
The Preserve: Lehigh Library Digital Collections

Achieving Strong Consistency and
Low-Cost Fault Tolerance using

Logical Clocks in Distributed
Transactional Systems

Citation
Javidi Kishi, Masoomeh, and Roberto Palmieri. Achieving Strong Consistency and Low-
Cost Fault Tolerance Using Logical Clocks in Distributed Transactional Systems. 2020,
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-the
ses-dissertations/theses-dissertations/achieving-0.

Find more at https://preserve.lehigh.edu/

This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for
inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.

https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/achieving-0
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/achieving-0
https://preserve.lehigh.edu/
mailto:preserve@lehigh.edu

Achieving Strong Consistency and Low-Cost Fault Tolerance

using Logical Clocks in Distributed Transactional Systems

by

Masoomeh Javidi Kishi

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

August 2020

c© Copyright by Masoomeh Javidi Kishi 2020

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Date

Dr. Roberto Palmieri, Dissertation Advisor

Committee Members:

Dr. Roberto Palmieri, Committee Chair

Dr. Hank Korth

Dr. Michael Spear

Dr. Sebstiano Peluso

iii

Acknowledgements

The completion of this work could not have been possible without the help and assistance of

many amazing people in my life. First and foremost, is the warm of my heart, Mohammad

Mostafavi. This work is dedicated to him.

My deepest and eternal appreciation goes to my parents Fatemeh Lavaei and Moham-

madbagher Javidi Kishi and my brother Alireza Javidi Kishi who support me by sending

their love all the time.

I owe a huge debt of gratitude to my advisor, Dr. Roberto Palmieri, who has inspired

me to achieve a level higher than I thought possible. His guidance and encouragement was

invaluable and without it I most surely would have been lost at sea.

I would like to express my deep acknowledgments to the members of my dissertation

committee Dr. Hank Korth, Dr. Michael Spear, and Dr. Sebastiano Peluso for their

support. I have been fortunate to have them in my PhD committee. I would also like to

thank to Dr. Ahmed Hassan for providing helpful suggestions and comments during my

research.

Thanks to the members of Scalable Systems Software Research Group for their support

and friendship: Jacob Nelson, Pantea Zardoshti, dePaul Miller, Paul Grocholske, Yaodong

Sheng and, Matthew Rodriguez.

Special thanks to my incredible friends Arash Amini, Saleh Teymouri, Abdolhamid

Sadeghnejad and Mohammadhossein Mohammadi Siahroudi for listening, supporting, and

encouraging me all the time. Last but not least, my infinite gratitude goes to my amazing

friends Fatemeh Movafagh, Ghadir Asadi, Nasim Ebadi, Fatemeh Yazdandoust and, Ayoub

Yari for their infinite kindness.

iv

Contents

Acknowledgements iv

List of Tables ix

List of Figures x

List of Algorithms xiii

Abstract 1

1 Introduction 4

1.1 The Importance of Consistency in Concurrency Controls 6

1.1.1 External Consistency . 8

1.1.2 Serializability . 9

1.1.3 Snapshot Isolation, Generalized Snapshot Isolation, Parallel Snapshot

Isolation . 10

1.2 Fault Tolerance and Performance in Transactional Systems 11

1.3 Dissertation Motivation . 13

1.4 SSS: Improving Serializability with External Consistency using Off-the-Shelf

Hardware . 15

1.5 FPSI: Improving Parallel Snapshot Isolation by Refreshing Reading Snapshot 17

1.6 Correctness of Transaction Processing with External Dependency 18

1.7 EPSI: Improving the performance and storage space in Replicated PSI Trans-

actional Systems . 19

v

1.8 Dissertation Organization . 20

2 Background, Terminologies and System Model 21

2.1 Distributed Processes and Communication Primitives 21

2.2 Data Organization . 22

2.3 Transaction Model . 22

2.4 History and Direct Serialization Graph . 23

3 Related Work 24

3.1 Externally Consistent Protocols . 24

3.2 Serializable Protocols . 25

3.3 SI Protocols . 26

3.4 Protocols with other variants of SI . 26

3.5 Other Vector Clock/Physical Clock Protocols 27

3.6 Erasure-coded Protocols . 28

4 SSS: Scalable Key-Value Store with External Consistent and Abort-free

Read-only Transactions 30

4.1 Overview . 30

4.2 SSS Concurrency Control . 31

4.2.1 Execution of Update Transactions . 33

4.2.2 Execution of Read-Only Transactions 37

4.2.3 Examples . 41

4.3 Additional Considerations of SSS . 43

4.3.1 Garbage Collection . 43

4.3.2 Starvation . 43

4.3.3 Deadlock-Freedom . 43

4.3.4 Fault Tolerance . 44

4.4 Correctness Arguments . 44

4.5 Evaluation Study . 46

vi

5 FPSI: Improving Read Guarantees in Parallel Snapshot Isolation 53

5.1 Overview . 53

5.2 Background and Motivation . 55

5.2.1 Walter and PSI . 55

5.2.2 The Challenge of Updating Reading Snapshot in Walter 56

5.2.3 The Impact of Data Freshness in the Long Fork Anomaly 57

5.3 FPSI: Protocol Description . 58

5.3.1 Metadata . 58

5.3.2 Transactional Begin Operation . 60

5.3.3 Transactional Write Operation . 61

5.3.4 Transactional Read Operation . 61

5.3.5 Commit protocol . 65

5.3.6 Handling Asynchronous Messages . 68

5.4 Correctness Arguments . 68

5.5 Evaluation Study . 70

5.5.1 YCSB . 72

5.5.2 TPC-C . 74

6 On the Correctness of Transaction Processing with External Dependency 77

6.1 Overview . 77

6.2 Formalization . 79

6.3 Designing a System using our Unified Model 81

7 EPSI: Efficient Erasure-coded Parallel Snapshot Isolation for Key-Value

Stores 83

7.1 Overview . 83

7.2 Background . 85

7.2.1 Walter Protocol . 85

7.2.2 Erasure Coding . 89

7.3 System Model . 90

7.4 Overview and General Architecture . 91

vii

7.5 Protocol Details . 96

7.5.1 Terminologies . 96

7.5.2 Transactional Begin Operation . 96

7.5.3 Transactional Write Operation . 97

7.5.4 Transactional Read Operation . 97

7.5.5 Transactional Commit Operation . 98

7.6 Evaluation Study . 100

7.6.1 Configuration and System Parameters 100

7.6.2 Benchmarks and Workload . 100

7.6.3 Competitors . 101

7.6.4 Experimental Results . 101

8 Conclusions and Future Work 109

8.1 Conclusion Remarks . 109

8.2 Future Works . 110

Bibliography 112

Biography 124

viii

List of Tables

7.1 Application interfaces of EPSI and Walter. 91

7.2 Internal interfaces of Walter, used by EPSI’s concurrency control. 92

ix

List of Figures

1.1 The relation between external consistency, Serializability and SI variants.

Each circle represents the set of accepted executions by each consistency level.

External consistency is the strictest of the three. Serializability, and Snapshot

Isolation both are strictly weaker than external consistency. 7

4.1 SSS execution in the presence of an anti-dependency. Orange boxes show the

content of the data store. Gray boxes show transaction execution. Dashed line

represents the waiting time for T2. The red crossed entries of Q(y) represent

their elimination upon Remove. 41

4.2 Handling read-only transactions along with non-conflicting update transac-

tions. We omitted snapshot-queue entries elimination upon Remove to im-

prove readability. 42

4.3 Throughput of SSS against 2PC-baseline and Walter, varying % of read-only

transactions. Number of nodes in X-axes. 48

4.4 Performance of SSS against 2PC-baseline using 5k objects and 50% read-only

transactions. 50

4.5 Breakdown of SSS transaction latency. 50

4.6 SSS, 2PC-baseline, ROCOCO varying % of read-only transactions. Legend

in (a) applies to (b). 51

4.7 Throughput of SSS against 2PC-baseline and Walter with 80% read-only

transactions and 50% locality. 52

4.8 Speedup of SSS over ROCOCO and 2PC-baseline increasing the size of read-

only transactions. 52

x

5.1 Long-fork anomaly accepted by PSI consistency level. Dashed arrows rep-

resent the asynchronous propagation messages. The reading snapshot of T1

reflects the timestamp of T2 in the second entry of T1’s vector clock (T1.V C)

but it does not reflect the timestamp of T3 in the third entry of T1’s vector

clock. The reading snapshot of T4 reflects the timestamp of T3 in the third

entry of T4’s vector clock (T4.V C) but it does not reflect the timestamp of T2

in the third entry of T4’s vector clock. 57

5.2 Example of execution where a read-only transaction advances its reading

snapshot and still reads consistently. VAS is the version-access-set. Bold

vector clock entries show where hasRead is true. The red crossed entries of

VAS represent their elimination upon Remove. 63

5.3 Example showing how an update transaction establishes its reading snapshot. 64

5.4 Throughput of FPSI, Walter and 2PC-baseline using YCSB and by varying

% of read-only transactions, the total number of keys, and the number of nodes. 72

5.5 Average size of anti-dependency collected by update transactions during pre-

pare phase of FPSI for different % of read-only transactions and keys. 73

5.6 Abort rate using 20 nodes and varying number of keys while delaying propa-

gate messages in both FPSI and Walter. 74

5.7 Throughput of FPSI, Walter and 2PC-baseline using TPC-C and by varying

% of read-only transactions, the number of warehouses per node (W/n), and

the number of nodes. 75

5.8 Performance of FPSI and Walter varying the number of warehouses per node

(W/n). 76

6.1 Designing an Externally Serializable Concurrency Control. The Serializable

Concurrency Control determines provided rules by the serializable concur-

rency control. Externally Dependency Checker determines the information

regarding the external dependency provided by programmer. 81

7.1 Transaction metadata and node metadata in Walter. 87

xi

7.2 Example execution of a write transaction in EPSI. Dashed blue lines separate

phases of transactional execution. Dashed arrows represent asynchronous

messages. Overlapped arrows show parallel messages. 94

7.3 Throughput of YCSB varying the size of object values and 50% read-only

transactions. 102

7.4 Throughput of YCSB varying the size of object values and 80% read-only

transactions. 103

7.5 Throughput and Abort rate of YCSB varying the size of object values and

50% read-only transactions under the high contention (i.e., 10K keys). 105

7.6 Throughput of YCSB varying the size of object values and 50% read-only

transactions using both a dedicated and a shared network in EPSI and Cocytus.106

7.7 Throughput of YCSB varying the size of object values and 80% read-only

transactions using both a dedicated and a shared network in EPSI and Cocytus.107

7.8 Throughput of Retwis varying the size of data using EPSI and Walter. 108

xii

List of Algorithms

1 Internal Commit of SSS of Transaction T in node Ni by SSS 34

2 Handling Internal Commit by Transaction T in node Ni using SSS 35

3 Start Pre-commit by Transaction T in node Ni using SSS 36

4 End Pre-commit of Transaction T in node Ni using SSS 37

5 Read Operation by Transaction T in node Ni using SSS 38

6 Version Selection Logic in node Ni using SSS 39

7 Begin procedure of transaction T in node Ni using FPSI 60

8 Read Operation in FPSI . 61

9 Version Selection Logic in node Ni using FPSI 62

10 Commit of transaction T in node Ni using FPSI 66

11 FPSI’s Commit message handlers received by node Ni for transaction T issued

by node Nj . 67

12 Remove and Propagate messages from transaction T issued by Nj to node Ni

using FPSI . 68

13 Walter API description in the node Ni . 88

14 The procedure of EPSIBegin(T) in node Nshardi 96

15 Handling the procedure of EPSIBegin(T) for the forwarded transaction T

in leader(shardi) . 97

16 The procedure of write operation in EPSI . 97

17 Read Operation in the node Ni using EPSI 98

18 Commit of transaction T in leader(shardi) (i.e., Ni) using EPSI 98

xiii

Abstract

Distributed transactional systems are the standard medium to let client (or application)

requests interact with a shared state, in the presence of concurrency. These systems require

clients to wrap the application logic that acts on the shared state around a well-defined

block of code, called transaction. Transactions are guaranteed to execute atomically and

in isolation by the transactional system. Practical workloads in distributed transactional

systems often involve a high number of interacting users whose requests need to be processed

safely while maintaining high performance, scalability, and fault tolerance of the system.

The concurrency control is the component responsible for ensuring that operations from

concurrent transactions are performed while preserving safety and ensuring a desired con-

sistency level. A consistency level provided by a concurrency control directly affects the

simplicity in which programmers develop distributed applications. The stronger the con-

sistency level, the closer the behavior of the system to a serial one. For a programmer, a

desirable consistency level is the one that does not violate application semantics and pre-

vents the exposure of behaviors (or anomalies) that cause clients interacting with the system

to observe “unrealistic" results (e.g., where read operations return obsolete values). In ad-

dition to providing a desirable consistency level, a transactional system should also provide

fault tolerance, which refers to its capability of surviving failures without compromising the

shared state.

The traditional approach to ensure fault tolerance is introducing redundant resources

(e.g., storage) to preserve multiple copies. However, two problems arise from adopting re-

dundant resources. First, these copies should be kept consistent, which adds additional

design challenges to the synchronization protocol. As a result, system performance might

1

be negatively affected, especially if the assumption is that no centralized source of synchro-

nization is deployed. Second, storage cost increases due to redundancy. This aspect can be

neglected if the data repository is not very large. However, modern workloads, such as those

produced by social networking applications, replicating the data repository would introduce

an unfeasible increase in storage cost.

The research included in this dissertation has a twofold aim applied to distributed trans-

actional systems, i) improving the data freshness of transactional read operations while

adopting a fully decentralized design where no centralized source of synchronization is as-

sumed; and ii) improving the cost of fault tolerance, namely the space overhead needed

to ensure normal operation despite the presence of failures. These two properties are both

appealing and orthogonal, therefore can be independently adopted by transactional systems.

In this dissertation, we are interested in the external consistency and Parallel Snapshot

Isolation (PSI) consistency levels as they are widely accepted by a variety of real-world

applications, spanning from On-Line Transaction Processing (OLTP) to social networking

applications. Ensuring high level of data freshness in these consistency levels is the first key

driving factor of the presented research. The level of data freshness is a property of the

concurrency control formalizing the guarantees of a read operation in terms of obsoleteness

of the returned value. Given the result of a read operation, the gap between the returned

version of a shared object and its latest version quantifies the level of freshness of that read.

The second key driving factor of the research included in this dissertation is to address the

aforementioned problem of increased storage space due to redundant resources.

In order to improve the level of data freshness, we present two transactional systems

named SSS and FPSI.

SSS is a transactional key-value store that guarantees external consistency. SSS supports

abort-free read-only transactions and its novelty is in the deployment of a new technique,

named snapshot-queuing, to propagate established serialization orders among concurrent

transactions. Such a propagation enables update transactions to be serialized along with

read-only transactions in a unique order where reads always return values written by the last

update transaction returned to its client, hence providing the highest level of data freshness.

FPSI is a distributed transactional in-memory key-value store whose primary goal is

2

to enable read operations to read fresher than existing implementations of the well-known

Parallel Snapshot Isolation (PSI) consistency level, in the absence of a synchronized clock

service among nodes. At the core of FPSI, a novel concurrency control allows abort-free

read-only transactions to access the latest version of objects upon their first access to a node.

FPSI does that by implementing a visible read technique, which lets read-only transactions

to advance their logical clock upon the first access to a node, while retaining safety.

The third contribution in this dissertation overcomes the lack of theoretical framework

to reasoning about correctness of distributed concurrency control implementations based on

their data freshness.

The first two contributions of this research aim at providing fault tolerance through

replication, which might cause a significantly large amount of data to be replicated. To

address this challenge, we present EPSI, a transactional key-value store that integrates

a layered concurrency control connected to an existing PSI to handle storage access. The

general idea of EPSI is to deploy the erasure coding technique in its read and write operations

and provide a desired system resiliency level through a lower storage cost, in comparison with

the traditional replication techniques deployed by state-of-the-art transactional systems.

3

Chapter 1

Introduction

Web-accessible system software and applications are popular technological components ex-

ploited by (commercial or not) entities that aim at providing users (or clients) with innova-

tive and appealing services. Recent advancements in hardware infrastructures for computing

(e.g., multicore processors [1]) and network communication (e.g., Remote Direct Memory

Access, or RDMA [2, 3]) enable such system software and applications to sustain an in-

creasing number of requests issued by the connected users [4, 5]. Being able to improve the

performance robustness of these systems while increasing the user workload (a property also

known as scalability) and retaining desirable higher-level system properties, such as high

programmability is an open problem that currently drives the development effort of leading

companies, startups, and computer scientists in academia [6–8].

Real-world applications’ workloads experience a massive amount of interacting clients [7,

9,10]. The nature of these interactions spans from simply querying a shared state, to manip-

ulating it. In the presence of manipulations, advanced coordination management is needed

to handle these concurrent accesses to the shared state and ensure all clients always observe

correct results. In addition, to preserving safety in the presence of simultaneous requests

accessing the shared state, theses systems should also provide reliability [11] in order to

guarantee the survival of the shared state in case of unexpected failures. The common

high-level approach to address this problem is to introduce redundant resources (e.g., pro-

cessors, devices, storage) to preserve multiple copies [12–14]. However, these copies should

be kept consistent, which adds additional design challenges since further synchronization

4

might significantly decrease system performance [3].

Database transactions [15,16] are the state-of-the-art programming abstraction used by

applications to manipulate shared data in a correct manner. Transactions allow program-

mers to escape dealing with the pitfalls of concurrency by just enclosing shared data accesses

(e.g., read, write, etc.) within a well-defined block of code (i.e., the transaction) [17]. Those

transactions are then submitted to a transactional system, which has dedicated components

responsible for producing a correct and concurrent execution of those transactions. At the

core of a transactional system, there is the concurrency control, a component implementing

a synchronization protocol allowing multiple simultaneous transactional executions to coex-

ist and to perform read and write accesses in isolation and atomically (i.e., all changes to

data are performed as if they were a single operation).

Concurrency controls have been studied intensively for several decades in different types

of transactional repositories (e.g., distributed database management systems [18], distributed

NoSQL/key-value stores [19–21], embedded databases [22, 23]). Many of these concurrency

controls perform well under low applications’ workload, however, their performance does not

scale along with an increased number of client requests. Extensive research activities have

been conducted to make transactional systems able to maintain high performance, scalability

and fault tolerance while retaining a well-suited level of consistency (or correctness) for the

clients [4, 5, 21,21,24–28,28–34].

The general objective of a concurrency control is to improve the level of parallelism

in which transactions are processed while still synchronizing their operations to satisfy a

user-requested safety condition (or consistency level). Generally, strong (or strict) levels of

consistency require transactions to undergo many synchronization steps, which often leads

to decisions that force these transactions to behave conservatively, possibly resulting in low

performance. On the other hand, allowing less synchronization among transactions usually

increases the chance that most of them successfully finalize their executions without waiting

for concurrent operations to be concluded first. This is the case of concurrency controls im-

plementing relaxed (or less strict) consistency levels. The downside of concurrency controls

providing relaxed consistency levels is that programmers might lose programmability [30],

namely the property that expresses the simplicity for a programmer to use certain abstrac-

5

tion. Relaxing consistency means allowing transactions to order each other in a way that

might contradict the traditional sequential reasoning. This entails anomaly [35, 36] due

to concurrency are not anymore handled inside the transactional systems but they can be

exposed to the application itself.

In Sections 1.1 and 1.2, we discuss the various consistency and fault tolerance levels in

distributed transactional systems, and their effect on the system performance.

1.1 The Importance of Consistency in Concurrency Controls

In general, application programmers prefer strong levels of consistency to simplify the de-

velopment of applications that deal with concurrency [24, 30, 37]. Relying on weak levels of

consistency for an application means allowing more concurrent transactions to be commit-

ted, even in the presence of conflict (i.e., when two transactions access a common shared

data and at least one of them is an update). Although performance is expected to increase

in this case, transactions can be ordered by the concurrency control in a way that does not

match any sequential execution of the same transactions. When that happens, the program-

mer needs to ensure that the application semantics is preserved, even when those reordered

executions occur.

For a programmer, a desirable consistency level is the one that satisfies application se-

mantics [38,39] and eliminates behaviors (or anomalies) [35,36] that cause clients interacting

with the system observe “unrealistic" results (e.g., where read operations return obsolete val-

ues), and at the same time does not lead to low performance. By relying on an underlying

system software that provides such a desirable consistency level, application development

process is shortened and its complexity is decreased.

In this dissertation, we focus on three widely used consistency levels, namely external

consistency [28, 40], Serializability [36, 37] and Snapshot Isolation (SI) [35, 36, 41]. The

relation between these three isolation levels, in terms of allowed executions, is represented

in Figure 1.1.

A consistency level α is stricter than a consistency level β if β accepts more transactional

executions than α. The expectation is that β applies more relaxed synchronization rules

6

Snapshot
Isolation

Serializability
External

Consistency

Parallel Snapshot
Isolation

Generalized
Snapshot

Isolation

Figure 1.1: The relation between external consistency, Serializability and SI variants. Each
circle represents the set of accepted executions by each consistency level. External consis-
tency is the strictest of the three. Serializability, and Snapshot Isolation both are strictly
weaker than external consistency.

across both concurrent and non-concurrent transactions than α, therefore increasing the

number of possible committed executions. In this figure we can see how external consistency

is strictly stronger than both Snapshot Isolation and Serializability; while Snapshot Isolation

and Serializability are incomparable since each of them accepts executions that are rejected

by the other, and vice versa.

In the remainder of this chapter, we describe each of our targeted consistency levels

using examples borrowed by a simple monetary application. In order to do so, we consider

two clients C1 and C2, each with two accounts, one for saving (Sav1 and Sav2) and one

for checking (Chk1 and Chk2). Every client can issue his/her transaction (T1 and T2) and

each issued transaction by clients contains read operations, for reading the value of some

account, or write operations, for updating (i.e, depositing or withdrawing) the amount of

some account.

Read(Chki = amount) (or Read(Savi = amount)) represents a read operation returning

the value amount for checking account Chki (or saving account Savi). Write(Chki,+amount)

(or Write(Savi,+amount)) determines a deposit operation of the value amount that should

be done on Chki (or Savi). Write(Chki,−amount) (or Write(Savi,−amount)) also stands

for withdrawing the value amount from Chki (or Savi). For simplicity, let us assume that

there exists $10 in each client’s saving account and checking account before running each

7

example.

To better highlight the differences among the consistency levels discussed below we define

the transaction reading snapshot as the set of versions returned by all the read operations of

a transaction. As a metric of comparison, we define the level of freshness for a transaction

reading snapshot as the metric that evaluates the gap between the read version of a shared

object and its latest version. The higher is this gap, the older is the read version.

1.1.1 External Consistency

Suppose that transaction T1, issued by C1 and transaction T2, issued by C2 are as the follow-

ing. T1: Read(Sav1 = $10) Read(Chk1 = $10) Write(Sav1,+10). When T1 completes its

execution there will be $20 in Sav1 and $10 in Chk1. After completion of T1, if T2 starts its

execution and completes as the following: T2: Read(Chk1 = $10) Read(Sav1 = $20), then

the updated value for Sav1 by T1 is visible by T2. The latter property which is enforcing

every transaction T2, started after completion of transaction T1, to observe the outcome of

T1 is guaranteed by a consistency level named external consistency.

External consistency is a strong level of consistency that clients often desire in an in-

teractive transactional system, similar to the case of monetary application. Roughly, under

external consistency a distributed system behaves as if all transactions were executed se-

quentially, all clients observed the same unique order of transactions completion (also named

external schedule in [24]), in which every read operation returns the value written by the

previous write operation. Therefore, in external consistency every read operation returns

the most recent (we also name it as the freshest) version of an object, installed in the data

repository before the transaction issuing the read operation started. Generally, a concur-

rency control provides the freshest reading snapshot if each read operation issued by every

transaction returns the most recent version of a shared object.

By relying on the definition of external consistency, a transaction terminates when its

execution is returned to its client; therefore the order defined by transaction client returns

matches the order in which transactions read from other transactions (also known as seri-

alization order). The latter property carries one great advantage: if clients communicate

with each other outside the system, they cannot be confused about the possible mismatch

8

between transaction order they observe and the transaction serialization order provided by

the concurrency control inside the system. Simply, if a transaction is returned to its client,

the serialization order of that transaction will be after any other transaction returned earlier,

and before any transaction that will return subsequently. Therefore, external consistency

goal is to make sure the value of shared objects is always up-to-date when they are returned

back to clients.

1.1.2 Serializability

Serializability is one of the most targeted consistency criterion by transactional systems.

Serializability (called One-Copy Serializability (1SR) [24, 35] in a distributed system where

each object is replicated by multiple nodes), ensures that all completed transactions ap-

pear as executed serially in an environment where each shared object is not replicated. In

this equivalent serial execution, where transactions do not overlap their operations, read

operations of conflicting transactions should return the same values observed in the original

execution. For non-conflicting transactions, any order is considered valid, as long as no two

transactions observe different non-conflicting transactions in any opposite order.

In addition to that, while Serializability has been successfully used in a lot of appli-

cations (e.g., banking, airline reservations), applications might need guarantees from their

transactions that demand different rules in deciding whether an execution can be committed

depending upon the return value of its operations. These new requirements have motivated

the introduction of different consistency levels that go beyond the Serializability. In the

following section, we discuss Snapshot Isolation and its different variants, as one category

of most used consistency level other than Serializability.

To connect the impact of a serializable concurrency control with the examples used in

Section 1.1.1, if the transactions executed under Serializability, C2 will still not be guaranteed

to observe the deposited value by C1. This is because using a serializable concurrency control,

C2 might decide to observe $10 in each Sav1 and Chk1 which are applied to these accounts

before C1’s deposit on Sav1 is applied.

9

1.1.3 Snapshot Isolation, Generalized Snapshot Isolation, Parallel Snap-

shot Isolation

Snapshot Isolation (SI) [35] is a widely adopted consistency level often used as an alternative

to Serializability for developing concurrency controls. It significantly improves the level of

concurrency and performance over other known strong isolation levels by overcoming most

(but not all) of the common anomalies due to concurrent data manipulation. It is supported

by leading products, such as Oracle Database [42], Microsoft SQL Server [43], as well as by

many other transactional repositories (e.g., [44]).

Consider the same monetary application this time executes two concurrent transactions

T1 and T2 as the following. T1: Read(Sav1 = 10) Write(Chk1,+$10) and T2: Read(Chk1 =

10) Write(Sav1,+$10). In this case each transaction T1 and T2 updates a different account

which are Chk1 and Sav1. Also they do not see the update of each other when they

read. A serializable concurrency control considers T1 and T2 as conflicting transactions.

And it never allows both T1 and T2 to commit, if they are conflicting. However, this

specific conflict between T1 and T2 might be accepted by the monetary application due to

its assumed semantics. The consistency level that allows both T1 and T2 completes while

they are concurrent is named Snapshot Isolation (SI). In other words, two conflicting update

transactions can complete in SI, as long as there is no intersection between the set of objects

written by them.

One of the most important properties of SI, which enables high performance, is that

read and write operations do not impede each other. A multi-versioned data repository,

where multiple versions are recorded per shared object rather than just the one produced by

the latest write, allows a read transaction to identify its reading snapshot. Generally, this

reading snapshot is at least the set of versions available prior to the transaction’s starting

point (versions committed after a transaction begins can also be included in the reading

snapshot). Because this set does not change while the transaction executes, concurrent

writes cannot affect reads. The main difference of SI with respect to other strong consistency

levels, such Serializability, is that it allows a transaction to have a serialization point for its

read operations that is different from its serialization point for its write operations, unless

10

they intersect.

Since a transaction’s reading snapshot remains immutable throughout the execution, if

a transaction only issues read operations without any write operation, then such a trans-

action will always be committed at its first trial. This property is very appealing because

many real-world applications produce significant read-only workload [45]. Hence SI’s level

of concurrency, even among concurrent conflicting transactions, is high [46].

Generalized Snapshot Isolation (GSI) [41] is a weaker version of SI, mostly deployed in a

way in which the starting point of a transaction is considered as a physical [47] or a logical

timestamp [21, 48] acquired by each transaction when it begins its execution. This starting

point might include outcomes of all transactions, or a subset of them, committed before a

transaction T starts. If the starting point of T does not require T to observe the outcome

of all transactions committed before T starts, then the system does not provide the freshest

reading snapshot. Such a reading snapshot, which is prevented by SI, is accepted by GSI.

Parallel Snapshot Isolation (PSI) [21] is a weaker variant of GSI, therefore of SI, in

which users might experience additional delays for their actions to be seen by other users, as

guaranteed by SI instead. PSI introduces a new anomaly, called long-fork, which is caused

by having non-conflicting transactions ordered in a different way by other transactions.

1.2 Fault Tolerance and Performance in Transactional Sys-

tems

The traditional approach to ensure fault tolerance and high availability of the shared state

is replication [12, 14, 21, 30, 48–51]. In general, availability refers to the readiness of the

system in providing a response of a client request. On the other hand, fault tolerance is

the capability of the system to keep functioning in the presence of faults. In the rest of this

section, we overview different replication schemes. In all of them, the state of the shared

data is replicated M + 1 times to tolerate M failures.

Replicated schemes can be categorized as active or passive, depending on the role of the

nodes holding object copies in the transaction processing.

The most deployed active replication approach is State Machine Replication (SMR) [14].

11

In SMR, clients’ requests are processed by all replica nodes in the same order, and this

order is traditionally established using a consensus layer that ensures total order [52, 53].

One known challenge of this scheme is achieving scalability since increasing nodes entails

significantly increase the number of network messages exchanged to define a total order.

As apposed to the active replication, a passive replication scheme uses nodes as backups,

ready to replace the primary node in case a failure occurs. A common deployment of

passive replication is the Primary Backup Replication (PBR) [49, 54] technique. In PBR,

one replica is the primary and executes clients’ requests for changing shared data. The role

of the Primary is also to send the modified state of the shared data to the backup replicas.

If the primary replica fails, one of the backup replicas takes over its role of serving clients’

request.

Partial Replication (PR) is an alternative approach proposed in the literature to minimize

the number of contacted replicas every time a modification is made to the shared state. In

fact, in partial replication, a transaction that commits a new modification to the shared state

should only contact a subset of the system’s nodes, not all as in SMR. This allows different

replicas to handle independent parts of application workload in parallel [12,21,48,50]. This

approach improves SMR’s scalability issue and also overcomes the high latency of PBR in

case the primary node is overloaded. The disadvantage of PR when compared with SMR is

the reduced resiliency, namely the capability of tolerating less failures than SMR.

When we compare the above techniques in terms of performance, moving from SMR to

PR means increasing the correlation between the transaction latency and the performance

of the slowest replica node for an object accessed by that transaction. In fact, in SMR an

operation can be served by any node in the system, which inherently means that if a node

is slow, other nodes can serve that operation quicker than it. The other extreme is PBR,

where a transaction accessing an object can only contact one node, the primary, in order to

retrieve its content [30]. If that node is slow, the transaction has no other choice but waiting

for the primary serves the operation. On the other hand, PBR represents a middle ground

where more than one node per object can be contacted to perform operations [21,32,48,50].

Another technique to provide fault tolerance retaining the performance advantage of PR

is erasure coding. In the erasure coding, one object can be divided into N coded data units

12

and P equal-size coded parity units. Therefore, M = N + P equal-size coding elements

needed to tolerate P failures. Using an erasure coded data, any N of the M coded units

can decode the original data due to a property called maximum distance separable (MDS)

preserved by the erasure coded data [6, 55–61]. The latter property allows transactions to

read from a quorum of nodes, as opposed to all the nodes replicating an object, and therefore

avoiding high latency due to a slow replica node, as in PR.

An orthogonal, although appealing, property of erasure coding is that given a repository

with a set of objects and a level of resiliency, erasure coding allows for reducing the amount

of storage needed to store all the objects, compared to the other replication techniques [6,7].

1.3 Dissertation Motivation

Seeking for the most appropriate level of consistency for a distributed transactional system

given the characterization of a workload and/or application invariant has been the focus on

much research in academia and industry [4,5,18,21,21,24–28,28–34,48,50,62–66]. This dis-

sertation specifically focuses on external consistency and snapshot isolation (SI) consistency

level. This is because, looking at real-world application requirements, these two correctness

criteria have been widely confirmed as appropriate for OLTP [46,67], the former, and social

network applications [10,68], the latter.

Looking at the practicality of the above correctness levels, existing systems achieve them

by means of deploying especial purpose hardware [4, 5, 18, 28, 62] to efficiently order dis-

tributed events. Through this special hardware, these systems can timestamp transactions

and capture the total order of their operations. Although powerful, these systems cannot

be easily adopted and extended because of the impossibility of accessing the technology by

the majority of designers and developers.

The first set of results included in this dissertation aims at filling this gap, namely

allowing developers to deploy systems with strong ordering requirements, without the need

of relying on especial hardware. We generalize this requirement by designing systems that

do not rely on a global source of synchronization to order transactions.

In literature, the most deployed technique for achieving global distributed synchroniza-

13

tion is to use logical clocks (i.e., vector clocks [21,50,65,69,70]) for capturing causal depen-

dency relations among distributed transactions. Logical clocks enable transactions to read

and write data, consistently. However, the current literature of systems based on logical

clocks lacks of solutions that allow transactions to enforce external consistency and retain

important properties, such as the capability of always committing read-only workload at the

first attempt (i.e., abort-freedom). The first contribution in this dissertation is SSS, a trans-

actional system that updates vector clocks in a way transactions are always allowed to access

the freshest reading snapshot and read-only transactions do not abort due to concurrency.

SSS is overviewed in Section 1.4.

Snapshot Isolation has the same stringent ordering constrains in terms of consistency for

its read operations as external consistency. Because of that, no solution is currently available

in the literature of high-performance distributed systems that provide Snapshot Isolation

without using a centralized or distributed clock service. On the other hand, a relaxation of

such a correctness level, called Parallel Snapshot Isolation, has recently prevailed, motivated

by its applicability to the popular social networking applications [21].

Despite its appeal, Parallel Snapshot Isolation imposes no restriction on the freshness

of the returned value of read operations. The concept of data freshness is not formalized

in literature and no practical existing high-performance system attempts to increase data

freshness in Parallel Snapshot Isolation. The second contribution of this dissertation ad-

dresses the problem of data freshness in Parallel Snapshot Isolation. The goal of improving

data freshness is achieved while maintaining the primary design goal of SSS, namely relying

solely on off-the-shelf hardware [21, 48, 50, 65] to favor widespread adoption. We present

FPSI, a distributed concurrency control that tracks causality and provides innovations to

advance vector clocks during transaction execution. FPSI is overviewed in Section 1.5.

The third contribution in this dissertation overcomes the lack of theoretical foundation

on reasoning about correctness of distributed concurrency control implementations based

on their data freshness. Data freshness can be formalized as ordering constraints among

transactions. We challenge the fact that proving the safety of distributed transactional

systems by hand is error prone. To address this problem, we present a unified model to

characterize the behavior of the concurrency control in the presence of ordering constrains

14

and application invariant. The model is summarized in Section 1.6.

All the aforementioned systems provide fault tolerance through replication. While look-

ing at the innovations motivated by the characteristics of social networking applications,

we discovered that in order for the presented systems to be practical, traditional replica-

tion techniques should be rethought to account for the significantly high amount of stored

data. The literature lacks of transactional systems that are optimized for storage cost and,

at the same time, they achieve high performance by trading the level of freshness of data

accesses. The intuition behind our forth contribution in this dissertation is to use erasure

coding techniques for optimizing the storage cost of transactional systems whose distributed

concurrency control is based on Parallel Snapshot Isolation. The key features of EPSI are

summarized in Section 1.7.

1.4 SSS: Improving Serializability with External Consistency

using Off-the-Shelf Hardware

We propose design and development of a system named SSS, which is a key-value store

that implements a novel distributed concurrency control providing external consistency and

assuming off-the-shelf hardware. The major innovations allowing SSS to enable high perfor-

mance and scalability in SSS as the following:

• SSS supports read-only transactions that never abort due to concurrency, therefore the

return value of all their read operations is always consistent at the time the operation

is issued. We name them as abort-free hereafter. This property is very appealing

because many real-world applications produce significant read-only workload [45].

• SSS goal is to provide availability and fault tolerance by deploying a general partial

replication scheme where each key (or object) is replicated on multiple nodes without

predefined partitioning schemes (e.g., sharding [29, 31]). To favor scalability, SSS

does not rely on expensive ordering primitives, such as Total Order Broadcast or

Multicast [71], but captures ordering relations using vector clocks.

15

In order to provide the above properties, we propose two techniques to be deployed in

SSS which are explained below:

• SSS uses a vector clock-based technique to track dependent events originated on dif-

ferent nodes. This technique allows SSS to track events without a global source of

synchronization.

• SSS uses the snapshot-queuing technique, where each key is associated with a snapshot-

queue. Since read-only transactions surely commit in SSS, they are inserted into the

snapshot-queues of their accessed keys in order to leave a trace of their existence to

other concurrent transactions.

SSS’s proposed policy for update transactions is to insert these transactions into their

modified keys’ snapshot-queues after their commit decision is reached. Only update

transactions can wait for read-only transactions if they belong to the same snapshot-

queue. Read-only transactions leverage their membership into snapshot-queue to in-

form update transactions about their performed read operations.

A transaction in a snapshot-queue is inserted along with a scalar value, called insertion-

snapshot. This value represents the latest snapshot visible by the transaction on the

node storing the accessed key, at the time the transaction is added to the snapshot

queue. SSS concurrency control orders transactions with lesser insertion-snapshot

before conflicting transactions with higher insertion-snapshot in the external schedule.

If a transaction TR reads a shared object x subsequently modified by a concurrent com-

mitted transaction TW , x’s snapshot-queue is the medium to record the existence of an

established serialization order between TR and TW , even if TR and TW operate on different

nodes. With that, any other concurrent transaction accessing x can see this established

order and define its serialization accordingly. Snapshot-queuing is designed to also work

in replicated deployments, where an object is stored on multiple nodes, therefore each of

these copies has an associated snapshot-queue. When TW initiates its commit phase, it must

contact all the copies of each written object, therefore being able to detect any concurrent

TR regardless of which node TR reached for reading.

16

Snapshot-queuing enables the achievement of external consistency by delaying TW ’s

client response until TR completes its execution. This delay is needed so that update and

read-only transactions can be serialized in a unique order such that reads return values writ-

ten by the last update transaction returned to its client. Failing in delaying TW ’s response

would result in a discrepancy between the external order and the transaction serialization or-

der. In fact, the external order would show TW returning earlier than TR but TR is serialized

before TW .

1.5 FPSI: Improving Parallel Snapshot Isolation by Refresh-

ing Reading Snapshot

We present a distributed concurrency control implementation, named FPSI, for providing

additional guarantees to the Parallel Snapshot Isolation (PSI) [21] consistency model. FPSI

offers a solution to the absence of data freshness guarantees of PSI by making every trans-

action to select the freshest reading snapshot upon the first contacted node for distributed

transactions, in the absence of a single source of synchronization. The key features allowing

FPSI to achieve high performance and data freshness are listed below.

• FPSI preserves two properties of SI for read-only transactions. Read-only transactions

are abort-free and they do not block update transactions. In some of the existing

solutions such as Walter [21], all read-only transactions are serialized at their startup

time. This design choice might impact freshness of data visible by transactions, a

problem which is tackled in FPSI by attempting to advance the reading snapshot

during the transaction execution when it is safe to do that. By advancing the reading

snapshot for all transactions, FPSI allows read-only transactions to read fresher data

than Walter, and update transactions to not experience false positive aborts due to

outdated vector clocks, as opposed to Walter.

• FPSI improves transaction data freshness, latency, and throughput by avoiding un-

availability of a viable snapshot to serve operations and a single point of failure, which

characterizes solutions whose synchrony assumption is based on physical clocks [47].

17

The core components that make the above properties possible in FPSI are the following.

• FPSI uses a vector clock-based technique [69] to track dependent events that originated

on different nodes. This technique is similar to the one used by existing distributed

transactional systems, such as Walter [21] and GMU [50], and allows FPSI to track

events without a centralized timestamp authority center [28,62].

• FPSI uses the version-access-set, a metadata associated with each version containing

identifiers of read-only transactions that read that specific version. During the commit

phase of an update transaction, the set of identifiers of concurrent conflicting read-

only transactions is collected. This set is then propagated to the version-access-sets of

the newly created versions of those update transactions upon commit. If a read-only

transaction contacts a node for the first time, it can advance its reading snapshot

unless it finds that its own identifier exists in the version-access-set of the version to

be read. In that case, the read-only transaction should select a previous version whose

version-access-set does not contain its identifier.

1.6 Correctness of Transaction Processing with External De-

pendency

We propose to classify relations among committed transactions into data-related and ap-

plication semantic-related. Our model delivers a condition that can be used to verify the

safety of transactional executions in the presence of application invariant.

When the concurrency control implementation of a transactional system is required

to enforce an application-level invariant on shared data accesses (i.e., an expression that

should be preserved upon every atomic update [38]), ad-hoc reasoning about its correctness

is a tedious and error-prone process. Traditional (data-related) constraints (e.g., transac-

tion conflicts) are well-formalized with established correctness levels, such as Serializability

and Snapshot Isolation [36]. However, a unified model encompassing the various external

(semantic-related) constraints that enforce application invariant has not been formalized

yet.

18

We make a step towards defining such a model. We introduce a theoretical framework

that formalizes correctness levels stronger than (or equal to) Serializability by defining their

transaction ordering relations as a union of two sets of data and external dependency. This

approach is opposed to the traditional way of defining these relations through an ad-hoc

analysis. This framework can be used to define an offline checker that verifies the safety of

transactional executions.

1.7 EPSI: Improving the performance and storage space in

Replicated PSI Transactional Systems

We present EPSI as a sharded key-value store that processes transactions and is designed to

optimize the data repository’s storage space. EPSI accomplishes the former goal by lever-

aging a distributed concurrency control that provides the Parallel Snapshot Isolation (PSI)

correctness level. On the other hand, the goal of optimizing storage cost is accomplished by

relying on the erasure coding technique. EPSI is motivated by the workload characteristics

of social networking applications, in which storage cost, fault tolerance, and high availabil-

ity are vital factors, as opposed to providing transactions with a strong consistency level.

Specifically reducing storage cost is a requirement that derives from the fact that users of

social applications post content of heterogeneous nature and various size, often much bigger

than traditional OLTP application workloads.

At the core of EPSI there is a concurrency control middleware that exposes transactional

APIs to the application and leverages the APIs of an existing distributed concurrency control

to read and write data stored in the data repository, in parallel. Since EPSI finds its

optimal deployment with social applications, we decide to adopt Walter [21] as underlying

concurrency control. This is because Walter’s consistency level is PSI, which is designed to

fit the requirements of social applications. Walter’s APIs to read and write on the shared

data repository are used to store coding elements, namely chunks of the original application

objects, encoded to satisfy the used erasure coding technique.

To the best of our knowledge, there is no transactional repository in the literature that

optimizes storage cost and retains high performance for social applications.

19

The key features of EPSI are summarized below.

• EPSI provides an efficient sharded transactional key-value store ensuring the same

level of fault tolerant and performance as the state-of-the-art PSI protocol, such as

Walter. In EPSI, each shard implements the Reed Solomon erasure coding scheme

where every node stores either coded data units or parity coded units. Depending on

the desired system resiliency level, EPSI can be configured to produce the right coding

elements to explore the trade off between fault tolerance and cost space utilization.

• EPSI provides scalable performance with respect to the size of the stored objects, due

to a more effective network utilization in the presence of write workload. Existing

solutions, such as Cocytus [57], saturate the network bandwidth when the object size

increases. The main reason this improved performance is the fact that EPSI exploits

the characteristics of erasure coding to improve performance during normal operations.

The direct consequence of this decision is that read operations can be served reading

from a quorum of nodes. This feature is particularly useful when the object size is

high. As opposed to EPSI, Cocytus [57] uses erasure coding only during recovery.

1.8 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides the background for the pre-

sented research contributions in this dissertation. Chapter 3 discusses the related previous

works in the space. Chapter 4 describes and evaluates SSS. Chapter 5 describes and evalu-

ates FPSI. In Chapter 6, a description of our unified model to characterize consistency levels

stronger (or equal to) Serializability in the presence of application invariant is presented.

In Chapter 7, EPSI’s architecture is discussed and its performance is extensively evaluated.

Finally, Chapter 8 concludes the provided research contributions and discusses future work.

20

Chapter 2

Background, Terminologies and

System Model

2.1 Distributed Processes and Communication Primitives

We model a distributed system as a set of nodes such that Π = {N1, ..., Nn}. Nodes com-

municate through message passing and do not have access to either a shared memory or a

global clock. There is not any timing assumptions on sending or receiving messages and

they might experience arbitrarily long (but finite) delays. There is no assumption on the

speed and on the level of synchrony among nodes. We consider the classic crash-stop failure

model: nodes may fail by crashing, but do not behave maliciously. A node that never crashes

is correct; otherwise it is faulty.

Nodes communicate through message passing and reliable asynchronous channels, mean-

ing the system provides nodes with primitives to send and receive point-to-point messages

on reliable channels via the primitive send(m) and receive(m) such that for any two correct

nodes Ni and Nj , if Ni sends message m to Nj then Nj eventually receives m.

Clients are assumed to be colocated with nodes in the system; this way a client is

immediately notified of a transaction’s commit or abort outcome, without additional delay.

Clients are allowed to interact with each other through channels that are not provided by

the system’s APIs.

21

2.2 Data Organization

Every node Ni maintains shared objects (or keys) adhering to the key-value model [50]

(either partial or full) copy of data). Multiple versions are kept for each key k. Each

version ver, is equal to a pair such that ver =< val, vc >, all associated with a key k. The

field val represents the value of k and vc is the logical vector timestamp (or vector clock)

associated with the commit of ver. In this dissertation it is assumed that the size of vector

clocks is equal to the number of nodes in the system, or the number of shards if the data

repository is sharded. While acknowledging that the size of vector clocks grows linearly with

the system size, there are existing orthogonal solutions to increase the granularity of such a

synchronization to retain efficiency [72,73].

Given a set of versions associated with each key k and stored on node ni, the value of

vc have a monotonically increasing entry going from the oldest version to the most recent

committed version. Throughout the dissertation the binary relation ≤ defines an order for

vc such that for each two vector clocks v1 and v2, the pair < v1, v2 > is in ≤ written v1 ≤ v2

if ∀i, v1[i] ≤ v2[i]. If < is the standard less relation defined for natural numbers and if there

exists also an index j such that v1[j] < v2[j], then v1[i] < v2[i].

Every shared key can be stored in one or more nodes, depending upon the chosen repli-

cation degree. Formally we say the replication degree is r if the following conditions are

satisfied in the system. Objects are subdivided across m partitions, and each partition is

replicated across r nodes. Each group of node which replicate object o is composed of exactly

r nodes (to ensure the target replication degree), of which at least a majority is assumed to

be correct. replicas(S) denotes the set of nodes that replicate the data partitions containing

all the keys k ∈ S, called also owners of S. For object reachability, we assume the existence

of a local look-up function that matches keys with nodes.

2.3 Transaction Model

We model transactions as programs executing a sequence of read and write operations on

shared keys, preceded by a begin, and followed by a commit or abort operation. Local com-

putation in between operations on shared keys performed by transactions is also permitted.

22

Transactions ensure the ACID properties.

Every transaction starts with a client submitting it to the system, and finishes its ex-

ecution informing the client about its final outcome: commit or abort. Transactions that

do not execute any write operation are called read-only, otherwise they are update transac-

tions. We assume programmer identify whether a transaction is update or read-only. Every

operation of a transaction is mapped to only a unique version in the system and a read

operation can only return one committed value.

2.4 History and Direct Serialization Graph

A history (as is also defined in [35, 36]) models the interleaved execution of a set of trans-

actions Ti as a linear ordering of their operations (such as Reads and Writes). A direct

serialization graph DSG(H) [36] on a history H is a graph with a vertex Ti for each trans-

action Ti in H and an edge Ti 6= Tj for each pair of transactions Ti and Tj in H such that Ti

and Tj are conflicting. The DSG(H) contains three types of edges depending on the three

types of conflicts, also called dependencies, that two transactions Ti, Tj can have in H:

• read dependency: (Ti
WR
−−→ Tj) A transaction Tj read-depends on Ti if a read of Tj

returns a value written by Ti.

• write dependency: (Ti
WW
−−−→ Tj) A transaction Tj write-depends on Ti if a write of Tj

overwrites a value written by Ti.

• anti-dependency: (Ti
RW
−−→ Tj) A transaction Tj anti-depends on Ti if a write of Tj

overwrites a value previously read by Ti.

23

Chapter 3

Related Work

In this chapter, we overview the literature that relates to our solutions. In Sections 3.1-

3.5, we discussed the related work based on the consistency level guaranteed by each of

the related solution. Section 3.6 discusses how the existing solutions achieve fault tolerance

using different data replication techniques to improve the performance or the storage space.

3.1 Externally Consistent Protocols

Google Spanner [28] is a high performance solution that leverages a global source of syn-

chronization to timestamp transactions so that a total order among them can always be

determined, including when nodes are in different geographic locations. This form of syn-

chronization is materialized by the TrueTime API. This API uses a combination of a very

fast dedicated network, GPS, and atomic clocks to provide the accuracy of the assigned

timestamps. Spanner provides properties similar to SSS, but its architecture needs special-

purpose hardware and therefore it cannot be easily adopted and extended. On the other

hand, SSS relies on off-the-shelf hardware.

Scatter provides external consistency on top of a Paxos-replicated log. The major dif-

ference with SSS is that Scatter only supports single key transactions while SSS provides a

more general semantics. ROCOCO [30] uses a two-round protocol to establish an external

schedule in the system, however, unlike SSS, it does not support abort-free read-only trans-

actions. In ROCOCO read-only transactions wait for conflicting transactions to complete.

24

Calvin [15] uses a deterministic locking protocol supported by a sequencer layer that

orders transactions. In order to do that, Calvin requires a priori knowledge on accessed read

and written objects. Although the sequencer can potentially be able to assign transaction

timestamp to meet external consistency requirements, SSS does that without assuming

knowledge of read-set and write-set prior transaction execution and without the need of

such a global source of synchronization.

FaRM [5] is a distributed externally consistent computing platform which uses RDMA

to directly access data in a shared address space, and for fast messaging between the nodes.

SSS is designed to not leverage special purpose hardware.

3.2 Serializable Protocols

Replicated Commit [74] provides Serializability by replicating the commit operation using

2PC in every data center and Paxos [52] to establish consensus across data centers. In

Replicated Commit, read operations require contacting all data centers and collect replies

from a majority of them in order to proceed while SSS’s read operations are handled by the

fastest replying server.

Granola [75] ensures Serializability using a timestamp-based approach with a loosely

synchronized clock per node. Granola provides its best performance when transactions can

be defined as independent, meaning they can entirely execute on a single server. SSS has

no restriction on transaction accesses.

CockroachDB [18] uses a serializable optimistic concurrency control, which processes

transactions by relying on multi-versioning and timestamp-ordering. The main difference

with SSS is the way consistent reads are implemented. CockroachDB relies on consensus

while SSS needs only to contact the fastest replica of an object.

SCORe [48], guarantees similar properties as SSS, but it fails to ensure external con-

sistency since it relies on a single non-synchronized scalar timestamp per node to order

transactions, and therefore its abort-free read-only transactions might be forced to read old

version of shared objects.

FaSST [4] is an RDMA-based system that provides distributed in-memory transactions

25

with Serializability. SSS is designed to not leverage special purpose hardware.

3.3 SI Protocols

Clock-SI [47] provides SI using a loosely synchronized clock scheme. Google Percolator [62]

guarantees SI using a centralized source of synchronization to timestamp distributed trans-

actions for Bigtable [76]. With respect to FPSI and SSS, Clock-SI might lead to the unavail-

ability of the reading snapshot because of skews across distributed clocks, with a consequence

low performance. In terms of comparing the consistency levels, FPSI supports PSI by al-

lowing read-only transactions to access the latest version of objects upon their first contact

to a node and SSS guarantees a stronger level of consistency than Clock-SI using additional

metadata.

The solution in [77] proposed the Incremental Snapshot method as an efficient solution

to implement Distributed Snapshot Isolation. In this method, a local transaction only

interacts with the local clock to establish the reading snapshot. A non-local transaction

interacts with the remote node to obtain an appropriate reading snapshot. For validating

the remote accesses, a global clock is still required. The validation requires maintaining the

mapping between each local clock and the global clock.

3.4 Protocols with other variants of SI

Many distributed transactional repositories provide weaker variants of SI for the sake of

achieving high performance. Examples of these systems include [21,63,78].

Jessy [63], provides transactions with reading snapshots that can include versions com-

mitted after the transaction starting time and that are produced by causally dependent

transactions. The latter property improves progress for read operations and reduces abort

rate when compared to SI solutions. Jessy uses per-version dependence vectors. Each vector

reflects all the versions read or written by the transaction that created that specific version.

FPSI and Jessy both aim at improving data freshness; however, unlike FPSI, the amount

of metadata required to support execution grows significantly. In fact, if Jessy transactions

26

access random objects, the size of each dependence vector is comparable with the total

number of objects in the system.

Walter provides the same level of consistency that FPSI provides (PSI). However, FPSI

improves data freshness by eliminating the effect of asynchronous propagations on read-only

transactions. FPSI traces (anti-)dependencies and allows all transactions to advance their

reading snapshots at no significant performance degradation.

Elnikety et. al in [78] extend SI to replicated databases. It allows transactions to use

local snapshots of the database on each replica, which relaxes the level of data freshness as

opposed to FPSI.

3.5 Other Vector Clock/Physical Clock Protocols

GMU [50] provides transactions with the possibility to read the latest version of an object by

using vector clocks; however it cannot guarantee serializable transactions. SSS [32] improves

upon GMU by relaxing the G-read anomaly, which affects GMU. This is done by delaying

concurrent conflicting transactions, which also allows for achieving external consistency.

With respect to FPSI, GMU provides transactions with the possibility to read the latest

version of an object by using vector clocks; however, it needs more communication steps for

validating read objects by update transactions.

GentleRain [66], Orbe [64] and Cure [65] all provide causal consistency, which is a con-

sistency level weaker than external consistency (provided by SSS) and Parallel Snapshot

Isolation (provided by FPSI). GentleRain uses loosely synchronized physical clocks to en-

sure that clients, after a read on an object version, will be able to serve subsequent reads

without the need of explicitly checking dependencies. This happens by waiting for a causally

consistent version to be available. Cure is a vector clock based technique similar to SSS and

FPSI with a weaker consistency level. Orbe is a key-value store protocol relies on loosely

synchronized physical clocks to provide causally consistent read-only transaction and use a

similar technique to GentleRain for reading and catching up in the presence of clock skew.

27

3.6 Erasure-coded Protocols

Large scale in memory key-value stores like Memcached [79] and Redis [80] have been widely

used in Facebook [7] and Twitter [10]. On the other hand, a large amount of existing works

in recent years has been focused on building high performance key-value stores using erasure

coding [5, 57–59,81–84]. In the following, we move our focus on such key-value stores.

Some in memory key-value stores, such as [57,83,84], combine erasure coding and repli-

cation. They store keys and metadata using replication while storing values of objects

relying on erasure coding (i.e., hybrid encoding). Cocytus integrates the Primary Backup

Replication (PBR) [49] with erasure coding, and to provide a transactional key-value store.

Transactional accesses in Cocytus access the non-erasure coding data by contacting the node

where the data is stored. During recovery, the system recalculates lost data coding elements

or parity coding elements using the Reed Solomon technique [55]. Cocytus uses Two-Phase

Commit [85] in its underlying transactional layer and provides Serializability [37]. LH∗
RS [83]

uses a variant of Two-Phase Commit to retaining data delta backups in a temporary buffer

for possible rollbacks. Both Cocytus and LH∗
RS needs more storage space in comparison

with EPSI.

MemEC [58] is an erasure coding-based in-memory key-value store which encodes objects

entirety (e.g., keys, values, and metadata) without replication. MemEC’s fully erasure coded

technique is effective when the value size of the key is small (e.g., less than 1KB). EPSI’s

erasure coded design allows for high performance for a larger size of values.

Giza [81] deploys erasure coding by storing coding elements of keys in the storage layer

and replicating metadata across data centers. Giza supports single operations such as put,

get, and delete. It relies on the FastPaxos [86] protocol, in case of not conflicting operations

and it deploys classic Paxos [52] in case of having concurrent conflicting updates. Unlike

EPSI, Giza does not support the general transactional scheme.

BCStore [82] designs a batch coding mechanism to achieve high bandwidth efficiency for

write workload using erasure coding for a single operation and write-intensive workloads.

EPSI in comparison with BCStore is able to provide high throughput for read-only workload

and supports the general transactional scheme.

28

Memc3 [59] is an in-memory key-value store that targets improving Memcached perfor-

mance. Memc3 presents a set of workload inspired algorithms such as optimistic cuckoo

hashing and optimistic locking to achieves high memory efficiency and allows multiple read-

ers and a single writer to concurrently access the hash table. In comparison with EPSI,

EPSI’s transactional architecture allows concurrent read-only to proceed with concurrent

update workload.

Konwar et. al. in [60], proposed the Layered Distributed Storage (LDS) algorithm by

relying on regenerating codes [87] instead of Reed Solomon codes. In LDS a write operation

completes after writing the object value to the first layer and can be exposed to the read

operations which are concurrent with write. The latter improved the performance of reads

by making them be served directly from the first layer. Otherwise, reads are served by

regenerating coded data from the second layer.

Chan et. al. in [88] proposed a solution to improve the performance of update transac-

tions. The solution provided in [88] is called parity logging with reserved space, which uses a

hybrid of in place data updates and log-based parity updates. For mitigating the disk seeks

for reading parity chunks in their proposed solution, deltas of parity chunks in a reserved

space that is allocated next to their parity chunks.

29

Chapter 4

SSS: Scalable Key-Value Store with

External Consistent and Abort-free

Read-only Transactions

4.1 Overview

We present a scalable transactional key-value store, named SSS, deploying a novel distributed

concurrency control that provides external consistency for all transactions, never aborts read-

only transactions due to concurrency, all without specialized hardware. SSS’s concurrency

control uses a combination of vector clocks and a new technique, called snapshot-queuing,

to establish a single serialization order where transactions are guaranteed to read from the

latest non-concurrent transaction externally visible to clients.

With the delivery of SSS, we make the following contributions:

• SSS implements the first distributed transactional protocol for general purpose repli-

cated systems where read-only transactions read consistently the latest committed

version of objects without relying on a single synchronization service and without

aborting.

• SSS’s synchronization technique to serialize read-only and update transactions is the

first to merge the semantics of vector clocks [69] with visible read operations [89] to

30

produce the snapshot-queuing technique.

• SSS solves the problem of serializing two non-conflicting update transactions in dif-

ferent orders when multiple conflicting read-only transactions execute on different

nodes [21, 36, 50], without relying on a single synchronization service and without

aborting the read-only transactions.

In Section 4.2, we describe the SSS concurrency control, followed by two execution

examples. In Section 4.3 we describe additional considerations of SSS. Section 4.4 and

Section 4.5 provide the correctness arguments and evaluation study respectively.

4.2 SSS Concurrency Control

In the following we show the details regarding the metadata and different steps of the

concurrency control of SSS.

Transaction vector clocks. In SSS a transaction T holds two vector clocks, whose size

is equal to the number of nodes in the system. One represents its actual dependencies with

transactions on other nodes, called T.VC; the other records the nodes where the transaction

read from, called T.hasRead.

T.VC represents a version visibility bound for T . Once a transaction begins in node Ni,

it assigns the vector clock of the latest committed transaction in Ni to its own T.VC. Every

time T reads from a node Nj for the first time during its execution, T.VC is modified based

on the latest committed vector clock visible by T on Nj . After that, T.hasRead[j] is set to

true.

Transaction read-set and write-set. Every transaction holds two private buffers. One

is rs (or read-set), which stores the keys read by the transaction during its execution,

along with their value. The other buffer is ws (or write-set), which contains the keys the

transaction wrote, along with their value.

Snapshot-queue. A fundamental component allowing SSS to establish a unique external

schedule is the snapshot-queuing technique. With that, each key is associated with an

31

ordered queue (SQueue) containing: read-only transactions that read that key; and update

transactions that wrote that key while a read-only transaction was reading it.

Entries in a snapshot-queue (SQueue) are in the form of tuples. Each tuple contains:

transaction identifier T.id, the insertion-snapshot, and transaction type (read-only or up-

date). In general, the insertion-snapshot for a transaction T enqueued on some node Ni’s

snapshot-queue is the value of T ’s vector clock in position ith at the time T is inserted in the

snapshot-queue (see Section 4.2.1 and Section 4.2.2 for the actual value of the insertion snap-

shot, which varies depending upon the transaction type). Transactions in a snapshot-queue

are ordered according to their insertion-snapshot.

A snapshot-queue contains only transactions that will commit; in fact, besides read-only

transactions that are abort-free, update transactions are inserted in the snapshot-queue only

after their commit decision has been reached.

Transaction transitive anti-dependencies set. An update transaction maintains a

list of snapshot-queue entries, named T.PropagatedSet, which is populated during the

transaction’s read operations. This set serves the purpose of propagating anti-dependencies

previously observed by conflicting update transactions.

Node’s vector clock. Each node Ni is associated with a vector clock, called NodeVC. The

ith entry of NodeVC is incremented when Ni is involved in the commit phase of a transaction

that writes some key replicated by Ni. The value of jth entry of NodeVC in Ni is the value of

the jth entry of NodeVC in Nj at the latest time Ni and Nj cooperated in the commit phase

of a transaction.

Commit repositories. CommitQ is an ordered queue, one per node, which is used by SSS

to ensure that non-conflicting update transactions are ordered in the same way on the nodes

where they commit. CommitQ stores tuples < T, vc, s > with the following semantics. When

an update transaction T , with commit vector clock vc, enters its commit phase, it is firstly

added to the CommitQ of the nodes participating in its commit phase with its status s set as

pending.

32

When the transaction commit phase concludes successfully, the status of the transaction

is changed to ready. A ready transaction inside the CommitQ is assigned with a final vector

clock produced during the commit phase. In each node Ni, transactions are ordered in

the CommitQ according to the ith entry of the vector clock (vc[i]). This allows them to be

committed in Ni with the order given by vc[i]. Although the commitment of non-conflicting

transactions in a sequential way on a node might reduce performance, it is indeed needed to

guarantee a single serialization order with respect to the nodes replicating the same keys [50].

When T commits, it is deleted from CommitQ and its vc is added to a per node repository,

named NLog. We identify the most recent vc in the NLog as NLog.mostRecentVC.

Overall, the presence of additional metadata to be transferred over the network might

appear as a barrier to achieve high performance. To alleviate these costs we adopt metadata

compression. In addition, while acknowledging that the size of vector clocks grows linearly

with the system size, there are existing orthogonal solutions to increase the granularity of

such a synchronization to retain efficiency [72,73].

4.2.1 Execution of Update Transactions

Update transactions in SSS implements lazy update [90], meaning their written keys are not

immediately visible and accessible at the time of the write operation, but they are logged into

the transactions write-set and become visible only at commit time. In addition, transactions

record the information associated with each read key into their read-set.

Read operations of update transactions in SSS simply return the most recent version of

their requested keys (Lines 21-23 of Algorithm 6). At commit time, validation is used to

verify that all the read versions have not been overwritten.

An update transaction that completes all its operations and commits cannot inform its

client if it observes anti-dependency with one or more read-only transactions. In order to

capture this waiting stage, we introduce the following phases to finalize an update transaction

(Figure 4.1 pictures them in a running example).

Internal Commit. When an update transaction successfully completes its commit phase,

we say that it commits internally. In this stage, the keys written by the transactions are

33

visible to other transactions, but its client has not been informed yet about the transaction

completion. Algorithms 1 and 2 show the steps taken by SSS to commit a transaction

internally.

Algorithm 1 Internal Commit of SSS of Transaction T in node Ni by SSS

1: function Commit(TransactionT)
// Check if T is a read-only transaction

2: if (T.ws = φ) then

3: for (k ∈ T.rs) do

4: send Remove[T] to all replicas(k)

5: T.outcome← true
6: return T.outcome

// Start 2PC if T is an update transaction
7: commitV C ← T.V C
8: T.outcome← true
9: send Prepare[T] to all Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni

10: for all (Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni) do

11: wait receive Vote[T.id, V Cj , res] from Nj or timeout

// Check if T’s 2PC commit decision was successful
12: if (¬res ∨ timeout) then

13: T.outcome← false
14: break;
15: else

16: commitV C ← max(commitV C, V Cj)

17: xactV N ← max{commitV C[w] : Nw ∈ replicas(T.ws)}
// Finalize T’s commit vector clock

18: for all (Nj ∈ replicas(T.ws)) do

19: commitV C[j]← xactV N

20: send Decide[T, commitV C, outcome] to all Nj ∈ replicas(T.rs ∪ T.ws) ∪Ni

21: return T.outcome
22: function validate(Set rs, V C T.V C)

// Check if T’s read keys are not overwritten
23: for all (k ∈ rs) do

24: if (k.last.vc[i] > T.V C[i]) then

25: return false

26: return true

SSS relies on the Two-Phase Commit protocol (2PC) to internally commit update trans-

actions. The node that carries the execution of a transaction T , known as its coordinator,

initiates 2PC issuing the prepare phase, in which it contacts all nodes storing keys in the

read-set and write-set. When a participant node Ni receives a prepare message for T , all

keys read/written by T and stored by Ni are locked. If the locking acquisition succeeds,

34

all keys read by T and stored by Ni are validated by checking if the latest version of a key

matches the read one (Lines 22-26 Algorithm 1). If successful, Ni replies to T ’s coordinator

with a Vote message, along with a proposed commit vector clock. This vector clock is equal

to Ni’s NodeV C where NodeV C[i] has been incremented. Finally, T is inserted into Ni’s

CommitQ with its T.V C.

Algorithm 2 Handling Internal Commit by Transaction T in node Ni using SSS

1: upon receive Prepare[Transaction T] from Nj do

2: boolean outcome← getExclusiveLocks(T.id, T.ws) ∧getSharedLocks(T.id, T.rs)
∧validate(T.rs, T.V C)

3: if (¬outcome) then

4: releaseLocks(T.id, T.rs, T, ws)
5: send Vote[T.id, T.V C, outcome] to Nj

6: else

7: prepV C ← NLog.mostRecentV C
8: if (Ni ∈ replicas(T.ws)) then

9: NodeV C[i] + +
10: prepV C ← NodeV C
11: CommitQ.put(< T, prepV C, pending >)

12: send Vote[T.id, prepV C, outcome] to Nj

13: end

14: upon receive Decide[T, commitV C, outcome] from Nj atomically do

15: if (outcome) then

16: NodeV C ← max(NodeV C, commitV C)
17: if (Ni ∈ replicas(T.ws)) then

18: CommitQ.update(< T, commitV C, ready >)

19: else

20: CommitQ.remove(T)
21: releaseLocks(T.id, T.ws, T.rs)

22: end

23: upon ∃ < T, vc, s >: < T, vc, s >= commitQ.head ∧ s = ready do

// Finalize internal commit of T
24: for all (k ∈ T.ws : Ni ∈ replicas(k)) do

25: apply(k, val, vc)

26: NLog.add(< vc >)
27: CommitQ.remove(T)
28: releaseLocks(T.id, T.ws, T.rs)
29: end

After receiving each successful Vote, T ’s coordinator computes the commit vector clock

(commitV C) by calculating the maximum per entry (Line 16 of Algorithm 1). This update

makes T able to include the causal dependencies of the latest committed transactions in all

35

2PC participants. After receiving all Vote messages, the coordinator determines the final

commit vector clock for T as in (Lines 16-19 of Algorithm 1), and sends it along with the

2PC Decide message.

Lines 14-22 of Algorithm 2 shows how 2PC participants handle the Decide message.

When Ni receives Decide for transaction T , Ni’s NodeV C is updated by computing the

maximum with commitV C. Importantly, at this stage the order of T in the CommitQ of

Ni might change because the final commit vector clock of T has been just defined, and it

might be different from the one used during the 2PC prepare phase when T has been added

to CommitQ.

In Algorithm 2 Lines 23-29, when transaction T becomes the top standing of Ni’s

CommitQ, the internal commit of T is completed by inserting its commit vector clock

into the NLog and removing T from CommitQ. When transaction’s vector clock is inserted

into the node’s NLog, its written keys become accessible by other transactions. At this stage,

T ’s client has not been informed yet about T ’s internal commit.

Pre-Commit. An internally committed transaction spontaneously enters the Pre-Commit

phase after that. Algorithm 3 shows detail of Pre-commit phase. At this stage, T evaluates

if it should hold the reply to its client depending upon the content of the snapshot-queues

of its written keys. If so, T will be inserted into the snapshot-queue of its written keys in

Ni with commitV C[i] as insertion-snapshot.

Algorithm 3 Start Pre-commit by Transaction T in node Ni using SSS

1: for all (k ∈ T.ws) do

2: if (Ni ∈ replicas(k)) then

3: k.SQueue.insert(< T.id, T.commitV C[i], “W” >)
4: for all (T

′

∈ T.PropagatedSet) do

5: k.SQueue.insert(< T
′

.id, T
′

.snapshot, “R” >)

If at least one read-only transaction (Tro) with a lesser insertion-snapshot is found in

any snapshot-queue SQueue of T ’s written keys, it means that Tro read that key before

Tw internally committed, therefore a write-after-read dependency between Tro and Tw is

established. In this case, T is inserted into SQueue until Tro returns to its client. With the

anti-dependency, the transaction serialization order has been established with Tro preceding

36

Tw. Informing immediately Tw’s client about Tw’s completion would expose an external

order where Tw is before Tro, which might violates external consistency if another non-

conflicting update transaction T ′
w is observed by a conflicting read-only transaction T ′

ro in a

different serialization order (e.g., the case in Figure 4.2).

Tracking only non-transitive anti-dependencies is not enough to preserve correctness. If

T reads the update done by Tw′ and Tw′ is still in its Pre-commit phase, then T has a

transitive anti-dependency with Tro′ (i.e., Tro′
rw
−→ Tw′

wr
−→ T). SSS records the existence of

transactions like Tro′ during T ’s execution by looking into the snapshot-queues of T ’s read

keys and logging them into a private buffer of T , called T.PropagatedSet. The propaga-

tion of anti-dependency happens during T ’s Pre-commit phase by inserting transactions in

T.PropagatedSet into the snapshot-queues of all T ’s written keys (Lines 4-5 of Algorithm 3).

External Commit. Transaction T remains in its Pre-commit phase until there is no read-

only transaction with lesser insertion-snapshot in the snapshot-queues of T ’s written keys.

After that, T is removed from these snapshot-queues and an Ack message to the transaction

2PC coordinator is sent (Lines 1-5 of Algorithm 4).

Algorithm 4 End Pre-commit of Transaction T in node Ni using SSS

1: for all (k ∈ T.ws) do

2: if Ni ∈ replicas(k) then

// T waits for anti-dependent transactions to be removed from snapshot-queues of T.ws.
3: wait until (∃ < T

′

.id, T
′

.snapshot,− >:
k.SQueue.contains(< T

′

.id, T
′

.snapshot,− >)∧
T

′

.snapshot < T.commitV C[i])
4: k.SQueue.remove(< T.id, T.commitV C[i], “W” >)
5: send Ack [T, vc[i]] to T.coordinator

The coordinator can inform its client after receiving Ack from all 2PC participants. At

this stage, update transaction’s external schedule is established, therefore we say that SSS

commits the update transaction externally.

4.2.2 Execution of Read-Only Transactions

In its first read operation (Algorithm 5 Lines 4-5), a read-only transaction T on Ni assigns

NLog.mostRecentVC to its vector clock (T.V C). This way, T will be able to see the latest

37

updated versions committed on Ni. Read operations are implemented by contacting all

nodes that replicate the requested key and waiting for the fastest to answer.

When a read request of T returns from node Nj , T sets T.hasRead[j] to true. With

that, we set the visibility upper bound for T from Nj (i.e., T.V C[j]). Hence, subsequent

read operations by T contacting a node Nk should only consider versions with a vector clock

vck such that vck[j] < T.V C[j]. After a read operation returns, the transaction vector clock

is updated by applying an entry-wise maximum operation between the current T.V C and

the vector clock associated with the read version (i.e., V C∗) from Nj . Finally, the read value

is added to T.rs and returned.

Algorithm 5 Read Operation by Transaction T in node Ni using SSS

1: upon Value Read (Transaction T, Key k) do

2: if (∃ < k, val >∈ T.ws) then

3: return val
// T’s vector clock is initialized with the latest committed vector clock in Ni

4: if (is first read of T) then

5: T.V C ← NLog.mostRecentV C

6: target← {replicas(k)}
// isUpdate is a boolean showing whether T is read-only or update

7: send READREQUEST [k, T.V C, T.hasRead, T.isUpdate] to all Nj ∈ target
8: wait receive READRETURN [val, V C∗, P ropagatedSet] from Nh ∈ target
9: T.hasRead[h]← true

10: T.V C ← max(T.V C, V C∗)
11: T.rs← T.rs ∪ {< k, val >}
12: T.PropagatedSet← T.PropagatedSet ∪ PropagatedSet
13: return val
14: end

Algorithm 6 shows SSS rules to select the version to be returned upon a read operation

that contacts node Ni. The first time Ni receives a read from T , this request should wait

until the value of Ni’s NLog.mostRecentVC[i] is equal to T.V C[i] (Line 5 Algorithm 6).

This means that all transactions that are already included in the current visibility bound of

T.V C[i] must perform their internal commit before T ’s read request can be handled. After

that, a correct version of the requested key should be selected for reading. This process

starts by identifying the set of versions that are within the visibility bound of T , called

V isibleSet. This means that, given a version v with commit vector clock vc, v is visible

by T if, for each entry k such that T.hasRead[k] = true, we have that vc[k] ≤ T.V C[k]

38

(Algorithm 6 Line 6).

It is possible that transactions associated with some of these vector clocks are still in

their Pre-Commit phase, meaning they exist in the snapshot-queues of T ’s requested key. If

so, they should be excluded from V isibleSet in case their insertion-snapshot is higher than

T.V C[i]. The last step is needed to serialize read-only transactions with anti-dependency

relations before conflicting update transactions.

Algorithm 6 Version Selection Logic in node Ni using SSS

1: upon receive READREQUEST [T, k, T.V C, hasRead, isUpdate] from Nj do

2: PropagatedSet← φ
3: if (¬isUpdate) then

4: if (¬hasRead[i]) then

5: wait until NLog.mostRecentV C[i] ≥ T.V C[i]
6: V isibleSet← {vc : vc ∈ NLog ∧ ∀w(hasRead[w] ⇒ vc[w] ≤ T.V C[w])}
7: ExcludedSet← {T

′

:< T
′

.id, T
′

.snapshot, “W” >∈
k.SQueue⇒ T

′

.snapshot > T.V C[i])}
8: V isibleSet← V isibleSet\ExcludedSet
9: maxV C ← vc : ∀w, vc[w] = max{v[w] : v ∈ V isibleSet}

10: k.SQueue.insert(< T.id,maxV C[i], “R” >)
11: ver ← k.last
12: while (∃w : hasRead[w] ∧ ver.vc[w] > maxV C[w] ∨ ∃vc ∈ ExcludedSet :

ver.vc = vc ∧ vc[i] > maxV C[i]) do

13: ver ← ver.prev

14: else

15: maxV C ← T.V C
16: k.SQueue.insert(< T.id,maxV C[i], “R” >)
17: ver ← k.last
18: while (∃w : (hasRead[w] ∧ ver.vc[w] > maxV C[w])) do

19: ver ← ver.prev

20: else

21: maxV C ← NLog.mostRecentV C
22: PropagatedSet={T

′

:<T
′

.id,T
′

.snapshot,“R”>∈ k.SQueue}
23: ver ← k.last
24: send READRETURN [ver.val, maxVC,PropagatedSet] to Nj

25: end

This condition is particularly important to prevent a well-known anomaly, firstly ob-

served by Adya in [36], in which read-only transactions executing on different nodes can

observe two non-conflicting update transactions in different serialization order [50]. Con-

sider a distributed system where nodes do not have access to a single point of synchronization

(or an ordering component), concurrent non-conflicting transactions executing on different

39

nodes cannot be aware of each other’s execution. Because of that, different read-only trans-

actions might order these non-conflicting transactions in a different way, therefore breaking

the client’s perceived order. SSS prevents that by serializing both these read-only transac-

tions before those update transactions.

At this stage, if multiple versions are still included in V isibleSet, the version with the

maximum V C[i] should be selected to ensure external consistency. Once the version to be

returned is selected, T is inserted in the snapshot-queue of the read key using maxV C[i] as

insertion-snapshot (Line 10 of Algorithm 6). Finally, when the read response is received, the

maximum per entry between maxV C (i.e., V C∗ in Algorithm 5) and the T.V C is computed

along with the result of the read operation.

When a read-only transaction T commits, it immediately replies to its client. After that,

it sends a message to the nodes storing only the read keys in order to notify its completion.

We name this message Remove. Upon receiving Remove, the read-only transaction is deleted

from all the snapshot-queues associated with the read keys. Deleting a read-only transaction

from a snapshot-queue enables conflicting update transactions to be externally committed

and their responses to be released to their clients.

Because of transitive anti-dependency relations, a node might need to forward the Remove

message to other nodes as follows. Let us assume T has an anti-dependency with a trans-

action Tw, and another transaction Tw′ reads from Tw. Because anti-dependency relations

are propagated along the chain of conflicting transactions, T exists in the snapshot-queues

of Tw’s and Tw′ ’s written keys. Therefore, upon Remove of T , the node executing Tw is

responsible to forward the Remove message to the node where Tw′ executes for updating the

affected snapshot-queues.

When a read operation is handled by a node that already responded to a previous read

operation from the same transaction, the latest version according to maxV C is returned, and

T can be inserted into the snapshot-queue with its corresponding identifier and maxV C[i]

as insertion-snapshot.

40

4.2.3 Examples

External Consistency and Anti-dependency

Figure 4.1 shows an example of how SSS serializes an update transaction T1 in the presence

of a concurrent read-only transaction T2. Two nodes are deployed, N1 and N2, and no

replication is used for simplicity. T1 executes on N1 and T2 on N2. Key y is stored in N2’s

repository. The NLog.mostRecentVC for Node 1 is {5,4} and for Node 2 is {3,7}.

T1 performs a read operation on key y by sending a remote read request to N2. At

this point, T1 is inserted in the snapshot-queue of y (Q(y)) with 7 as insertion-snapshot.

This value is the second entry of N2’s NLog.mostRecentVC. Then the update transaction T2

begins with vector clock {3,7}, buffers its write on key y in its write-set, and performs its

internal commit by making the new version of y available, and by inserting the produced

commit vector clock (i.e., T2.commitV C={3,8}) in N2’s NLog. As a consequence of that,

NLog.mostRecentV C is equal to T2.commitV C.

Now T2 is evaluated to decide whether it should be inserted into Q(y). The insertion-

snapshot of T2 is equal to 8, which is higher than T1’s insertion-snapshot in Q(y). For this

reason, T2 is inserted in Q(y) and its Pre-commit phase starts.

T1:

R(y==y0)

Read

T2:

W(y,y1)

Pre-Commit

Phase

Commit T1

Remove

Node 1 Node 2

Read
Answer

Subm
it

T2

internal-

commit

external

commit

R
e
s
p

o
n

s
e
 T

2

key=y, versions={y0}

key=y, versions={y0,y1}

3 75 4

3 7VC

3 8

Q(y)={<T1,7,”R”>,
<T2,8,”W”>}

CommitVC

Q(y)={<T1,7,”R”>,
<T2,8,”W”>}

Q(y)={<T1,7,”R”>}

T
im
e

Figure 4.1: SSS execution in the presence of an anti-dependency. Orange boxes show the
content of the data store. Gray boxes show transaction execution. Dashed line represents
the waiting time for T2. The red crossed entries of Q(y) represent their elimination upon
Remove.

At this stage, T2 is still not externally visible. Hence T2 remains in its Pre-Commit phase

41

until T1 is removed from Q(y), which happens when T1 commits and sends the Remove

message to N2. After that, T2’s client is informed about T2’s completion. Delaying the

external commit of T2 prevents clients from observing the internal completion of T2, until

T1 returns to its client.

External Consistency and Non-conflicting transactions

Figure 4.2 shows how SSS builds the external schedule in the presence of read-only transac-

tions and non-conflicting update transactions. There are four nodes, N1, N2, N3, N4, and

four concurrent transactions, T1, T2, T3, T4, each executes on the respective node. By as-

sumption, T2 and T3 are non-conflicting update transactions, while T1 and T4 are read-only.

T1:

R(x==x0)

R(y==y0)

Read

T4:

R(y==y0)

R(x==x0)

T2:

W(x,x1)

Read

Q(x)={<T1, 7, “R”>}

Node 1

Node 2 Node 3

3 4 10 2 2 7 6 13 1 3 10 5

Node 4

1 3 2 13

Read
Q(y)={<T4, 10, “R”>}

Node 1

Read Answer

Read
Answer

Read
Answer

key=x,

versions={x0}

key x,

versions={x0,x1}

13682 51131

T3:

W(y,y1)

key y,

versions={y0,y1}

Q(x)={<T1, 7, “R”>
<T2, 8, “W”>}

Q(x)={<T4, 10, “R”>
<T3, 11, “W”>}

Q(x)={<T1, 7, “R”>
<T4, 7, “R”>

<T2, 8, “W”>}

Q(x)={<T4, 10, “R”>
<T1, 10, “R”>

<T3, 11, “W”>}

Read

Read Answer

Commit T1 Commit T4Remove
Remove

External Commit T2 External Commit T3

key=y,

versions={y0}

T
im
e

Figure 4.2: Handling read-only transactions along with non-conflicting update transactions.
We omitted snapshot-queue entries elimination upon Remove to improve readability.

SSS ensures that T1 and T4 do not serialize T2 and T3 in different orders and they return

to their clients in the same way they are serialized by relying on snapshot-queuing. T1 is

inserted into Q(x) with insertion-snapshot equals to 7. Concurrently, T4 is added to the

snapshot-queue of y with insertion-snapshot equals to 10. The next read operation by T1

on y has two versions evaluated to be returned: y0 and y1. Although y1 is the most recent,

since T4 returned y0 previously (in fact T4 is in Q(y)), y1 is excluded and y0 is returned.

Similar arguments apply to T4’s read operation on x. The established external schedule

42

serializes T1 and T4 before both T2 and T3.

4.3 Additional Considerations of SSS

4.3.1 Garbage Collection

A positive side effect of the Remove message is the implicit garbage collection of entries in

the snapshot-queues. In fact, SSS removes any entry representing transactions waiting for a

read-only transaction to finish upon receiving Remove, which cleans up the snapshot-queues.

4.3.2 Starvation

Another important aspect of SSS is the chance to slow down update transactions, possibly

forever, due to an infinite chain of conflicting read-only transactions issued concurrently.

We handle this corner case by applying admission control to read operations of read-only

transactions in case they access a key written by a transaction that is in a snapshot-queue

for a pre-determined time. In practice, if such a case happens, we apply an artificial delay to

the read operation (exponential back-off) to give additional time to update transaction to

be removed from the snapshot-queue. In the experiments we never experienced starvation

scenarios, even with long read-only transactions.

4.3.3 Deadlock-Freedom

SSS uses timeout to prevent deadlock during the commit phase’s lock acquisition. Also, the

waiting condition applied to update transactions cannot generate deadlock. This is because

read-only transactions never wait for each other, and there is no condition in the protocol

where an update transaction blocks a read-only transaction. The only wait condition occurs

when read-only transactions force update transactions to hold their client response due to

snapshot-queuing. As a result, no circular dependency can be formed, thus SSS cannot

encounter deadlock.

43

4.3.4 Fault Tolerance

SSS deploys a protocol that tolerates failures in the system using replication. In the presented

version of the SSS protocol, we did not include either logging of messages to recover update

transactions’ 2PC upon faults, or a consensus-based approach (e.g., Paxos-Commit [85]) to

distribute and order 2PC messages. Solutions to make 2PC recoverable are well-studied. To

focus on the performance implications of the distributed concurrency control of SSS and all

its competitors, operations to recover upon a crash of a node involved in a 2PC have been

disabled. This decision has no correctness implication.

4.4 Correctness Arguments

Our target is proving that every history H executed by SSS, which includes committed

update transactions and read-only transactions (committed or not), is external consistent.

We adopt the classical definition of history [36]. For understanding correctness, it is

sufficient to know that a history is external consistent if the transactions in the history

return the same values and leave the data store in the same state as they were executed

in a sequential order (one after the other), and that order does not contradict the order

perceived by clients, namely the precedence relations between non-concurrent transactions

as observed by clients (similar to the real-time order relations [89] in strict serializability).

We decompose SSS’s correctness in three statements, each highlighting a property guar-

anteed by SSS. Each statement claims that a specific history H ′, which is derived from H,

is external consistent. In order to prove that, we rely on the characteristics of the Direct

Serialization Graph (DSG) [36] which is derived from H ′. Note that DSG also includes order

relations between transactions’ external commit. Every transaction in H ′ is a node of the

DSG graph, and every dependency of a transaction Tj on a transaction Ti in H ′ is an edge

from Ti to Tj in the graph. The concept of dependency is the one that is widely adopted in

the literature: i) Tj read-depends on Ti if a read of Tj returns a value written by Ti, ii) Tj

write-depends on Ti if a write of Tj overwrites a value written by Ti; iii) Tj anti-depends

on Ti if a write of Tj overwrites a value previously read by Ti. We also map transactions

relations as observed by clients to edges in the graph: if Ti commits externally before Tj

44

starts, then the graph has an edge from Ti to Tj . A history H ′ is external consistent iff the

DSG does not have any cycle [36, 37].

In our proofs we use the binary relation ≤ to define an ordering on pair of vector clocks

v1 and v2 as follows: v1 ≤ v2 if ∀i, v1[i] ≤ v2[i]. Furthermore, if there also exists at least

one index j such that v1[j] < v2[j], then v1 < v2 holds.

Statement 1. For each history H executed by SSS, the history H ′, which is derived from

H by only including committed update transactions in H, is external consistent.

Proof. In the proof we show that if there is an edge from transaction Ti to transaction

Tj in DSG, then Ti.commitV C < Tj .commitV C. This statement implies that transactions

modify the state of the data store as they were executed in a specific sequential order

(provided by CommitQ), which does not contradict the transaction external commit order.

Because no read-only transaction is included in H ′, the internal commit is equivalent to

the external commit (i.e., no transaction is delayed). The formal proof is included in the

technical report [91].

Statement 2. For each history H executed by SSS, the history H ′, which is derived from

H by only including committed update transactions and one read-only transaction in H, is

external consistent.

Proof. The proof shows that a read-only transaction always observes a consistent state

by showing that in both the case of a direct dependency or anti-dependency, the vector

clock of the read-only transaction is comparable with the vector clocks of conflicting update

transactions. This statement implies that read operations of a read-only transaction always

return values from a state of the data store as the transaction was executed atomically in

a point in time that is not concurrent with any conflicting update transaction. The formal

proof is included in the technical report [91].

Statement 3. For each history H executed by SSS, the history H ′, which is derived from

H by including committed update transactions and two or more read-only transactions in

45

H, is external consistent.

Proof. Since Statement 2 holds, SSS guarantees that each read-only transaction appears

as it were executed atomically in a point in time that is not concurrent with any conflicting

update. Furthermore, since Statement 1 holds, the read operations of that transaction return

values of a state that is the result of a sequence of committed update transactions. Therefore,

Statement 3 implies that, given such a sequence S1 for a read-only transaction Tr1, and S2

for a read-only transaction Tr2, either S1 is a prefix of S2, or S2 is a prefix of S1. In practice,

this means that all read-only transactions have a coherent view of all transactions executed

on the system. The formal proof is included in the technical report [91].

4.5 Evaluation Study

We implemented SSS in Java from the ground up and performed a comprehensive evaluation

study. In the software architecture of SSS there is an optimized network component where

multiple network queues, each for a different message type, are deployed. This way, we can

assign priorities to different messages and avoid protocol slow down in some critical steps

due to network congestion caused by lower priority messages (e.g., the Remove message has a

very high priority because it enables external commits). Another important implementation

aspect is related to snapshot-queues. Each snapshot-queue is divided into two: one for

read-only transactions and one for update transactions. This way, when the percentage of

read-only transactions is higher than update transactions, a read operation should traverse

few entries in order to establish its visible-set.

We compare SSS against the following competitors: 2PC-baseline (2PC in the plots),

ROCOCO [30], and Walter [21]. All these competitors offer transactional semantics over

key-value APIs. With 2PC-baseline we mean the following implementation: all transactions

execute as SSS’s update transactions; read-only transactions validate their execution, there-

fore they can abort; and no multi-version data repository is deployed. As SSS, 2PC-baseline

guarantees external consistency.

ROCOCO is an external consistent two-round protocol where transactions are divided

46

into pieces and dependencies are collected to establish the execution order. ROCOCO clas-

sifies pieces of update transactions into immediate and deferrable. The latter are more

efficient because they can be reordered. Read-only transactions can be aborted, and they

are implemented by waiting for conflicting transactions to complete. Our benchmark is

configured in a way all pieces are deferrable. ROCOCO uses preferred nodes to process

transactions and consensus to implement replication. Such a scheme is different from SSS

where multiple nodes are involved in the transaction commit process. To address this dis-

crepancy, in the experiments where we compare SSS and ROCOCO, we disable replication

for a fair comparison. The third competitor is Walter, which provides PSI a weaker isolation

level than SSS. Walter has been included because it synchronizes nodes using vector clocks,

as done by SSS.

All competitors have been re-implemented using the same software infrastructure of SSS

because we want to provide all competitors with the same underlying code structure and

optimization (e.g., optimized network). For fairness, we made sure that the performance ob-

tained by our re-implementation of competitors matches the trends reported in [21] and [30],

when similar configurations were used.

In our evaluation we use YCSB [92] benchmark ported to key-value store. We configure

the benchmark to explore multiple scenarios. We have two transaction profiles: update,

where two keys are read and written, and read-only transactions, where two or more keys

are accessed. In all the experiments we co-locate application clients with processing nodes,

therefore increasing the number of nodes in the system also increases the amount of issued

requests. There are 10 application threads (i.e., clients) per node injecting transactions in

the system in a closed-loop (i.e., a client issues a new request only when the previous one

has returned). All the showed results are the average of 5 trials.

We selected two configurations for the total number of shared keys: 5k and 10k. We

selected these ranges since they give us the appropriate level of contention on snapshot-

queues in the case of 20% read-only transactions (write-dominated work load) and 80%

read-only transactions (read-dominated work load). With the former, the observed average

transaction abort rate is in the range of 6% to 28% moving from 5 nodes to 20 nodes when

20% read-only transactions are deployed. In the latter, the abort rate was from 4% to

47

14%. Unless otherwise stated, transactions select accessed objects randomly with uniform

distribution.

As test-bed, we used CloudLab [93], a cloud infrastructure available to researchers. We

selected 20 nodes of type c6320 available in the Clemson cluster [94]. This type is a physical

machine with 28 Intel Haswell CPU-cores and 256GB of RAM. Nodes are interconnected

using 40Gb/s Infiniband HPC cards. In such a cluster, a network message is delivered

in around 20 microseconds (without network saturation), therefore we set timeout on lock

acquisition to 1ms.

2PC-5K 2PC-10K Walter-5k Walter-10k SSS-5K SSS-10K

0

25

50

75

100

5 10 15 20

T
h
ro
u
gh

p
u
t	
(K
Tx
s/
se
c)

(a) 20%

0

25

50

75

100

125

150

5 10 15 20
T
h
ro
u
gh

p
u
t	
(K
Tx
s/
se
c
)

(b) 50%

0

50

100

150

200

250

5 10 15 20

T
h
ro
u
gh

p
u
t	
(K
Tx
s/
se
c	
)

(c) 80%

Figure 4.3: Throughput of SSS against 2PC-baseline and Walter, varying % of read-only
transactions. Number of nodes in X-axes.

In Figure 4.3 we compare the throughput of SSS against 2PC-baseline and Walter in

the case where each object is replicated in two nodes of the system. We also varied the

percentage of read-only transactions in the range of 20%, 50%, and 80%. As expected,

Walter is the leading competitor in all the scenarios because its consistency guarantee is much

weaker than external consistency; however, the gap between SSS and Walter reduces from

2× to 1.1× when read-only transactions become predominant (moving from Figure 4.3(a)

to 4.3(c)). This is reasonable because in Walter, update transactions do not have the same

48

impact in read-only transactions’ performance as in SSS due to the presence of the snapshot-

queues. Therefore, when the percentage of update transactions reduces, SSS reduces the

gap. Considering the significant correctness level between PSI (in Walter) and external

consistency, we consider the results of the comparison between SSS and Walter remarkable.

Performance of 2PC-baseline is competitive when compared with SSS only at the case of

20% read-only. In the other cases, although SSS requires a more complex logic to execute its

read operations, the capability of being abort-free allows SSS to outperform 2PC-baseline by

as much as 7× with 50% read-only and 20 nodes. 2PC-baseline’s performance in both the

tested contention levels become similar at the 80% read-only case because, although lock-

based, read-only transaction’s validation will likely succeed since few update transactions

execute in the system.

Figure 4.3 also shows the scalability of all competitors. 2PC-baseline suffers from higher

abort rate than others, which hampers its scalability. This is because its read-only transac-

tions are not abort-free. The scalability trend of SSS and Walter is similar, although Walter

stops scaling at 15 nodes using 80% of read-only transactions while SSS proceeds. This is

mostly related with network congestion, which is reached by Walter earlier than SSS since

Walter’s transaction processing time is lower than SSS, thus messages are sent with a higher

rate.

In Figure 4.4 we compare 2PC-baseline and SSS in terms of maximum attainable through-

put and transaction latency. Figure 4.4(a) shows 2PC-baseline and SSS configured in a way

they can reach their maximum throughput with 50% read-only workload and 5k objects,

meaning the number of clients per nodes differs per reported datapoint. Performance trends

are similar to those in Figure 4.3(b), but 2PC-baseline here is faster than before. This

is related with the CPU utilization of the nodes’ test-bed. In fact, 2PC-baseline requires

less threads to execute, meaning it leaves more unused CPU-cores than SSS, and those

CPU-cores can be leveraged to host more clients.

The second plot (Figure 4.4(b)) shows transaction latency from its begin to its external

commit when 20 nodes, 50% read-only transactions, and 5k objects are deployed. In the

experiments we varied the number of clients per node from 1 to 10. When the system is far

from reaching saturation (i.e., from 1 to 5 clients), SSS’s latency does not vary, and it is on

49

0

20

40

60

80

100

5 10 15 20
T
h
ro
u
gh

p
u
t	
(K
Tx
s/
se
c	
)

#Nodes

SSS 2PC

(a) Max attainable throughput.

0

0.5

1

1.5

2

1 3 5 10

T
im

e
	(
m
s)

#Clients

SSS 2PC

(b) External Commit latency.

Figure 4.4: Performance of SSS against 2PC-baseline using 5k objects and 50% read-only
transactions.

average 2× lower than 2PC-baseline’s latency. At 10 clients, SSS’s latency is still lower than

2PC-baseline but by a lesser percentage. This confirms one of our claim about SSS capability

of retaining high-throughput even when update transactions are held in snapshot-queues.

In fact, Figure 4.3(b) shows the throughput measurement in the same configuration: SSS is

almost 7× faster than 2PC-baseline.

Figure 4.5 shows the relation between the internal commit latency and the external

commit latency of SSS update transactions. The configuration is the one in Figure 4.4(b).

Each bar represents the latency between a transaction begin and its external commit. The

internal gray bar shows the time interval between the transaction’s insertion in a snapshot-

queue and its removal (i.e., from internal to external commit). This latter time is on average

30% of the total transaction latency.

0

0.5

1

1.5

2

1 3 5 10

T
im

e
	(
m
s)

#Clients

Internal	Commit

Pre-commit	

Figure 4.5: Breakdown of SSS transaction latency.

In Figure 4.6 we compare SSS against ROCOCO and 2PC-baseline. To be compliant

with ROCOCO, we disable replication for all competitors and we select 5k as total number

50

of shared keys because ROCOCO finds its sweet spot in the presence of contention. Accesses

are not local.

Figures 4.6(a) and 4.6(b) show the results with 20% and 80% read-only transactions

respectively. In write intensive workload, ROCOCO slightly outperforms SSS due to its

lock-free executions and its capability of re-ordering deferrable transaction pieces. However,

even in this configuration, which matches a favorable scenario for ROCOCO, SSS is only

13% slower than ROCOCO and 70% faster than 2PC-baseline. In read-intensive workload,

SSS outperforms ROCOCO by 40% and by almost 3× 2PC-baseline at 20 nodes. This

gain is because ROCOCO is not optimized for read-only transactions; in fact, its read-only

are not abort-free and they need to wait for all conflicting update transactions in order

to execute. Also, since in YCBS transaction size is small, the overhead of ROCOCO’s

two-round commitment protocol is dominant.

0

20

40

60

80

100

5 10 15 20

T
h
ro
u
g
h
p
u
t	
(K
T
x
s/
se
c)

#Nodes

SSS-5K

2PC-5K

ROCOCO-5K

(a) 20%.

0

50

100

150

200

250

300

5 10 15 20

T
h
ro
u
g
h
p
u
t	
(K
T
x
s/
se
c)

#Nodes

(b) 80%.

Figure 4.6: SSS, 2PC-baseline, ROCOCO varying % of read-only transactions. Legend in
(a) applies to (b).

We also configured the benchmark to produce 50% of keys access locality, meaning the

probability that a key is stored by the node where the transaction is executing (local node),

and 50% of uniform access. Increasing local accesses has a direct impact on the application

contention level. In fact, since each key is replicated on two nodes, remote communication

is still needed by update transactions, while the number of objects accessible by a client

reduces when the number of nodes increases (e.g., with 20 nodes and 5k keys, a client on a

node can select its accessed keys among 250 keys rather than 5k). Read-only transactions

are the ones that benefit the most from local accesses.

51

0

100

200

300

400

500

600

700

5 10 15 20

T
h
ro
u
g
h
p
u
t	
(K
T
x
s/
se
c	
)

2PC-5K 2PC-10K Walter-5k

Walter-10k SSS-5K SSS-10K

2 4 8 16
#Read	operations	per	a	read-only	transaction

5 10 15 20
#Nodes

Figure 4.7: Throughput of SSS against 2PC-baseline and Walter with 80% read-only trans-
actions and 50% locality.

1

1.5

2

2.5

3

3.5

2 4 8 16

S
p
e
e
d
u
p

#Read	operations	per	a	read-only	transaction

SSS/ROCOCO-5K

SSS/ROCOCO-10K

SSS/2PC-5K

SSS/2PC-10K

r	a	read-only	transaction

Figure 4.8: Speedup of SSS over ROCOCO and 2PC-baseline increasing the size of read-only
transactions.

We report the results (in Figure 4.7) using the same configuration in Figure 4.3(c) because

that is the most relevant to SSS and Walter. Results confirm similar trend. SSS is more

than 3.5× faster than 2PC-baseline but, as opposed to the non-local case, here it cannot

close the gap with Walter due to the high contention around snapshot-queues.

In Figure 4.8 we show the impact of increasing the number of read operations inside read-

only transactions from 2 to 16. For this experiment we used 15 nodes and 80% of read-only

workload. Results report the ratio between the throughput of SSS and both ROCOCO and

2PC-baseline. When compared to ROCOCO, SSS shows a growing speedup, moving from

1.2× with 2 read operations to 2.2× with 16 read operations. This is because, as stated pre-

viously, ROCOCO encounters a growing number of aborts for read-only transactions while

increasing accessed objects. 2PC-baseline degrades less than ROCOCO when operations

increases because it needs less network communications for read-only transactions.

52

Chapter 5

FPSI: Improving Read Guarantees in

Parallel Snapshot Isolation

5.1 Overview

In a centralized deployment of SI [43, 95], the reading snapshot is often determined by

assuming that time is measured by a shared atomic counter that advances whenever any

transaction starts or commits [96]. On the other hand, in distributed systems where nodes

do not share a synchronized clock and the communication among them is asynchronous, SI

transactions cannot simply define an up-to-dated reading snapshot at the time they start

because of the absence of a shared notion of time among nodes.

Walter [21] is a state-of-the-art distributed transactional system whose concurrency con-

trol implements a relaxed variant of SI called Parallel Snapshot Isolation (or PSI). In PSI,

the transaction reading snapshot can be arbitrarily outdated in order to deal with the

aforementioned absence of shared clocks among nodes (other relaxations are overviewed in

Chapter 3).

Walter logically assigns objects to so called preferred nodes. A preferred node always

stores the latest version of an object. The object might also be replicated on other non-

preferred nodes, which might not always have the latest version of objects. If a transaction

begins on a node N and reads an object whose preferred node is N (we name such a

53

transaction local), then its reading snapshot is guaranteed to be up-to-date. Otherwise,

when a transaction begins on a non-preferred node or any other node (for brevity, in both

these cases we refer to this transaction as non-local), the read operations can result in an

outdated object version.

Walter attempts to patch the above issue by using asynchronous messages, sent outside

the transaction critical path, aimed at periodically updating the logical clock of other nodes,

including the non-preferred ones. However, until asynchronous messages are received, non-

local read-only transactions can still return arbitrarily old versions. Another side effect of

this solution is that non-local update transactions will be repeatedly aborted until the above

asynchronous messages are delivered.

In this chapter, we present Fresher Parallel Snapshot Isolation (or FPSI), a distributed

concurrency control that uses logical (vector) clocks [69] to implement an enhanced version

of Walter’s concurrency control with the goal of improving data freshness for read-only

transaction. FPSI exploits the fact that a common behavior for transactions is accessing

mostly local objects [21, 77]. For the remaining accesses, Walter must adhere to a possibly

old reading snapshot. FPSI improves this scenario for read-only transactions. Every access

to a new node made by a read-only transaction is guaranteed to observe the most recent

and correct reading snapshot. The only case in which a read-only transaction is prevented

from accessing the latest reading snapshot is when multiple accesses target objects stored

on the same node.

A practical example where FPSI always returns the most recent reading snapshot is

when we consider the two transaction profiles Order-Status and Payment in the TPC-C

benchmark [97]. The former queries the status of a customer’s last order from a warehouse

to retrieve information about related order lines. The latter processes the payment for the

customer and modifies the balance of the warehouse where the order took place. The read-

only transaction Order-Status can see the latest version of the accessed objects modified

by Payment since the first access is to retrieve the warehouse, and the subsequent read

operations are on objects that have been committed along with that warehouse, regardless

of the preferred node of the warehouse.

The major algorithmic challenge in achieving FPSI’s goals is to deal with the (fast)

54

technique used by Walter to update nodes’ logical clocks upon transaction commits. In fact,

since Walter’s transaction reading snapshot can be arbitrarily old, vector clocks are updated

without synchronously propagating causal dependency with other transactions.

Unlike Walter, the reading snapshot of a read-only transaction in FPSI is established

during its execution by means of attempting to include the newest versions of an object

stored by a node that has not been contacted so far by this transaction. FPSI ensures

that by efficiently tracking some (but not all) transaction dependency relations. Update

transactions execute with similar guarantees as in Walter, although FPSI still attempts to

improve data freshness by deploying a technique, similar to the one used in SCORe [48],

where the reading snapshot is defined upon the first read operation.

This design explores a trade-off between high performance and complexity of the dis-

tributed concurrency control. For many applications, transactions access objects mostly

from preferred sites and a limited number of objects from non-preferred sites. If the latter

objects are stored in disjoint nodes and transactions are read-only, FPSI provides the highest

level of freshness in its accesses and retains comparable performance to Walter. FPSI also

guarantees that transactions access the latest version of multiple objects if these objects are

stored in the same node and updated by the same update transaction. This access pattern is

typical of OLTP applications, as encapsulated by standard benchmarks such as TPC-C [97].

In Section 5.2, we study the existing challenges in the concurrency control of Walter.

In Section 5.3, the FPSI’s concurrency control is described. Finally, Sections 5.4 and 5.5

provide the correctness arguments and evaluation study of FPSI respectively.

5.2 Background and Motivation

5.2.1 Walter and PSI

Walter [21], is a multi-version transactional key-value store that provides a relaxed version

of SI called Parallel Snapshot Isolation (PSI). Walter uses a technique named preferred

site where each object is logically assigned to a specific site (or node) in the system. The

concept of preferred site is meant to favor transactions accessing objects maintained by the

local nodes. With that, Walter can quickly commit these transactions without checking

55

other nodes for write conflicts.

In other words, if a local transaction issues an operation on object x, then it can access

the latest version of x. However, non-local transactions are still allowed to modify x on Ni

but their updates can be repeatedly aborted in case the accessed version of x is not the

latest one.

After a local transaction commits, the acknowledgment of its successful commit should

be propagated to other nodes in the system. This propagation is done asynchronously and

its goal is to eventually allow non-local transactions to advance their reading snapshot. As

an example of the above propagation mechanism, suppose the preferred site of object x

is N1. Local transaction T1 starts at N1 and creates a new version x1 of x. A non-local

transaction T2, started at node N2, cannot create another version of x (i.e., x2) until N2

is being acknowledged about the commit of T1 in N1. After N2 receives the propagation

message of T1’s commit, T2 is able to proceed with its execution and successfully create x2.

5.2.2 The Challenge of Updating Reading Snapshot in Walter

Walter does not update the reading snapshot of a transaction during its execution. This

is because, by doing that without leveraging additional metadata, a well-known anomaly

called Read Skew [35] might occur. Read Skew happens if a transaction T1 reads a version

x1 for object x and concurrently another transaction T2 commits an update on objects x

and y, which creates a new version x2 of x and y2 of y. If T1 reads y after committing T2,

by advancing its reading snapshot without any consideration it might return y2, which is

incorrect.

Solutions in literature, such as SSS [32] and GMU [50], overcome the Read Skew anomaly

by updating vector clocks in a way that takes into account causal dependencies among nodes

that have been previously contacted by a transaction. Walter prefers a simpler approach in

which only the vector clock entry associated with the node where the transaction executes

is updated upon commit. Such a decision is supported by the fact that read operations

in Walter can read arbitrarily old values, therefore there is no need to account for causal

dependency relations developed after the chosen reading snapshot. FPSI’s goal is to preserve

the advantage of Walter’s simpler concurrency control while adding additional metadata to

56

improve data freshness of read-only transactions.

5.2.3 The Impact of Data Freshness in the Long Fork Anomaly

Figure 5.1 shows an example of an execution accepted by Walter in which two read-only

transactions are allowed to see the results of two update transactions in different orders. Al-

though this execution is admitted by PSI (anomaly is known as long-fork [21]), it introduces

an undesirable behavior at the application level, as described below.

Key=x,	value=x0 Key=y,	value=y0

2 7 6 13 2 7 6 132 7 6 13 2 7 6 13

T2:	Write(x,	x1)

T3:	Write(y,	y1)

2 8 6 13

2 7 7 13

T1:	 Read(x==x1)	

Read(y==y0)																										

13682T1.VC

T
im

e

Node	N1 Node	N2 Node	N3
Node	N4

Key=x,	value=x1

Key=y,	value=y1

T4:				Read(y==y1)	

Read(x==x0)						

13772T4.VC

Figure 5.1: Long-fork anomaly accepted by PSI consistency level. Dashed arrows represent
the asynchronous propagation messages. The reading snapshot of T1 reflects the timestamp
of T2 in the second entry of T1’s vector clock (T1.V C) but it does not reflect the timestamp of
T3 in the third entry of T1’s vector clock. The reading snapshot of T4 reflects the timestamp
of T3 in the third entry of T4’s vector clock (T4.V C) but it does not reflect the timestamp
of T2 in the third entry of T4’s vector clock.

In the example we assume four nodes, N1, N2, N3, N4, and four transactions, T1, T2, T3,

T4, each begins and executes on the respective node. By assumption, T2 and T3 are non-

conflicting local update transactions; while T1 and T4 are non-local read-only transactions

both accessing objects from N2 and N3. As of Walter’s rule, each read-only transaction

starts its execution by acquiring the latest vector clock of the node where it executes.

Both T2 and T3 after their commit on their preferred sites N2 and N3 send a propaga-

tion message to all other nodes. Let us assume T1 starts its execution after receiving the

propagation of T2 and before receiving the propagation of T3. On the other hand, T4 starts

its execution after receiving the propagation of T3 and before receiving the propagation of

T2. Receiving propagate from different nodes in different orders is a likely scenario in an

57

asynchronous distributed system.

Since T1 and T4 start after the commit of T2 and T3, their respective clients might

have had the chance to interact with each other outside the system (e.g., in a social media

platform when a user publishes a new post and alerts her/his friends about the new content

so that they can read it). The consequence of this interaction is that T1’s and T4’s clients

will not expect to observe a snapshot in which only some of the updates that they expected

to be committed are returned by their read-only transactions.

FPSI overcomes the above issue by allowing T1 and T4 to read the modifications made

by T2 and T3, as long as i) no other reads accessing objects on N2 and N3 are issued by T1

and T4, and ii) T2 and T3 commit before T1 and T4 start. Note that, in the case T1 and

T4 are concurrent with T2 and T3, both FPSI and PSI allow T1 and T4 to observe update

transactions in different order, therefore long fork is still possible for FPSI as well. However,

the latter case of long fork cannot trigger the behavior illustrated above at the client side,

and this is again thanks to FPSI’s improve data freshness.

5.3 FPSI: Protocol Description

5.3.1 Metadata

Since FPSI is built on top of Walter, we first list Walter’s metadata for completeness and

then we show the additional metadata required by FPSI.

Transaction vector clock. A transaction T holds a vector clock T.VC whose size is equal

to the number of nodes in the system. T.VC encapsulates the knowledge of T with respect

to the logical timestamps of other nodes. In practice, T.VC is used as visibility bound for all

versions accessible by T .

Transaction write-set. Every transaction T holds a private buffer called T.writeset,

which contains the objects the transaction wrote, along with their values.

Current sequence number. Every node Ni is assigned with a number CurrSeqNoi,

which represents the sequence number of the latest transaction issued and committed at

58

node Ni.

The following metadata are exclusive for FPSI.

Transaction node access vector clock. A transaction T records the sites where it reads

from in a vector clock, called T.hasRead. Every time T reads from a node Nj for the first

time during its execution, T.hasRead[j] is set to true. When T.hasRead[j] is set to true,

T ’s visible timsestamp with respect to Nj is fixed and cannot be advanced for T ’s future

accesses to Nj .

Node vector clock. Each node Ni is associated with a vector clock, called siteV Ci.

The jth entry of this vector clock represents the last transaction from node Nj that was

committed at site Ni.

Transaction commit vector clock. When the commit decision for transaction T issued

by Ni is made, the CurrSeqNoi is incremented and siteV C of Ni is updated at the ith

position and the updated value of siteV C is assigned to transaction commit vector clock

(i.e., T.commitV C). In addition to that, the CurrSeqNoi is also sent to the other nodes

involved in the commit procedure to update their siteV C at the ith position.

Version’s vector clock. As it is mentioned in Section 2.2, each object o is associated

with a set of versions where each version v is created by an update transaction. The commit

vector clock of each update transaction is assigned to its created versions and is called version

vector clock (v.V C).

Version identifier. Each version v of object o is associated with a monotonically increas-

ing scalar number, called v.id.

Version access set. As shown in Section 5.2, by relying on the way Walter establishes

transactions’ commit vector clocks (i.e., without tracing causal dependencies among involved

nodes), advancing transaction vector clock during execution without additional metadata

violates PSI.

59

In order to advance the reading snapshot, given a transaction Ti the concurrency control

needs to be able to trace concurrent transactions Tj that overwrite versions read by Ti. In

this case, we say that Ti has an anti-dependency relation (i.e., a read-after-write conflict)

with Tj . FPSI does that by implementing a technique called visible reads [89].

The visible reads technique is implemented by FPSI in the following way. Each ver-

sion is associated with a set containing identifiers of read-only transactions that read that

specific version. During the commit phase of an update transaction, the set of identifiers

of concurrent conflicting read-only transactions is collected. This set is propagated to the

version-access-sets of the newly created versions of this update transaction since with its

commit, it establishes transitive anti-dependency relations with those read-only transac-

tions.

If a read-only transaction T contacts a node for the first time, it can advance its reading

snapshot unless it finds that its own identifier exists in the version-access-set of the version

to be read. In that case, T should select a previous version whose version-access-set does

not contain T ’s identifier.

5.3.2 Transactional Begin Operation

Algorithm 7 represents the way that transaction T vector clocks (T.hasRead and T.V C)

are initialized once T begins. When T begins in node Ni, it assigns the siteV C of Ni,

which shows the vector clock of the latest committed/propagated transactions from all the

sites in/to Ni, to its own T.V C. At this point, since no read is issued yet, all elements of

T.hasRead[j] are set to false.

Algorithm 7 Begin procedure of transaction T in node Ni using FPSI

1: function BeginTx(Transaction T)
2: T.V C ← siteV Ci

3: for all (T.hasRead[i]) do

4: T.hasRead[i]← false

60

5.3.3 Transactional Write Operation

In FPSI update transactions implement lazy update, meaning their written keys are not

immediately visible and accessible at the time of the write operation, but they are buffered

in the transaction writeset.

5.3.4 Transactional Read Operation

Algorithm 8 describes the steps of a read operation for key k by transaction T . If k has

been already written by transaction T , then the written value of k is returned (Lines 2-3 of

Algorithm 8). Otherwise, a read request (ReadRequest) is forwarded to the node that stores

k, which might be the same node where T executes (local read) (Line 5 of Algorithm 8).

The read is handled differently depending on the type of the issuing transaction. Im-

portantly, for avoiding concurrent modifications while the read logic is processed, the read

handler should be executed in mutual exclusion with respect to message handlers from other

concurrent conflicting update transactions. However, read-only transactions are still allowed

to operate simultaneously on read handlers.

Algorithm 8 Read Operation in FPSI

1: function read(Transaction T , key k)
2: if < k, val >∈ T.writeset then

3: return val
4: target← site(k)
5: send ReadRequest[T, k] to target
6: wait Receive ReadReturn[val, maxV C] from target
7: T.hasRead[target]← true
8: T.V C ← max(T.V C,maxV C)
9: if (T is a read-only) then

10: T.readKeys← T.readKeys ∪ {k}

11: return val

Read operations by Read-only Transactions

Lines 2-9 of Algorithm 9 describes the read policy for a read-only transaction T . The first

step is to identify the set of versions for k that are visible according to T.V C. We say a

version v is visible for a transaction T if all the entries of T.V C, for which T.hasRead is true,

61

have values greater or equal to the values of the respective entries in v.V C (Algorithm 9

Lines 4).

Algorithm 9 Version Selection Logic in node Ni using FPSI

1: upon receive ReadRequest[T, k] from Nj do

2: if (T is a read-only) then

3: get lock(key = k, owner = T.id)
4: V isibleSet← {v ∈ k.versionSet : ∀site ∈ sites : T.hasRead[site] = true⇒

v.V C[site] ≤ T.V C[site]}
5: ExcludedSet← {v ∈ V isibleSet : T.id ∈ v.accessSet}
6: V isibleSet← V isibleSet\ExcludedSet
7: version← ver ∈ V isibleSet : ∀v ∈ V isibleSet⇒ ver.id ≥ v.id
8: version.accessSet← version.accessSet ∪ {T.id}
9: release lock(key = k, owner = T.id)

10: if (T is an update) then

11: get lock(key = k, owner = T.id)
12: V isibleSet← {v ∈ k.versionSet : ∀site ∈ sites : T.hasRead[site] = true⇒

v.V C[site] ≤ T.V C[site]}
13: ExcludedSet← {v ∈ V isibleSet : ∀site ∈ sites : T.hasRead[site] = true⇒

v.V C[site] = T.V C[site] ∧ ∃s ∈ sites : T.hasRead[s] = false. ∧ v.V C[s] >
T.V C[s]}

14: V isibleSet← V isibleSet\ExcludedSet
15: version← ver ∈ V isibleSet : ∀v ∈ V isibleSet⇒ ver.id ≥ v.id
16: release lock(key = k, owner = T.id)

17: send ReadReturn[version, version.V C] to Nj

18: end

From the latter set (V isibleSet in the Algorithm 9), those versions whose version-access-

set include T ’s identifier, should be excluded because that means T has already established

an anti-dependency (directly or transitively) with the transactions that committed those

versions. Among the remaining versions, the one with the highest identifier (meaning the

freshest among them) is selected as the result of the read operation.

Figure 5.2 illustrates an example of how read-only transactions establishes their reading

snapshots. Transaction T1 starts its execution at node N1 and reads x0, the latest version of

object x, when it accesses node N2. Upon reading x0, the identifier of T1 is inserted into the

corresponding version-access-set of x0. T1 also updates T1.V C[2] to the latest timestamp of

N2 which is “7”. After that, a concurrent update transaction T3 commits an update on x

and y on N2 and increments siteV C2[3] to timestamp “7”. Later, after T3 commits at N2, T1

issues another read on y. At this point, since y1’s version-access-set includes T1’s identifier,

62

because it has been inserted by the commit procedure of T3 (see Section 5.3.5), y1 cannot

be returned by T1’s read operation due to the anti-dependency relation already established

between T1 and T3. After committing, a Remove message to N2 is sent for notifying the

completion of T1 (see Section 5.3.6).

Note that a read-only transaction should record the accessed keys in a set, called

readkeys, that is used only to dispatch Remove messages.

T3:	Write(x,	x1)

Write(y,	y1)

T1:	Read(x	==	x0)

Read(y	==	y0)

62T1.VC

T
im

e

672T1.VC

5

62T1.VC 7
Commit

62 5 62 7 62 7

Key=x:		value=x0,	x0.VAS={}

Key=y:		value=y0,	y0.VAS={}

Key=x:	value=x0,	

x0.VAS={T1}							

Read

Read	

Return

Key=x,	value=x0,	x0.VAS={T1}

value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={}

value=y1,	y1.VAS={T1}

Read

Read	

Return

Remove

Key=x,	value=x0,	x0.VAS={T1}

value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={	}

value=y1,	y1.VAS={T1}

72 7

Node N2 Node N3
Node N1

Figure 5.2: Example of execution where a read-only transaction advances its reading snap-
shot and still reads consistently. VAS is the version-access-set. Bold vector clock entries
show where hasRead is true. The red crossed entries of VAS represent their elimination
upon Remove.

Read operations by Update Transactions

Update transactions do not insert their identifier in the version-access-set of their read keys.

However, upon their first read operation, they still advance their reading snapshot to be able

to observe the accessed object. Subsequent read operations will use the same established

reading snapshot without updating it.

Lines 10-16 of Algorithm 9 show the pseudo code for handling read operations by an

update transaction T . The V isibleSet is determined as follows. First, the versions that are

visible according to T.V C are selected. From them, the versions produced by concurrent

transactions with anti-dependency with T should be excluded. However, since the version-

access-set cannot be leveraged to precisely identify anti-dependency relations, as the case of

63

read-only transactions, we adopt a more conservative condition for version exclusion, inspired

by [48], which over-approximates the existence of an anti-dependency by just comparing T ’s

vector clock against the candidate version’s commit vector clock.

A version should be excluded if it has a vector clock in which, in all the positions where

T.hasRead is true, the value is equal to the value of the same entry in T.V C (Lines 12-14

of Algorithm 9) and there exist at least one position in T.V C whose corresponding entry

in T.hasRead is false and in the same position the version vector clock has a greater

value than T.V C. The latter clause of the above condition allows an update transaction

to also exclude a version committed by a concurrent transaction, or a transaction whose

acknowledgment has not been received yet, without an anti-dependency with T , which is a

false positive case since that version could be read without compromising PSI.

After that, the version with the highest identifier in the resulting V isibleSet is returned

as the result of the read operation (Line 15 of Algorithm 9), along with its vector clock.

When the response for T ’s read operation is returned to Ni, an entry-wise maximum

between T.V C and the version vector clock is performed to advance the reading snapshot

of T (Line 8 of Algorithm 8).

Key=x,	value=x0

2 7 6

T3:	 Write(x,	x1)

Write(y,	y1)

2 7 7

T1:	 Read(x==x0)

Read(y==y0)

Write(z,	z1)

62T1.VC

T
im

e

672T1.VC

5

62T1.VC 7

2 7 62 5 6

Key=x,	

value=x0,x1

Key=y,	value=y0

Key=y,	

value=y0,y1

Key=z,	value=z0

Node N2 Node N3Node N1

Figure 5.3: Example showing how an update transaction establishes its reading snapshot.

Figure 5.3 shows an example of how update transactions establish their reading snapshot.

We have two update transactions T1 and T3. T1 reads x0, the latest version of object x at

64

its first access to node N2 and advances its reading snapshot by updating the second entry

of T1.V C to “7”. Concurrently T3 updates both objects x and y, stored on N2, and commits

by advancing N2’s vector clock at its third entry to “7”.

After that T1 performs its second read operation on y. Here, T1 cannot read version y1.

This is because T1.V C[2] is equal to y1.V C[2] and T1.hasRead[2] is true. In this case, since

T1.V C[3] is less than y1.V C[3], it might mean that y1 has been committed by a concurrent

conflicting transaction. However, due to the way vector clocks are incremented upon commit,

T1 does not have enough knowledge to verify if y1’s committer was a conflicting transaction.

Therefore the read operation returns a safe snapshot for T1, which in this case is y0 because

y0’s vector clock (i.e., y0.V C) is visible by T1.

5.3.5 Commit protocol

The commit phase of transaction T is performed through the COMMIT function in Algo-

rithm 10. If T is a read-only transaction, the commit phase only consists of a clean up step

to remove traces of its execution on the version-access-set of its read versions. To do that,

Remove messages are sent to the nodes where T read from (Lines 2-6 of Algorithm 10).

If T is an update transaction, similar to Walter the Two-Phase Commit (2PC) protocol is

used to accomplish the commit phase and install new versions into the data repository. The

node in which T executes (i.e., T ’s coordinator) starts the 2PC by sending a Prepare message

to the (preferred) nodes that store the objects written by T (Line 10 of Algorithm 10). When

a 2PC participant node Ni receives a Prepare message for T , all the written objects by T

and stored by Ni are locked. If the locking acquisition succeeds, then versions are validated

to certify that they have not being overwritten meanwhile.

At this point, the existing read-only transactions’ identifiers in the versions-access-set

of T ’s written objects are retrieved by the 2PC participants and sent back to the 2PC

coordinator with the Vote message (Lines 3-10 of Algorithm 11). Once the coordinator

receives all the Vote messages from participants, it merges all the received transactions’

identifiers and include them into T.collectedSet (Line 17 of Algorithm 10).

In the case all participants vote for committing T , meaning they were able to acquire locks

on the written objects and validate their version, then Ni’s sequence number (CurrSeqNoi)

65

Algorithm 10 Commit of transaction T in node Ni using FPSI

1: function Commit(Transaction T)
// Check if T is a read-only transaction

2: if (T.writeset=φ) then

3: for (k ∈ T.readKeys) do

4: send Remove[T.id, k] site(k)

5: T.outcome← true
6: return T.outcome

// Start 2PC if T is an update transaction
7: commitV C ← T.V C
8: T.collectedSet← φ
9: T.outcome← true

10: send Prepare[T] to all Nj ∈ sites(T.writeset)
11: for all (Nj ∈ sites(T.writeset)) do

12: wait receive Vote[collectedSetj , resultj] from Nj or timeout

// Check if T’s 2PC commit decision is successful
13: if (¬resultj ∨ timeout) then

14: T.outcome← false
15: break;
16: else

// Collect all existing anti-dependencies in T.collectedSet
17: T.collectedSet← T.collectedSet ∪ collectedSetj

18: currSeqNoi ← currSeqNoi + 1
19: T.seqNo← currSeqNoi

// Finalize T’s commit vector clock
20: T.commitV C ← siteV Ci

21: T.commitV C[i]← T.seqNo
22: send Decide[T, T.outcome] to all Nj ∈ sites(T.writeset ∪Ni)
23: send Propagate[T, T.seqNo] asynchronously to all Nj ∈ sites\sites(T.write)
24: return T.outcome

is incremented and the commit vector clock of T is established. This vector clock is then

sent along with the Decide message to the 2PC participants (Line 18-22 of Algorithm 10).

Lines 12-22 of Algorithm 11 show the steps taken by a 2PC participant Ni when it

receives the Decide message from the coordinator executing on node Nj . In order for Ni

to commit T , Ni must wait for all already decided/propagated transactions by Nj . Ni can

easily detect if this wait condition should occur by looking at the gap between the node

vector clock in position j and the commit vector clock of T at position j (e.g., T.seqNo).

When T finally commits, the siteV C of each 2PC participant is updated in the jth position.

Similar to Walter, after sending the Decide of T FPSI sends the asynchronous Propagate

message to all other nodes in the system in order to allow them to advance their reading

66

Algorithm 11 FPSI’s Commit message handlers received by node Ni for transaction T
issued by node Nj

1: upon receive Prepare[Transaction T] from Nj do

2: collectedSet← φ
3: boolean result← getLocks(T.writeset, owner = T.id) ∧ validate(T)
4: if (¬result) then

5: releaseLocks(T.writeset, owner = T.id)
6: send Vote[collectedSet, result] to Nj

7: else

8: for all k ∈ T.writese do

9: collectedSet← collectedSet ∪ k.version.accessSet
10: send Vote[collectedSet, result] to Nj

11: end

12: upon receive Decide[T, outcome] from Nj do

13: if (outcome) then

14: wait until siteV Ci[j] = T.seqNo− 1
15: update(T.writeset, T.seqNo, j)
16: for all (k ∈ T.writeset) do

17: k.lastV ersion.accessSet← k.lastV ersion.accessSet ∪ T.collectedSet
18: siteV Ci[j]← T.seqNo
19: releaseLocks(T.writeset, owner = T.id)
20: else

21: releaseLocks(T.writeset, owner = T.id)

22: end

23: function validate(Transaction T)
24: for all (k ∈ T.writeSet) do

25: if (k.lastV ersion.V C[lastUpdaterSite] > T.V C[lastUpdaterSite]) then

26: return false

27: return true

snapshot with respect to Ni. Note that, although FPSI requires Propagate messages to

commit non-local update transactions, it does not abort these transactions as Walter does

due to late delivery of Propagate messages. In fact, in Walter if a Propagate message

from a node Nj is not delivered by a node Ni, a non-local update transaction from Ni will

repeatedly fail its validation step causing an abort that will be solved only after receiving

the Propagate message.

FPSI does not abort the update transaction in such a case. However, although it still

needs the Propagate message to be delivered in order to finalize the commit, i) it is able to

overlap the transaction execution with the delivery of the Propagate message, which is likely

to arrive meanwhile; and ii) it reduces network traffic due to saving multiple transaction

67

retries.

5.3.6 Handling Asynchronous Messages

Algorithm 12 shows how node Ni handles asynchronous messages, namely Propagate and

Remove. When Ni receives a Remove message because a read-only transaction T committed

at node Nj , T ’s identifier is removed from the version-access-sets of T ’s read versions whose

preferred site is Nj , and from all other version-access-sets in Nj in which T ’s identifier has

been propagated by concurrent update transactions that committed meanwhile (Lines 5-9

of Algorithm 12).

Algorithm 12 Remove and Propagate messages from transaction T issued by Nj to node
Ni using FPSI

1: upon receive Propagate[T, T.seqNo] from Nj do

2: wait until siteV Ci[j] = T.seqNo− 1
3: siteV Ci[j]← T.seqNo
4: end

5: upon receive Remove[T.id, k] from Nj do

6: k.version.accessSet← k.version.accessSet\{T.id}
7: for all (k

′

: v ∈ k
′

.versionSet ∧ T.id ∈ v.accessSet) do

8: v.accessSet← v.accessSet\{T.id}

9: end

Upon receiving a Propagate message by node Ni for the commit of an update transaction

T from node Nj , Ni can advance its reading snapshot with respect to Nj to T.seqNo.

In PSI the outcome of all committed transactions that update some objects whose pre-

ferred site is Nj should be observed in the same order by Ni. For this reason, T should wait

for all previously committed transactions in Nj with a lesser sequence number than T.seq

to be received by Ni (Line 2 of Algorithm 12). After that, siteV C of Ni can be updated

with T.seqNo at the jth position of siteV C (Line 3 of Algorithm 12).

5.4 Correctness Arguments

We assess the correctness of FPSI by discussing how our modifications on top of the Walter

distributed concurrency control still preserve PSI. The major difference between FPSI and

Walter lies on the fact that FPSI can read the latest version of an accessed object upon

68

the first access to a node, even if an asynchronous propagate message has not been being

delivered yet. Our approach is to focus on the necessary and sufficient condition to assess if

an execution satisfies the Generalized Snapshot Isolation (GSI) correctness level [41]. GSI

generalizes SI by allowing reading snapshots to be arbitrarily old, but still disallows PSI’s

long fork anomaly. Showing the equivalence to GSI is enough since we have already shown

that FPSI does not eliminate the long fork anomaly of Walter, as discussed in Section 5.2.3.

Without considering this anomaly, PSI is equivalent to GSI [21,41].

For a schedule to be accepted by GSI, if a transaction history has a cycle, then this

cycle includes at least two adjacent anti-dependency edges in the Directed Serialization

Graph [41].

Our correctness discussion shows that as soon as a transaction detects an anti-dependency

with respect to a concurrent update transaction, a direct dependency, including a transitive

one, cannot occur. This can be achieved by relying on either the content of the version-

access-set (populated through the visible reads technique) for read-only transactions, or the

selection of a safe snapshot for update transactions. As a consequence of this observation,

only transactions executions with two adjacent anti-dependency edges can be committed by

FPSI, which is needed to satisfy GSI (and PSI by including the long fork anomaly).

Regarding the reading policy of read-only transactions, since a transaction TRO that

reads a version ov of object o is included in the version-access-set (Line 8 of Algorithm 9)

of ov, when an update transaction creates a new version ov+1, the write-after-read (anti-)

dependency is established and can be detected by any other reading transaction after that.

That means, if a conflicting transaction, directly or transitively, produces a new version, that

version cannot be returned by any subsequent read operation from TRO because of the way

the version-access-set is propagated to conflicting transactions, including those transitive

(see Lines 16-17 of Algorithm 11. By doing that, there cannot be a read-only transaction

involved in a loop with an outgoing anti-dependency edge preceded by an incoming direct

dependency edge. In the presence of an established anti-dependency, our concurrency control

reads previous versions, which transforms the aforementioned direct dependency into an

anti-dependency, as demanded by PSI.

The argument for an update transaction T is simpler since it cannot always attempt to

69

access the latest version of an object. In fact, after the first read operation, a safe reading

snapshot is established for T . Such a reading snapshot guarantees that if a concurrent

transaction T ′ overwrites a read version by T , since T ’s vector clock will be strictly lesser

than T ′’s vector clock, T cannot include that newer version in its reading snapshot. (Recall

that this conservative rule might produce false conflicts that can unnecessarily order T before

T ′ as mentioned is Section 5.3.4).

5.5 Evaluation Study

FPSI’s distributed concurrency control has been embedded into an in-memory distributed

transactional key-value store. We use the code base of Walter available at [32] and we modify

it to integrate FPSI’s metadata and reading/writing policy. We recall that our performance

assessment for FPSI aims at showing how its algorithmic modifications, which ensure higher

level of freshness than Walter, can still provide comparable performance with respect to

Walter, and retain significant performance improvement over a serializable distributed con-

currency control [85].

We conduct the performance evaluation using two well-known OLTP benchmarks, YCSB [92]

and TPC-C [97], both ported to the key-value data model. For YCSB, we have two trans-

action profiles: update, where two keys are read and written, and read-only transactions,

where two keys are accessed. YCSB is configured to use keys of 4 bytes and values of 12

bytes. TPC-C is a more complex benchmark that simulates an order-entry environment

with several warehouses. It includes five transaction profiles, three of them are update

transactions and the remaining are read-only transactions.

We configure the benchmarks to explore different runtime scenarios. First, YCSB trans-

actions are shorter than TPC-C’s transactions; also, since update transactions in YCSB

write the same keys they read, the final execution is equivalent to an execution in which the

concurrency control ensures Serializability. This is done to particularly stress the importance

of reading a fresh snapshot for update transactions. In fact, FPSI will be able to reduce the

number of aborts of update transactions due to outdated reading snapshot in Walter. On

the other hand, TPC-C transactions’ logic allows for reading and writing different shared

70

objects, showing a favorable case for Walter since an outdated reading snapshot still suffices

to commit while preserving PSI.

We compare the performance of FPSI against Walter, which guarantees PSI, and 2PC-

baseline (2PC in the plots), a serializable key-value store where all transactions execute

optimistically and rely on the Two-Phase Commit protocol to commit both update and

read-only transactions, thus without needing multiversioning. We also included a version of

Walter and FPSI in which the asynchronous propagate messages are intentionally delayed

to show the effect of such an event on the abort rate of update transactions.

In all the experiments there are five application threads (i.e., clients) per node injecting

transactions in a closed-loop (i.e., a client issues a new request only when the previous one

has returned). In terms of transaction mix, we evaluate our competitors using 20% and 50%

read-only transactions. We do not include the test with 80% read-only transactions because

performance of both Walter and FPSI are almost identical using this configuration, especially

when the contention is low. This is expected since most of the algorithmic differences

between the two competitors are related to the propagation of anti-dependency developed

with update transactions. If version-access-sets are almost empty, the performance of read-

only transactions in both competitors will be similar.

In both benchmarks, transactions select keys to be accessed using a uniform distribution,

which entails accesses might or might not be to the local data repository. We do not test

the case of a skewed access distribution to highlight the performance impact of FPSI design.

In fact, if accesses target local nodes, data freshness is already guaranteed to be the highest

level. In this scenario, FPSI performs equally to Walter since no protocol modification has

been made to Walter to improve the freshness of local accesses. In terms of data distribution,

keys are evenly distributed across nodes.

As test-bed, we use CloudLab [93], a cloud infrastructure available to researchers. We

selected 20 nodes of type c6320 available in the Clemson cluster. This type is a physical

machine with 28 Intel Haswell CPU-cores and 256GB of RAM. Nodes are interconnected

using a 10Gb/s network, which delivers a message in about 20 microseconds without satu-

ration. Considering that, we set the timeout on lock acquisition to 1 ms. All the results are

the average of 5 trials.

71

5.5.1 YCSB

Figure 5.4 shows the throughput of all competitors using YCSB and a total of 50k and 500k

shared keys while increasing the total number of nodes. Recall that more nodes means more

clients injecting transactions in the system, therefore an increasing level of contention. In all

these configurations, the measured abort rate is below 10% at the highest contention level

(i.e., 50k keys and 20 nodes).

The performance and scalability of FPSI match Walter’s in the cases where contention

is low, namely up to 10 nodes in all tested cases and in the 500k configuration. When

contention increases (e.g., due to the higher number of clients), the gap between FPSI and

Walter becomes more visible. This is because of two factors: the additional synchronization

steps needed by FPSI’s read operations, and the increasing size of version-access-sets (see

Figure 5.5). Quantifying, for 20% read-only workload the highest gap measured between

FPSI and Walter is 20% and 16% with 50k and 500k keys, respectively. At 50% read-only

workload, the gap is 15% at 50k keys, and such a gap is annulled at 500k keys.

140

FPSI- 50K	Objects Walter- 50K	Objects 2PC- 50K	Objects

FPSI- 500K	Objects Walter- 500K	Objects 2PC- 500K	Objects

0

20

40

60

80

100

120

140

5 10 15 20

T
h
ro
u
g
h
p
u
t	
(K
Tx
s/
se
c)

Number	of	nodes	

(a) 20%.

0

20

40

60

80

100

120

140

160

5 10 15 20

T
h
ro
u
g
h
p
u
t	
(K
Tx
s/
se
c)

Number	of	nodes	

(b) 50%.

Figure 5.4: Throughput of FPSI, Walter and 2PC-baseline using YCSB and by varying %
of read-only transactions, the total number of keys, and the number of nodes.

Both PSI competitors substantially improve performance over 2PC-baseline because its

read-only transactions undergo an expensive commit phase using the 2PC protocol, which

is skipped by FPSI and Walter since their read-only transactions are abort-free. Achieved

72

speedup of PSI competitors against 2PC-baseline is constantly more than 3x.

As observed earlier, the size of version-access-set impacts the gap in performance between

FPSI and Walter when the contention increases. Figure 5.5 confirms that. In this figure,

we report the average number of collected anti-dependency while an update transaction in

FPSI undergoes the prepare step of its commit phase. We explored the configurations with

20%, 50%, and 80% of read-only transactions, with 50k, 100k, and 500k shared objects.

0

20

40

60

80

100

120

140

160

50 100 500

S
iz
e

Number	of	objects

FPSI- 80%

FPSI-50%	

FPSI-20%

Figure 5.5: Average size of anti-dependency collected by update transactions during prepare
phase of FPSI for different % of read-only transactions and keys.

Increasing the percentage of update transactions increases the number of anti-dependencies.

The sharp jump from 80% to 50% read-only at 50k keys is due to the transitive propagation

of those anti-dependency. In fact, if an update transaction reads a key whose version-access-

set includes a number of read-only transaction identifiers, this set of real-only transactions

will be propagated to the version-access-set of the new written versions of the update trans-

action upon its commit.

In Figure 5.5, we also test the cases of 100k and 500k keys to show how the size of

collected anti-dependencies gradually decreases to zero, as with 500k. Note that, YCSB

transactions are short, therefore the chance for an anti-dependency to occur at the low

contention case, such as using 500k keys, is low.

To show the effectiveness of a fresher reading snapshot for read operations of update

transactions, in Figure 5.6 we measure the abort rate (of update transactions since read-only

transactions cannot abort) using 20 nodes in case we intentionally delay the asynchronous

propagate messages (by 1 ms) in both FPSI and Walter. We select 1 ms because in our

testbed it mimics around 5x slowdown of network delay, which might be due to congestion

73

0

10

20

30

40

50

60

70

50 100 500
A
b
o
rt
	p
e
rc
e
n
ta
g
e

Number	of	objects

Delayed	FPSI-50%	 Delayed	Walter-50%	

Delayed	FPSI-20%	 Delayed	Walter-20%	

Figure 5.6: Abort rate using 20 nodes and varying number of keys while delaying propagate
messages in both FPSI and Walter.

at high utilization.

Walter’s abort rate is on average twice the one of FPSI. The reason for such a significant

increase for Walter is because update transactions’ reading snapshot in our configuration

of YCSB should be the freshest since the same read keys are also written, therefore they

need to be validated. Slowing down the propagate messages forces update transactions in

Walter to repeatedly abort before being able to commit when finally the node’s vector clock

is updated. Another interesting aspect to be observed is that in general, the abort rate does

not decrease while the contention decreases at 500k keys. This is due to the fact that, even

if contention is absent, a transaction in Walter may not be able to read the latest version of

a key because of an outdated node vector clock.

Abort rate increases in both Walter and FPSI with respect to the case where asyn-

chronous messages are not delayed because update transactions still need to receive the

propagate messages in order to finally commit. While they wait for such a message, they

hold the locks on their written keys. Therefore, the lock holding time increases, as the abort

rate. The abort rate without delaying propagate messages is below 10% for both PSI and

FPSI, and decreases in low-contention scenario.

5.5.2 TPC-C

TPC-C transactions are much longer than YCSB’s, especially the read-only ones. Generally,

the performance at 50% read-only workload is slower than the one at 20%. Because of

the hierarchical object access pattern of TPC-C, the contention in the system is modified

74

by varying the number of warehouses (the warehouse object sits at the top of this access

hierarchy).

35

FPSI- 16	W/n Walter- 16	W/n 2PC- 16	W/n

FPSI- 32	W/n Walter- 32	W/n 2PC- 32	W/n

0

10

20

30

40

50

60

5 10 15 20

T
h
ro
u
g
h
p
u
t(
K
T
x
s/
se
c
)

Number	of	nodes

(a) 20%.

0

5

10

15

20

25

30

35

5 10 15 20

T
h
ro
u
g
h
p
u
t(
K
T
x
s/
se
c
)

Number	of	nodes

(b) 50%.

Figure 5.7: Throughput of FPSI, Walter and 2PC-baseline using TPC-C and by varying %
of read-only transactions, the number of warehouses per node (W/n), and the number of
nodes.

Figure 5.7 shows the results for all competitors varying the number of nodes and the

number of warehouses per node. As opposed to YCSB benchmark, in TPC-C transactions

do not necessarily read the same keys that they write. This allows an update transaction to

commit even if the reading snapshot is not the freshest. The consequence of this character-

istic is that PSI competitors are much faster than 2PC-baseline, and both Walter and FPSI

has a similar growing trend. In fact, with 50% read-only transactions, the performance of

the two PSI competitors are withing 5% of each other. At 20% read-only workload, the

maximum observed gap is 28%.

Figure 5.8(a) includes the abort rate measured at 20 nodes deploying 16 and 32 ware-

houses per node in the case where the propagate messages have been intentionally delayed.

Without delaying them, abort rate of Walter and FPSI is comparable. Walter shows an av-

erage of almost 4x higher abort rate than FPSI. This is because of the way the safe snapshot

is selected by update transactions in FPSI. In fact, according to TPC-C logic, the warehouse

is often the first accessed key, which is guaranteed to be the latest version by FPSI’s concur-

rency control, subsequent accesses to objects will be likely related to that warehouse. This

75

0

10

20

30

40

50

60

70

80

90

16 32

A
b
o
rt
	P
e
rc
e
n
ta
g
e

Number	of	warehouses

Delayed	FPSI-50%	

Delayed	Walter-50%	

Delayed	FPSI-20%	

Delayed	Walter-20%	

(a) Abort rate.

0

5

10

15

20

25

30

35

40

45

8 16 32

P
e
rc
e
n
ta
g
e

Number	of	warehouses

FPSI/Walter-50%

FPSI/Walter-20%

(b) Slowdown of FPSI over Walter varying #
of warehouses.

Figure 5.8: Performance of FPSI and Walter varying the number of warehouses per node
(W/n).

pattern ensures that all the objects updated along with that warehouse will be accessed by

reading the latest version. Because of that, FPSI’s degradation in abort rate is less than

Walter’s.

Finally, in Figure 5.8(b) we show the slowdown in throughput between FPSI and Walter

when we vary the number of warehouses, using 20 nodes. When 8 warehouses per node

are deployed, contention is higher, therefore the slowdown of FPSI with respect to Walter

increases. This is expected because the cardinality of the version-access-set in high con-

tention increases. On the other hand, reducing contention also reduces the performance gap

between the two PSI competitors.

76

Chapter 6

On the Correctness of Transaction

Processing with External Dependency

6.1 Overview

When the concurrency control implementation of a transactional system is required to en-

force an application-level invariant on shared data accesses (i.e., an expression that should be

preserved upon every atomic update [38]), ad-hoc reasoning about its correctness is a tedious

and error-prone process. Traditional (data-related) constraints (e.g., transaction conflicts)

are well-formalized with established correctness levels, such as Serializability [35–37] and

Snapshot Isolation [36, 41]. However, a unified model encompassing the various external

(semantic-related) constraints that enforce application invariant has not been formalized

yet.

In this chapter we make a step towards defining such a model. We introduce a theoret-

ical framework that formalizes correctness levels stronger than (or equal to) Serializability

by defining their transaction ordering relations as a union of two sets of data and exter-

nal dependency. This approach is opposed to the traditional way of defining these relations

through an ad-hoc analysis. This framework can be used to define an offline checker that ver-

ifies the safety of transactional executions. Assuming a serializable concurrency control [36],

relations between transactions in an execution can be characterized as data dependency, if

77

they are generated by data conflicts, or external dependency, if they affect the satisfaction

of application invariant. This decomposition allows us to define a methodology to enrich the

traditional transaction Direct Serialization Graph (DSG) [36] with such external ordering

relations. We use the formalization to introduce a safety condition that verifies correctness

of transactional executions (Theorem 6.2.3).

We motivate our model by showing an example of application with associated invariant.

The example mimics a simple monetary application that imposes different requirements to

clients interacting from different branch locations of the bank. The application mandates

the following invariant: when a transaction is issued by a client in one branch, this trans-

action accesses the modifications performed by the latest transactions completed on the

same branch prior its starting. At the same time, the application does not require spe-

cial constraints on the order of monetary transactions issued from other branches. That

is, transactions from a remote branch should execute atomically and in isolation, but they

might access stale data.

Suppose clients C1 and C2 from branch α issue two subsequent non-concurrent transac-

tions T1 and T2 accessing the same bank account Ac. The first deposits $10 and the second

checks the total amount of Ac and then withdraws the latest deposited amount ($10). Ac-

cording to the application semantics, T2 must observe the deposit by T1. Consider another

transaction T3, issued by a client from branch β doing auditing on accounts, including Ac.

Application semantics for T3 does not enforce any requirement on the set of transactions

whose outcome should be observed, including T1 and T2. A serializable concurrency control

would “only" guarantee a transactions order of T1, T2 and T3 equivalent to some serial order.

This serial order does not consider the application invariant and might order T2 before T1.

Such a mismatch is due to the lack of application invariant representation in the concurrency

control.

One solution to overcome this problem in a serializable concurrency control is to provide

session guarantee [98], meaning transactions from one branch belong to the same session.

This guarantee imposes an additional constraint between T1 and T2 where T2 must observe

the output of T1. Clearly, T3 would belong to a different session. The other solution would be

adopting a stronger correctness level (e.g., strict serializability [36]) among all transactions,

78

irrespective of their originating branch. An even more conservative solution is to apply

external consistency [28], which brings the clients perceived order among transactions into

the concurrency control so that mismatches are prevented.

With our unified model, these three correctness levels can be modeled in the same way as

a combination of data-related transaction dependency, to satisfy Serializability constraints,

and external transaction dependency, to satisfy application invariant. This way, despite the

differences among these correctness levels, our model can assess the correctness of concur-

rency controls that satisfy each of them by relying on a single framework.

6.2 Formalization

A history [36] models the interleaved execution of a set of transactions T1, T2, ..., Tn, as an

ordered sequence of their operations (such as read, write, abort, commit). First, we recall

the formalization of the transaction dependency graph, already introduced in Chapter 2.

The DSG(H) for a history H represents the data-related dependency among transactions

in H. Roughly, in this graph each node is a committed transaction in H, and each directed

edge between two nodes can be of the following categorise:

• read dependency: (Ti
WR
−−→ Tj) A transaction Tj read-depends on Ti if a read of Tj

returns a value written by Ti.

• write dependency: (Ti
WW
−−−→ Tj) A transaction Tj write-depends on Ti if a write of Tj

overwrites a value written by Ti.

• anti-dependency: (Ti
RW
−−→ Tj) A transaction Tj anti-depends on Ti if a write of Tj

overwrites a value previously read by Ti.

Definition 6.2.1. DSG(H) contains a set of tuples and each tuple has the following form:

(Ti, Tj , type). This representation shows that a directed data-related (read/write/anti-) de-

pendency edge exists from transaction Ti to transaction Tj. DSG(H) = {(Ti, Tj , type) :

i, j ∈ {1, .., n} ∧ type ∈ {RW,WW,WR}}.

Since our model focuses on correctness levels stronger than, or equal to, Serializability, we

recall that a historyH is serializable if its corresponding DSG does not contain any cycle [36].

79

Performing an offline analysis of the DSG graph is a convenient tool for reasoning about

the correctness of data-related dependencies produced by a concurrency control. However,

it does not help verifying correctness of application when invariant should be preserved in

addition to Serializability. Our model aims at filling this gap, as follows.

Definition 6.2.2. An External Dependency Graph (EDG) for a given history H, denoted as

EDG(H), determines application-level constraints. In this graph, an edge from transaction

Ti to transaction Tj means an application-level requirement forces an external dependency

between Ti and Tj. We say Tj externally-depends on Ti (Ti
EXT
−−−→ Tj).

Intuitively, application invariant expressed by EDG should neither violate data-related

dependency produced by the concurrency control nor include any two contradicting con-

straints. This observation leads to the following theorem where, informally, we consider

both DSG and EDG as a single graph made by the union of them. We can check if a

history is serializable and does not violate application invariant by verifying that the afore-

mentioned single graph does not contain any cycle.

First, given a history H of n transactions, we define DSG, EDG, and their union as

follows:

• DSG(H) = {(V,E1) : V = {Ti : i ∈ {1, .., n}} ∧E1 = {(Ti, Tj , type) : i, j ∈ {1, .., n} ∧

type ∈ {WR,WW,RW}}.

• EDG(H) = {(V,E2) : V = {Ti : i ∈ {1, .., n}}∧E2 = {(Ti, Tj , type) : i, j ∈ {1, .., n}∧

type ∈ {EXT}}.

• DSG(H) ∪ EDG(H) = (V,E1 ∪ E2).

We now define our new External Serializability consistency level. We call a history

H Externally Serializable (or EC-SR) if: 1) it is serializable, and 2) external dependency

defined by the edges of its EDG are not violated. To prove that, it is necessary and sufficient

to show that the union of its DSG, built from the concurrency control implementation, with

its EDG, built from application invariant, does not have any cycle. We formalize that in

the following theorem (the proof is intuitive and omitted due to space limitations):

80

Theorem 6.2.3. A history H satisfies EC-SR iff DSG(H) ∪ EDG(H) does not have any

cycle. A concurrency control CC satisfies EC-SR iff all the histories produced by CC are

EC-SR.

6.3 Designing a System using our Unified Model

According to the formalization provided in Section 6.2, a static analysis on the DSG of a given

history detects dependencies between transactions accessing the same memory locations.

This static analysis helps programmers to assess the correctness of concurrency control with

respect to transactional accesses (e.g., read, write, etc.) to the shared objects and provides a

necessary and sufficient condition to verify if an execution is safe with respect to the targeted

isolation level.

Externally Serializable Concurrency Control

Serializable
Concurrency Control

Read Write Commit

External Dependency
Checker

Application Invariants

Figure 6.1: Designing an Externally Serializable Concurrency Control. The Serializable
Concurrency Control determines provided rules by the serializable concurrency control. Ex-
ternally Dependency Checker determines the information regarding the external dependency
provided by programmer.

However, DSG analysis on a produced schedule by a concurrency control does not disclose

applications’ requirements. In order to capture the application requirements, an additional

step is necessary to be taken by modeling application requirements inside EDG. The EDG

analysis models the information which is application specific such as programmer-provided

external dependency (or application invariants). These requirements are defined by pro-

grammers inside applications and are applicable on top of a given concurrency control. The

combination of these two steps allow programmers to reason about the behavior of concur-

rency control and make sure that external dependencies are compatible with data-related

dependencies. Figure 6.1 represents the design components of an externally consistent seri-

81

alizable concurrency control.

The figure envisions a concurrency control that exposes the traditional APIs for read-

ing/writing shared objects, and to commit or abort transactions. The concurrency control

should also expose an API so that applications can provide the concurrency control with

additional ordering constraints so that internally the system can enforce them transparently.

82

Chapter 7

EPSI: Efficient Erasure-coded Parallel

Snapshot Isolation for Key-Value

Stores

7.1 Overview

Key-value stores [7,15,18,21,57,58,74,80,99–102] are among the most deployed data repos-

itory systems for storing unstructured data because they do not require a rigid data model,

as opposed to the more traditional database relational model [16]. Key-value stores offer

interfaces to atomically read and write a single key [82,103], as well as to initiate and com-

mit transactions [15, 21, 32, 57, 74]. Because of their appealing interfaces and flexible data

model, key-value stores are often the preferred data repository for large scale social network

applications [21,57,104]. These types of applications produce a large amount of data [7,105]

and they are particularly interested in guaranteeing high performance operations and high

availability of the stored data.

The major drawback of existing solutions that provide the latter two properties is the

high storage cost. In fact, high availability and fault tolerance are traditionally implemented

using full-replication techniques [14, 53,106], such as State Machine Replication [14], where

redundant copies of the entire data repository are kept consistent and ready to be utilized

83

so that user will not experience any noticeable issue upon failures.

In this chapter, we present EPSI, a key-value store design that provides high performance,

high availability, and reduces the storage cost. With this composition of properties, EPSI

finds its ideal deployment with social networking applications. The above two properties

are achieved by EPSI as follows.

• High performance is ensured by integrating Walter [21], a distributed concurrency

control providing Parallel Snapshot Isolation (PSI) as the correctness level. PSI is

weaker than Serializability (see Section 5.2 for a comprehensive description of Wal-

ter’s guarantees), and it is specifically designed to match the needs of social network

applications.

• High availability is ensured by partitioning the data repository into shards [29,31,74],

and each shard uses the erasure coding technique [55,56] to encode each shared object

in a set of coding elements, each of which is stored on a separate replica in that shard.

The process of encoding an object in coding elements enables a significantly lower

space utilization (see Section 3.6 for a summary of existing erasure coding techniques)

as opposed to the traditional full-replication approach. On the other hand, in this

structure accessed shared objects need to be decoded (rebuilt) from their corresponding

coding elements.

Traditionally erasure coding is used by data repositories to improve the performance

of the recovery steps upon failures [57, 59, 81, 82]. The peculiarity of EPSI is that while

providing high availability and fault tolerance using erasure coding, performance is also

improved since erasure coding allows for read operations to be served by a quorum of nodes

within a shard of objects.

For generality, EPSI has been designed for easy integration with existing distributed

concurrency controls. In fact, EPSI APIs internally rely on an existing distributed key-value

store engine to transactionally read/write coding elements from/to the data repository. This

feature enables an easy deployment of EPSI in different erasure coding schemes, concurrency

controls, and application workloads.

We summarize our contributions in this chapter as follows:

84

• EPSI, a sharded architecture for a high performance, highly available transactional

key-value store. EPSI reduces storage cost by relying on erasure coding techniques

for storing objects on nodes within a shard. EPSI is optimized for read-dominated

workload and supports parallel writes by leveraging the PSI correctness level.

• EPSI’s improved performance robustness, which scales with the size of the stored

objects. In fact, the way EPSI integrates erasure coding allows for a more effective

network utilization especially in the presence of write workload, as opposed to existing

solutions, such as Cocytus [57], that saturate the network bandwidth at high object

sizes or that use erasure coding only during recovery upon failures.

• The integration of EPSI with Walter’s concurrency control and an extensive experi-

mental study to evaluate its performance and scalability against state-of-the-art com-

petitors, including those that do not deploy erasure coding, and those that utilize

stronger correctness levels, such as Serializability.

7.2 Background

7.2.1 Walter Protocol

Social networking applications such as Facebook and Twitter, require a highly available

storage system to keep a huge amount of user data, such as status updates and photos [7,10].

For example, the median of the object value sizes of Facebook is 4.34 KB for Region and

10.7 KB for Cluster [7]. An attractive storage choice for this setting is a key-value store [100]

because of its efficiency, flexibility, and low latency in accessing values. One important key

factor in these types of applications is dealing with high availability when users issue large

number of concurrent requests.

Walter [21] is a state-of-the-art distributed key-value store transactional system whose

concurrency control implements Parallel Snapshot Isolation (PSI), as a suitable consistency

model for social networking applications (PSI consistency level is studied in Section 5.2.1).

By relying on the lazy replication technique, Walter asynchronously propagates the outcome

of update transactions to all nodes in the system.

85

Lazy replication in Walter is designed by logically assigning objects to preferred nodes.

A preferred node always stores the latest version of an object. The object might also be

replicated on other non-preferred nodes, which might not always have the latest version of

objects. If a transaction begins on a node N and reads an object whose preferred node is N ,

this transaction is considered a local transaction and it is able to access the latest existing

version of the object. Otherwise, when a transaction begins on a non-preferred node or any

other node (for brevity, in both these cases we refer to this transaction as non-local), the

read operations can result in an outdated object version. Walter achieves high performance

for read-only workload at the cost of reading arbitrarily old data in case accessing non-local

objects by read-only transactions, which is an acceptable trade-off for applications with

social networking characteristics.

In the following, we overview Walter concurrency control APIs, since the implementation

of EPSI in this dissertation relies on Walter concurrency control to perform operations on

the date repository.

Walter’s Overview and Metadata

When transaction T starts on a node, the WalterBegin(T) API is called by the Walter con-

currency control. For operating a read operation on object key, the WalterRead(T, key) API

is invoked and every write operation on object key needs calling WalterWrite(T, key, val)

to update the corresponding value of key to the value val.

A read-only transaction T in Walter only calls WalterRead(T, key) one or multiple times

before it completes. If T is an update transaction, T can be tried to be committed by relying

on the Two-Phase Commit protocol (2PC) [85]. The new versions of objects written by T

are installed in the data repository if the commit decision is made by 2PC protocol and

therefore, T successfully completes.

Figure 7.1 presents the set of metadata associated with every transaction and every node

in Walter’s concurrency control. Every node in Walter is assigned with a unique number

between 0 and n − 1, where n is the total number of nodes in the system. This identifier

is called nodeid (i.e., Nid). The node with the identifier Ni is also assigned a scalar called

CurrSeqNoi, which represents the sequence number of the latest transaction issued and

86

Transaction T ’s State:

T.writeset
T.V C
T.commitV C
T.seqNo

Node’s State:

nodeid
node.CurrSeqNoid
node.V Cid

Figure 7.1: Transaction metadata and node metadata in Walter.

committed at node Ni.

Since Walter synchronizes transactions using vector clocks [69], each node Ni is associated

with a vector clock, called node.V Ci. Note that the size of all used vector clocks in Walter

is equal to the number of nodes in the system. The jth entry of this vector clock in node Ni

represents the last transaction from node Nj that was committed at node Ni.

The state of transaction T is described by two different vector clocks, one called T.V C

and the other called T.commitV C. T.V C encapsulates the knowledge of T with respect to

the logical timestamps of other nodes. In practice, T.V C is used as visibility bound for all

versions accessible by T . When the commit decision for transaction T issued by Ni is made,

the CurrSeqNoi is incremented and node.V C of Ni (i.e., node.V Ci) is updated at the ith

position and the updated value of node.V Ci is assigned to transaction commit vector clock

(i.e., T.commitV C). Every transaction T during the execution and before commit buffers

its written objects in a private buffer called T.writeset.

Walter Concurrency Control APIs

Algorithm 13 shows the summary of steps taken by the implementation of each API in

Walter concurrency control. When WalterBegin(T) is called, T.V C is initialized by the

value of the node.V C of the node where the client invokes the operations. This initialization

sets the visibility bound of T for the subsequent read operations. In order to read key k,

WalterRead(T, k) is used and the state of k is either returned from the local data repository,

if present, or it is returned by a remote node that stores k. The returned state of k should

87

comply with the visibility bound of T or T.V C (Lines 3-4 of Algorithm 13). The API

WalterWrite(T, k, val) simply buffers the value val in T.writeset without installing it into

the data repository (Lines 5-6 of Algorithm 13).

Algorithm 13 Walter API description in the node Ni

1: function WalterBegin(Transaction T)
2: T.V C ← Ni.V C

3: function WalterRead(Transaction T, key k)
4: return the state of k from T.writeset and all versions in the local storage visible to

T.V C if it is locally stored, or all versions in the remote node storage visible to T.V C

5: function WalterWrite(Transaction T, key k, value val)
6: append (k, val) to T.writeset

7: function WalterPrepare(Transaction T, Set participants)
8: if (a write-conflicting transaction has committed after T started on a participant)

then

9: return Abort
10: else

11: if (a write-conflicting transaction is currently executing on a participant) then

12: return Abort
13: else

14: return PrepareOK

15: function WalterCommit(Transaction T, Set participants)
16: T.seqno← ++ CurrSeqNoi
17: for all (Nj ∈ participants) do

18: update(T.writeset, T.seqNo, T.commitV C)
19: wait until transactions with lesser sequence numbers commit
20: node.V Cj [i]← T.seq
21: return true

22: function WalterPropagate(Transaction T, Set participants)
23: for all (Nj /∈ participants) do

24: send Propagate[T, T.seqNo] asynchronously to all Nj

.

After finishing all operations of T , the commit phase of T is started by invoking the

WalterPrepare API. This API starts running 2PC by contacting the nodes which store

T.writeset to prepare these keys if there is not any other transaction that is concurrent with

T and conflicting (Lines 7-14 of Algorithm 13). If there is no concurrent transaction that its

writeset has a conflict with T.writeset, WalterCommit can be called by the coordinator of

88

T . The coordinator first increments its associated currSeqNo and sets that as the sequence

number of transaction (Line 16 of Algorithm 13). The coordinator then contacts all the

participant nodes to install the updates and update their corresponding NodeV C (Lines 17-

21 of Algorithm 13).

At this stage T completes and the outcome of T can be propagated to the rest of the

nodes in the system by calling WalterPropagate API (Line 22-24 of Algorithm 13).

7.2.2 Erasure Coding

Different models exist in the literature for providing fault tolerance and durability in the

presence of transactional modifications. In a replicated model [21, 32, 50], each object (e.g.,

key, value, associated metadata) is stored by more than one node in the system. In case a

failure occurs, objects stored in the failed node can be retrieved from the other non-faulty

nodes. Typically, in a replicated scheme, to tolerate M failures, M additional storage nodes

and their corresponding processing power is needed. For example, if M is equal to 2, the

system can tolerate two node failures, however, the storage efficiency of a key-value store

can only reach 33%, meaning about 66% of the storage is accounted for the redundancy.

Erasure coding (EC) is an alternative redundancy technique to replication in storage

systems due to its space efficiency and the continuous reduction in its computation over-

head [57, 107]. In erasure coding, the data is divided into a set of fixed-size coded units

called coding elements through a process called encoding.

The coding elements are built using two configurable parameters called M and N (N <

M). Here, M is the total number of coding elements produced from encoding the original

data; N is the number of data coding elements ; (M − N) is the number of parity coding

elements. Using an erasure coded data, any N of the M coding elements can decode the

original data. The latter property of erasure codes is called maximum distance separable

(MDS) [55].

Reed-Solomon codes (RS-code) [55] is a commonly used of erasure coding scheme which

computes parity coding elements according to its data coding elements [55]. We denote the

corresponding RS-code scheme using M total coding elements and N data coding elements

as RS(N,M). RS(N,M) can tolerate M −N node failures at most.

89

7.3 System Model

EPSI assumes a system made of a set of nodes that share neither memory nor a global clock.

Nodes communicate through message passing over reliable asynchronous channels, meaning

messages are guaranteed to be eventually delivered unless a crash happens at the sender or

receiver node. There is no assumption on the speed and on the level of synchrony among

nodes. We consider the classic crash-stop failure model: nodes may fail by crashing, but do

not behave maliciously. A node that never crashes is correct; otherwise, it is faulty.

Every node maintains shared objects (or keys) adhering to the key-value model [32, 50,

57, 58]. The data repository is multi-versioned, meaning each shared object keeps a list

of previous versions. Each version stores the value and the commit vector clock of the

transaction that produced the version.

The entire data repository is sharded. Each shard is highly available through encoding

all the objects in that partition across a set of nodes that belong to that shard.

EPSI deploys erasure coding to guarantee fault tolerance and the durability of objects

stored by a shard. We assume each shard to be composed of M nodes. The value v of a

key is therefore divided into M coding elements represented in a vector [c1, ..., cM]. Each

ci corresponds to a specific key stored in node i. For encoding, first v is divided into N

elements (v1, ..., vN). If the size of v is s, then each vi has the size equal to s/N . The encoding

function takes the v1, ..., vN as input and produces a vector in the form of [c1, ..., cM]. The

vector [c1, ..., cM] stands as the vector of code words corresponding to the value v. The size

of each ci is equal to s/N .

In the erasure coded scheme of EPSI, we store one coded element ci of a key per node in

the appropriate shard. As a consequence of this process, a single node in a shard does not

own enough information to rebuild the value of a shared object; it always needs a certain

number of other coding elements to rebuild the object value, depending on the configuration

of erasure coding technique used.

Within a shard, EPSI elects one node, called the leader of the shard. This node is in

charge of performing commit procedures on objects stored in the shard.

For object reachability, EPSI assumes the existence of a local look-up function using

90

consistent hashing [101], a commonly used technique to map keys to nodes, or shard as the

case of EPSI.

Transactions that do not execute any write operation are called read-only, otherwise,

they are update transactions. Read-only transactions are expected to be identified by the

programmer.

We model transactions as a sequence of read and write operations on shared objects (or

keys), preceded by a begin operation, and followed by a commit or abort operation. A client

application begins a transaction on any node. If the transaction is an update transaction,

then it is forwarded to the leader of the shard for execution. If the transaction is read-only,

then it can execute on any node. No apriori knowledge on the accessed keys is assumed.

In terms of consistency level, EPSI preserves Parallel Snapshot Isolation since internally

it uses Walter [21] to read and write coding elements.

7.4 Overview and General Architecture

At the core of EPSI there is a concurrency control middleware that exposes transactional

APIs to the application and leverages the APIs of an existing distributed concurrency control

to read and write data stored in the data repository. In our design for EPSI, we decide to

leverage Walter as the underlying distributed concurrency control to perform operations on

the erasure-coded data repository.

EPSIBegin()
EPSIRead(key)→ object
EPSIWrite(key, value)
EPSICommit()
EPSIAbort()

WalterBegin()
WalterRead(key)→ object
WalterWrite(key, value)
WalterCommit()
WalterAbort()

(a) EPSI APIs (b) Walter APIs

Table 7.1: Application interfaces of EPSI and Walter.

Table 7.1(a) lists the APIs that EPSI exposes to the application layer. On the other hand,

Table 7.1(b) shows the APIs of Walter, which are internally used by EPSI. EPSI’s application

interfaces implement the logic of the layered concurrency control and their primary goal is to

invoke the internal APIs of Walter, listed in Table 7.2, on the specific nodes of the systems.

91

Non-leader’s interfaces:

EPSIBegin(T)
EPSIRead(T, key)→ object
Leader’s interfaces:

EPSIBegin(T)
EPSIRead(T, key)→ object
EPSIWrite(T, key, value)
EPSICommit(T, participants)
EPSIAbort(T)

Node’s interfaces:

WalterBegin(T)
WalterRead(T, key)→ object
WalterWrite(T, key, value)
WalterPrepare(T, participants)→
PrepareOKorAbort
WalterCommit(T, participants)
WalterPropagate(T, participants)
WalterAbort(T)

(a) EPSI internal interfaces (b) Walter internal interfaces

Table 7.2: Internal interfaces of Walter, used by EPSI’s concurrency control.

In order to decouple Walter’s concurrency control from EPSI’s, the data distribution is

entirely provided by EPSI, while Walter’s handlers are simply scheduled for execution on

selected nodes to implement EPSI’s protocol logic.

In a nutshell, EPSI processes transactions over highly available data and optimizes stor-

age cost by exploiting the erasure coding technique. Metadata associated with the shared

objects in the data repository are not stored using erasure coding; instead, object values

are encoded as follows. Let us assume for simplicity in the explanation that each shard Si

is made of M nodes (i.e., M = |Si|). EPSI deploys Reed Solomon technique, specified as

RS(N,M), which divides an object o into M coding elements, and requires N of them to

rebuild the original value. As a result of this scheme, some of M nodes, denoted with NDk,

store a fraction of the value of the stored object; the remaining nodes in M , denoted by

NPk, store parity information associated with o.

Read operations in EPSI are served by contacting all nodes (i.e., M) within a shard

and waiting for a quorum of responses of size N to be able to decode the original value

of the read object. This way of executing read operations showcases the full integration of

erasure coding into EPSI concurrency control. In fact, by relying on quorum reads, EPSI

can overcome the performance bottleneck due to one or more slow nodes, depending on

the selected erasure coding configuration. Effectively, the read requests for a single object

are sent in parallel to the nodes of the target shard, without incurring in any additional

sequential cost.

Erasure coding directly impacts the way new versions of written objects are stored. In

92

fact, when an update transaction reaches the stage where its commit has been decided,

all new versions of written objects should be encoded in order to produce the M coding

elements to be stored into the M nodes of each target shard.

The process of encoding is a CPU intensive task and its overhead is not incurred by other

data repositories that do not rely on erasure coding for optimizing storage cost. Although

encoding/decoding enables reducing storage cost, the performance impact might offset the

benefits in a system that aims at high performance as first priority. Interestingly, from a

system perspective, the encoding process accepts an object value in input and produces a

set of coding elements as output, each of which is effectively just a stream of bytes. The

actual value represented by this stream of bytes by itself is unusable without other coding

elements and the decode procedure. In other words, this stream of bytes can be immediately

used by the key-value store to be transmitted over network, as well as stored on the data

repository as is placed. Using this intuition, the key-value store is able to save the CPU

intensive task of serializing/deserializing object values over the network. As a result, EPSI is

able to compensate the overhead introduced by erasure coding with the capability of saving

expensive network (de)serialization operations.

Another advantage of the way EPSI integrates the erasure coding technique in its read

and write operations is the better network utilization when compared with existing solutions

that do not use erasure coding for transaction processing, such as [21,57]. In fact, because of

the encoding process, a single object value is split into multiple coding elements that need to

be transferred independently to different nodes. Although this approach indeed increases the

number of messages to be sent over the network, which contradicts the well-known benefits

of batching [82], it becomes advantageous when the object size increases significantly, as

illustrated below with a practical example.

Let us assume object values of 16 KB (Facebook in [7] reports value sizes between 4 KB

and 10 KB). When broken down in six coding elements, each of them will have a size of 4

KB. This size is still large enough to well utilize the network infrastructure, but it is not so

large to over stress the operating system’s network stack of the receiving node. At the same

time, since coding elements are sent in parallel, the latency to transmit 16 KB to a single

node is divided into multiple smaller and parallel streams directed to different nodes.

93

As also empirically confirmed in our evaluation study in Section 7.6, EPSI performance

scales better than competitors increasing the size of objects values stored in the data reposi-

tory. This characteristic is particularly important for social applications because clients can

produce posts whose content can be of arbitrarily high size given the heterogeneous nature

of the content (e.g., image).

EPSI supports read-only transactions that never abort due to concurrency. This is

enabled by the reliance on Walter as underlying concurrency control. With Walter, read

operations always read from a consistent snapshot, which however can be not updated to

the latest snapshot available. This decision matches the application target for EPSI, which

is social applications. In these applications, it is understandable for a read operation to

miss some posts written by recent write operations. On the positive side, this decision

enables very low-latency reads because of the reduced protocol synchronization with write

operations.

NA
D1 N

A
D2 N

A
D3
NA

D4 NA
P1
NA

P2

Shard A
Client

leader

BeginEPSI

ReadEPSI (a)

WriteEPSI (b, bval)

WriteEPSI (c, cval)

Shard B

leader

Shard C

leader

EPSICommit ()

E
P

S
IB

e
g

in
(T

)
E

P
S

IW
ri

te
(T

,
k

e
y

,
v

a
lu

e
)

E
P

S
IC

o
m

m
it

(T
)

NB
D1 N

B
D2 N

B
D3
NB

D4 N
B
P1N

B
P2 NC

D1 N
C
D2 N

C
D3
NC

D4 NC
P1
NC

P2

Figure 7.2: Example execution of a write transaction in EPSI. Dashed blue lines separate
phases of transactional execution. Dashed arrows represent asynchronous messages. Over-
lapped arrows show parallel messages.

Update transactions are committed using the well-known Two-Phase Commit protocol

(2PC) [85]. The parallel execution of concurrent transactions writing common objects is

prevented by relying on the two-phase locking standard algorithm, in which locks are ac-

94

quired during the 2PC prepare phase. In EPSI, the lock table is maintained by the leader

node of the shard where the object is stored. Because of that, the 2PC process only involves

all leader nodes of the shards where new versions of the written objects need to be installed

on all the nodes of its corresponding shard. When all locks on the written objects have been

acquired at the end of a successful prepare phase, new object values are encoded and the

produced coding elements are distributed during the decide phase of the 2PC protocol to

all nodes in the involved shards.

Figure 7.2 summarizes the overviewed protocol. In the pictured example, a client appli-

cation performs a transaction T , which reads object a and writes objects b and c, each of

them stored in the respective shard. Let us assume the client is connected to node NA
D1

from

ShardA and it uses the APIs listed in Table 7.1(a) to executes T . Each shard implements

the Reed Solomon coding scheme where every block of data consists of four data coding

elements and two parity coding element (i.e., RS(4, 6)), in which the crash of up to two

nodes can be tolerated.

At first, since T is a write transaction, it should be forwarded to the leader of ShardA,

namely NA
P2

, in order to establish the logical clock that will be used by T for its read

operations. The read operations on a is sent to all nodes of ShardA and its value is decoded

as soon as 4 out of the 6 nodes in ShardA return the related coding elements. For the sake

of clarity, we defer to the protocol details in Section 7.5 the discussion about which version

to be selected upon a read operation.

Since EPSI implements an optimistic concurrency control (OCC) design [90] similar to

Walter, the write operations on objects b and c are buffered locally by T . The 2PC protocol

is then executed by node NA
P2

to validate and commit T . The prepare phase of the 2PC

involves the leaders of the two shards involved, namely NB
P2

and NC
P2

. On the other hand,

the decide phase of the 2PC distributes the encoded coding elements by contacting all nodes

of ShardB and ShardC.

Later on, asynchronously, T ’s coordinator (NA
P2

) forwards the updated logical clock to

the other nodes of ShardA to establish the effect of T on the other nodes of ShardA.

95

7.5 Protocol Details

In the following, we show the details of EPSI protocol and architecture, including the steps

of its transactional operations. As it is stated in Section 7.4, EPSI leverages Walter as

the underlying distributed concurrency control to execute transactional operations on the

erasure-coded key-value store.

7.5.1 Terminologies

In the following, we assume that the number of nodes inside each shard in EPSI is M and

from this M nodes per a shard, N of them are data nodes, meaning they store data coding

elements, and M − N of them are called parity nodes due to preserving parity coding

elements. Every node N belonging to shardi is represented as Nshardi. The leader of shardi

is represented as leader(shardi). For any key k, shard(k) returns the M nodes that store

the M coding elements of k. If we have a set of keys (e.g., keySet), then shards(keySet)

returns all nodes that store each key in keySet and leaders(keySet) returns all nodes that

store each key in keySet and are the leaders of their corresponding shards. We also note

that if node N maintains a key k in its corresponding data repository, then k ∈ N .

7.5.2 Transactional Begin Operation

Algorithm 14 shows the pseudo-code of the begin operation of transaction T in EPSI. Let us

assume the begin operation is received by node N , which belongs to shardi (i.e., Nshardi).

In order to do so, EPSI calls EPSIBegin(T), shown in Algorithm 14.

Algorithm 14 The procedure of EPSIBegin(T) in node Nshardi

1: function EPSIBegin(Transaction T)
2: if (T is a read-only) then

3: WalterBegin(T)
4: else

5: if (Nshardi is the leader(shardi)) then

6: WalterBegin(T)
7: else

8: send Forward[T] to leader(shardi)

Lines 2-3 of Algorithm 14 show the steps taken by EPSI for starting a read-only transac-

96

Algorithm 15 Handling the procedure of EPSIBegin(T) for the forwarded transaction T
in leader(shardi)

1: upon receive Forward[T] do

2: WalterBegin(T)
3: end

tion. If T is a read-only transaction, EPSI calls WalterBegin(T) API (described in Lines 1-2

of Algorithm 13) in Nshardi. For update transactions, EPSI design choice is to only involve

leaders’ nodes before the commit decision is made. Therefore, T needs to be forwarded,

by sending a Forward message, to the leader of the shardi (i.e., leader(shardi)) (Line 8 of

Algorithm 14) and when the Forward message is received by the leader, WalterBegin(T) is

invoked. As it is shown in Lines 1-3 of Algorithm 15, the leader of shardi is the coordinator

of T for the rest of the execution.

7.5.3 Transactional Write Operation

Algorithm 16 represents the pseudo-code for a write operation in EPSI.

Algorithm 16 The procedure of write operation in EPSI

1: function EPSIWrite(Transaction T , key k, value val)
2: WalterWrite(k, val)

Update transactions in EPSI implement lazy update [90] as Walter protocol mandates,

meaning their written keys are not immediately visible and accessible at the time of the

write operation; they are logged into the transactions write-set and become visible only at

commit time.

The WalterWrite(T) API of Walter is invoked by EPSI for write operation. This API

buffers the written key by T with its corresponding values in T ’s private buffer (see Lines 5-6

of Algorithm 13 for WalterWrite(T)).

7.5.4 Transactional Read Operation

Algorithm 17 represents the details of steps taken by EPSIRead API for reading object

k. In EPSI, the read API of Walter is called (i.e., WalterRead(k)) which is detailed in

Section 7.2.1, and presented in Algorithm 13, Lines 3-4.

97

Algorithm 17 Read Operation in the node Ni using EPSI

1: function EPSIRead(Transaction T , key k)
2: targetNodes← {Nj : Nj ∈ shard(k)}
3: target← Q : Q ⊆ targetNodes : |Q| ≥ N
4: WalterRead(k)
5: wait receive ReadReturn[ci] from all Nj ∈ target
6: val = DECODE(c1, c2, .., c|Q|)
7: return val

Since EPSI storage is based on the Reed Solomon technique (i.e., RS(N,M)), in order

to read k, and rebuild the value of k from the returned coding elements, N number of coding

elements need to be returned by the nodes in the target shard. After receiving a quorum

of size M of ReadReturn messages, the original value can be constructed by invoking the

decode function from the given Backblaze Reed Solomon implementation [108].

7.5.5 Transactional Commit Operation

Algorithm 18 represents the implementation of the EPSICommit API of EPSI, which is

called when the commit phase of transaction T is started. EPSI never aborts read-only

transactions, meaning read-only transactions can commit without going through any the

commit phase (Lines 2-3 of Algorithm 18).

Algorithm 18 Commit of transaction T in leader(shardi) (i.e., Ni) using EPSI

1: function EPSIPrapre(Transaction T)
// Check if T is a read-only transaction

2: if (T is a read-only) then

3: return true
4: WalterPrepare(T, leaders(T.writeset))→ output
5: if (output is Abort) then

6: WalterAbort(T)
7: else

8: EPSICommit(T, shards(T.writeset) ∪Ni)

9: function EPSICommit(Transaction T, Set participants)
10: for all (< k, val >∈ T.writeset) do

11: [c1, c2, ..., cM] = ENCODE(val)
12: T.writeset← T.writeset\{< k, val >}
13: T.writeset← T.writeset ∪ {< k, [c1, c2, ..., cM] >}

14: WalterCommit(T, participants)
15: WalterPropagate(T, participants)

98

For update transactions, EPSI calls WalterCommit(T,participants and WalterPropa-

gate(T,participants) (discussed in Section 7.2.1 and detailed in Algorithm 13). The exe-

cution of 2PC is carried by T ’s coordinator, which is the leader of the shard where T ’s client

connected for processing T . The 2PC involves all the leaders of the remote shards where

T ’s written keys. Because of this design choice of EPSI, meaning that write transactions

can be committed only by shard leaders, the size of the vector clocks used for ensuring the

correctness of EPSI’s protocol is equal to the number of shards in the distributed system,

as opposed to the existing solutions (e.g., Walter [21], GMU [50] and SSS [32]) where vector

clocks have a size equal to the total number of nodes in the system.

The first step of commit in EPSI is to call WalterPrepare API, which performs the

prepare phase of the 2PC protocol. If in this phase a write-conflicting transaction is

detected, then T is aborted retried (Lines 4-6 of Algorithm 18). If the prepare phase

is successfully completed by all the leaders of the involved shards, then EPSICommit is

called, which aims at establishing the written keys and the updated vector clocks of T in all

the nodes of the involved shards, in addition to T ’s leader.

Since the data repository of each node store the coding elements, the written keys of T are

needed to be encoded before the WalterCommit API is called (Lines 10-13 of Algorithm 18).

After this step WalterCommit(T, participants) is called in Line 14 of Algorithm 18 to

complete the commit process. WalterCommit(T, participants) establishes T ’s updates

and installs its commit vector clock into the involved nodes’ vector clocks. When all the

involved nodes apply T ’s updates, T successfully completes and its client is notified regarding

T ’s completion.

EPSI calls WalterPropagate(T participants) to propagate the effect of T ’s commit to

the nodes that were not involved in the 2PC for committing T . This procedure propagates

the information regarding the logical clock updated as a consequence of the commit of

transaction T to all the nodes in the system. This is done to ensure that subsequent read

operations issued by any nodes will be able to read the objects written by T .

99

7.6 Evaluation Study

7.6.1 Configuration and System Parameters

As testbed, we use 30 nodes of type m510 taken from the Cloudlab public platform [93].

Each node is a physical machine with eight-core Intel Xeon D-1548 at 2.0 GHz and 64GB

of RAM. Nodes are interconnected using a 10Gb/s network. All the results are the average

of 5 trials.

There are 10 application threads (i.e., clients) per node injecting transactions in the

system in a closed-loop (i.e., a client issues a new request only when the previous one has

returned). We configure each of the 10 clients to send objects of the same value size, which

we vary from 12 bytes to 16 KB across different tests.

In terms of erasure coding configuration, we use RS(4, 6) erasure coding in all the ex-

periments. With this setting, we can tolerate up to two failures. For the competitors that

do not use erasure coding but replication to provide fault tolerance and availability, we set

the replication degree to three for a fair comparison with EPSI.

7.6.2 Benchmarks and Workload

The performance of EPSI, with its integration of Walter’s concurrency control, has been

evaluated using two well-known benchmarks for key-value stores, namely YCSB [92] and

Retwis [68]. In both the benchmarks we varied the size of objects values from a small 12

bytes up to 16 KB and the size of objects keys is set to 4 bytes. In both benchmarks,

transactions select keys to be accessed using a uniform distribution, which entails accesses

might or might not be to the local data repository.

YCSB has been configured to produce two transaction profiles: one is read-only, with a

configurable number of read operations; the other is update, in which two write operations

are included, along with two read operations. Varying the number of read operations allows

us to test performance with short and long read-only transactions. Retwis is a Twitter clone

application with operations to post content on users’ walls and read users’ walls. There is

a single table and each row is a key-value pair. We support two transactions, namely, (i)

PostTweet and (ii) GetTimeline. A user can post a tweet to the social network via the

100

PostTweet transaction. The GetTimeline transaction returns the tweets from a user and

his/her followers. The PostTweet profile updates 5 shared objects and reads 3 objects. The

latter profile is read-only and accesses random number of objects between 1 and 10.

7.6.3 Competitors

We compare EPSI against the following competitors: Cocytus [57], Walter [21] and 2PC-

baseline. All these competitors offer transactional semantics over key-value APIs. EPSI

and its competitors have been developed from the ground up in Java, sharing the same

underlying infrastructural components, such as the implementation of the communication

layer. This has been done in order to provide them with fair and comparable optimizations.

Cocytus [57] is a transactional key-value store that provides Serializability [37]. Cocy-

tus stores objects into shards and each node in Cocytus runs both parity processes and

data processes in order to make all the nodes busy in both update-intensive or read-mostly

workload. A transaction reads/modifies the whole data block by accessing data processes.

Update transactions generate the parity coding elements corresponding to their updated

data blocks in order to distribute them among parity processes.

2PC-baseline is a serializable key-value store and a single-version system where all trans-

actions execute optimistically and rely on the Two-Phase Commit protocol to commit both

update and read-only transactions.

All competitors have been enhanced with the one-shot read technique [109]. With that,

all read operations of both read-only and write transactions are issues at the same time

at the beginning of the transaction execution. This is an optimization allowed when the

application is aware of the target objects to be read in advance.

7.6.4 Experimental Results

YCSB

Workload of 50% read-only transactions. We first analyze the results using a low-

contention case, in which 1M objects have been deployed in the distributed data repository

and the measured abort percentage is below 6%. Figure 7.3 includes the throughput results,

101

with the breakdown between read-only and update throughput, using 50% read-only work-

load. The different clusters in each plot show results using different sizes for object value,

in the range 12 bytes up to 16 KB. Also, read-only transactions perform 2 read operations,

in Figure 7.3(a), and 32 read operations, in Figure 7.3(b).

(a) 2 read operations inside read-only transactions. (b) 32 read operations inside read-only transactions.

Figure 7.3: Throughput of YCSB varying the size of object values and 50% read-only trans-
actions.

In Figure 7.3(a), the read-only profile reads two objects and the update profile reads

and updates two objects. Under 50% read-only workload, Cocytus outperforms EPSI, by

up to 25%, when the object size is up to 4 KB. This is mainly because of the higher update

throughput of Cocytus. In fact, in Cocytus every update transaction can be served by any

node in the system. On the other hand, EPSI allows only shard leaders to process update

transactions. As a result, the write throughput of EPSI is generally lower than Cocytus’s;

and this observation is confirmed by the trends on other plots as well. It is also important

to note that, in all configurations, EPSI’s read-only throughput is higher than any other

competitor. We attribute this advantage to the capability of exploiting quorum reads, which

prevent slow down due to possibly overloaded nodes.

For the case of 16 KB, EPSI outperforms Cocytus by 40%. This is because of two reasons

in the presence of a high percentage of update transactions. First, Cocytus produces and

needs to transmit over the network an excessive amount of parity coding elements. Second,

the large values are transferred to a single node while in EPSI, these large values are split

across nodes in the shard, which optimizes network utilization and provides a more balanced

102

load across nodes.

With respect to the other competitors, EPSI is faster than Walter, by up to 3×, and

faster than 2PC-baseline, by up to 7×. The speedup with respect to Walter is due to the

fact that reads can be served by a quorum, especially in the case of high value sizes, and

because with a single leader per shard, update transactions are aborted less frequently since

the leaders’ reading snapshot is always more updated than any other node, as the case of

Walter.

In Figure 7.3(b), the read-only profile reads 32 objects and the update profile reads and

updates 2 objects. EPSI outperforms Cocytus up to 4×, when object size is greater than 12

bytes. The reason is related to the higher network utilization of Cocytus given the increased

read operations. In fact, EPSI can serve them exploiting quorums, balancing the load across

nodes, while Cocytus is forced to read from a single node per object. The gap between EPSI

and Walter decreases to up to 50% with respect to the gap in Figure 7.3(a). EPSI is faster

than 2PC-baseline by up to 12× since, when the number of read operations increases, 2PC-

baseline needs more network communications for read-only transactions compared to the

case of small read-only transactions (i.e., Figure 7.3(a)).

Workload of 80% read-only transactions. In Figure 7.4 we compare the through-

put of EPSI against the rest of the competitors using a workload made of 80% read-only

transactions.

(a) 2 read operations inside read-only transactions. (b) 32 read operations inside read-only transactions.

Figure 7.4: Throughput of YCSB varying the size of object values and 80% read-only trans-
actions.

103

In Figure 7.4(a), with short transactions, EPSI’s performance matches Cocytus’s per-

formance only for large object size (i.e., 16 KB). In all other cases, performance is lower.

The reason for such a trend is twofold: (i) number of read operations is small and therefore

reading from a quorum of nodes does not carry benefits, and; (ii) with only 20% update

transactions the network overhead of transmitting parity coding elements is negligible.

When the size of read-only transactions increases to 32, results shown in Figure 7.4(b),

the advantages of EPSI’s concurrency control and erasure coding technique kick in, therefore

allowing up to 6× performance improvement over Cocytus.

Analyzing the results of EPSI against the other competitors, we found that, in the case

of small read-only transactions 7.4(a), EPSI’s throughput is higher than Walter, by up to

55%. In the case of having long read-only transactions, Figure 7.4(b), Walter is slightly

faster than EPSI (up to 8%) for objects less than 1 KB. The latter configuration represents

Walter’s performance sweet spot (i.e., long read-only intensive workload).

EPSI outperforms 2PC-baseline using both small and long read-only transactions. EPSI

is up to 12× faster than 2PC-baseline for long read-only transactions (see Figure 7.4(b)) due

to the additional network communications needed to commit those types of transactions.

Increasing Contention. Figure 7.5 shows the behavior of EPSI and the competitors

when 10K objects are distributed among 5 shards (i.e., 2K per shard). In this scenario,

contention increases because there are 50% update transactions, a lower number of objects,

and long read-only transactions.

Figure 7.5(a) presents the measured throughput and Figure 7.5(b) quantifies the mea-

sured abort rate using these settings and by varying the size of object values.

Generally, the best performing competitor with increased contention, except for the case

of large object size, is Walter followed by EPSI. This is mainly due to the single-leader

constraint of EPSI. In fact, the update throughput of Walter is almost twice the update

throughput for EPSI. Although Figure 7.5(b) reports Walter with a higher abort rate than

EPSI, it’s update transaction commit latency is much lower, which allows transactions to

still commit quickly even after getting aborted. The benefits of EPSI kick in at object size

16 KB, where it outperforms Walter by 3×.

104

(a) Throughput of YCSB varying the size of object value. (b) Abort rate of YCSB varying the size
of object value.

Figure 7.5: Throughput and Abort rate of YCSB varying the size of object values and 50%
read-only transactions under the high contention (i.e., 10K keys).

The performance trend of Cocytus in Figure 7.5(a) is similar to the case of low contention

with long read-only transactions, with the aggravation of higher abort rate due to contention.

2PC-baseline is the worst performing competitor because of its high abort rate, exacer-

bated by the replication degree set to three, and the need of coordinating the commit phase

of read-only transactions, as opposed to Walter and EPSI.

Erasure Coding and Network Utilization. Figures 7.6 and 7.7 show the impact of the

different ways EPSI and Cocytus use to integrate erasure coding, for 50% and 80% read-only

workload when the size of read-only transactions increases from 2 (i.e., small read-only) to

32 (i.e., long read-only). We measure that by changing the network configuration between

nodes, from a dedicated network to a network shared with other applications. With a

dedicated network, the entire bandwidth is reserved to support the functionality offered

by EPSI and Cocytus. On the other hand, with a shared network, foreign workloads can

influence network performance, penalizing the competitor that requires long transmission

sessions.

Figure 7.6 shows the throughput of EPSI and Cocytus by varying the network configu-

ration from dedicated to shared, using 50% read-only workload. Using the shared network,

Cocytus throughput is between 4× and 8× slower than the throughput when using the ded-

icated network, as is shown in Figure 7.6(a). The performance of EPSI for each data size is

105

(a) 2 read operations inside read-only transactions.

(b) 32 read operations inside read-only transactions.

Figure 7.6: Throughput of YCSB varying the size of object values and 50% read-only trans-
actions using both a dedicated and a shared network in EPSI and Cocytus.

almost the same using both network configurations.

In Figure 7.7 the observed throughput of EPSI and Cocytus is shown using 80% read-only

workload and the different size of read-only transactions. Summarizing, EPSI’s throughput

does not change using different network configurations.

In Figure 7.7(a), the performance degradation of Cocytus is 10× than using a dedicated

network, for small object value sizes (e.g., 100 bytes). For larger object value sizes (e.g.,

16 KB), Cocytus’s throughput does not change. Figure 7.7(b) represents the performance

difference with the two network configurations using long read-only transactions. In this

case, Cocytus is 2× slower for large size of object values (i.e., 16 KB).

Before going into the details of our analysis, we can summarize our findings by saying

that, generally, the combination of erasure coding transactional accesses and the exploitation

of quorum read in EPSI makes EPSI less sensible to the network configuration. As a result,

EPSI shows a more robust performance than Cocytus, in which transactional operations

106

(a) 2 read operations inside read-only transactions.

(b) 32 read operations inside read-only transactions.

Figure 7.7: Throughput of YCSB varying the size of object values and 80% read-only trans-
actions using both a dedicated and a shared network in EPSI and Cocytus.

access non-erasure coded values. Results confirm this claim under different workloads.

Retwis

Retwis benchmark is a social networking application, which we configure to produce 50%

and 80% read-only workload. As opposed to YCSB, in Retwis update transactions do not

read and write the same keys, therefore they do not need to be validated and their expected

abort rate is lower. Because of that, we focus on the competitors ensuring PSI (EPSI and

Walter) since they are expected to provide significantly better performance than competitors

enforcing Serializability (Cocytus and 2PC-baseline).

Figure 7.8 plots the results of Retwis benchmark. In Figure 7.8(a), EPSI outperforms

Walter by up to 3× for all the object size. This is because Walter incurs in a higher abort

rate than EPSI using 50% read-only workload. EPSI’s abort rate is less than 2% for all the

objects size. Walter’s abort rate is 10% when the object size is equal to 12 bytes and is 40%

107

(a) 50% (b) 80%

Figure 7.8: Throughput of Retwis varying the size of data using EPSI and Walter.

when the object size is 16 KB.

In Figure 7.8(b), EPSI outperforms Walter only with 16 KB objects size. This is due to

the exploitation of quorum reads, which lead to better network utilization.

108

Chapter 8

Conclusions and Future Work

8.1 Conclusion Remarks

Transactional data repositories certainly represent one of the most important building blocks

to develop applications and services that manipulate data in the presence of concurrent client

requests. In order to make these repositories able to process realistic workloads, which often

involve a massive amount of interacting users, they need to maintain high performance,

scalability, and fault tolerance. The research included in this dissertation has a twofold

aim, improving i) system programmability, which is the capability of a system to provide

applications with features that are easy to use; and ii) the cost of fault tolerance, namely

the space overhead needed to ensure normal operation despite the presence of failures, in

distributed transactional systems.

We address system programmability by focusing on two well-known correctness levels,

external consistency and Parallel Snapshot Isolation (PSI), and improve the freshness of their

read operations without the need of relying on special purpose hardware. The outcome of

our innovations allows those transactional systems to be easily adopted and extended by

both academia and industry.

The first contribution included in this dissertation and presented in Chapter 4, is SSS.

SSS is a transactional key-value store that provides external consistency. SSS ensures high

programmability because it prevents incorrect results (e.g., “unrealistic” results or obsolete

data) from being propagated to the application (i.e., clients) by preserving external con-

109

sistency. SSS novelty is to use the snapshot-queuing technique for propagating established

serialization orders among concurrent transactions.

Our second contribution is FPSI, presented in Chapter 5. FPSI is a transactional system

that addressed an open research question on how to identify a well-specified level of data

freshness in Parallel Snapshot Isolation. FPSI was built upon Walter, as a standard imple-

mentation of PSI. Walter achieves high performance at the cost of reading arbitrarily old

data in case transactions access objects remotely. The novel concurrency control at the core

of FPSI allows its abort-free read-only transactions to access the latest version of objects

upon their first contact to a node, at no significant performance degradation compared to

Walter.

The third contribution of this dissertation formalizes the data freshness of a transactional

system as ordering constraint among transactions. In our proposed model, we delivered a

condition that can be used to verify the safety of transactional executions in the presence

of programmer-provided external dependency (or application invariant). Our unified model

overcomes the lack of existing formulations on verifying the correctness of distributed con-

currency control implementations based on their data freshness. The model is provided in

Chapter 6.

Lastly, in Chapter 7, we showed our discoveries regarding the practicality of deploying

a high-performance PSI concurrency control when the storage space is optimized using the

well-known erasure coding technique. We presented a novel sharded key-value store named

EPSI, which serves transactional operations by accessing erasure coded data, during the

normal system functioning and not during recovery upon failures, as traditionally done.

The direct consequence of EPSI’s erasure coded design is that read operations can be served

reading from a quorum of nodes, which improves system performance when objects size is

large due to an improved load balancing across nodes.

8.2 Future Works

External consistency assumed that clients outside the system are prohibited from interact-

ing with each other while waiting for a transaction execution to be concluded. There are

110

alternative models in which such restriction is relaxed, therefore clients have the freedom to

interact with each other while waiting for their transactions to be completed (e.g., as the case

of transactions asynchronously scheduled for execution). In this model, if a transaction com-

pletes, a client can inform another waiting client about the outcome of its operation. More

formally, the real-time order relation among these two transactions can now be established

although these transactions are concurrent in the system.

In order to support the latter model, we are interested in extending SSS to avoid forward

anti-dependency to be propagated to clients using an extension of the snapshot-queuing

technique. This way SSS’s distributed concurrency control will be able to guarantee commit-

order [110], a consistency level in which the transaction serialization order matches the order

in which transactions commit.

We are also interested in removing the read-only anomaly [44,46,96] allowed by Parallel

Snapshot Isolation to further improve FPSI. The read-only anomaly prevents a read-only

transaction from reading a snapshot that satisfies the Serializability correctness criterion.

We propose to remove this anomaly by relaxing the real-time order constraints among two

transactions if a concurrent and conflicting write transaction executes. By capturing this

overlapped execution, we will be able to force a read-only transaction to access the previous

snapshot of the shared state to avoid the materialization of the preconditions that enable

the read-only anomaly.

Using the sharded structure of EPSI, update transactions are forwarded to the shard

leader in order to be executed. Motivated by the promising performance gain obtained of

the current EPSI design, we plan to extend EPSI to support multiple leaders per shard.

This extension addresses one of the current limitations of EPSI, which is providing a lower

throughput than Walter. Having more nodes withing a shard that can process update

transactions can improve update transactions’ throughout.

111

Bibliography

[1] M. Herlihy and V. Luchangco, “Distributed computing and the multicore revolution,”

ACM SIGACT News, vol. 39, no. 1, pp. 62–72, 2008.

[2] M. K. Aguilera, N. Ben-David, I. Calciu, R. Guerraoui, E. Petrank, and S. Toueg,

“Passing messages while sharing memory,” in Proceedings of the 2018 ACM Symposium

on Principles of Distributed Computing, 2018, pp. 51–60.

[3] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The end of slow

networks: It’s time for a redesign,” arXiv preprint arXiv:1504.01048, 2015.

[4] A. Kalia, M. Kaminsky, and D. G. Andersen, “Fasst: Fast, scalable and simple dis-

tributed transactions with two-sided (rdma) datagram rpcs,” in 12th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 185–201.

[5] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast remote mem-

ory,” in 11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14), 2014, pp. 401–414.

[6] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin,

“Erasure coding in windows azure storage,” in Presented as part of the 2012 USENIX

Annual Technical Conference (USENIXATC 12), 2012, pp. 15–26.

[7] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,

M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache at facebook,” in Presented as

part of the 10th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 13), 2013, pp. 385–398.

112

[8] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang, F. Li, S. Wang, W. Cao, and

Q. Li, “X-engine: An optimized storage engine for large-scale e-commerce transaction

processing,” in Proceedings of the 2019 International Conference on Management of

Data, 2019, pp. 651–665.

[9] X. Qin, “Delayed consistency model for distributed interactive systems with real-time

continuous media,” Journal of Software, vol. 13, no. 6, pp. 1029–1039, 2002.

[10] M. Rajashekhar and Y. Yue, “Twemcache: Twitter memcached,” 2012.

[11] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell,

J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “Farsite: Federated, available, and

reliable storage for an incompletely trusted environment,” ACM SIGOPS Operating

Systems Review, vol. 36, no. SI, pp. 1–14, 2002.

[12] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial replication in wide area

networks,” in 2010 29th IEEE Symposium on Reliable Distributed Systems. IEEE,

2010, pp. 214–224.

[13] D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and B. Kemme, “Boosting database

replication scalability through partial replication and 1-copy-snapshot-isolation,” in

13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007).

IEEE, 2007, pp. 290–297.

[14] F. B. Schneider, “Implementing fault-tolerant services using the state machine ap-

proach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319,

1990.

[15] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, “Calvin:

fast distributed transactions for partitioned database systems,” in Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data. ACM, 2012,

pp. 1–12.

[16] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Introduction to data base manage-

ment system.”

113

[17] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li, “Transaction

chains: achieving serializability with low latency in geo-distributed storage systems,” in

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,

2013, pp. 276–291.

[18] Cockroach Labs, “CockroachDB ,” 2017, https://github.com/cockroachdb/cockroach.

[19] S. Bhuiyan, M. Zheludkov, and T. Isachenko, High Performance In-memory Comput-

ing with Apache Ignite. Lulu.com, 2017.

[20] “HAZELCAST, The Operational In-Memory Computing Platform,” https://hazelcast.

com.

[21] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage for geo-

replicated systems,” in Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles. ACM, 2011, pp. 385–400.

[22] J. A. Kreibich, Using SQLite, 1st ed. O’Reilly Media, Inc., 2010.

[23] N. Shamgunov, “The memsql in-memory database system,” in Proceedings of the 2nd

International Workshop on In Memory Data Management and Analytics, IMDM 2014,

Hangzhou, China, September 1, 2014., J. J. Levandoski and A. Pavlo, Eds., 2014.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery

in database systems. Addison-wesley Reading, 1987, vol. 370.

[25] P. A. Bernstein and N. Goodman, A sophisticate’s introduction to distributed database

concurrency control. Center for Research in Computing Techn., Aiken Computation

Laboratory, Univ., 1982.

[26] W.-T. K. Lin and J. Nolte, “Basic timestamp, multiple version timestamp, and two-

phase locking.” in VLDB, vol. 83, 1983, pp. 109–119.

[27] H. Kung and J. T. Robinson, “On optimistic methods for concurrency control,” Read-

ings in database systems, pp. 209–215, 1994.

114

[28] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,

M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s Globally

Distributed Database,” ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug.

2013.

[29] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. Ports, “Build-

ing consistent transactions with inconsistent replication,” in Proceedings of the 25th

Symposium on Operating Systems Principles. ACM, 2015, pp. 263–278.

[30] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li, “Extracting more concurrency from

distributed transactions.” in OSDI, vol. 14, 2014, pp. 479–494.

[31] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Scalable con-

sistency in scatter,” in Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles. ACM, 2011, pp. 15–28.

[32] M. J. Kishi, S. Peluso, H. F. Korth, and R. Palmieri, “SSS: scalable key-value store

with external consistent and abort-free read-only transactions,” in ICDCS, 2019, pp.

589–600.

[33] M. M. Saad, M. J. Kishi, S. Jing, S. Hans, and R. Palmieri, “Processing transactions in

a predefined order,” in Proceedings of the 24th Symposium on Principles and Practice

of Parallel Programming, 2019, pp. 120–132.

[34] Z. Chen, A. Hassan, M. J. Kishi, J. Nelson, and R. Palmieri, “Hats: Hardware-assisted

transaction scheduler,” in 23rd International Conference on Principles of Distributed

Systems (OPODIS 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[35] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, “A critique

of ansi sql isolation levels,” ACM SIGMOD Record, vol. 24, no. 2, pp. 1–10, 1995.

115

[36] A. Adya and B. H. Liskov, “Weak consistency: a generalized theory and optimistic

implementations for distributed transactions,” Ph.D. dissertation, Massachusetts In-

stitute of Technology, Dept. of Electrical Engineering and . . . , 1999.

[37] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database sys-

tems,” ACM Computing Surveys (CSUR), vol. 13, no. 2, pp. 185–221, 1981.

[38] T. Harris and S. Jones, “Transactional memory with data invariants,” 2006.

[39] M. Javidi Kishi, A. Hassan, and R. Palmieri, “Brief announcement: On the correctness

of transaction processing with external dependency,” in 33rd International Symposium

on Distributed Computing (DISC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, 2019.

[40] D. K. Gifford, “Information storage in a decentralized computer system,” Ph.D. dis-

sertation, Stanford University, 1981.

[41] A. Cerone and A. Gotsman, “Analysing snapshot isolation,” Journal of the ACM

(JACM), vol. 65, no. 2, p. 11, 2018.

[42] M. Pratt and P. McElroy, “Oracle9i replication,” White paper, June, 2001.

[43] K. L. Tripp, “Sql server 2005 beta ii snapshot isolation,” 2005.

[44] D. R. Ports and K. Grittner, “Serializable snapshot isolation in postgresql,” Proceedings

of the VLDB Endowment, vol. 5, no. 12, pp. 1850–1861, 2012.

[45] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload anal-

ysis of a large-scale key-value store,” in Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE joint international conference on Measurement and Modeling

of Computer Systems, 2012, pp. 53–64.

[46] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making snapshot

isolation serializable,” ACM Transactions on Database Systems (TODS), vol. 30, no. 2,

pp. 492–528, 2005.

116

[47] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si: Snapshot isolation for partitioned

data stores using loosely synchronized clocks,” in Reliable Distributed Systems (SRDS),

2013 IEEE 32nd International Symposium on. IEEE, 2013, pp. 173–184.

[48] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A scalable one-copy serializable

partial replication protocol,” in Middleware 2012, 2012, pp. 456–475.

[49] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-backup

approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[50] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues, “Gmu: Genuine mul-

tiversion update-serializable partial data replication,” IEEE Transactions on Parallel

and Distributed Systems, vol. 27, no. 10, pp. 2911–2925, 2016.

[51] M. Mohamedin, M. J. Kishi, and R. Palmieri, “Shield: A middleware to tolerate cpu

transient faults in multicore architectures,” in 2017 IEEE 16th International Sympo-

sium on Network Computing and Applications (NCA). IEEE, 2017, pp. 1–9.

[52] L. Lamport, “The part-time parliament,” in Concurrency: the Works of Leslie Lamport,

2019, pp. 277–317.

[53] S. Hirve, R. Palmieri, and B. Ravindran, “Archie: a speculative replicated transactional

system,” in Proceedings of the 15th international Middleware Conference, 2014, pp.

265–276.

[54] P. A. Alsberg and J. D. Day, “A principle for resilient sharing of distributed resources,”

in Proceedings of the 2nd international conference on Software engineering, 1976, pp.

562–570.

[55] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of

the society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[56] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of inexpen-

sive disks (raid),” in Proceedings of the 1988 ACM SIGMOD international conference

on Management of data, 1988, pp. 109–116.

117

[57] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia, H. Guan, and B. Zang, “Efficient

and available in-memory kv-store with hybrid erasure coding and replication,” ACM

Transactions on Storage (TOS), vol. 13, no. 3, pp. 1–30, 2017.

[58] M. M. Yiu, H. H. Chan, and P. P. Lee, “Erasure coding for small objects in in-memory

kv storage,” in Proceedings of the 10th ACM International Systems and Storage Con-

ference, 2017, pp. 1–12.

[59] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and concurrent mem-

cache with dumber caching and smarter hashing,” in Presented as part of the 10th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 13),

2013, pp. 371–384.

[60] K. M. Konwar, N. Prakash, N. Lynch, and M. Médard, “A layered architecture for

erasure-coded consistent distributed storage,” in Proceedings of the ACM Symposium

on Principles of Distributed Computing, 2017, pp. 63–72.

[61] L. Cheng, Y. Hu, and P. P. Lee, “Coupling decentralized key-value stores with erasure

coding,” in Proceedings of the ACM Symposium on Cloud Computing, 2019, pp. 377–

389.

[62] D. Peng and F. Dabek, “Large-scale incremental processing using distributed transac-

tions and notifications,” 2010.

[63] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-monotonic snapshot isolation: Scalable

and strong consistency for geo-replicated transactional systems,” in 2013 IEEE 32nd

International Symposium on Reliable Distributed Systems. IEEE, 2013, pp. 163–172.

[64] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable causal consistency

using dependency matrices and physical clocks,” in Proceedings of the 4th annual Sym-

posium on Cloud Computing. ACM, 2013, p. 11.

[65] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro, “Cure: Strong semantics meets high availability and low latency,” in

118

Distributed Computing Systems (ICDCS), 2016 IEEE 36th International Conference

on. IEEE, 2016, pp. 405–414.

[66] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap and scalable

causal consistency with physical clocks,” in Proceedings of the ACM Symposium on

Cloud Computing. ACM, 2014, pp. 1–13.

[67] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland,

“The end of an architectural era:(it’s time for a complete rewrite),” in Proceedings of

the 33rd international conference on Very large data bases. VLDB Endowment, 2007,

pp. 1150–1160.

[68] C. Leau, “Spring data redis-retwis-j,” 2013.

[69] F. Mattern et al., Virtual time and global states of distributed systems. Citeseer, 1988.

[70] M. Mohamedin, S. Peluso, M. J. Kishi, A. Hassan, and R. Palmieri, “Nemo: Numa-

aware concurrency control for scalable transactional memory,” in Proceedings of the

47th International Conference on Parallel Processing, 2018, pp. 1–10.

[71] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algorithms:

Taxonomy and survey,” ACM Computing Surveys (CSUR), vol. 36, no. 4, pp. 372–421,

2004.

[72] T. Landes, “Dynamic vector clocks for consistent ordering of events in dynamic dis-

tributed applications.” in PDPTA, 2006, pp. 31–37.

[73] X. Wang, J. Mayo, W. Gao, and J. Slusser, “An efficient implementation of vector

clocks in dynamic systems.” in PDPTA, 2006, pp. 593–599.

[74] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi, “Low-latency

multi-datacenter databases using replicated commit,” Proceedings of the VLDB En-

dowment, vol. 6, no. 9, pp. 661–672, 2013.

119

[75] J. Cowling and B. Liskov, “Granola: low-overhead distributed transaction coordi-

nation,” in Presented as part of the 2012 USENIX Annual Technical Conference

(USENIXATC 12), 2012, pp. 223–235.

[76] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured

data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[77] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann, J. Lee, and N. May, “Distributed

snapshot isolation: global transactions pay globally, local transactions pay locally,”

The VLDB Journal—The International Journal on Very Large Data Bases, vol. 23,

no. 6, pp. 987–1011, 2014.

[78] S. Elnikety, F. Pedone, and W. Zwaenepoel, “Database replication using generalized

snapshot isolation,” in SRDS, 2005, pp. 73–84.

[79] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal, vol. 124, 2004.

[80] J. Zawodny, “Redis: Lightweight key/value store that goes the extra mile,” Linux

Magazine, vol. 79, no. 8, pp. 1–10, 2009.

[81] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips, “Giza: Era-

sure coding objects across global data centers,” in 2017 USENIX Annual Technical

Conference (USENIXATC 17), 2017, pp. 539–551.

[82] S. Li, Q. Zhang, Z. Yang, and Y. Dai, “Bcstore: Bandwidth-efficient in-memory kv-

store with batch coding,” Proc. of IEEE MSST, 2017.

[83] W. Litwin and T. Schwarz, “Lh* rs: A high-availability scalable distributed data

structure using reed solomon codes,” in Proceedings of the 2000 ACM SIGMOD inter-

national conference on Management of data, 2000, pp. 237–248.

[84] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong, “Atlas: Baidu’s

key-value storage system for cloud data,” in 2015 31st Symposium on Mass Storage

Systems and Technologies (MSST). IEEE, 2015, pp. 1–14.

120

[85] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM Transactions on

Database Systems (TODS), vol. 31, no. 1, pp. 133–160, 2006.

[86] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp. 79–103, 2006.

[87] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” IEEE transactions on information

theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[88] J. C. Chan, Q. Ding, P. P. Lee, and H. H. Chan, “Parity logging with reserved space:

Towards efficient updates and recovery in erasure-coded clustered storage,” in 12th

USENIX Conference on File and Storage Technologies (FAST 14), 2014, pp. 163–176.

[89] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia, “Disjoint-access

parallelism: Impossibility, possibility, and cost of transactional memory implementa-

tions,” in PODC, 2015, pp. 217–226.

[90] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy transactions in mul-

ticore in-memory databases,” in Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, 2013, pp. 18–32.

[91] M. J. Kishi, S. Peluso, H. Korth, and R. Palmieri, “SSS: Scalable Key-Value Store

with External Consistent and Abort-free Read-only Transactions,” Lehigh University,

Tech. Rep., 2019, URL: http://sss.cse.lehigh.edu/files/pubs/TR-sss.pdf.

[92] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking

cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud

computing, 2010, pp. 143–154.

[93] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific infrastructure for

advancing cloud architectures and applications,” ; login:: the magazine of USENIX &

SAGE, vol. 39, no. 6, pp. 36–38, 2014.

[94] “CloudLab Clemson,” 2017, http://docs.cloudlab.us/hardware.html.

[95] M. Pratt and P. McElroy, “Oracle9i replication,” White paper, June, 2001.

121

[96] A. Fekete, E. O’Neil, and P. O’Neil, “A read-only transaction anomaly under snapshot

isolation,” ACM SIGMOD Record, vol. 33, no. 3, pp. 12–14, 2004.

[97] T. P. P. Council, “tpc-c benchmark, revision 5.11,” 2010.

[98] K. Daudjee and K. Salem, “Lazy database replication with ordering guarantees,” in

ICDE. IEEE, 2004, pp. 424–435.

[99] F. Klein, K. Beineke, and M. Schöttner, “Memory management for billions of small

objects in a distributed in-memory storage,” in 2014 IEEE International Conference

on Cluster Computing (CLUSTER). IEEE, 2014, pp. 113–122.

[100] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available

key-value store,” in ACM SIGOPS operating systems review, vol. 41, no. 6. ACM,

2007, pp. 205–220.

[101] A. Cassandra, “Apache cassandra,” Website. Available online at

http://planetcassandra. org/what-is-apache-cassandra, vol. 13, 2014.

[102] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build a fast, cpu-

efficient key-value store,” in 2013 USENIX Annual Technical Conference (USENIX-

ATC 13), 2013, pp. 103–114.

[103] H. Meir, D. Basin, E. Bortnikov, A. Braginsky, Y. Gottesman, I. Keidar, E. Meir,

G. Sheffi, and Y. Zuriel, “Oak: a scalable off-heap allocated key-value map,” in Pro-

ceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2020, pp. 17–31.

[104] C. Aniszczyk, “Caching with twemcache,” Twitter Blog, Engineering Blog, pp. 1–7,

2012.

[105] K. M. Konwar, N. Prakash, M. Médard, and N. Lynch, “Fast lean erasure-coded atomic

memory object,” in 23rd International Conference on Principles of Distributed Systems

(OPODIS 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

122

[106] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin, “All about

eve: execute-verify replication for multi-core servers,” in Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

2012, pp. 237–250.

[107] V. Estrada-Galinanes, E. Miller, P. Felber, and J.-F. Pâris, “Alpha entanglement

codes: practical erasure codes to archive data in unreliable environments,” in 2018

48th Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN). IEEE, 2018, pp. 183–194.

[108] “Backblaze Java Code,” https://github.com/Backblaze/JavaReedSolomon, 2017.

[109] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The snow theorem and latency-

optimal read-only transactions.” in OSDI, 2016, pp. 135–150.

[110] D. K. Gifford, “Information storage in a decentralized computer system,” Ph.D. dis-

sertation, Stanford University, 1981.

123

Vita

Masoomeh Javidi Kishi received her B.Sc. degree in Computer Engineering from Iran Uni-

versity of Science and Technology, Tehran, Iran, in 2010 and her M.Sc. in Computer Engi-

neering from Islamic Azad University, Science and Research Branch, Tehran, Iran, in 2012.

In 2014, Masoomeh joined the Computer Science Department at Virginia Polytechnic Insti-

tute and State University as a Ph.D. student and in 2017 she transferred her Ph.D degree

to Computer Science and Engineering Department at Lehigh University. She has published

in many venues including ICDCS, DISC, PPoPP, ICPP, OPODIS, NCA and been awarded

ICDCS and DISC conferences’ travel award by NSF and IEEE Computer Society’s Com-

mittee on Distributed Processing.

124

