Lewis acids within their channels. For example,
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sulfonic acid COFs with the form COF-SO3Hx have already been synthesized; and

have shown to be successful in the catalysis of fructose dehydration into key inter-

mediates for biorefineries.[179] An example of their structure and building units is

illustrated in Figure 5.1, which includes the two-dimensional, sulfonated microporous

COF named ”TFPDABA”.[179] Apart from TFP-DABA, the domain of acidic func-

tional groups to be included within COFs is broad; and includes varying degrees of

acid-strength and size.

Figure 5.1: An illustration of a two-dimensional, microporous, sulfonated cova-
lent organic framework named ”TFPDABA5”. The building units consist of 1,3,5-
triformylphloroglucinol (TFP) and 2,5-diaminobenzenesulfonic acid (DABA). The
colors in the lower left hand image: white, grey, red, blue and yellow represent hydro-
gen, carbon, oxygen, nitrogen, and sulphur atoms respectively. The pore diameter is
14 Å.

An understanding of the framework’s acid-site (strength, coordination, etc.) is an

especially valuable quantity for optimizing catalytic reactions. However, the realm of

possible combinations among frameworks and acidic functional groups make such cal-

culations experimentally non-trivial; but they may be readily computed using density

functional theory (DFT). DFT has proven itself as a valuable method in quantum

chemistry, owing to it’s astonishing accuracy with experimental results. Modern soft-

ware such as the Vienna ab-initio Simulation Package (VASP)[102] provides struc-
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tural minimization algorithms (i.e steepest descent method) in tandem with DFT to

iteratively locate energy minima; which provides accurate energetic and structural

information about the system.

Ultimately, these simulations can be used to understand and quantify the na-

ture of acid functionalized COFs with the implications of these results to assist in

the catalysis of organic reactions. Although there are many definitions of acidity

(Brønsted and Lewis acidity to name a few), hydrogen bonded interaction theory has

shown to describe the effect of Brønsted sites for alkane adsorption within other acidic

frameworks quite well.[180] This theory suggests that the binding of probe molecules

(typically alkanes) to a gas phase Brønsted acid (and other cationic proton donors)

can be viewed as a hydrogen-bonded interaction.[181] Analogously, the additional

heats of adsorption of alkanes on acidic frameworks (such as zeolites) can be related

to the strength of hydrogen bonding between the alkane and the Brønsted proton

of the framework. In the complete absence of a solvent, the strength of the hydro-

gen bond is the proton affinity, but this interaction is moderated in the condensed

phase by solvent interactions. Further, while proton affinity intrinsically captures

the stability of a three-center-two-electron complex that a proton can form with two

neighboring carbon atoms of the alkane and the included bond,[182] the interactions

of an alkane with a Brønsted proton does not lead to such a strong covalently bonded

complex.[183, 184, 33], Therefore the "acid affinity", ∆Eacid−affinity, is instead sug-

gested as an alternative descriptor of the alkane-Brønsted site interaction is suggested.

The acid affinity is the energy of complexation for an acid-alkane complex, as given

in equation 5.6.

∆Eacid−affinity = Eprobe−acid − Eacid − Eprobe (5.6)
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Here, Eprobe−acid is the energy of the hydrogen-bonded, probe-acid complex, Eacid

is the energy of the acid in the gas phase, and Eprobe is the energy of the probe

molecule in the gas phase. Because the acid affinity of an alkane is expected to

depend on the strength of the acid, the optimal choice of acid to explore hydrogen

bonding would be one with a deprotonation energy (DPE) equal to that of the acidic

framework. It should be noted that the particular choice of acid is, in principle, not

critical as any acid could be used as reference. However, one must ensure that the

acid is not so weak that the corresponding acid affinity of most alkanes is negligibly

small, it is not so strong to completely protonate the probe molecule, and it is not

bulky enough to lead to steric effects with larger or branched alkanes.
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CHAPTER 6

APPENDIX

A.1 Derivation of the adsorption entropy at dilute conditions

In the following appendix, we derive the entropy of adsorption in the case of infinite

dilution and show how it may be related to familiar thermodynamic quantities (cf.

eq 2.5). To begin, we define our adsorption entropy in the limit of infinite dilution

via

∆s∞ads = lim
N/V→0

[

(

∂S

∂N

)

V,T,ads
−

(

∂S

∂N

)

V,T,gas

]

(A1)

= Sads (N = 1, V, T )− Sgas (N = 1, V, T ) (A2)

where the subscripts "ads" and "gas" labels identify the adsorbed (confined) and gas

(bulk) phases, respectively. Given the constraints of a fixed number of molecules (N),

volume (V ), and temperature (T ), it is natural to continue working in the canonical

ensemble. (As in the main text, lowercase symbols identify intensive molecular or

molar properties, whereas the uppercase indicates an extensive property.) For the

molecules that we examine in this work (e.g., rigid molecules with no internal degrees

of freedom), the canonical partition function Q may be expressed as

Q (N, V, T ) = Qtrans (N, V, T )Qrot (N, V, T )Z (N, V, T ) (A3)

where Qtrans and Qrot are the translational and rotational partition functions (which

are unaffected by confinement) and Z is the configurational partition function. The

translational and rotational partition functions are available in the usual statisti-

cal mechanics texts [61, 62], but are ultimately unimportant for the derivation that

follows.
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Continuing, the configurational partition function may be written as

Z (N, V, T ) =
1

ΩN

∫

V
drN

∫

ψ
dψN exp

[

−βU
(

r
N ,ψN

)]

(A4)

where β = 1/kBT and U
(

r
N ,ψN

)

is the potential energy (no kinetic contributions)

of a molecule at position r and with Euler angles (orientation) ψ. Ω = 8π2V is the

"volume" of the configurational space (i.e., it includes both positional and orienta-

tional degrees of freedom).

Using the bridge function for the Helmholtz free energy, F = −kBT lnQ, the

entropy is given by

S (N, V, T ) /kB =
3

2
N + βErot + β ⟨U⟩ (N, V, T )

+ lnQtrans (N, V, T ) + lnQrot (N, V, T ) + lnZ (N, V, T )

(A5)

where ⟨U⟩ is the ensemble average potential energy,

⟨U⟩ (N, V, T ) =
1

ΩN

∫

V

∫

ψ U (r,ψ) exp [−βU (r,ψ)] drNdψN

Z (N, V, T )
, (A6)

and Erot is the molecule-specific rotational kinetic energy. We note that the kinetic

energy and partition functions for the translational and rotational degrees of freedom

in eq A6 are constants independent of the adsorbent characteristics.

In the limit of N = 1, the adsorption entropy (eq 2.5) may thus be written as

∆s∞ads
kB

= β ⟨Ufs⟩ (1, V, T ) + lnZads (1, V, T ) (A7)

In the equation above, we have taken advantage of a number of simplifications. First,

the volumes of the gas and adsorbed phases are taken to be identical; Qtrans is

therefore identical for the two phases. Second, Qrot is, by nature, identical in both
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phases. Third, we have exploited the fact that for a single adsorbed molecule the

potential energy U is just the adsorbate–adsorbent potential energy Ufs. Finally,

⟨U⟩ = 0 and Zgas = 1 for a single, rigid gas molecule in isolation. Furthermore, the

use of eqs A4 and A6 allows us to express the infinite dilution adsorption entropy for

a rigid molecule as

∆s∞ads
kB

=

∫

V

∫

ψ βUfs (r,ψ) exp [−βUfs (r,ψ)] drdψ
∫

V

∫

ψ exp [−βUfs (r,ψ)] drdψ

+ ln

[

1

Ω

∫

V

∫

ψ
exp [−βUfs (r,ψ)] drdψ

]

(A8)

At this point, it is helpful to convert the integrals in eq A8 to spatial averages,

consistent with the approach of Sarkisov in ref [58]:

∆s∞ads
kB

=
⟨Ufs (r,ψ) exp [−βUfs (r,ψ)]⟩

⟨exp [−βUfs (r,ψ)]⟩
+ ln ⟨exp [−βUfs (r,ψ)]⟩ (A9)

where the ⟨⟩ brackets now indicate (not ensemble) averages over the positional and

orientational degrees of freedom. Finally, using Sarkisov’s expressions for the Henry’s

law constant and infinite dilution enthalpy of the adsorption of rigid molecules [58]

in eq 2.3, the adsorption entropy reduces to the form shown in eq 2.5 (subject to

appropriate conversions of energy quantities from molecular to molar basis).

A.2 The free translator and harmonic oscillator

approximations

For molecules that were strongly adsorbed, all modes were assumed to be vibrational

with the entropy calculated through it’s standard statistical mechanical expression:
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S0
vib = RΣi[

hνi

kBT (exp(
hνi
kBT

− 1))
− ln(1− exp(

−hνi
kBT

))] (A10)

Weakly adsorbed systems, particularly those without a direct bond with the acid

site, have been shown to exhibit some translational freedom under ambient conditions.

As a consequence, the harmonic oscillator approximation would greatly underestimate

the entropy of such a loosely bound state. It has been shown that a better approxima-

tion includes decoupling the adsorbate’s modes into vibrations and two-dimensional

free translations about an area commensurate to the pore of MFI (200 pm x 600

pm).[151, 152, 110, 145] This includes removing the two smallest wavenumbers from

the vibrational entropy and adding a translational contribution to the entropy given

by the following expression:

S0
trans = R[ln[(

2πMkBT

h2
)
A0

NA
] + 2]

S0
ads = S0

trans + S0
vib

(A11)

These approximations are defined as "Free translator" and “Harmonic Oscillator”

within the manuscript respectively.

The enthalpies were calculated by taking the sum of the DFT-calculated ground

state electronic energy, the zero point vibrational energy, and temperature contribu-

tions:

∆H(T ) = ∆EDFT +∆EZPV E +∆H10−→T

∆EZPV E =
1

2
Σmodesi=1 hνi

∆H10−→T =

∫ T

10
CP dT

(A12)
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The temperature corrections were obtained through numerical integration of the

temperature dependent heat capacity from a reference temperature (10K). The heat

capacity was quantified through fitting the Shomate equation to a set of entropy

values computed along the incremental temperatures. Finally, the standard Gibbs

Free Energy was derived from it’s classical definition:

∆G0(T ) = ∆H0(T )− T∆S0(T ) (A13)

A.3 Thermodynamic approximation of the rate of

adsorption/desorption

We have approximated the thermodynamics of the adsorption/desorption steps by

constructing a series of pseudo-transition states which have the entropy of their cor-

responding adsorbate under the "Free Translator" approximation, and the enthalpy

of their ideal-gas state. Our rationale is that these transition states should feel the ef-

fects of confinement (loss in partial translational and complete rotational entropy) but

not yet be stabilized by the framework’s van der Waals forces. Moreover, such an ap-

proximation will ensure that the adsorption/desorption steps are quasi-equilibrated;

which is a common assumption. The thermodynamic quantities of these steps are

mathematically defined as:

∆S
0,‡
i,ads = S0

i∗,2D − (S0
i,gas + S0

H+)

∆H
0,‡
i,ads = (H0

i,gas −H0
i,gas) = 0

∆S
0,‡
i,des = S0

i∗,2D − (S0
i∗)

∆H
0,‡
i,des = (H0

i,gas −H0
i∗)

(A14)

137



A.4 Derivation of the microkinetic model

An upper and lower bound on each kinetic parameter was derived based on the ther-

modynamic approximations outlined within section A.2. The equilibrium constant

for each step "i" was defined by the expression:

Ki(T ) = exp(−∆G0
i

RT
) = exp(−∆H0

i − T∆S0
i

RT
) (A15)

Rate coefficients for each elementary step were obtained using transition state

theory and were calculated according to the expression:

ki(T ) =
kBT

h
exp(

∆S
0,‡
i

R
) exp(−

∆H
0,‡
i

RT
) (A16)

An isothermal-isobaric, ideal, continuously stirred tank reactor (CSTR) under

differential conditions with ideal gas streams was used to model our reaction system:

dFi
dt

= Fi,0 − Fi + ΩsitesW (Σ
steps∗

j νijrj) + Vgas(Σ
steps
j νijrj)

Σ
steps∗

j νijrj =
dΘi
dt

, where Θi =
N∗
i

Nsites

ΣiΘi +Θ∗ = 1

pi = ptot
Fi

Σi∈GasFi

(A17)

Where Fi represents the molar flow rate of species "i" (mol/s). The genera-

tion/consumption terms were segregated between reactions occurring within the gas-

phase, given by Σ
steps
j νijrj , and within the catalyst, given by Σ

steps∗

j νijrj . The

index "j", represents the elementary steps which contain species "i" and each νij

represents their respective stoichiometric coefficient within that step. The reaction

rates within the adsorbed phase were given in terms of fractional surface coverage
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(mol/molH+), which was represented by the variable Θi and constrained by the site

balance. The molar quantity of total acid sites per gram of catalyst was defined by

Ωsites (molH+/g − cat) and represented a unit cell containing 47 Si/Al. The weight

of catalyst was defined by W (g − cat). The volume of the gas phase, Vg, was set

equal to the volume occupied by the catalyst mass. The isobaric condition of the

reactor was satisfied by including an inert, which ensured that the sum of ideal-gas

partial pressures of the reactants and products and inert was 1 (atm). Equation A17

was written for each species, which produced a system of differential equations that

have been solved simultaneously using an in-house python code. The volumetric flow

rate of our reactor was 1800.0 (mL/hr), with a catalyst mass of 0.1 (g).

The conversion (ξ), selectivity (S), and yield (Y ) are defined by equation A18,

where S(D/R) and Y (D/R) represent the selectivity and yield of a product "D" with

respect to the consumption of a reactant "R". Mathematically, the selectivity must

sum to unity; and the reactant "R" was chosen as isoprene unless specified otherwise.

ξi =
Fi,0 − Fi

Fi,0

S(D/R) =
−νRFD
νDξRFR,0

Σrxnsi=1 S(Di/R) = 1

Y (D/R) = ξRS(D/R)

(A18)

The apparent order "ni" is defined by equation A19. The MKM was run across

five partial pressures, corresponding to multiples of 0.95, 0.98, 1.0, 1.02, 1.05 of the

nominal pressure (1 atm). The corresponding ln(ri) were then fit to the pressures

using least squares regression. The apparent order was then calculated by taking the

product of the slope of the fit with the nominal pressure of 1 atm.
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ni = pi
∂ln(ri)

∂pi
(A19)

The activation energy "∆Eact" is defined by equation A20, where "R" and "T"

represent the universal gas constant and temperature respectively. The reaction tem-

perature was varied at ± 25 K about the nominal condition, fitting the corresponding

ln(ri) to the temperature using least squares regression. The activation energy was

then calculated as the product between the slope of the fit with RT 2, where the tem-

perature was our nominal temperature of 368.15 K. The reaction was the consumption

of our limiting reactant, isoprene (C5H8).

∆Eact = RT 2∂ln(rC5H8
)

∂T
(A20)

A.5 Results of the microkinetic model

Figure A1: The most energetically stable unadsorbed configurations of our Diels-
Alder transition states (TST). a) Product C7 TST, b) Product C10-para2 TST, c)
Product C10-para1 TST, d) Product C10-meta1 TST, e) Product C10-meta2 TST.
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step ∆H
0

r ∆S
0

r Eaf kf Keq

r0 (0)-(1) 10\10\10 1\1\1 58\58\58 5E+04\5E+04\5E+04 4E-02\4E-02\4E-02
r1 (2)-(3) -21\-19\-19 -31\-66\-66 101\116\116 4E-02\3E-04\3E-04 2E+01\2E-01\2E-01
r2 (5)-(4) -55\-53\-53 -28\-62\-62 64\79\79 6E+03\5E+01\5E+01 2E+06\2E+04\2E+04
r3 (6)-(7) 15\15\15 1\1\1 21\21\21 9E+09\9E+09\9E+09 7E-03\7E-03\7E-03
r4 (7)-(11) -18\-16\-16 -20\-62\-62 12\12\12 1E+11\1E+11\1E+11 3E+01\1E-01\1E-01
r5 (7)-(10) 0\2\2 -23\-65\-65 26\26\26 1E+09\1E+09\1E+09 7E-02\2E-04\2E-04
r6 (8)-(7) 35\35\35 2\2\2 39\39\39 2E+07\2E+07\2E+07 2E-05\2E-05\2E-05
r7 (3)-(4) -18\-18\-18 2\2\2 129\115\115 3E-06\4E-04\4E-04 4E+02\4E+02\4E+02
r8 (8)-(12) 14\14\14 3\3\3 30\30\30 4E+08\4E+08\4E+08 2E-02\2E-02\2E-02
r9 (6)-(9) 11\11\11 11\11\11 34\34\34 1E+08\1E+08\1E+08 1E-01\1E-01\1E-01
r10 (8)-(9) 30\30\30 12\12\12 35\35\35 7E+07\7E+07\7E+07 2E-04\2E-04\2E-04
r11 (12+0g)-(13) -220\-218\-220 -207\-249\-204 80\79\79 4E+01\5E+01\5E+01 3E+20\9E+17\4E+20
r12 (12+1g)-(14) -212\-210\-212 -248\-290\-242 91\89\89 8E-01\2E+00\2E+00 1E+17\4E+14\3E+17
r13 (12+1g)-(15) -215\-213\-215 -246\-288\-240 90\88\88 1E+00\2E+00\2E+00 5E+17\2E+15\1E+18
r14 (12+1g)-(16) -208\-206\-208 -248\-290\-243 83\81\81 1E+01\2E+01\2E+01 3E+16\1E+14\7E+16
r15 (12+1g)-(17) -207\-205\-207 -246\-288\-240 81\79\79 2E+01\4E+01\4E+01 3E+16\1E+14\6E+16
r16 (0g+7g)-(2g) -197\-197\-197 -196\-196\-196 88\88\88 9E+04\9E+04\9E+04 6E+17\6E+17\6E+17
r17 (1g+7g)-(3g) -172\-172\-172 -216\-216\-216 110\110\110 7E+01\7E+01\7E+01 1E+13\1E+13\1E+13
r18 (1g+7g)-(5g) -164\-164\-164 -221\-221\-221 115\115\115 1E+01\1E+01\1E+01 6E+11\6E+11\6E+11
r19 (1g+7g)-(4g) -172\-172\-172 -215\-215\-215 115\115\115 1E+01\1E+01\1E+01 1E+13\1E+13\1E+13
r20 (1g+7g)-(6g) -167\-167\-167 -221\-221\-221 115\115\115 1E+01\1E+01\1E+01 2E+12\2E+12\2E+12
r21 (1g)-(7g) 16\16\16 5\5\5 31\31\31 1E+13\1E+13\1E+13 9E-03\9E-03\9E-03
r22 (0+0g)-(2) -57\-59\-59 -141\-106\-106 39\39\39 2E+07\2E+07\2E+07 5E+00\7E+02\7E+02
r23 (1+0g)-(5) -52\-54\-54 -144\-109\-109 40\40\40 2E+07\2E+07\2E+07 7E-01\8E+01\8E+01
r24 (0+1g)-(8) -95\-98\-98 -188\-147\-147 54\54\54 2E+05\2E+05\2E+05 5E+03\1E+06\1E+06
r25 (1+1g)-(6) -86\-89\-89 -188\-147\-147 54\54\54 2E+05\2E+05\2E+05 3E+02\8E+04\8E+04
r26 (0+7g)-(12) -98\-100\-100 -190\-148\-148 55\55\55 1E+05\1E+05\1E+05 9E+03\3E+06\3E+06
r27 (0+2g)-(13) -121\-121\-123 -201\-201\-157 58\58\58 5E+04\5E+04\5E+04 4E+06\4E+06\2E+09
r28 (0+3g)-(14) -138\-138\-140 -222\-222\-175 64\64\64 6E+03\6E+03\6E+03 8E+07\8E+07\5E+10
r29 (0+5g)-(15) -149\-149\-151 -216\-216\-168 62\62\62 1E+04\1E+04\1E+04 7E+09\7E+09\4E+12
r30 (0+4g)-(16) -134\-134\-136 -224\-224\-177 65\65\65 5E+03\5E+03\5E+03 2E+07\2E+07\1E+10
r31 (0+6g)-(17) -137\-137\-139 -216\-216\-168 62\62\62 1E+04\1E+04\1E+04 2E+08\2E+08\1E+11

Table A1: Standard reaction enthalpy (kJ/mol), reaction entropy (J/mol/K), ac-
tivation energy (kJ/mol), foreword rate constant (s−1) and equilibrium constant
(dimensionless) for each elementary reaction step outlined within Figure A2 at 368.15
(K). The lower and upper bounds are given by the HO and Free Translator approx-
imations defined in section A.2, including an additional approximation where the
adsorbate entropies are estimated using the Free Translator with the exception of
the adsorbed cycloadducts, which are approximated by the HO. These three approx-
imations are ordered: HO/(Free Translator & HO)/Free Translator within the table.
Gas phase DA reactions were also included within the MKM; and are represented
by r16−21, which correspond to C7, C10-para1, C10-para2, C10-meta1, C10-meta2
product formation and trans-isoprene isomerization to cis-isoprene.

141



Figure A2: The reaction network, consisting of all catalytic elementary steps within
the MKM with the coloring scheme and index for each intermediate having been
preserved from the Gibbs free energy surfaces described in the manuscript. Each
step is assumed elementary; and is categorized between: a) competitive physisor-
pion/chemisorption network b) DA cycloaddition network. The corresponding en-
thalpy, entropy, activation energy, forward rate constant, and equilibrium constants
for each step are given in table A1. Gas phase DA reactions were also included within
the MKM, but were not listed here.
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adsorbate Conversion % Yield % Selectivity % Fractional Coverage

ethene 0.2/0.2/0.01 - - 6.8E-2/3.4E-4/5.7E-7

isoprene 1.1/1.3/0.04 - - 1.6E-3/1.1E-3/1.8E-6

C7 - 0.8/0.8/0.03 69.9/62.3/97.7 2.0E-2/8.9E-3/6.2E-3

C10-para1 - 0.01/0.01/<0.001 0.7/0.9/0.09 9.5E-3/1.2E-2/1.2E-2

C10-para2 - 0.1/0.2/<0.001 10.3/12.9/0.79 6.0E-1/6.5E-1/6.6E-1

C10-meta1 - 0.01/0.02/<0.001 1.0/1.3/0.08 4.1E-2/5.0E-2/5.1E-2

C10-meta2 - 0.2/0.3/<0.001 18/23/1.4 2.6E-1/2.7E-1/2.8E-1

Table A2: The conversion, selectivity, and coverage per adsorbate quantified from
the MKM under the entropic approximations discussed within A.2, including an ad-
ditional approximation where the adsorbate entropies are estimated using the Free
Translator with the exception of the adsorbed cycloadducts, which are approxi-
mated by the HO. These three approximations are ordered: HO/(Free Translator &
HO)/Free Translator within the table. The isoprene conversion included both isomers
(cis− and trans−). The coverage for ethene and isoprene included their physisorbed,
chemisorbed, and carbenium states on O17 and O16, including both isomers of iso-
prene (cis− and trans−). The conversion, yield, and selectivity between 1) the Free
Translator & HO and 2) the HO, were much more similar relative to the Free Trans-
lator approximation. The coverage under the Free Translator & HO was more similar
to the Free Translator approximation for the cycloadducts, but more similar to the
HO for the reactants.
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step rforeward rreverse rnet
r0 (0)-(1) 6E+04\3E+02\5E-01 6E+04\3E+02\5E-01 7E-01\7E-01\1E-03
r1 (2)-(3) 3E-02\2E-04\3E-07 3E-02\2E-04\3E-07 7E-10\7E-08\1E-10
r2 (5)-(4) 3E+01\1E-01\2E-04 3E+01\1E-01\2E-04 -7E-10\-7E-08\-1E-10
r3 (6)-(7) 4E+09\3E+09\4E+06 4E+09\3E+09\4E+06 7E-01\7E-01\1E-03
r4 (7)-(11) 5E+08\3E+08\5E+05 5E+08\3E+08\5E+05 2E-07\-6E-08\-1E-08
r5 (7)-(10) 5E+06\3E+06\6E+03 5E+06\3E+06\6E+03 0E+00\1E-09\-7E-11
r6 (8)-(7) 4E+09\3E+09\4E+06 4E+09\3E+09\4E+06 -7E-01\-7E-01\-1E-03
r7 (3)-(4) 7E-05\4E-05\7E-08 7E-05\4E-05\7E-08 7E-10\7E-08\1E-10
r8 (8)-(12) 8E+10\6E+10\1E+08 8E+10\6E+10\1E+08 2E+01\2E+01\3E-02
r9 (6)-(9) 6E+07\4E+07\7E+04 6E+07\4E+07\7E+04 2E-02\2E-02\3E-05
r10 (8)-(9) 1E+10\1E+10\2E+07 1E+10\1E+10\2E+07 -2E-02\-2E-02\-4E-05
r11 (12+0g)-(13) 1E+01\1E+01\2E-02 3E-16\7E-14\1E-16 1E+01\1E+01\2E-02
r12 (12+1g)-(14) 7E-02\1E-01\2E-04 8E-15\5E-12\9E-15 7E-02\1E-01\2E-04
r13 (12+1g)-(15) 1E-01\1E-01\2E-04 2E-13\1E-10\2E-13 1E-01\1E-01\2E-04
r14 (12+1g)-(16) 1E+00\1E+00\2E-03 2E-12\1E-09\2E-12 1E+00\1E+00\2E-03
r15 (12+1g)-(17) 2E+00\3E+00\4E-03 2E-11\1E-08\2E-11 2E+00\3E+00\4E-03
r16 (0g+7g)-(2g) 6E-01\6E-01\6E-01 8E-18\8E-18\3E-19 6E-01\6E-01\6E-01
r17 (1g+7g)-(3g) 1E-04\1E-04\1E-04 1E-18\2E-18\5E-21 1E-04\1E-04\1E-04
r18 (1g+7g)-(5g) 2E-05\2E-05\2E-05 7E-18\1E-17\2E-20 2E-05\2E-05\2E-05
r19 (1g+7g)-(4g) 2E-05\2E-05\2E-05 3E-18\4E-18\7E-21 2E-05\2E-05\2E-05
r20 (1g+7g)-(6g) 2E-05\2E-05\2E-05 4E-17\6E-17\1E-19 2E-05\2E-05\2E-05
r21 (1g)-(7g) 6E+10\6E+10\7E+10 6E+10\6E+10\7E+10 5E-01\5E-01\6E-01
r22 (0+0g)-(2) 3E+06\2E+04\3E+01 3E+06\2E+04\3E+01 2E-09\7E-08\1E-10
r23 (1+0g)-(5) 1E+05\5E+02\8E-01 1E+05\5E+02\8E-01 -8E-10\-7E-08\-1E-10
r24 (0+1g)-(8) 6E+03\3E+01\5E-02 6E+03\2E+01\3E-02 2E+01\2E+01\3E-02
r25 (1+1g)-(6) 3E+02\1E+00\2E-03 3E+02\6E-01\1E-03 7E-01\7E-01\1E-03
r26 (0+7g)-(12) 5E+01\2E-01\4E-04 5E+01\1E-01\2E-04 1E-01\1E-01\2E-04
r27 (0+2g)-(13) 2E+01\8E-02\6E-06 3E+01\1E+01\2E-02 -1E+01\-1E+01\-2E-02
r28 (0+3g)-(14) 1E-02\6E-05\3E-10 8E-02\1E-01\2E-04 -7E-02\-1E-01\-2E-04
r29 (0+5g)-(15) 3E-02\2E-04\6E-10 1E-01\1E-01\2E-04 -1E-01\-1E-01\-2E-04
r30 (0+4g)-(16) 1E-01\7E-04\2E-09 1E+00\1E+00\2E-03 -1E+00\-1E+00\-2E-03
r31 (0+6g)-(17) 5E-01\4E-03\1E-08 2E+00\3E+00\4E-03 -2E+00\-3E+00\-4E-03

Table A3: The foreward, reverse, and net rate (µ-mol/hr) from the MKM with re-
spect to the numbering scheme in A2 under the entropic approximations discussed
within A.2, including an additional approximation where the adsorbate entropies
are estimated using the Free Translator with the exception of the adsorbed cy-
cloadducts, which are approximated by the HO. These three approximations are
ordered: HO/(Free Translator & HO)/Free Translator within the table. The net
rates within the Free Translator & HO approximation more closely resemble the net
rates under the HO approximation. Gas phase DA reactions were also included within
the MKM; and are represented by r16−21, which correspond to C7, C10-para1, C10-
para2, C10-meta1, C10-meta2 product formation and trans-isoprene isomerization to
cis-isoprene.
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A.6 List of zeolite frameworks and adsorbates

ABW AWO ESV IWW MOR RHO SSY
ACO AWW EUO JBW MRE RSN STI
AEI BCT EZT JOZ MSE RWR SZR
AEL BEA FAU JRY MTF RWY TER
AEN BEC FER JST MTN SAF THO
AET BOF GIS JSW MTT SAO TON
AFO BOG GON KFI MVY SAS TSC
AFR BOZ GOO LOV NAB SAV UEI
ANA BSV IHW LTA NON SBE UFI
APC CAS IMF LTJ NPT SBN UOS
APD CFI ISV LTN OBW SFG UOZ
AST CGS ITE MEL OSI SFH UWY
ASV CON ITH MEP OWE SFV VET
ATN DFT ITR MER PAU SGT VNI
ATS DON IWR MFI PHI SIV VSV
ATT EDI IWS MFS PON SOD WEI
ATV EON IWV MON PUN SOS ZON

Table A4: The orthorhombic, pure silica zeolite framework codes according to The
International Zeolite Database.
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Name Category SMILES

alcohols propan-2-ol CC(C)O
alcohols propan-1-ol CCCO
alcohols pentane-1,5-diol C(CCO)CCO
alcohols octan-1-ol CCCCCCCCO
alcohols methanol CO
alcohols ethanol CCO
alcohols 1,2-ethanediol C(CO)O
alcohols pentan-1-ol CCCCCO
alcohols 2-butanol CCC(C)O
alcohols 1,3-propanediol C(CO)CO
alcohols 2-methoxyethan-1-ol COCCO
alcohols 2-methylpropan-2-ol CC(C)(C)O

aldehydes octanal CCCCCCCC=O
aldehydes pentanal CCCCC=O
aldehydes acetaldehyde CC=O
alkanes 2-methylpropane CC(C)C
alkanes 2,2-dimethylpropane CC(C)(C)C
alkanes n-decane CCCCCCCCCC
alkanes 3,4-dimethylhexane CCC(C)C(C)CC
alkanes n-butane CCCC
alkanes propane CCC
alkanes ethane CC
alkanes n-dodecane CCCCCCCCCCCC
alkanes n-octane CCCCCCCC
alkanes methane C
alkanes 2,5-dimethylhexane CC(C)CCC(C)C
alkanes 2,3-dimethylbutane CC(C)C(C)C
alkanes 2,2-dimethylhexane CC(C)(C)CCCC
alkanes n-pentane CCCCC
alkenes isoprene C=C(C)C=C
alkenes propene C=CC
alkenes 1-octene C=CCCCCCC
alkenes 1,3-butadiene C=CC=C
alkenes 1,5-hexadiene C=CCCC=C
alkenes 2-methylpropene CC(C)=C
alkenes 1-butene C=CCC
alkenes ethene C=C
alkenes cis-2-butene C
alkenes trans-2-butene CC=CC

aromatics p-xylene CC1=CC=C(C=C1)C
aromatics propylbenzene CCCC1=CC=CC=C1
aromatics naphthalene C1=CC=C2C=CC=CC2=C1
aromatics thiophene C1=CSC=C1
aromatics isopropylbenzene CC(C)C1=CC=CC=C1
aromatics ethylbenzene CCC1=CC=CC=C1
aromatics m-xylene CC1=CC(=CC=C1)C
aromatics toluene-7 CC1=CC=CC=C1

cyclic-alkanes cyclopentane C1CCCC1
cyclic-alkanes cyclooctane C1CCCCCCC1
cyclic-alkanes cyclohexane C1CCCCC1
cyclic-alkanes cyclooctadecane C1CCCCCCCCCCCCCCCCC1
cyclic-alkanes cyclododecane C1CCCCCCCCCCC1
cyclic-ethers oxane C1COCCC1
cyclic-ethers 1,4-dioxane O1CCOCC1
cyclic-ethers tetrahydrofuran C1COCC1
cyclic-ethers 1,3-dioxolane O1COCC1

esters ethyl-methacrylate CCOC(=O)C(=C)C
esters ethyl-acrylate CCOC(=O)C=C
esters n-octyl-acrylate CCCCCCCCOC(=O)C=C
esters n-butyl-methacrylate CCCCOC(=O)C(=C)C
esters 2-ethylhexyl-acrylate CCCCC(CC)COC(=O)C=C
esters n-butyl-acrylate CCCCOC(=O)C=C
esters 2-hydroxyethyl-acrylate C=CC(=O)OCCO
esters methyl-methacrylate CC(=C)C(=O)OC
ethers 1,2-dimethoxyethane COCCOC
ethers ethyl-methyl-ether CCOC
ethers diethyl-ether CCOCC
ethers dipropyl-ether CCCOCCC
ethers dimethyl-ether COC
ethers methyl-tert-butyl-ether CC(C)(C)OC
ethers diisopropyl-ether CC(C)OC(C)C
ketones acetone CC(=O)C
ketones 2-pentanone CCCC(=O)C
ketones 2-octanone CCCCCCC(=O)C
nitriles acetonitrile CC#N
nitriles propionitrile CCC#N
others sarin CC(C)OP(=O)(C)F

perfluoroalkanes perfluoroethane C(C(F)(F)F)(F)(F)F
perfluoroalkanes n-perfluorodecane C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F
perfluoroalkanes n-perfluoropentane C(C(C(F)(F)F)(F)F)(C(C(F)(F)F)(F)F)(F)F
perfluoroalkanes n-perfluorohexane C(C(C(C(F)(F)F)(F)F)(F)F)(C(C(F)(F)F)(F)F)(F)F

sulfides diethyl-disulfide CCSSCC
sulfides dimethyl-sulfide CSC
sulfides diethyl-sulfide CCSCC
sulfides ethylmethyl-sulfide CCSC
thiols 2-methyl-1-propanethiol CC(C)CS
thiols 2-methyl-2-propanethiol CC(C)(C)S
thiols octanethiol CCCCCCCCS
thiols 2-butanethiol CCC(C)S
thiols methanethiol CS
thiols ethanethiol CCS
thiols pentanethiol CCCCCS

Table A5: Adsorbate species organized per functional category with corresponding
SMILES string.
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