
The Preserve: Lehigh Library Digital Collections

An Enhanced Tool for Simulating
the End-to-End Network Delays of

Cyber Physical Systems

Citation
Gray, Dylan M., and Liang Cheng. An Enhanced Tool for Simulating the End-to-End
Network Delays of Cyber Physical Systems. 2019, https://preserve.lehigh.edu/lehi
gh-scholarship/graduate-publications-theses-dissertations/theses-dissert
ations/enhanced-tool-0.

Find more at https://preserve.lehigh.edu/

This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for
inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.

https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/enhanced-tool-0
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/enhanced-tool-0
https://preserve.lehigh.edu/lehigh-scholarship/graduate-publications-theses-dissertations/theses-dissertations/enhanced-tool-0
https://preserve.lehigh.edu/
mailto:preserve@lehigh.edu

An Enhanced Tool for Simulating the End-to-End

Network Delays of Cyber Physical Systems

by

Dylan Gray

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science in Computer Science

Lehigh University

August 2019

ii

© Copyright by Dylan Gray 2019

All Rights Reserved

iii

This thesis is accepted and approved in partial fulfillment of the requirements for the Master of

Science.

Date

Thesis Advisor: Liang Cheng

Chairperson of Department: Jeff Trinkle

iv

Acknowledgements

I would like to thank …

Professor Liang Cheng for sharing his advice, guidance, and help throughout this project and the

rest of the time during my studies. Ph.D. students Huan Yang and Isaac Howenstine for their

ideas and feedback that was invaluable for my work. The faculty and staff of Lehigh University’s

CSE Department for providing a great learning environment and helping me achieve educational

goals. Most importantly, my family for loving and supporting me throughout this entire

experience.

v

Table of Contents

Acknowledgements iv

List of Tables vi

List of Figures vii

Abstract 1

1. Introduction 2

2. Methods of calculating end-to-end delay 5

2.1 OMNeT++ and INET Framework 7

2.2 Advanced data structures 8

2.2.1 Fibonacci heap 8

2.2.2 B-trees 9

3. Improvements to simulation 11

3.1 Basic queue enhancements 11

3.2 Time sensitive network enhancements 13

4. Tandem network analysis 16

4.1 Simulation results 17

4.2 Future work 18

5. Conclusion 19

Bibliography 20

vi

List of Tables

1. Results of a 4-switch tandem network with 6 total flows. The main flow is the straight

 flow through all switches whereas conflicting flows are through one or two switches. 17

2. Results of maximum end-to-end delay of the main flow through 1, 4, and 20 switch

 tandem networks. 18

vii

List of Figures

1. Layout of a traditional embed system with two components connected via a wire. 2

2. Layout of a cyber physical system with the flow between two components connected

 highlighted. 3

3. Layout of a switch part of a network for a cyber physical system. A real switch would

 have multiple incoming and outgoing ports and queues. 4

4. Graph showing service and arrival curve used to calculate maximum end-to-end delay. 5

5. A network diagram showing a potential problematic flow for Dijkstra’s algorithm.

 With two different flows from source to sink. 10

6: Diagram showing the submodules and connections of an EtherSwitch. On the top the

 existing implementation and on the bottom our enhanced EtherSwitch implementation. 12

7. Example of our deficit round-robin queue implementation. The top flow is serviced

 approximately have as fast as the middle flow based on the buildRates. The bottom

 flow is only serviced when there is no other traffic. 14

8. Diagram showing the layout of a 3-switch tandem network. Main flow in the middle

 with conflicting top and bottom flows. 16

1

Abstract

In this paper, we present improvements to a network simulation tool that allows us to more

accurately determine the maximum end-to-end delay for data flows of a cyber physical system.

We discuss the existing solutions for determining end-to-end delays of a network and the flaws

in these methods. Then we explain how the development of a simulation tool can enhance the

transition from traditional systems, with a requirement for the maximum end-to-end delay, to

safe cyber physical systems. We briefly discuss the field of mathematics called network calculus

to show the ideas behind the simulation. We then discuss the base simulation tool and its uses in

calculating end-to-end delay. We also mention the existing and potential optimizations to the

simulation tool concerning the use of advanced data structures. These include the use of

Fibonacci heaps and b-trees as a way to improve performance and add new functionality. Our

first contribution is a simulation modal that is an improvement on the existing tool and is more

accurate and better able to module the traffic flows of a network. We do this by providing a

queueing implementation that allows us greater control over the service flows of network

switches. The improvement also offers additional support for different network disciplines and a

starting point for future network discipline implementations. Our second contribution is a

simulation tool that can simulate time sensitive networks using a deficit round robin scheduler.

We then present a case study using the simulation tool on a tandem network and compare the

results against the existing methods of calculating end-to-end network delay. We show that the

results generated are more precise and tighter bounded than other methods.

2

1. Introduction

Recent advancements in ethernet technology have led to a desire to replace traditional embedded

systems where one component is connected directly to another component via a wire, with a

more advanced cyber physical system, where all components are connected to a network of

switches. This transition has provided many benefits but does create an increased risk and

complexity of calculating the maximum end-to-end delay of these systems which need to meet

industry requirements to prevent failures.

These new cyber physical systems are affected by the flows of other devices on the network,

unlike their counterpart in traditional systems. In traditional systems, the network delay can be

estimated easily. As pictured in figure 1, the end-to-end delay of a traditional system can be

calculated by taking the processing time of component 1, the processing time of component 2,

and the time over the wire. The total delay of the flow is t = tw+tc1+tc2, which is constant and easy

to calculate.

In cyber physical systems, the connection between the two components is more complicated. As

shown in figure 2, the components are connected through a network. The total delay of the red

flow is t = tc1+tw1+tn+tw2+tc2, which excluding tn were part of the original system and are easy to

calculate. There are also multiple components on the network that have flows of their own.

Figure 1: Layout of a traditional embed system with two
components connected via a wire.

3

These additional flows might interact with and delay messages that we send. This makes

calculating tn more difficult as it depends on what the state of the network is at any given time.

Determining an accurate bound for Tn is the focus of many researchers in this area. One solution

is to use a simulation tool to attempt to determine the maximum end-to-end delay of any given

flow in the network, given the characteristics of the network.

Our contributions focus around enhancing the network switches modals to increase the accuracy

of simulating Tn in our simulation tool. A switch influences every packet that travels through it.

Figure 3 shows the total delay a packet encounters in a switch. The total time spent in a switch

by any packet is ts=ta+tqa+ti+tqd+td, where ta and td are the times required to process the arrival

and departure of the packet from the wire. These times depend on packet size. Next, ti is an

inherent delay all packets traveling through the switch incur, and tqa and tqd are the time a packet

spends in the arrival and departure queues. These last two times vary on the current situation of

the network, and our contribution focuses on simulating tqd more accurately. We assumed that

the packets would arrive and be processed at the same rate, and thus no queueing would occur on

arrival. Therefore, tqa would not be impactful on the total time. However, much of the work

Figure 2: Layout of a cyber physical system with the flow between two components
connected highlighted.

4

presented here can be applied to tqa in the future if this assumption no longer holds.

The departure queue can operate in a wide range of modes, and the network traffic can have

different requirements. The simplest versions of queues operate in a standard first in first out

procedure. More complicated networks that require specific flows be handled extremely fast but

allow other flows to be handled slowly can make use of some sort of priority scheduling the

queue such as deficient round-robin or credit-based shaping.

Our first contribution is an improvement to the quality of the simulation tool that allows us to

have more control over the departure queue and the way it behaves. We also add the potential to

configure the inherent delay ti and the departure delay td, which was not previously offered. Our

second contribution extends on the first and is an enhanced version of the switch that supports

deficit round-robin and best effort broadcast that can be used in the simulation of time sensitive

networks, which is a network that consists of delay requirements for some flows that are stricter

than they are for other flows. For this reason, at least one flow is usually prioritized over others.

Figure 3: Layout of a switch part of a network for a cyber physical system. A real
switch would have multiple incoming and outgoing ports and queues.

5

2. Methods of calculating end-to-end delay

Network calculus is a way to examine a network mathematically by determining the arrival and

service curves of flows through a series of switches in a network. A simple example can be seen

in figure 4. The arrival curve on the left consists of two components a burst, the maximum burst

that can occur at any one time, and an average arrival rate, the rate at which data arrives over a

period. This is an upper bound on the amount of data arriving at a switch. The service curve on

the right consists of two components a warm-up delay, a time that a switch requires to warm up

and begin servicing packets after the first packet arrives, and a service rate, the rate at which data

is serviced once the switch is warmed up. This is a lower bound on the amount of data processed

by the switch. The horizontal distance between a service and arrival curve is the amount of time

a piece of data is in the switch, assuming first in first out order.

[1] and [2] show some of the work that has been done in this field to be able to compute the

convolution and deconvolution of much more advanced networks that results in more

complicated service and arrival curves. [3] is a tool that easily allows users to perform total flow

analysis, partial flow analysis, and PMOO a phenomenon introduced in [4]. Many of the topics

covered are outside the scope of this paper. However, the general problem with this approach is

Figure 4: Graph showing service and arrival
curve used to calculate maximum end-to-end

6

that while it is always mathematically right, it often results in maximum end-to-end delays that

are too loosely bounded to be applicable in a real cyber physical system.

Another approach to calculating maximum end-to-end delay is to replicate your network in a

testbed as described in [5]. This approach gives more realistic results than the theoretical

approach. However, there is no guarantee that the results cover the maximum end-to-end delay.

It is also costly to buy enough switches and time consuming to configure a more extensive

network. Another limitation is the time taken to run the testbed. It is possible you can run the

testbed for a month and still not get the result that causes the network not to meet some

performance requirement. The testbed can give us results that closely match a real cyber physical

system but does not guarantee an upper bound on the maximum end-to-end delay as well as other

limitations on the size of the network.

The two previous methods provide different ways to approach the problem of calculating this

maximum end-to-end delay but also come with shortcomings. The third approach attempts to

bridge the gap between these two methods and provide results that can both bound maximum

end-to-end delay and accurately compare to a real cyber physical system. The idea is to use a

simulation tool to accurately be able to put a bound on end-to-end delay while being able to

simulate complex networks in a reasonable time. [6] uses a simulation tool to calculate the

network performance of wired and wireless networks. Additionally, a simulation tool allows us

to analyze the network and determine the exact cause of the slowdown, which can help us create

a network that better meets performance requirements.

7

2.1 OMNeT++ and INET Framework

To perform these simulations, we started using a tool named OMNeT++ [7]. OMNeT++ is a

discrete event simulate that allows users to build network topographies, run a simulation kernel,

display the simulation, and to generate statistics. It is a general-purpose, open-sourced, discrete

event simulator that provides modular components that are coded in C++. Networks can be

created using a custom NED file to describe the components in the network, the connection

between the components, and some general parameters. OMNeT also relies on INI files to

provide information about the flows of the network such as destination, packet size, and the rate

at which to send packets. While OMNeT provides a general environment to perform simulations,

often, the components it provides are not enough. For that reason, we use the INET Framework

[8] for OMNeT to provide more enhanced components, specifically the EtherSwitch and

EtherHost components.

The OMNeT simulator works by keeping a global simulation time, which would equate to the

time the network was running in the real world. Using these simulation time, OMNeT

coordinates events by scheduling messages to the component with events occurring at certain

simulation times. Components can create these messages for themselves or other components at

any time greater than or equal to the current simulation time. One example of where this would

occur is a component sending a packet to another component. A component could decide to send

a packet to the next component in line. If both components were inside the same switch, there

could be no delay. The component would schedule a message for the destination component at

the current simulation time. The OMNeT simulator would notify this component a message has

arrived and then deliver the message, which would probably be the packet, and the component

could decide how to proceed.

8

The component we focus our contribution is called EtherSwitch and represents a network switch.

The EtherSwitch is made up of three main components an encapsulation component, which is

responsible for encapsulation and decapsulation of packets, ethernet interface component, which

is responsible for handling incoming and outgoing connection from the switch, and a

MacRelayUnit which is responsible for routing the packets to the correct destination. The

MacRelayUnit performs lookups against a MacAddressTable that is either given to the switch or

collected by the switch during its operations.

2.2 Advanced data structures

One of the main reasons for using simulation as opposed to other methods of calculating

maximum end-to-end delay is the ability to simulate a large amount of traffic in a short time. The

route pathing component of the OMNeT++ simulator used Dijkstra’s algorithm to find the

shortest weighted or unweighted path from the source node to the destination node. Being able to

optimize this algorithm improves the performance of the simulator significantly. One such

method is to use Fibonacci heaps to improve the performance of Dijkstra’s algorithm. A second

method is to use fuzzy numbers stored in a b-tree that allows us to run an algorithm that

considers the possible variation of weights on each of the paths of the network.

2.2.1 Fibonacci heaps

One way to improve the performance of algorithms is to ensure that you use the best data

structure for your algorithm. In [9], the authors experiment using Dijkstra’s algorithm with a

Fibonacci heap in the optimization of networks. For our simulation tool, Dijkstra’s algorithm of

finding the shortest path through a network is critical to the simulation total run time and using a

9

Fibonacci heap is the best choice to achieve excellent performance. Fibonacci heaps work with

Dijkstra’s algorithm by allowing insertion, extracting the minimum, and decreasing a key. These

functions are used by Dijkstra’s algorithm to keep track of the labeled but not scanned nodes.

Dijkstra’s algorithm first extracts a node from the heap, then insert or potentially decrease the

keys of all neighboring nodes. A Fibonacci heap is a data structure that is a forest of min-heaps

linked to each other such that no heaps at the same level have the same height. A Fibonacci heap

is an ideal choice for this algorithm firstly because it allows inserting by merely adding a new

node to the Fibonacci heap, with a cost O(1). A decrease key is performed by decreasing the

desired key; if a min-heap property is violated, we cut the heap and create a new heap and mark

the parent. If the parent is already marked, then we perform cascading cuts and marks until we

have an unmarked parent and mark it. Despite this, the amortized cost of a decrease key is O(1)

due to the potential lost by changing from marked nodes to root heaps in the worst case and the

increased potential of marking a node in the ideal case. Finally, an extract min is performed by

extracting the min pointer and creating new heaps for the children. Then all heaps of the same

height are melded together until no two heaps have the same height. This operation is performed

in O(log n) since the rank of the heap is bound to O(log n) due to the decrease key function. This

allows us to perform Dijkstra’s algorithm by inserting all the nodes once at O(1), deleting all

vertices once at O(log n) and for all edges that do not add a new vertex potentially decrease key

at O(1). This results in a run time of O(V log V) which allows for the algorithm to run extremely

fast and is beneficial for our simulation.

2.2.2 B-trees

One of the issues we encountered while working with the OMNeT simulator was being able to

route flows through the network properly. Figure 5 shows a network that highlights such a

10

problem. Using Dijkstra’s algorithm, we would find one path through the network, and both

flows would follow the same path as opposed to the desired one through the top switch and one

through the bottom switch.

One solution to this problem is to use fuzzy numbers, a concept examined in [10], to assign

imprecise edge weights to a graph and calculate the shortest path. This could be done to ensure

that flows after the initial flow choose the best path available by providing the edges with a fuzzy

weight to them for the existing flows. This could be done using a linked list to hold potential

paths from source to sink before they are flagged. However, it is often better done using a b-tree

since our networks tend to be large enough and complicated enough to warrant it. B-tree’s are a

tree structure with specific requirements that there is a minimum of n elements on each node, and

the height of each leaf is the same. With pre-emptive splitting and merging, we can assure worst-

case insertion, deletion, and lookup in O(log n). This allows the algorithm to be fast enough to

warrant use in more complicated networks where a traditional Dijkstra algorithm approach

would not produce the best results.

Figure 5: A network diagram showing a potential problematic flow for
Dijkstra’s algorithm. With two different flows from source to sink.

11

3. Improvements to simulation

In this section, we demonstrate the improvements made to the simulation and how they result in

a more accurate and complete simulation tool. The first section covers the improvements made to

a simple first in first out switch. The second section covers the improvements made to allow for

the simulation of decisive round-robin and first in first out as part of a time sensitive network.

3.1 Basic queue enhancements

The first improvement made to the existing simulation tool was focused on enhancing the

queueing infrastructure and allow the user to have more control over the service curves of the

system. Our focus for this enhancement was to more accurately reflect the departure time (td) and

the queueing delay on outbound packets (tqd) as well as introduce an inherent delay to the switch

(ti). We do not attempt to change the arrival curves, and we assume that every packet in the

system encounters a constant ti delay. We designed a system using a first in first out procedure

with enqueue and dequeue methods as the only interaction between the unit and the underlying

queue. This way, in the future, we would be able to change the underlying queue if it could

operate with an enqueue and a dequeue message. Our implementation modifies EtherSwitch by

placing a new component named queueUnit between the relayUnit and each of the output

interfaces of a switch. Figure 6 shows the OMNeT EtherSwitch with and without our added

queueUnit. The switch works by having packets arrive at the eth interface which would represent

a port. The packet then travels through the relay unit which routes the packet. Then the

encapsulation units to the bottom layer before reversing and heading back towards the eth

interface to depart. In our implementation the, packet will travel to the queue unit associated with

12

the outgoing port the packet is traveling towards before departing. As shown, we only place a

queueUnit between packets coming from the relayUnit and the outgoing port, not the incoming

port.

We implemented the queueUnit to respond to two different signals, a message’s arrival and a

self-message performed by the queueUnit. We allow the queueUnit to operate in two distinct

modes, a mode for when a message is being sent and a mode for when no message is being sent.

This is controlled by a boolean variable. We require two different parameters, the delayTime,

which controls the inherent delay all packets experience and the outputRate, which controls the

speed at which packets are processed, leaving the switch. When a packet arrives at the queueUnit

we check to see if a packet is currently being sent, if one is, we enqueue the packet. If a packet is

not being sent, we switch the unit to be in the sending mode, send the packet with a delay, by

providing OMNeT the simulation time to delay sending the packet, equal to delayTime, and

schedule an alert at the current simulation time plus the length of the packet divided by the

outputRate, this represents when the packet should be sent and when we can start processing a

new packet. Note that this time doesn’t include an inherent delay component, this delay is

factored in later, but the delay can be counterfeited if the switch is already warmed up and

Figure 6: Diagram showing the submodules and connections of an EtherSwitch. On the top
the existing implementation and on the bottom our enhanced EtherSwitch implementation.

13

sending packets as a real switch would. The other process occurs when we receive a self-

message. When we receive a self-message, we know that a new packet can be sent. The unit first

checks if there is a message in the queue if there are no messages, it switches to standby mode. If

there is a message in the queue the unit takes the message out of the queue, it sends the packet

with a delay of delayTime and schedules a new self-message at the current time plus the length

of the packet divided by the outputRate. This is the same procedure as when a new message

arrives and is sent right away. The system of self-messages ensures that if any packets are in the

queue, we keep sending packets until the queue is empty. We also ensure that the ordering of the

queue can change, but the unit behaves in the same way so that any queue can be used. The next

section covers enhancements made to this structure, and section 4 shows the results of these

changes.

3.2 Time sensitive network enhancements

Our next contribution was to create a switch that would be able to simulate time sensitive

networks, specifically a switch that operated in deficit round-robin for some high priority flows

and first in first out for a low priority flow. We used the queueUnit implementation explained in

the last section as a starting point with some minor changes. First, a priority queue was used

instead of a regular queue, if the packet was from the deficit round-robin the packet was given

high priority and if the packet was from the regular first in first out flow is was given low

priority. The unit operated in the same way as the original unit with one mode for sending and

one mode for waiting, along with having two events cause operations, the arrival of new packets

and self-messages by the unit. Additionally, the new unit has a deficit counter and a deficit

queue, which is just a normal first in first out queue, for each incoming flow, which is

14

determined by source address, for the deficit round-robin flows. Figure 7 shows the layout of

these new features and the flows through the switch.

Each of these flows also requires a buildRate which controls how fast the flow builds up the

deficit counter. When a packet arrives if the queueUnit is in a waiting state, then we switch it to a

sending state and send whatever packet has arrived using the same method as previously

described. If a packet arrives when the queueUnit is in a sending state, we enqueue the packet in

deficit queue if it is used in the deficit round-robin or the regular priority queue with low priority

if it is from the first in first out flow. When we receive a self-message, we first check to see if

there are any high priority messages in the queue, if there are, we send the message using the

method previously described and finish. If that is not the case, we perform a round or multiple

rounds of the deficit round-robin. We perform a round by first going through the queues; if any

are empty, we set the deficit counter to zero. If any of the queues have packets at the front that

are smaller than their associated deficit counter, we remove it from the queue and add it to the

priority queue with high priority. We also subtract the packet size from the deficit counter and

then redo this check on the queue. Once we get through all deficit queues for this step if we

moved any packets from the deficit queues to the priority queue we are done, otherwise we

Figure 7: Example of our deficit round-robin queue implementation. The top flow is
serviced approximately have as fast as the middle flow based on the buildRates. The bottom
flow is only serviced when there is no other traffic.

15

increment all the deficit counters that have items in their queue by the build rate for that specific

queue and perform another round until eventually at least one packet is moved. We then send the

highest priority packet in a queue using the method described earlier. This is a packet moved

from the deficit queues if any were moved or a packet from the first in first out queue only if no

high priority packets were in the system. If there are no low priority packets in the system either,

then we switch the mode to stand by.

16

4. Tandem network analysis

In this section, we show the results of our simulation tool using the improved first in first out

method. We use a tandem network that consists of a line of switches and one flow through all the

switches. Additionally, each switch has two flows interfering with the main flow. This can be

seen in figure 8 with the top and bottom flows interfering with the main flow. The pattern can be

extended indefinitely.

We compare our result to those gathered in [11] as a way to prove that our simulation can model

network traffic. Our simulation uses two source components instead of one, one for the

burstiness and one for the average rate, however, since we are not prioritizing the incoming

queues the flows merge into one in the first switch and should not affect results. Additionally, we

set each packet size to be the maximum 1500B. The rate is 0.67Mbps with a burstiness of

1Mbps. The switches have a latency of 0.1Mbps and service rate of 10Mbps.

Figure 8: Diagram showing the layout of a 3-switch tandem network. Main flow in the
middle with conflicting top and bottom flows.

17

4.1 Simulation results

We performed our simulation on a 4-switch tandem network with 6 flows. We performed this

simulation using both our enhanced first in first out version as well as the default OMNeT

implementation. Table 1 shows the resultant maximum end-to-end delays of all flows through

the network.

 Default OMNeT Enhanced OMNeT

Main Flow 1.45828s 1.75562s

Conflicting Flow 1 0.24034s 0.45054s

Conflicting Flow 2 0.70568s 0.86171s

Conflicting Flow 3 0.72024s 0.89413s

Conflicting Flow 4 0.72080s 0.91532s

Conflicting Flow 5 0.47179s 0.49132s

As you can see, our enhancements result in a significantly longer delay than the default OMNeT

implementation. We believe that this delay is, however, more accurate under the worst-case

performance of a network. This is due to the added inherent delay and proper queueing of

packets that were not provided by the original OMNeT implementation but more accurately

model a real-world switch. We also calculated the maximum end-to-end delay of the main flow

for a 1 and 20 switch network. Table 2 shows the results of the experiment which are consistent

with the results found in [11].

Table 1: Results of a 4-switch tandem network with 6 total flows. The main flow is the
straight flow through all switches whereas conflicting flows are through one or two switches.

18

 1 Switch

4 Switch 20 Switch

Maximum End-to-
End Delay

0.92385s 1.75562s 24.52364s

4.2 Future work

Some ways to enhance this experiment, as well as the OMNeT implementation, are discussed

here. Our results can be improved by performing tests of more networks other than the tandem

network. We could also develop a way to perform tests of a time sensitive network and be able to

compare the results to something. We create a system to analyze networks by combining the

network calculus calculators, network simulators, and network testbeds together for a complete

analysis of the results of the system. Also, developments can be made to the implemented queue

unit to support more advanced network policies for time sensitive networks such as creating a

credit-based implementation in OMNeT. We designed our implementations in a way that would

hopefully allow for these improvements to be made efficiently in the future and hope that many

new networking paradigms are created.

Table 2: Results of maximum end-to-end delay of the main flow through 1, 4, and 20 switch
tandem networks.

19

5. Conclusion

In conclusion, our contributions are made up of two separate implementations that serve to

enhance the functionality of the OMNeT++ simulator with the INET Framework. The first

implementation allows more control over the service curve by allowing the users to set

parameters to control the output rate and the inherent delay of the queue. It also provides an easy

way to change and implement more queue types in the future. Our second contribution was to

create an implementation based on the previous work to be able to simulate time sensitive

networks. We implemented an algorithm that would perform deficit round-robin at a high

priority and first in first out at a low priority. The work done can be expanded to allow even

more complicated time sensitive networks. Overall, we demonstrated that our contributions were

able to increase the accuracy of the simulation tool and allow for the simulation of more diverse

networks. We hope this is useful as more cyber physical systems are introduced and simulating

the maximum end-to-end delay is even more critical.

20

Bibliography

1. J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing

Systems for the Internet. Springer, 2001.

2. Y. Jiang. Network calculus and queueing theory: Two sides of one coin. In ICST

ValueTools, 2009.

3. S. Bondorf and J. B. Schmitt, “The DiscoDNC v2: A comprehensive tool for

deterministic network calculus,” in Proc. 8th Int. Conf. Perform. Eval. Methodologies

Tools. Västerås, Sweden: ICST, 2014, pp. 44–49.

4. J. B. Schmitt, F. A. Zdarsky, and I. Martinovic. Improving Performance Bounds in Feed-

Forward Networks by Paying Multiplexing Only Once. In GI/ITG MMB, 2008.

5. Lerch, Sean. IEC 61850 - The Future of Substation Automation. March, 2015,

https://www.lehigh.edu/inesei/public/www-data/images/posterpdfs/14-

15_Sean%20Lerch.pdf. [accessed on August 2, 2019]

6. Dhobale, I. “Wired and Wireless Computer Network Performance Evaluation Using

OMNeT++ Simulation Environment.” (2014).

7. OMNeT++ Discrete Event Simulator. http://www.omnetpp.org [accessed on August 2,

2019]

8. INET Framework. https://inet.omnetpp.org [accessed on August 2, 2019]

9. M. FREDMAN AND R. TARJAN, Fibonacci Heaps and Their Uses in Improved

Network Optimization Algorithm, Journal of ACM, 34 (1987), pp. 596-615.

21

10. Nayeem, Sk & Pal, Madhumangal. (2005). Shortest Path Problem on a Network with

Imprecise Edge Weight. Fuzzy Optimization and Decision Making. 4. 293-312.

10.1007/s10700-005-3665-2.

11. Bouillard, Anne & Jouhet, Laurent & Thierry, Eric. (2010). Tight Performance Bounds in

the Worst-Case Analysis of Feed-Forward Networks. Proceedings - IEEE INFOCOM. 1 -

9. 10.1109/INFCOM.2010.5461912.

