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Abstract

During a natural extreme event, such as an earthquake or a hurricane, the amount of socioe-

conomic losses due to inefficient disaster response or the losses due to long-term reduction

of functionality of infrastructure systems is comparable, if not higher, to the immediate

losses due to the extreme event itself. Therefore, the scientific community has recognized

the need to be able to accurately predict the performance of the lifelines and infrastructure

when a extreme event occurs and also being able to build structures and infrastructures

which are able to successfully withstand extreme events, effectively satisfy the needs of the

post-event emergency response, and restore its functionality as soon as possible.

One of the first challenges in performing such tasks is to accurately assess the load of

an extreme event to the geographic region the infrastructure or lifeline belongs in. Haz-

ard maps and probability of exceedance curves are very popular tools used initially for

the probabilistic seismic hazard analysis and expanded later to other hazards such as hur-

ricanes. These tools provide the probability of exceeding any given value of an Intensity

Measure (IM) of choice (e.g., 1-minute sustained wind speed ) at any location. These

tools are an integral part of the performance-based design approach and are essential for

the probabilistic analysis of individual structures. However, these tools are not appropriate

for the analysis of distributed infrastructure systems because they do not account for the

correlation information among the values of the IM at different locations. Engineers have

recognized that the various network components cannot be studied independently because

the performance of the entire network depends on the combination of the conditions of all

members. Thus, considering joint probabilities of having certain values of the IM at the
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locations of interest if required.

The most widely accepted approach by the scientific community to address these issues

is through simulation-based techniques. Based on this idea, a set of representative extreme

scenarios is selected and then the impact on the network components and, in turn, the

performance of the network itself is predicted. The main issue in this approach is the

computational cost, which constraints the number of extreme event scenarios to be as small

as possible, while the set still captures the probabilistic characteristics of the intensity of

the investigated natural extreme event over a region.

A new framework is presented for the selection of an optimal set of stochastic intensity

measure maps representing the regional hazard over a geographic area. This set of IM maps

can subsequently be used for the analysis of spatially distributed infrastructure systems.

The proposed methodology results in a versatile multihazard tool that accounts for the

spatial correlation through the optimal sampling of IM maps. Its key characteristic is that

it embraces the nature of the regional IM maps as two-dimensional random fields. The

representation of the regional hazard is supported by proofs of optimality, ensuring mean-

square convergence of the ensemble of representative IM maps to the complete portfolio

of possible hazard events, which is a particularly important property for risk analysis. A

detailed comparison of the proposed technique with other popular methodologies in the

same filed is presented.

Before applying the proposed technique or any other hazard representation technique,

it is necessary to accurately study and characterize the regional hazard in a probabilistic

way. Two types of natural phenomena were considered in the conducted research for the

regional hazard analysis: the earthquake and the hurricane hazard. In the case of earth-

quakes, the seismic characterization of the Charleston South Carolina region was studied

and a seismic modeling procedure was developed which includes spatial and temporal in-
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formation and descriptions of fault geometry and style as well as other parameters. With

the complete probabilistic description of the regional seismic hazard, the ground-motion

prediction equations (GMPE) are implemented. The GMPE account for the in between-

earthquake and within-earthquake variability, and result the ground shaking acceleration

over the region. In the case of hurricanes, a more holistic approach was adopted by stochas-

tically modeling the hurricane’s track. Historical hurricane events, originated either in the

Atlantic basin, Caribbean Sea or the Gulf of Mexico, have shown to significantly affect ge-

ographic regions located in the South and Eastern U.S. Therefore, a simulation framework

is developed for the prediction of hurricane wind intensity and direction over any geo-

graphic region in the Southern and East U.S. The proposed framework generates synthetic

hurricane directional wind speeds, and does so by utilizing historical data, simulating the

hurricane’s track and intensity, simulating key characteristic parameters such as the central

pressure and the radius to maximum wind among others both for offshore and overland

locations of the track, performing a wind field analysis, calculating the 10-meter wind in-

tensity by utilizing oceanic- and land-based boundary layer models and finally simulating

offshore and overland wind directions.
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Chapter 1

Introduction

1.1 Motivation

Severe natural disasters occurred during the past few years have caused the scientists to

focus their attention on the effects of the natural disaster on the community level. For

instance, the 2011 Tohoku earthquake and tsunami in Japan on March 11, 2011 (Takewaki,

2011) caused approximately $319 billion in direct losses and more than $619 billion in

indirect losses (Tesfamariam and Goda, 2013). The 1987 Ecuador earthquake had up to 7

times greater indirect losses than direct losses due to business interruption and lost revenue

(Daniell et al., 2012). The 1994 Northridge earthquake caused over $1.5 billion in business

interruption losses because of damage to the transportation network (Chang, 2003). The

2009 L’Aquila earthquake in Italy showed comprehensive emergency response in the short

term but poor performance on the long-term reconstruction phase (Cimellaro et al., 2010).

The high indirect losses and the socio-economic disruptions after the occurrence of an

extreme event show that the built environment needs to be studied in its entirety in order

to further mitigate natural disaster effects and to more accurately forecast the effects of

extreme natural events.

Much attention has been devoted to studying and developing resistant structural com-

ponents and systems in order to reduce the direct losses after a natural disaster (e.g. earth-

quake). For this reason, probabilistic hazard analysis methods to address the seismic haz-

ard were developed for site-specific locations (Cornell, 1968). This later became known
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as probabilistic seismic hazard analysis or PSHA (McGuire, 2004). PSHA focuses on

the evaluation of the likelihood of strong ground motions and the main outcomes are the

seismic hazard curve (i.e., graphical plot depicting the annual frequency of exceedance vs

ground motion severity) and the uniform hazard spectrum (i.e., expected ground motion

levels for a given annual frequency of exceedence vs structural period) (McGuire, 2008).

These essential tools were the basis of modern seismic design provisions in building codes,

and they formed the ground to develop the seismic hazard maps.

The use of the seismic hazard maps and the seismic hazard curves is an integral part

of the probabilistic seismic risk analysis (PSRA). Furthermore, hazard maps and hazard

curves are an essential part of the performance-based earthquake engineering framework

or PBEE (Cornell et al., 2002; McGuire, 2004; Ruiz-Garc´i a and Miranda, 2007), the use

of which is essential for the probabilistic analysis of individual structures. The Pacific

Earthquake Engineering Research (PEER) PBEE framework is summarized in Figure 1.1

and can be described in terms of four main analysis steps. These separate —but related—

phases comprise the hazard analysis, which results in the seismic characterization of a

geographic location; the structural analysis, which provides the response of a structure as

a function of deformations or forces; the damage analysis, which yields a description of the

damage of the structural and non-structural elements; and, lastly, the loss analysis, which

translates the damage into losses based on certain measures of interest. Mathematically,

the outcome of each step can be characterized by generalized variables: Intensity Measure

(IM), Engineering Demand Parameter (EDP), Damage Measure (DM) and Design Variable

(DV), respectively. The goal of the PEER framework is to enhance the accuracy of the

results used in decision making by considering the uncertainty in a rigorous probabilistic

manner.

Each step builds upon the previous step, and all four steps depend on initial location

information and the facility’s structural characteristics. In seismic engineering, the variable
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of the hazard analysis phase (i.e., IMs) denotes the ground motion intensity (e.g. spectral

acceleration, peak ground acceleration) at a certain location and is based on some char-

acteristic period of the structure, accounting for the uncertainty of earthquake magnitude-

recurrence rates, epicenter location etc. Mathematically, this can be expressed with the

term g(IM|D). In the structural analysis phase, the engineer estimates the structural re-

sponse of the facility considering measures in terms of the EDP, conditional on the ground

motion characteristics and geographic location (i.e., p[EDP|IM,D]). Structural responses

include, but are not limited to, the roof displacement, the inter-storey drift or the internal

member forces. This step accounts for the uncertainty in material properties, damping,

force-deformation characteristics of the model, etc. The Damage analysis then uses values

of the EDP variable as an input parameter and yields fragility functions which computes the

probability that the structure exceeds some undesirable limit state conditional on the facility

response (i.e., p[DM|EDP,D]). This step considers the uncertainty related to the structural

members capacity and the load history, among others. The last stage in the PEER process

is the Loss analysis, which estimates the asset performance parameterized by a DV, such as

monetary value, down-time, etc. (p[DV |DM,D]). Keeping each step in mind, the method-

ology can be expressed in terms of a triple integral utilizing the total probability theorem

Site Hazard
g[IM]

Structural
Response
g[EDP]

Damage
Response

g[DM]

Performance
g[DV]

D

Hazard Analysis

g[IM | D]

IM: Intensity
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EDP: engineering

demand
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g[DM | EDP,D]

DM: Damage
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Facility Info

D: location 

and design

Select
D

Decision-

making

Figure 1.1: PEER performance-based loss analysis framework (Porter, 2003).
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(Porter, 2003):

g[DV |D] =
∫ ∫ ∫

p[DV |DM,D] p[DM|EDP,D] p[EDP|IM,D]

g[IM|D]dIM dEDP dDM

(1.1)

Equation (1.1) when applied to a single-site, can be solved either numerically or using

simulation-based methods. The former approach is adopted when all the functions describ-

ing the uncertainties in each stage of the analysis and the inter-relationships of subsequent

phases are defined in closed-form expressions. The latter, more general, approach was first

applied to PSHA (Ebel and Kafka, 1999; Musson, 1999, 2000), and then to the rest of the

PBEE framework. The available tools resulting from the PSHA analysis phase and the

PBEE framework, however, are not in general, easily applicable to engineering problems

taking into account distributed infrastructure systems, lifelines and building stocks. There

are four main reasons which make them inappropriate, as described below.

The first reason is that the tools yielded by the PSHA stage (e.g., hazard maps) do not

provide information on the correlation of the measures used to quantify the intensity of the

hazard (IM) between spatially distributed assets (see review papers by Sokolov and Wen-

zel, 2011b,a). Instead, when a spatially distributed system is considered, it is necessary to

know the probability of having simultaneously certain values of the IM at all locations of

interest (Bocchini and Frangopol, 2011a, 2012; Decò et al., 2013; Saydam et al., 2013).

Another reason that makes the resultant tools impractical is that for various sites, the scalar

intensity measure in Equation (1.1) should be replaced with a vector of IMs, which would

add another layer of complexity to the integral. Furthermore, the variability on each step

conditional to the previous steps forces each step to be repeated many times in a simu-

lation pattern, which results in high computational demands that are infeasible given the

commonly available computational resources. Lastly, the connection between the damage

response and the performance of a spatially distributed system is usually not available in
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closed form solution (i.e., p[DV |DM,D]). For example, the optimal bridge restoration se-

quence of a transportation network for a given damage state of network bridges after the

occurrence of an extreme event is not available in closed-form. Problems of this type are

usually solved utilizing numerical optimization techniques (Karamlou and Bocchini, 2014).

The research presented in this thesis addresses the challenges involved in a regional

probabilistic hazard analysis and developed a comprehensive methodology for the accurate

probabilistic quantification of the regional hazard which can effectively be used by the

subsequent steps of a regional loss estimation analysis or a network risk assessment. A

new, versatile, and effective multi-hazard simulation-based approach is the main goal of

the conducted research applied to natural hazards such as earthquakes and hurricanes.

The proposed approach consistently addresses the investigated hazards as random fields.

The goal of this methodology is to optimally sample a limited number of IM maps while

properly considering the spatial correlation and the uncertainties involved.

1.2 Research overview

Simulation-based regional probabilistic hazard analysis requires the development of sim-

ulators which can generate synthetic hazard scenarios that accurately capture the extreme

event’s probabilistic characteristics. These simulators should account for the extreme event’s

recurrence rates and its intensity variability and uncertainty over space, among other fea-

tures. In addition, the simulators should yield the extreme event’s resulting loads on the

built environment, which can be univariate or multivariate. For example, the peak ground

acceleration in the case of an earthquake scenario can be interpreted as a univariate load, or

the maximum wind intensity and directionality in the case of a hurricane scenario can be

interpreted as a two variate load.
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In regional hazard analysis —which is the focus of this research, as discussed in Sec-

tion 1.1— the information on the spatial distribution of the load over a geographic region is

essential. The resulting loads over a geographic region are characterized by uncertainty and

correlation, which makes them multidimensional and non-Gaussian random fields. Such

simulators, then, can be very complex–both scientifically and computationally.

In order to acquire the skills for the simulator’s development, the author was exposed

to various research tasks and projects that built a strong foundation for this simulator’s

development. Each research project and task contributed to the development of the multi-

hazard simulator by allowing the researcher to study and develop new techniques to simu-

late random variables and functions that had distinct probabilistic properties. A thorough

chronological overview of the research tasks follows, with an accompanying pictorial rep-

resentation (Figure 1.2). The topics presented in the blue signs in Figure 1.2 are briefly

described in this chapter; however, they are not presented in details in subsequent chapters.

On the other hand, the tasks presented within the green signs are described in this chapter

and subsequently discussed in details in the remaining chapters of this thesis.

One of the most lengthy tasks (4-years duration) is related with the research project en-

titled “Integrated framework for the application of probabilistic optimization technol-

ogy (POTech) to weapons with emphasis on modeling and simulation.” The objective of

this collaborative task among the author and Professors Frangopol, Bocchini, and Sabatino

was to probabilistically assess the life-cycle of weapon systems for the U.S. Department of

Defense - Research, Development, and Engineering Command - Armament Research, De-

velopment and Engineering Center (REDCOM-ARDEC). Throughout the project’s course,

the researcher performed the following tasks:

• Investigated failure modes of a weapon system

• Investigated relationship between events, malfunctions, and physical components
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• Constructed fault tree models and established reliability block diagrams

• Filtered experimental data and fitted parametric and non-parametric probability den-

sity functions to them

• Developed a system reliability model of the weapon’s mechanical system using sev-

eral performance indicators, such as the probability mass function (PMF) and the

cumulative distribution function (CDF) of the system time-to-failure, the survivor

and hazard functions and the importance ranking of failure modes

• Developed a dynamic model which considers the effect of component maintenance

actions to the lifetime behavior of a weapon system

• Implemented a generalized (Gaussian and non-Gaussian) correlated random num-

ber simulator to investigate the effect of correlation between components’ life-time-

functions.

• Performed numerical simulation to asses the accuracy of the developed methodology

and cross-validated it with experimental data

In addition to the tasks above, throughout the project, the researcher contributed to the

preparation and delivery of 10 presentations, the submission of 12 progress reports, the

submission of 3 technical reports and the submission of 2 manuscript for potential journal

publication, which are still covered by a non-disclosure agreement (NDA) (Frangopol et al.,

2015b,a).

One of the first research tasks in the simulation of random fields and processes con-

ducted by the researcher was the development of a methodology for the simulation of

multi-dimensional non-Gaussian random fields. The technique is an extension to the

case of multi-dimensional random functions of a recently developed iterative technique that

generates one-dimensional, univariate sample functions of non-Gaussian random fields and

processes (Shields et al., 2011). A conference paper was published, in which the methodol-

ogy was presented and used to model probabilistically the spatial distribution of corrosion
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of a steel beam (Christou and Bocchini, 2014a). The amount of corrosion penetration was

modeled as a random field and applied to a finite element mesh on the top flange of a steel

cantilever beam. The field matches both the arbitrarily prescribed spectral density function

and the non-Gaussian marginal distribution. The effect of the spatial variability of the cor-

rosion on the flange was evaluated using the tip displacement as representative structure

response metric, while a series of finite element analysis were performed by a Monte Carlo

simulation. The flanges and web were modeled with 4-node Serendipity shells that assume

bilinear deflection, bilinear rotations and linear transverse shear strain. To effectively and

efficiently consider the effect of field variability at the finite element thickness reduction,

an in-house three-dimensional finite element software was developed by the author in MAT-

LAB (MATLAB, 2010) which was able to consider different structures made of plates and

shells elements.

After familiarizing himself with random processes via the methodology above, the

researcher then began to develop a technique to sample random functions more effec-

tively than traditional Monte Carlo simulations (MCS). The goal of the technique, called

“Functional Quantization (FQ)” is to optimally represent random fields and processes

using a finite number of samples (Luschgy and Pagès, 2002). The technique has proven

to optimally approximate random functions using a pre-determined number N of repre-

sentative samples. Functional Quantization is distinguishable from MCS because of the

following: (1) the representative samples from FQ are selected not entirely at random and

(2) the representative samples from FQ are not equally weighted. A limited number of

techniques for the selection of optimal samples and computation of associated probabili-

ties based on the FQ concept have been presented in the literature; however, they have only

been demonstrated on Gaussian random functions. The researcher investigated a recently

developed technique called “Functional Quantization by Infinite-Dimensional Centroidal

Voronoi Tessellation” (FQ-IDCVT) which has been successfully used for one-dimensional,
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non-Gaussian and non-stationary processes (Miranda and Bocchini, 2015a) and extended

the technique to the case of random functions defined over a multi-dimensional domain

(Christou et al., 2016b; Christou and Bocchini, 2014b). The description of the modifi-

cations to the existing algorithm required by the extension to multi-dimensional fields is

accompanied by its demonstration on two numerical applications. The first example in-

volves a two-dimensional lognormal field, generated through the Spectral Representation

Method (SRM) using the previously developed iterative algorithm, which approximates a

non-Gaussian stationary multi-dimensional field, to investigate the limits of applicability

and discuss the computational challenges associated with the extension to two-dimensional

fields. The second numerical application was in the field of computational mechanics and

involved a two-dimensional panel in plane-stress with uncertain Young modulus, modeled

as a two-dimensional stochastic field.

Having investigated the limits of applicability of the FQ-IDCVT technique for uni-

variate and multivariate random processes and fields, it was expected that it would yield

promising results when applied to problems involving random functions with relatively

high correlation length. Therefore, its application to quantize probabilistic life-cycle per-

formance models was conducted. In life-cycle engineering, the uncertainty in the dete-

riorating performance (e.g., reliability) of structures is often described by means of time-

dependent models with random parameters. Most of the numerical models of individual

structures are already complex, and when a life-cycle performance analysis of a network

of systems is carried out, the complexity and the computational cost become very high.

Thus, for simulation-based probabilistic analysis, the number of deterministic runs that

can actually be performed is limited. The FQ-IDCVT technique was applied to the op-

timal selection of life-cycle profile samples, which are non-Gaussian and non-stationary

random functions (Bocchini et al., 2014). The results were assessed and compared with

those from MCS and Latin Hypercube Sampling (LHS) techniques. In particular, LHS has
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been proven to be a very effective technique to sample this type of models, because they

are functions of a small number of parameters. However, the accuracy of the representa-

tion of the life-cycle models is significantly enhanced when FQ-IDCVT is used, compared

to MCS and even LHS, thus making this simulation approach applicable even when the

number of deterministic runs needs to be small.

Extending the FQ-IDCVT technique to the case of random functions defined over two

dimensional domains was the stepping stone to develop a methodology for the selection

of an optimal set of stochastic intensity measure (IM) maps representing the regional haz-

ard over a geographic area. As mentioned, the purpose of selecting a representative set of

IM maps is to use them for the analysis of spatially distributed infrastructure systems. An

approach was proposed and called “Hazard Quantization (HQ)” (Christou and Bocchini,

2015; Bocchini et al., 2016; Karamlou et al., 2016). HQ embraces the nature of regional

IM maps as two-dimensional random fields and ensures mean-square convergence of the

ensemble of representative IM maps to the complete portfolio of possible hazard events,

which is a particularly important property for risk analysis. The technique’s applicabil-

ity was demonstrated for the regional seismic hazard analysis of the Charleston, South

Carolina region (Christou et al., 2017). A small set of IM maps and their associated proba-

bilities resulting for the application of HQ are evaluated at all points and all pairs of points,

on their ability to correctly represent the hazard curve and the IM autocorrelation. In ad-

dition, a detailed comparison of the proposed technique with other popular methodologies

in the same field is presented, showing that HQ in general provides results comparable or

superior to the best techniques available.

Applying the FQ-IDCVT technique to regional hazard analysis problems demonstrated

that the technique works effectively well; however, the computational cost often becomes

an issue when multi-dimensional fields are at hand. This is because the computational time

scales linearly with the size of the domain and the resolution that is used. The increase in the

14



computational cost results from the distance calculations between the samples. To address

the issue of the escalating computational cost, the implementation of several accelerated

clustering techniques was investigated (Fiorillo et al., 2017). The results of each algorithm

were used to perform an accuracy and efficiency comparison of each methodology against

a benchmark solution.

The following research task was to extend the HQ methodology to the multivariate case.

This would require a multivariate random function generator. Therefore, a well-known

version of the Spectral Representation Method (SRM) was investigated for the simulation

of multivariate random processes and fields (Deodatis, 1996). During the implementation

of the proposed algorithm, it was realized that the Cross-Spectral Density Matrix (CSDM)

of the generated samples does not match the values of the CSDM at the discrete frequencies

which are considered as input in the simulation procedure (, Christou and Bocchini). This

observation was investigated mathematically and yielded a closed form expression which

proves that even in the case of samples with finite period (or discrete frequency domain),

these samples are ergodic in the correlation. In addition, it was also showcased that in the

limit, the derived closed-form expression of the sample CSDM coincides with the input

CSDM.

The findings on the SRM algorithm assisted in the accurate simulation of multivariate

hurricane wind speeds. This process captures the uncertainties of the hurricane wind fluc-

tuations and correlation in time and space for a significantly large number of components

(i.e., random load time histories at specific locations). The hurricane wind fluctuations

were used as input for deriving the fragility model of electrical conductors (, Ma et al.).

The following research task was to apply FQ-IDCVT to vector processes describing

wind fluctuations, corresponding to different locations over the façade of a building or

along the length of a conductor power line (Christou et al., 2016a).
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Keeping in mind that an important goal is to develop fundamental hazard models for

multi-hazard risk assessment, the HQ methodology was extended and applied to the

case of regional hurricane hazard analysis of a region in the southeastern United States

(Christou and Bocchini, 2018). The extension of the HQ technique included the ability to

preselect a fixed number of real events to include in the regional analysis a priori and then

perform the hazard quantization for the optimal selection of the remaining set of hurricane

events.

To apply the hazard quantization methodology, a high number of available samples is

required, such that they can truly represent the sample space. In the case of hurricane haz-

ard, the number of historical events is not enough to effectively apply HQ. A collection

of synthetic events was kindly shared by Professor Kerry Emanuel (MIT), and it was used

for a proof of concept, but it was still insufficient for thorough testing of the methodology.

This significant constraint led the researcher to the development of an in-house simu-

lation framework of synthetic hurricane directional wind speeds. This framework is

presented in the following chapters in detail and can be used to feed the HQ technique with

the required number of scenario events and further used for hazard and risk analysis in the

United States.

1.3 Research objectives

This research proposes new methodologies to probabilistically represent stochastic pro-

cesses, random fields, and natural hazards. These methodologies have been demonstrated

in applications aimed at reducing risk and the impact of natural disasters on vulnerable

communities.

The main objectives of this work are to:
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• develop accurate simulators of regional intensity measures for earthquakes (on the

basis of seismological models and historical data) and hurricanes (genesis, track

propagation, storm intensity, key atmospheric parameters, wind field, and dissipa-

tion, on the basis of physics-based and data-driven approaches);

• propose a technique for the optimal selection of a limited number of intensity mea-

sure maps to use as input in a regional risk and resilience analysis of interdependent

infrastructure systems;

• introduce more comprehensive ways to represent regional hazards, such as the com-

bination of wind direction and intensity for hurricanes;

• assess the accuracy of the proposed methodologies, validate them against the avail-

able data, and compare them with the state-of-the-art techniques.

1.4 Outline of the Dissertation

The dissertation comprises six chapters. Each chapter’s content is discussed below.

Chapter 1, the current chapter, details the research overview and the research objec-

tives.

Chapter 2 investigates an algorithm for the simulation of multivariate turbulent hurri-

cane wind velocity fluctuations. This simulation can be used to model hurricane-induced

dynamic loads on power transmission networks. Included in this chapter is a review of a

commonly used in practice algorithm for the simulation of multivariate Gaussian stationary

random processes. The researcher demonstrated a closed-form expression indicating that

when the frequency domain is discretized the generated samples are ergodic; however, the

cross-spectral density matrix output does not match the input CSDM. Finally, the closed-

form expression of the generated samples’ resulting spectrum is provided, along with a
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delineation of surprising expression characteristics, such as the fact that the variance of the

generated samples is influenced by the algorithm’s frequency indexing technique.

Chapter 3 presents techniques for the representation of random fields with a finite

number of samples and their application to mechanics. A methodology is proposed for

the optimal selection of a moderate number of samples effectively representing the entire

space of sample realizations. The technique is then applied to multidimensional random

functions, such as two-dimensional non-Gaussian random fields and a two-dimensional

panel with uncertain Young modulus under plane stress.

Chapter 4 investigates the seismic characterization of the Charleston, South Carolina

region and presents a model for the simulation of the regional seismic hazard. Addition-

ally, a methodology —named Hazard Quantization (HQ)— is proposed for the selection

of an optimal set of stochastic simulated and/or historical seismic intensity measure (IM)

maps representing the regional hazard over a geographic area, and applied to the city of

Charleston. Two state-of-the-art methodologies are implemented and compared as a means

of assessing the strengths and weaknesses of the proposed methodology. Lastly, a quantita-

tive comparison utilizing various metrics as well as a qualitative comparison of framework

features is discussed.

Chapter 5 proposes a methodology to implement a hurricane wind simulator for the

assessment of directional hurricane risk over the Atlantic and Gulf coasts of the United

States. Implementation details are presented and probabilistic modeling module are dis-

cussed. Such modules include: the hurricane track, the hurricane intensity, the hurricane

intensity decay, the radius to maximum wind, Holland B parameter, the wind field model,

the boundary layer model and the wind directionality. The chapter discusses the available

models for each of the aforementioned modules and presents the models used in this frame-

work. When feasible, each module is assessed to investigate the limits of applicability and
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the epistemic uncertainty. The historical data used are presented along with the required

operations needed to prepare them as input for the required probabilistic models.

Chapter 6 presents the summary of the dissertation and the significant contributions of

the conducted research.
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Chapter 2

On the Spectrum of Multi-Variate Gaussian, Ergodic,

Random Samples Generated by Spectral Representation

2.1 Introductory remarks

A large amount of problems in stochastic mechanics and engineering involve random pro-

cesses and fields as for example the wind velocity fluctuations along a transmission power

line. Often, simulation-based approaches are used to solve such problems. Therefore, ef-

fective techniques for the accurate and efficient generation of random samples matching

the prescribed characteristics are needed. Among the various techniques available in the

literature, the Spectral Representation Method (SRM) is one of the most popular in science

and practice (Shinozuka and Jan, 1972). One of the most interesting features of the SRM

is that it can generate samples that are ergodic in the limit, when the spectrum is modeled

over a continuous frequency domain (Shinozuka and Deodatis, 1991).

Deodatis (1996) proposed an extension of the classical SRM that generates multi-

variate samples. In the same paper, the author suggested to use the Frequency Double-

Indexing (FDI) technique proposed by Zerva (1992), and he showed that in the limit, when

the samples have infinite period and the spectra are modeled over a continues frequency

domain, the generated samples are ergodic. However, in practice, these simulations are

always performed through numerical evaluations, so the spectra are defined at discrete fre-

quencies separated by finite intervals. The first original contribution of this chapter is the

proof that the CSDM of the generated samples (named here “actual CSDM”) does not
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match the values of the CSDM at the discrete frequencies which are considered as input in

the simulation procedure, named for the remainder of the chapter as “input CSDM”. There-

fore, interesting properties of the generated samples, such as their variance, are influenced

by the simulation algorithm and specifically by the FDI technique.

The second original contribution of this chapter is the proof is the generalization of the

proof of ergodicity in the correlation, , to show that it applies not only in the (theoreti-

cal) limit, but also in practical cases where the frequency domain has discrete frequencies

and the samples have finite period. This means that all samples have exactly the same

Cross-Spectral Density Matrix (CSDM), and therefore the CSDM can be computed by

space-averaging (or temporal-averaging) over one sample, rather than ensemble-averaging

multiple samples.

The third original contribution of this chapter is that itprovides a closed-form expression

that allows to compute a priori the actual CSDM of the generated samples, which permits

the analyst to compute ahead of the simulation the approxiation error on the CSDM.

In the reminder of the chapter, the case of random fields defined over the space do-

main is considered. The extension to random processes defined over the time domain is

straightforward.

2.2 Revisiting the multi-variate SRM

The objective of the multi-variate SRM is to generate Gaussian samples that match a pre-

scribed stationary theoretical CSDM, S(κ), defined over a continuous wave number do-
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main κ:

S0(κ) =












S11(κ) S12(κ) · · · S1m(κ)

S21(κ) S22(κ) · · · S2m(κ)

...
...

. . .
...

Sm1(κ) Sm2(κ) · · · Smm(κ)












(2.1)

where κ represents the wave number (i.e., the frequency domain, when dealing with ran-

dom fields defined over space), and m is the total number of variates. In the follow-

ing, a unidimensional (1D), m-variate (mV) random vector field ggg(κ) with components

g j(x); j = 1, . . . ,m having mean value equal to zero

E
[
g j(x)

]
= 0; j = 1, . . . ,m

and a prescribed (target) cross-spectral density matrix given by Eq. (2.1), is considered.

Distinction is made between the vector field ggg(x) and its sample generation ĝgg(x).

2.2.1 Decomposition of the target CSDM

In order to simulate a 1D-mV random field using SRM, its CSDM must first be decomposed

into the following product:

S(κ) = H(κ)HT∗(κ) (2.2)

where ∗ indicates the complex conjugate and superscript T the transpose. Such decomposi-

tion can be performed in several ways, for instance using the Cholesky method as suggested

by Deodatis Deodatis (1996). When Chelosky’s decomposition is used, the terms of matrix
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H can be computed recursively as follows:

Hcc(κ) =

√
√
√
√Scc(κ)−

c−1

∑
e=1

Hce(κ)H∗
ce(κ)

Hcd(κ) =
1

Hdd(κ)

(

Scd(κ)−
d−1

∑
e=1

Hce(κ)H∗
de(κ)

)

, for c > d

(2.3)

In this decomposition H(κ) is a lower triangular matrix:

H(κ) =












H11(κ) 0 · · · 0

H21(κ) H22(κ) · · · 0

...
...

. . .
...

Hm1(κ) Hm2(κ) · · · Hmm(κ)












(2.4)

whose diagonal elements are real and non-negative functions of κ and whose off-diagonal

elements are complex functions of κ , in general. The off-diagonal elements Hcd(κ) can

also be written in polar form as:

Hcd(κ) = |Hcd(κ)| eiθcd(κ)

where

θcd(κ) = tan−1

{
Im [Hcd(κ)]

Re [Hcd(κ)]

}

(2.5)

2.2.2 Generation of random samples

Once matrix H(κ) has been assessed, samples can be generated using the following series

of steps, which are a slightly revised version of what presented in Deodatis (1996). First,
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vectors t
(i)
cd are generated as:

t
(i)
cd (p∆x) = DFT+

[

2Hcd

(

n∆κ +
d

m
∆κ

)√
∆κ · exp

(

iφ
(i)
dn

)]

;

n = 0,1, . . . ,M−1

(2.6)

where the indexes run as follows

c = 1,2, . . . ,m; d = 1,2, . . . ,c; p = 0,1, . . . ,M−1;

and where ∆x defines the discretization in space. Indexes c and d are used for the remain-

der of the chapter as generic indices to identify a component and the component’s term

respectively of the random field. DFT+ [·] is the Discrete Fourier Transform defined as:

DFT+[Y] =
Z

∑
α=1

Y(κα)e
2π
Z i(β−1)(α−1) = X(xβ ); β = 1, . . . ,Z (2.7)

and DFT− [·], as it will be used later, is defined as:

DFT−[X] =
Z

∑
β=1

X(xβ )e−
2π
Z i(β−1)(α−1) = Y(κα); α = 1, . . . ,Z (2.8)

X and Y are vectors of length Z and i indicates the imaginary unit. Parameter φ
(i)
dn defines

the random phase angles which are uniformly distributed in the interval [0,2π] and super-

script (i) refers to the i-th set of phase angle samples and indicates that a specific set of

random phase angles yields a specific sample t
(i)
cd . It should be noted that Eq. (2.6) assumes

that both the space domain and the wave number domain are discretized, with steps ∆x and

∆κ respectively, which is always the case when numerical analysis is used. The step in the

wave number domain, ∆κ , is defined as follows:

∆κ =
κu

N
(2.9)

24



where κu is the upper cut-off wave number and N is the number of discretization points in

the wave number domain. The upper cut-off wave number needs to be selected such that the

values of the elements of the CSDM beyond κu may assumed to be zero (i.e., Scd(r∆κ) = 0

for r∆κ > κu = N∆κ). The step increment, ∆x, in the space domain is computed as:

∆x =
2π

M ∆κ
(2.10)

so that aliasing is avoided.

Next, m identical copies of t
(i)
cd are concatenated to generate h

(i)
cd :

h
(i)
cd (q∆x) = t

(i)
cd (mod(q,M)∆x); q = 0,1, ...,mM−1 (2.11)

where mod(q,M) denotes the remainder of division of q by M.

Because of the frequency double indexing Deodatis (1996), h
(i)
cd has to be multiplied by

a shifting factor:

ĥ
(i)
cd (q∆x) = ℜ

{

h
(i)
cd (q∆x) · exp

[

i
d

m
∆κ (q∆x)

]}

= ℜ

{

h
(i)
cd (q∆x) · exp

(

i
2π

M
q

d

m

)} (2.12)

where ℜ{·} denotes the real part of the quantity in brackets.

Finally, each component c of sample (i) of the random field is obtained as the superpo-

sition of functions ĥ
(i)
cd (q∆x):

ĝ
(i)
c (q∆x) =

c

∑
d=1

ĥ
(i)
cd (q∆x); c = 1,2, ...,m (2.13)

Sample ĝgg(i)(q∆x) and its m components are the final result of the simulation process.
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2.3 Cross-Spectra Density Matrix estimation of the gener-

ated samples

When a sample ĝgg(i)(q∆x) is generated as prescribed in Section 2.2, the Cross-Spectral Den-

sity Function (CSDF) of any pair of components ĝ
(i)
r (q∆x) and ĝ

(i)
s (q∆x) of the sample can

be estimated in the temporal sense at discrete frequencies l ∆κ
m

, where l = 0,1,2, . . . ,mM−1

using the formula (Bendat and Piersol, 1986):

Sg
rs

(

l
∆κ

m

)

=
1

2π(mL)
DFT−[ĝ(i)r (q∆x)]∆x

{

DFT−[ĝ(i)s (q∆x)]∆x
}∗

(2.14)

where DFT− [·] denotes the Discrete Fourier Transform with negative exponent as defined

by Eq. (2.8), the asterisk denotes the complex conjugate, and L = 2π
∆κ is the length of the

sample. Indices r and s are generic indices and represent two of the components of the

vector field. When the DFT is performed, the result has the same number of points as the

input function ĝgg(q∆x); in this case mM points. Substituting Eq. (2.13) into Eq. (2.14) and

taking advantage of the linear property of the DFT operator, we get:

Sg
rs

(

l
∆κ

m

)

=
∆x2

2π(mL)
DFT−

[
r

∑
j=1

ĥ
(i)
r j (q∆x)

]{

DFT−
[

s

∑
k=1

ĥ
(i)
sk (q∆x)

]}∗

=
∆x2

2π(mL)

r

∑
j=1

[

DFT−
[

ĥ
(i)
r j (q∆x)

]]
{

s

∑
k=1

[

DFT−
[

ĥ
(i)
sk (q∆x)

]]
}∗ (2.15)

Equation. (2.15) is simplified by first expanding function DFT−
[

ĥ
(i)
cd (q∆x)

]

, where c can

refer to any component of the vector field and d refers to one of the component’s term.

Using Eq. (2.8) and recalling that DFT−
[

ĥ
(i)
cd (q∆x)

]

is a function of l with mM points,
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then DFT−
[

ĥ
(i)
cd (q∆x)

]

can be written in:

DFT−
[

ĥ
(i)
cd (q∆x)

]

=
mM−1

∑
q=0

ĥ
(i)
cd (q∆x)e−i 2π

mM ql

=
m

∑
v=1

vM−1

∑
q=(v−1)M

Re
{

h
(i)
cd (q∆x)ei 2π

mM qd
}

e−i 2π
mM ql

(2.16)

Changing the variable q with p = q− (v−1)M, Eq. (2.16) becomes:

DFT−
[

ĥ
(i)
cd (q∆x)

]

=
m

∑
v=1

M−1

∑
p=0

Re

{

t
(i)
cd (p∆x)exp

[

i
2π

M
p

d

m

]

exp

[

i2π
d

m
(v−1)

]}

· exp

[

−i
2π

M
p

l

m

]

exp

[

−i2π
l

m
(v−1)

] (2.17)

When defining t̃
(i)
cd (p∆x) = t

(i)
cd (p∆x)exp

[
i2π

M
p d

m

]
and extracting the real part of the com-

plex expression in the braces using its conjugate, Eq. (2.17) can be written as follows:

DFT−
[

ĥ
(i)
cd (q∆x)

]

=
1

2

M−1

∑
p=0

t̃
(i)
cd (p∆x)e−i 2π

M p l
m

︸ ︷︷ ︸

A

m−1

∑
v=0

e−i2π v( l
m− d

m)

︸ ︷︷ ︸

B

+
1

2

M−1

∑
p=0

[

t̃
(i)
cd (p∆x)

]∗
e−i 2π

M p l
m

m−1

∑
v=0

e−i2π v( l
m+ d

m)

︸ ︷︷ ︸

C

(2.18)

Expression B of Eq. (2.18) can be further analysed considering the Euler’s formula:

B =
m−1

∑
v=0

[

cos

(

2π v
l −d

m

)

− i sin

(

2π v
l −d

m

)]

=







m l = k m+d; k = 0,1, . . . ,M−1

0 otherwise

(2.19)
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The summation over the cosines in Eq. (2.19) is computed as:

m−1

∑
v=0

cos

(

2π v
l −d

m

)

=







m l = k m+d; k = 0,1, . . . ,M−1

0 otherwise

(2.20)

The summation over the sines in Eq. (2.19) is computed as:

m−1

∑
v=0

sin

(

2π v
l −d

m

)

= 0 ∀ l,d (2.21)

Expression A of Eq. (2.18) can be simplified using Eq. (2.6) as follows:

A =
M−1

∑
p=0

M−1

∑
n=0

2H∗
cd

[(

n+
d

m

)

∆κ

]√
∆κ e

iφ
(i)
d,n ei 2π

M p(n+ d
m− l

m)

=
M−1

∑
n=0

2H∗
cd

[(

n+
d

m

)

∆κ

]√
∆κ e

iφ
(i)
d,n

M−1

∑
p=0

ei 2π
M p(n+ d

m− l
m)

︸ ︷︷ ︸

D

= 2M H∗
cd

(

l
∆κ

m

)√
∆κ e

iφ
(i)

d, l−d
m

(2.22)

Recalling from Eq. (2.19) that parameter l can only be of the form l = k m+d;k= 0,1, . . . ,M−

1 in order for the product A · B of Eq. (2.18) to be different than zero. Therefore, pa-

rameter l should satisfy l = nm+ d; n = 0,1, . . . ,M − 1 and for the pair of l,n that this

holds, expression D becomes: ∑
M−1
p=0 e−

2π
M p(n+ d

m− l
m) = 1. For all pairs of n, l which satisfy

l = nm+d; n = 0,1, . . . ,M−1, expression A yields the last equality of Eq. (2.22).

Expression C in Eq. (2.18) is zero for all values of l and d.

C =
m−1

∑
v=0

[

cos

(

2π v
l +d

m

)

− i sin

(

2π v
l +d

m

)]

= 0 ∀ l,d

(2.23)

Both the real and imaginary parts in the equation above are equal to zero for all values of l
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and d. Therefore, making use of Eqs. (2.19)-(2.23), Eq. (2.18) becomes:

DFT−
[

ĥ
(i)
cd (q∆x)

]

= mM H∗
cd

(

l
∆κ

m

)√
∆κ e

iφ
(i)

d, l−d
m (2.24)

Considering Eqs. (2.15) and (2.24) we can observe that the product of the sums gives terms

different from zero only when both factors DFT− [ĥr j

]
and

{
DFT− [ĥs j

]}∗
are different

from zero. For this reason is possible to consider only terms with j = k and, therefore,

simplify one summation of Eq. (2.15). Equation (2.15) now becomes:

Sg
rs

(

l
∆κ

m

)

=
min(r,s)

∑
j=1

∆x2

2π(mL)

[

DFT−
[

ĥ
(i)
r j (q∆x)

]][

DFT−
[

ĥ
(i)
s j (q∆x)

]]∗
(2.25)

Now, for any j we can compute the corresponding term in the summation in Eq. (2.25) as

follows:

∆x2

2π(mL)
DFT−

[

ĥ
(i)
r j (q∆x)

]{

DFT−
[

ĥ
(i)
s j (q∆x)

]}∗
=

=







mH∗
r j

(
l ∆κ

m

)
Hs j

(
l ∆κ

m

)
l = nm+ j; n = 0,1, . . . ,M−1

0 otherwise

(2.26)

It should be noted here that the value at zero frequency (i.e., l = 0) will always result to

zero as expected. Finally, Eq. (2.15) becomes:

Sg
rs

(

l
∆κ

m

)

=







mH∗
r1

(
l ∆κ

m

)
Hs1

(
l ∆κ

m

)
l = nm+1

mH∗
r2

(
l ∆κ

m

)
Hs2

(
l ∆κ

m

)
l = nm+2

...

mH∗
r min(r,s)

(
l ∆κ

m

)
Hsmin(r,s)

(
l ∆κ

m

)
l = nm+min(r,s)

0 otherwise

(2.27)
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where n = 0,1, . . . ,M−1.

Because of the discretization in the frequency domain and the FDI, S
g
rs can have energy

at all or some of the frequencies in l ∆κ
m

. In particular, at frequencies n∆κ + j
m

∆κ , the spec-

trum S
g
rs is a delta function, while at the other frequencies it is zero. Therefore, Eq. (2.27)

can be written more condensely:

Sg
rs

(

l
∆κ

m

)

= mH∗
r j

(

l
∆κ

m

)

Hs j

(

l
∆κ

m

)

·δ
[

l
∆κ

m
−
(

n∆κ +
j

m
∆κ

)]

j = 1,2, . . . ,min(r,s); n = 0,1, . . . ,M−1

= mH∗
r j

(

l
∆κ

m

)

Hs j

(

l
∆κ

m

)

·δ [l −nm− j]

j = 1,2, . . . ,min(r,s); n = 0,1, . . . ,M−1

(2.28)

where l = 0,1,2, . . . ,mM − 1. Equation (2.28) is a closed-form expression of the CSDM

that can be obtained when computing the empirical spectra from a single sample, starting

from Eq. (2.14) and making use of the DFT technique. The single sample is also considered

to have been generated using the SRM and the DFT technique as presented in Sec. 2.2.2.

It should be mentioned that when the DFT is performed for the CSDM estimation, the

result has as many points as the input function ĝgg(q∆x); however, only the first half of

the resulting points is meaningful, while the second half is only its mirror image due to

the periodicity implicit in the use of DFT. Considering now mN points and letting κ̄κκ =

[0 1 2 . . . mN −1]T ·∆κ , Eq. (2.28) can also be expressed as:

Sg
rs (κ̄κκ) = mH∗

r j(κ̄κκ)Hs j(κ̄κκ) ·δ
[

κ̄κκ −
(

n∆κ +
j

m
∆κ

)]

j = 1,2, . . . ,min(r,s); n = 0,1, . . . ,N −1

(2.29)

Equations (2.28) and (2.29) compute the spectrum of the samples as it is naturally given by

their digital representation, that means at intervals ∆κ
m

. To measure the spectral density over

intervals of width ∆κ (i.e., at the primary discretization wave numbers), we can average the

30



results at m sub-frequencies (i.e., sum the areas under the SDF). Hence, Eq. (2.29) can be

expressed in terms of the new domain κ̃κκ = [0 1 2 . . . N]T ·∆κ and thus becomes:

Sg
rs (κ̃κκ) = H∗

r j (κ̄κκ) Hs j (κ̄κκ) ·δ
[

κ̄κκ −
(

n∆κ +
j

m
∆κ

)]

·δ [κ̃κκ − (n+1)∆κ]

j = 1,2, . . . ,min(r,s); n = 0,1, . . . ,N −1

(2.30)

which is the same as:

Sg
rs(n∆κ)







0 n = 0

min(r,s)

∑
j=1

H∗
r j

(

(n−1)∆κ +
j

m
∆κ

)

·Hs j

(

(n−1)∆κ +
j

m
∆κ

) n = 1,2, . . . ,N
(2.31)

2.4 Ergodicity of the generated samples

Equation (2.29) describes all terms of the CSDM (for all combinations of c and d) of a

generated sample. This is the proof that each and all samples have the same CSDM and,

therefore, the same auto- and cross-correlation functions. This proves the ergotic property

of random Gaussian fields with finite period when are generated as described in Sec. 2.2.2.

For the special case when ∆κ goes to zero, Deodatis (1996) had already proved that the

generated samples are ergodic. Herein, it will be shown that the two proofs are consistent,

and that Eq. (2.31) yields the same results obtained by Deodatis when ∆κ goes to zero.

In particular, it is shown that in such special case, the actual spectrum of each generated

31



sample tends to the target spectrum:

lim
∆κ→0

Sg
rs(l∆κ) =







0 l = 0

lim
∆κ→0

min(r,s)

∑
j=1

H∗
r j

(

(l −1)∆κ +
j

m
∆κ

)

·Hs j

(

(l −1)∆κ +
j

m
∆κ

)

;

l = 1,2, . . . ,N

=







0 when l = 0

∑
min(r,s)
j=1 H∗

r j (κ) ·Hs j (κ) ; when l = 1,2, . . . ,N

=







0 when l = 0

Srs(κ) when l = 1,2, . . . ,N

(2.32)

The proof of Eq. (2.32) is in the Appendix A. From Eq. (2.32) and for r,s = 1, . . . ,m we

obtain Sg(κ) = S(κ), which is what Deodatis proved considering the correlations (Deo-

datis, 1996). Therefore, Eq. (2.29) can be considered a generalization of Deodatis’ proof

of ergodicity, which is now extended also to the case of finite ∆κ .

2.5 Numerical Examples

Three examples with different CSDM are presented in order to showcase the analytical re-

sults. To predict the CSDM of the samples, the analyst must first know the target CSDM

and its resolution. For all examples, the closed-form expression, which allows one to com-

pute the actual CSDM a priori, is validated. Additionally, rather than using ensemble aver-

aging, the resulting CSDM is computed from a single sample, leveraging the ergodicity of

the generated samples, also for finite ∆κ .
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Figure 2.1: The values given to the code as target are S
(

∆κ
m

)
= [1,2,3,2,1,0]′.

2.5.1 Parabolic Spectrum

The first example consists of a one-dimensional three-variate vector field representing

a displacement, with the following parabolic target spectrum: N = 2; κu = 6 rad/m;

∆κ = κu

N
= 3 rad/m; M = 2N = 4; m = 3 and

Srr(κ) = 2κ −2
κ2

κu
∀r ∈ [1,m] (2.33)

γrs(κ) = 0.4 ∀r ∈ [2,m]; s ∈ [1,r−1] (2.34)

The number of discretization points N is too low to get Gaussianity, but for the scope of

this paper, this is irrelevant, and ergodicity is guaranteed nonetheless.

The continuous triangular spectrum defined over κ cannot be directly used as input,

rather its values computed at frequencies κ̄κκ are required by the simulation methodology.

The spectrum represented in Fig. 2.1 is the one actually used as input in the code.
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The produced samples have mM = 12 discrete points. The empirical SDF computed

using the generated samples has 12 points as well. However, only the first half of the

points (κ = 1,2, . . . ,6) is meaningful. The second half is artificially introduced by the DFT

because of the assumption of periodicity and is a mirror image of the first half.

2.5.2 Triangular Spectrum

The first example consists of a one-dimensional three-variate vector field representing a

displacement, with the following characteristics: N = 2; κu = 6 rad/m; ∆κ = κu

N
= 3

rad/m; M = 2N = 4; m = 3, and

Srr(κ) =







κ, 0 ≤ κ ≤ κu

2

κu −κ, κu

2 < κ ≤ κu

∀r ∈ [1,m] (2.35)

γrs(κ) = 0.4 ∀r ∈ [2,m]; s ∈ [1,r−1] (2.36)

The number of discretization points N is too low to get Gaussianity, but for the scope of

this paper, this is irrelevant, and ergodicity is guaranteed nonetheless.

The continuous triangular spectrum defined over κ cannot be directly used as input,

rather its values computed at frequencies κ̄κκ are required by the simulation methodology.

The spectrum represented in Fig. 2.1 is the one actually used as input in the code.

The produced samples have mM = 12 discrete points. The empirical SDF computed

using the generated samples has 12 points as well. However, only the first half of the

points (κ = 1,2, . . . ,6) is meaningful. The second half is artificially introduced by the DFT

because of the assumption of periodicity and is a mirror image of the first half. For instance,

S22 and S33 are reported in Fig. 2.2.
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κ Target Actual S22 Actual S33

1∪2∪3 1+2+3=6 0.48+5.04+0=5.52 0.48+0.41+6.94=7.83

4∪5∪6 2+1+0=3 0.96+2.52+0=3.48 0.96+0.21+0=1.17

Table 2.1: Triangular spectrum in m3/rad. The actual spectra do not match the target,

neither in an average sense.

It is evident that the empirical spectra do not match the target. This could be attributed

to the fact that the “resolution” initially introduced is not ∆κ
m

but ∆κ . However, even when

averaging (if we consider the values) or summing (if we consider the areas) the results in

intervals of width ∆κ , the resulting spectra still do not match the target (see Table 2.1 and

Figs. 2.3–2.4).

In Sec. 2.4, we saw that when ∆κ tends to zero, the CSDM of the samples tends to

the target. In fact, increasing the number of intervals N, that is reducing ∆κ , the CSDM

computed with resolution ∆κ becomes closer to the target, as Fig. 2.5 shows. However, no

matter how small ∆κ is, if we compute the CSDM with a resolution of ∆κ
m

, we see that it is

scattered (see Fig. 2.6). Figures 2.5 and 2.6 clearly show that the most meaningful way to

compute the CSDM is to consider intervals of width ∆κ , as will be done in the remainder

of the paper.

The difference between the actual spectra of the produced samples and the target re-

mains finite even when increasing N, as the detail in Fig. 2.5 shows. Figures 2.7–2.9 repre-

sent the difference between the actual spectrum and the target triangular SDF for different

discretizations. As already said, the difference is due to the fact that each point of the actual

spectra of the samples is a combination of the values of the target spectra at m points over

the interval ∆κ . Therefore, this difference increases with the difference between the values

of the target spectra over one interval of width ∆κ . We can conclude that the difference is

larger when ∆κ is larger and when the derivative of the target autospectrum is larger. In

fact, for a linear (triangular) spectrum, the difference takes constant values, while the next
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Closed form, Eq. (36)
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Figure 2.3: Triangular spectrum, cross-spectral density matrix. The “Actual CSDM” is the

empirical spectrum computed applying Eq. (2.14) to one produced sample; the “Closed

form” represents the results of Eq. (2.29); the “Target CSDM” is the input given to the

simulation algorithm.
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Target CSDM

Closed form, Eq. (40)
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Figure 2.4: Triangular spectrum, cross-spectral density matrix. Data are computed as in

Fig. 2.3, but at intervals of width ∆κ , rather then ∆κ
m

. Each value in this plot is the sum of

m values in Fig. 2.3. It is clear that also with this resolution, the closed-form expression

perfectly describes the spectrum of the produced samples but it is different from the target.
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Target CSDM

Closed form, Eq. (40)
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Figure 2.5: Triangular spectrum, cross-spectral density matrix. Data are computed as in

Fig. 2.4. N has been set equal to 256, therefore ∆κ = 6
256

∼= 0.0234 rad/m. The actual

CSDM is much closer to the target than the one in Fig. 2.4.
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Target CSDM

Closed form, Eq. (36)
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Figure 2.6: Triangular spectrum, cross-spectral density matrix. Data are computed as in

Fig. 2.3. N has been set equal to 256, therefore ∆κ
m

= 6
3·256

∼= 0.0078 rad/m. Measuring the

CSDM at intervals of ∆κ
m

, the actual CSDM is always scattered, as long as ∆κ is finite.
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Figure 2.7: Triangular spectrum, difference between the actual CSDM computed as in

Fig. 2.4 and the target. N has been set equal to 2.

numerical example will show that for a parabolic target spectrum, the difference is a linear

function.

It is evident that the difference between the values of the target spectra and the ac-

tual spectra are always finite, and can be computed a priori by means of Eqs. (2.29) for a

specified CSDM and selected interval ∆κ .

2.5.3 Parabolic Spectrum

The second example consists of a one-dimensional three-variate vector field representing

a displacement, with the following parabolic target spectrum: N = 2; κu = 6 rad/m;
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Figure 2.8: Triangular spectrum, difference between the actual CSDM computed as in

Fig. 2.4 and the target. N has been set equal to 256. The absolute value of the difference is

constant, because the derivatives of the SDF’s are constant.
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Figure 2.9: Triangular spectrum, difference between the actual CSDM computed as in

Fig. 2.4 and the target for different values of N. This difference is plotted only for compo-

nent S33. The absolute value of the difference is constant over κ , as shown by Figs. 2.7–2.8

and it decreases as N increases (i.e., as ∆κ decreases). Similar differences could be ob-

tained for the other components of the CSDM.
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Target CSDM

Closed form, Eq. (40)
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Figure 2.10: Parabolic spectrum, cross-spectral density matrix. The “Actual CSDM” has

been computed applying Eq. (2.14) to one produced sample; the “Closed form” represents

the results of Eq. (2.29); the “Target CSDM” is the input given to the simulation algorithm.

The values are computed at intervals of width ∆κ and N is equal to 2.

∆κ = κu

N
= 3 rad/m; M = 2N = 4; m = 3 and

Srr(κ) = 2κ −2
κ2

κu
∀r ∈ [1,m] (2.37)

γrs(κ) = 0.4 ∀r ∈ [2,m]; s ∈ [1,r−1] (2.38)

Figures 2.10 and 2.11 represent the actual CSDM of the produced samples for N = 2

and N = 64, respectively. In this case the difference between the target and the actual

spectrum is linear because the derivatives of the SDFs are linear (Fig. 2.12) .

For this example, we have computed also the variances of the produced samples. Ac-

44



Target CSDM

Closed form, Eq. (40)
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Figure 2.11: Parabolic spectrum, cross-spectral density matrix. The “Actual CSDM” has

been computed applying Eq. (2.14) to one produced sample; the “Closed form” expression

represents the results of Eq. (2.29); the “Target CSDM” is the input given to the simulation

algorithm. The values are computed at intervals of width ∆κ and N is equal to 64.
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Figure 2.12: Parabolic spectrum, difference between the actual CSDM computed as in

Fig. 2.4 and the target. N has been set equal to 64. The difference is a linear function,

because the derivatives of the SDF’s are linear.
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cording to the parabolic auto-spectra, the variance of all components should be

σ2
r = 2

κu∫

0

(

2κ −2
κ2

κu

)

dκ = 24m2; r = 1,2,3 (2.39)

If we numerically compute the variances of the produced samples we get

σ2
1 = 28.4m2; σ2

2 = 28.4m2; σ2
3 = 21.6m2 (2.40)

These results are different from the theoretical variances in part because N = 2 yields a

very coarse discretization of the wave number domain, so the target spectra given as input

to the code are not capturing well the theoretical spectra. However, the three variances also

differ from each other, even if the three target auto-spectra are the same, and this is due

to the fact that the actual auto-spectra depend also on the target coherences, as Eq. (2.30)

indicates. To the best of our knowledge, this aspect has never been pointed out.

2.5.4 Kaimal Spectrum

Finally, the Kaimal spectrum with Davenport coherence used by Deodatis (1996) is used for

the simulation of a one-dimensional three-variate random process. The number of intervals

is set equal to N = 2048 and the cut-off frequency equal to κu = 6 rad/s. In this case, the

difference between the target and the actual spectrum is very small but not zero (Fig. 2.13).

Also in this case, the closed form Eq. (2.29), accurately describes the resulting actual

CSDM.
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Target CSDM

Closed form, Eq. (40)
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Figure 2.13: Kaimal spectrum, cross-spectral density matrix. The “Actual CSDM” has

been computed applying Eq. (2.14) to one produced sample; the “Closed form” expression

represents the results of Eq. (2.29); the “Target CSDM” is the input given to the simulation

algorithm. The values are computed at intervals of width ∆κ and N is equal to 2048.
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2.5.5 Triangular spectrum with complex CSDM

This example consists of a one-dimensional three-variate vector field with the follow-

ing characteristics: N = 16; κu = 6 rad/m; ∆κ = κu

N
= 0.3750 rad/m; M = 2N =

32; m = 4 and

Srr(κ) =







κ, 0 ≤ κ ≤ κu

2

κu −κ, κu

2 < κ ≤ κu

∀r ∈ [1,m] (2.41)

γrs(κ) = 0.4+0.4i ∀r ∈ [2,m];s ∈ [1,r−1] (2.42)

Figures 2.14 and 2.15 show the real and imaginary parts of the CSDM of the produced

samples at wave numbers with intervals ∆κ
m

. The different contributions at the various

secondary frequencies in the real part of the actual spectrum can be noticed in Fig. 2.14.

The contributions to the spectrum at some secondary frequencies of the off-diagonal terms

may take negative values, something which would not be observed if the same example

excluded the imaginary part of the CSDM. Additionally, the imaginary part of the CSDM

in Fig. 2.15 takes values different from 0 only at frequencies κ̃κκ .

Figures 2.16 and 2.17 depict the real and imaginary parts of the CSDM computed at

intervals ∆κ . Both figures validate that the closed form expression in Eq. (2.29) and the

actual CSDM are in agreement when a complex CSDM is considered.

2.6 Concluding remarks

When the Spectral Representation Method is used together with the Frequency Double In-

dexing technique to produce multi-variate ergodic Gaussian samples, the resulting CSDM

does not match exactly the input spectrum. The difference is generally small, and can be
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Figure 2.14: Real part of the complex cross-spectral density matrix. The “Actual CSDM” is

the empirical spectrum computed applying Eq. (2.14) to one produced sample; the “Closed

form” represents the results of Eq. (2.29); the “Target CDSM” is the input given to the

simulation algorithm. The values are computed at intervals of width ∆κ
m

= 6
4·16 and N is

equal to 16.
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Figure 2.15: Imaginary part of the complex cross-spectral density matrix. The “Actual

CSDM” is computed applying Eq. (2.14) to one produced sample; the “Closed-form” ex-

pression represents the results of Eq. (2.29); the “Target CDSM” is the input given to the

simulation algorithm. The values are computed at intervals of width ∆κ
m

= 6
4·16 and N is

equal to 16.
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Figure 2.16: Real part of the complex cross-spectral density matrix. The “Actual CSDM”

is computed applying Eq. (2.14) to one produced sample; the “Closed form” represents the

results of Eq. (2.29); the “Target CDSM” is the input given to the simulation algorithm.

The values are computed at intervals of width ∆κ and N is equal to 16.
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Figure 2.17: Imaginary part of the complex cross-spectral density matrix. The “Actual

CSDM” has been computed applying Eq. (2.14) to one produced sample; the “Closed form”

represents the results of Eq. (2.29); the “Target CDSM” is the input given to the simulation

algorithm. The values are computed at intervals of width ∆κ and N is equal to 16.
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easily reduced increasing the number of intervals N (i.e., reducing their width ∆κ).

A closed-form expression that allows to compute a priori the actual CSDM of the pro-

duced samples has been provided. This is considered a generalization of the proof of er-

godicity, which is shown to be valid also for finite ∆κ .

The marginal probabilities of the various components of the produced samples are

Gaussian for large N, but the variances are not equal to the integrals of the autocorrela-

tions. These findings are particularly important when the technique is utilized to generate

samples whose spectrum concentrates most of their energy at very low frequencies as for

example in the case of the Kaimal spectrum used to capture the wind velocity fluctuations.
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Chapter 3

Optimal representation of multi-dimensional random

fields with a moderate number of samples: application to

stochastic mechanics

3.1 Introductory remarks

In stochastic engineering problems, the proper consideration of the input variability is cru-

cial to obtain an accurate and reliable solution. A large number of these problems involves

uncertain quantities which should be modeled as multi-dimensional random fields. The

use of multi-dimensional random fields gained momentum due to the continued increase in

available computantional resourses and nowadays is commonly used in many disciplines.

Several examples can be found in various fields of engineering. For instance, in structural

engineering Christou and Bocchini (2014a) modeled the spatial distribution of corrosion

over the upper flange of a steel I-beam as a two dimensional random field. Papadopoulos

and Papadrakakis (2005) used two-dimensional uni-variate (2D-1V) stochastic fields to de-

scribe the non-homogeneous characteristics of initial imperfections in manufactured shells.

In geotechnical engineering Popescu et al. Popescu et al. (2005) used two-dimensional

fields to model the spatial variability of the soil mechanical characteristics. Similarly, in

naval engineering Teixeira and Soares (2008) used two-dimensional fields to model the

spatial corrosion propagation in ship-hull plates and computed their collapse strength.

The solution of these engineering problems is often obtained though simulation-based

techniques, which are the most commonly used among the procedures available in the lit-
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erature. Monte Carlo Simulation (MCS) is still considered the most reliable and versatile

numerical technique for the solution of engineering problems affected by uncertainty. The

drawback of MCS remains the large computational cost that prevents its use for many appli-

cations. In particular, the number N of deterministic runs which can be actually performed

is limited by the complexity of the problem at hand, the type of input and the available time

and computational resources. In many cases, this number N is small, —e.g. in the range

[50 ∼ 1000]—, too small for the law of large numbers to apply. Such sample size may

be sufficient for the assessment of low-order statistics (i.e., mean or standard deviation at

most), but certainly not to capture more information on the probability distribution. Thus,

the result of a plain MCS would not be acceptable when a model of the entire distribution is

sought. In these cases, a probabilistic technique that can capture in the most effective way

the space of sample realizations of the random function, given a pre-determined number of

samples should be used.

Multiple techniques have addressed the issue of sampling random functions more ef-

fectively, compared to plain MCS. For engineering problems the currently most popular

method was presented in Grigoriu (2009) and is called “Stochastic Reduced-Order Mod-

els” (SROM). Grigoriu used SROM to find statistics of the state of linear dynamic systems

with random and deterministic properties subjected to Gaussian and non-Gaussian noise

Grigoriu (2013, 2010). Mignolet and Soize (2008) utilized SROM for the determination

of the response of geometrically nonlinear structural dynamic systems and Warner et al.

(2013) employed it to approximate the natural frequencies and modes of uncertain dy-

namic systems. The basic idea of SROM methods is to consider an optimization problem

where the objective function quantifies the discrepancy between the statistics of the SROM

and the random function being modeled. It will be shown that the methodology presented

in this paper is rooted in a similar idea, but the optimization problem will be formulated in

a different way. A discussion of the differences between SROM and the proposed method-
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ology is provided in Section 3.4.

As an alternative to SROM, Functional Quantization (FQ) is a novel technique, proven

to provide optimal approximations of random functions using a pre-determined number

N of representative samples (Luschgy and Pagès, 2002; Luschgy et al., 2004). Moreover,

some authors have used FQ directly as a variance reduction technique (Pagès and Printems,

2005; Lejay and Reutenauer, 2012). FQ is characterized by two major differences, com-

pared to MCS: (1) the representative samples from FQ are selected not entirely at random

and (2) the representative samples from FQ are not equally weighted. A few techniques

for the selection of optimal samples and computation of associated probabilities based in

the FQ concept have been presented in the literature. Some of the best known quantization

techniques were presented by Lushgy and Pagés under the “Quantizer Design” umbrella

Luschgy et al. (2010). The Quantizer Design I yields optimal results, whereas Quantizer

Design II, III and IV are sub-optimal, but they are characterized by improved computa-

tional efficiency. All these techniques rely on the use of Karhunen-Loéve expansions, and

therefore, they have been demonstrated only on Gaussian random functions for which such

expansion is readily available. Another class of techniques was proposed by Corlay and

Pagès (2015). They have the appeal of connecting FQ with the very popular stratified sam-

pling approach. The authors presented four different versions of the approach but as in the

case of the Quantizer Design, these techniques have been applied only to one-dimensional

Gaussian processes.

To overcome the limitations that affect the previously mentioned FQ techniques, in

this paper, a recently developed methodology called “Functional Quantization by Infinite-

Dimensional Centroidal Voronoi Tessellation” (FQ-IDCVT) is considered (Miranda and

Bocchini, 2015b). The FQ-IDCVT technique has been successfully used for one-dimensional,

non-Gaussian and non-stationary processes (Miranda and Bocchini, 2013) and it has been

shown to work particularly well against the curse of dimensionality that arises in stochastic
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problems that use random functions for input quantities.

To further enhance the versatility of the technique, this paper presents it’s extension

to the case of random functions defined over a multi-dimensional domain. A descrip-

tion of the modifications to the existing algorithm required by the extension to multi-

dimensional fields is accompanied by its demonstration on two numerical applications. The

first example involves a two-dimensional Lognormal field, generated through the Spec-

tral Representation method (SRM) (Shinozuka and Deodatis, 1996). For the simulation

of the two dimensional field, a recently developed algorithm that approximates a non-

Gaussian stationary multi-dimensional field is utilized (Christou and Bocchini, 2014a).

Next, a sensitivity analysis is used to discuss the limits of applicability of the proposed

approach and comments on the computational challenges associated with the extension to

two-dimensional fields are provided. Finally, a second numerical application involving a

two-dimensional panel in plane-stress with uncertain Young modulus, modeled as a two-

dimensional stochastic field, is illustrated. For this case, the assessment of the effectiveness

of the FQ-IDCVT technique is evaluated on the output quantities and compared to classical

MCS.

3.2 Proposed approach

3.2.1 Functional Quantization

As already indicated, the goal of FQ is Grigoriu (2009, 2006); Stefanou and Papadrakakis

(2007): to represent the probabilistic characteristics of a random function with a small-to-

moderate number of carefully selected samples. Described in a sentence, the FQ approach

consists in approximating a generic random function F by means of another random func-

tion FN , which can be fully described (in a probabilistic sense) by a finite set of determin-
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Figure 3.1: Upper part a) represents the random function F , the sample space Ω and the

realizations that correspond to the single outcomes ωi with i = 1,2,3,4. Bottom part b)

shows how the random function FN approximates F . The sample space Ω is partitioned into

{Ωi}N
i=1.Each subset Ωi has a representative quantum and here two quanta that correspond

to Ω1 and Ω2 are presented. Thus, every outcome that belongs to a certain subset Ωi is

associated with the same quantum. For example, the outcomes ω1 and ω2 that belong to

Ω1 are both associated with quantum f1.

istic samples { fi}N
i=1 and associated probability masses {pi}N

i=1:

F
approximated by−−−−−−−−−→ FN

represented by−−−−−−−−→ { fi, pi}N
i=1 (3.1)

For the sake of establishing a coherent nomenclature, these steps are briefly described in

the following subsections.

59



ℙ Ω1 = 𝑝1 ℙ Ω2 = 𝑝2 ℙ Ω𝑁 = 𝑝𝑁

𝑓1 𝑓2 𝑓𝑁

Figure 3.2: A quantizer for a two-dimensional random field.

3.2.1.1 Definition of the random function F

For a given probability space (Ω,F ,P), a bimeasurable random field F(ξξξ ,ω) is defined

as:

F : Ξ×Ω → R with Ξ ⊂ R
n (3.2)

where Ξ is the spatial domain of interest in R
n, Ω is the sample space and ξξξ is a point in Ξ.

Therefore:

ξξξ ∈ Ξ ⊂ R
n (3.3)

A random function, as defined above, can also be interpreted as a random variable F(ω)

with values in a certain function space which, for our purposes, can be assumed to be the

space of square integrable functions L2(Ξ):

F : Ω → L2(Ξ) (3.4)

where L2(Ξ) is the space of square integrable functions.

The vast majority of random functions involved in realistic engineering problems are

characterized by square-integrable realizations almost surely, finite mean and variance al-

most everywhere, and probability laws without any lumped masses. Therefore, the pre-
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sented study focuses on this class of random fields.

3.2.1.2 Approximation of F by FN

In the FQ approach, the random field F is approximated by another random field FN taking

a finite number N of ”values” in L2(Ξ). FN is defined by the following equation:

FN(ξξξ ,ω) =
N

∑
i=1

fi(ξξξ ) ·1Ωi
(ω) (3.5)

where the deterministic functions fi(ξξξ ) are called “quanta” and 1Ωi
is the indicator function

associated with the event Ωi

1Ωi
(ω) =







1, if ω ∈ Ωi

0, otherwise.
(3.6)

The quanta fi(ξξξ ) are defined in this paper as follows:

fi(ξξξ ) =







∫

Ωi
F(ω)dP

P(Ωi)
, if P(Ωi)> 0,

undefined, otherwise

(3.7)

where P(Ωi) is the probability associated with the subset Ωi. Therefore, the sample space

Ω is partitioned into {Ωi}N
i=1 and each subset Ωi has a representative quantum fi, which is

the average of all the sample functions associated with ω’s which belong to the subset Ωi.

Then, FN is defined by all the quanta and for a refined partition, it will closely approximate

F . However, it should be noted that the infinite-dimensional function F (defined over an

n-dimensional space) is approximated by a function FN with a finite codomain of possible

realizations. This may lead to the so called “curse of dimensionality”, as it will be discussed

in Section 3.5.1.1.
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The partition of Ω can be also projected to the space of square integrable functions

L2(Ξ), where the realizations of F and FN lie. From this perspective, the L2(Ξ) space is

tasseled into {V}N
i=1, where each tassel Vi collects all the realizations F(ω) with ω ∈ Ωi.

This tessellation will be further explained in Section 3.2.3.

3.2.1.3 Representation of FN by the quantizer

Figure 3.1a is a pictorial representation of the random function F mapping outcomes of the

sample space Ω into realizations defined over the two-dimensional spatial domain Ξ. When

the FQ technique is utilized, the sample space Ω is partitioned into subsets {Ωi}N
i=1, and

all outcomes belonging to the same subset Ωi are mapped to the quantum fi that represents

that specific subset (Figure 3.1b).

According to Eq. (3.5) and Figure 3.1b, the random function FN is fully described by the

chosen partition of Ω and by the set of quanta fi. In particular, for a probabilistic charac-

terization of FN , it is not even necessary to know the partition of Ω, but only the probability

associated with each subset Ωi. For this reason, the collection of deterministic functions

{ fi}N
i=1 and their associated probabilities {pi}N

i=1 (i.e., P(Ωi)) is all that is necessary for the

characterization of FN and, in turn, for the approximate probabilistic description of F .

For the reminder of the paper, the set of quanta { fi}N
i=1 and associated probabilities

{pi}N
i=1 is called the “quantizer”, and the number N of quanta is called the “quantizer size”.

Figure 3.2 shows a representation of a two-dimensional quantizer.

3.2.1.4 Quantizers in engineering problems

When solving a problem in stochastic mechanics, the quanta can be used as inputs in a

simulation-based fashion. In particular, having specified the { fi, pi}N
i=1 pairs, the system

response is obtained by running N deterministic analyses with each of the functions fi used
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as independent input. Then, the probabilistic characterization of the outcome is determined

by weighing the result of each analysis with the associated probability pi. For further theo-

retical details, the reader may refer to Luschgy and Pagès (2002) or Miranda and Bocchini

(2015b).

The identification of an optimal partition of the sample space Ω is an optimization

problem and different solutions could be obtained through the use of various objective

functions. In this paper, optimality is sought by imposing the minimization of a mean

square error function named “distortion”. In general, any FQ technique has to perform the

following operations:

• for a fixed N, optimally partition the sample space Ω into the events {Ωi}N
i=1 and

so find the corresponding tassels {Vi}N
i=1 in the space of square integrable functions

L2(Ξ)

• obtain the representative deterministic functions { fi}N
i=1 for all subsets {Ωi}N

i=1 and

corresponding tassels {Vi}N
i=1

• determine the probability masses P(Ωi) = PF(Vi) = pi of the subsets {Ωi}N
i=1 or the

corresponding tassels {Vi}N
i=1

The computational cost to obtain an optimal quantizer is not negligible. Nevertheless,

it is usually small compared to the total time needed to perform a probabilistic analysis of

a complex engineering problem.

3.2.2 Tessellation of Finite-Dimentional Spaces

An important characteristic of the FQ technique is its close conceptual relationship with the

Voronoi Tessellation (VT) and the Centroidal Voronoi Tessellation (CVT) of an Euclidean

63



space R
n. When the VT is applied, a finite-dimensional Euclidean space is partitioned in

regions {Vi}N
i=1, called “Voronoi tassels”. Each one of these is an n–dimensional convex

polyhedron with a generating point y̌i ∈ R
n.

The tassels are defined in such a way that all the points y ∈ R
n that belong to tassel Vi

are closer to the generating point y̌i than to any other point y̌ j 6=i.

Vi =
{

y ∈ R
n | ‖y− y̌i‖< ‖y− y̌ j‖

for j = 1,2, . . . ,N; j 6= i
} (3.8)

where ‖ · ‖ is the Euclidean norm.

The CVT of a finite-dimensional space is a special case of the VT where the generating

point y̌i of the tassel Vi is also the mass centroid of the convex region. The mass centroid

can be defined as:

ȳi =

∫

Vi
y ·ρ(y)dV
∫

Vi
ρ(y)dV

(3.9)

where ρ(y) is the mass density at point y. Therefore, to construct a CVT it is required

that the generating points y̌i used in Equation (3.8) coincide with the mass centroids ȳi as

computed by Equation (3.9):

y̌i ≡ ȳi ∀i (3.10)

3.2.3 Infinite-Dimensional Centroidal Voronoi Tessellation

Miranda and Bocchini Miranda and Bocchini (2015b) extended the concept of finite-dimensional

VT and CVT to the infinite-dimensional Hilbert space of square-integrable functions L2(Ξ).

As already mentioned, the random function F(ξξξ ,ω) can be seen as a random variable F(ω)

with values in the Hilbert space where the tassels lie. Such tassels can be defined as follows:
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Vi =
{

F(ω) ∈ L2(Ξ) | ‖F(ω)− f̌i ‖L2(Ξ) < ‖F(ω)− f̌ j ‖L2(Ξ)

for j = 1,2, . . . ,N; j 6= i
} (3.11)

where f̌i is the generating point of tassel Vi. In the Infinite-Dimensional Centroidal Voronoi

Tessellation case (IDCVT), the generating points f̌i and the centroids f̄i of tassel Vi coin-

cide, where the centroids can be computed as follows:

f̄i =

∫

Vi
F(ω) dPF

PF(Vi)
(3.12)

in which PF is defined by the probability law of the random function F and the integration

is in the Bochner sense. In addition, it has been proved that such functions are also optimal

quanta in the FQ sense Miranda and Bocchini (2015b):

f̌i ≡ f̄i ≡ fi ∀i (3.13)

When the tessellation of L2(Ξ) is defined, the probability masses PF(Vi) = P(Ωi) = pi

can be computed. Each tassel Vi is associated with a subset Ωi of the sample space Ω. By

this conceptual operation, almost all the space Ω is partitioned into {Ωi}N
i=1. In other words,

the partition of the sample space Ω is induced from the tessellation of L2(Ξ). Similarly,

the probability masses P(Ωi) associated with the various {Ωi}N
i=1 are determined applying

the frequentist definition of probability to the tassels of L2(Ξ), as will be explained later in

Equation (3.17).
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Figure 3.3: Main steps of the FQ algorithm.

3.3 Algorithm

The FQ-IDCVT technique is an extension of the iterative algorithm of Lloyd’s Method Ju

et al. (2002). Despite the complex underlying theoretical bases, the implementation of the

algorithm is very simple. Figure 3.3 shows the flowchart of the FQ-IDCVT methodology

for a two-dimensional uni-variate (2D-1V) random function and the basic steps can be

summarized as follows.

1. Input data required for the FQ-IDCVT technique

• quantizer size N

• computational parameter Nsim = N · k, with k ∈ [100, 5000]

• data required to probabilistically define the random field F(ξ1,ξ2), such as

marginal distribution and spectral density

• initial set of quanta { fi}N
i=1, for instance generated as N random samples

2. Simulate Nsim realizations of the random function F . The realizations are generated at

the beginning of the algorithm and optionally they can be regenerated later. When the

samples are regenerated within each iteration, the computational cost is increased and

the convergence is delayed. However, the outcome of the technique is less sensitive

to the seed selected for the first generation of Nsim samples.
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3. Compute the distances of each realization of F from each quantum { fi}N
i=1 according

to the L2(Ξ) norm.

4. Define a set of tassels Vi, i = 1,2, . . .N, collecting in each Vi all the realizations of

F that are closer to quantum fi than to any other quantum f j according to Equa-

tion (3.11).

5. Average the realizations in each tassel {Vi}N
i=1 and set the average as the new quantum

fi of the respective tassel Vi using a discrete version of Equation (3.12):

fi(ξ1,ξ2) =
1

Ni

Ni

∑
k=1

f̂k(ξ1,ξ2) with f̂k ∈Vi (3.14)

where f̂k(ξ1,ξ2) represents all the samples in tassel Vi and Ni is their number.

6. Steps 2-5 or 3-5 are repeated, where the choice on whether the generation of the

samples is repeated or not is left to the user (regeneration yields slower convergence

and more robust results). The iterations stop when convergence is met according to a

selected criterion or a fixed number of iterations is reached. In this paper, the chosen

convergence criterion relies on the definition of ”Distortion”:

∆
(
{Vi, fi}N

i=1

)
=

N

∑
i=1

∫

Vi

‖F(ω)− fi‖2
L2(Ξ) dPF (3.15)

In particular, convergence is met when the distortion has changed less than 5 per-

cent over the last 5 iterations. Equation (4.3) can be seen as representative of the

approximation error, and from a numerical point of view it is computed as follows:

∆ =
N

∑
i=1

Ni

∑
k=1

1

Ni
‖ f̂k(ξ1,ξ2)− fi(ξ1,ξ2)‖2

L2(Ξ) with f̂k ∈Vi (3.16)

7. The probability masses P(Ωi) that correspond to each quantum fi are determined
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after the termination of the iterative scheme and defined as follows:

P(Ωi) = pi =
Ni

Nsim
(3.17)

8. Additional iterations with higher values of the parameter Nsim may be performed to

improve the accuracy on the probability masses P(Ωi).

FQ-IDCVT has effectivelly been utilized for the case of the uni-dimensional Gaussian

and non-Gaussian processes, showing the versatility of the approach (Miranda and Boc-

chini, 2013; Bocchini et al., 2014). The method was designed in a very general way since

its inception. Thus the extension to multi-dimensional random functions has been accom-

plished with relative small changes in the algorithm. The first modification pertains to the

first three modules shown in Figure 3.3. In fact the generated realizations have to consider

the n-th dimensionality of the domain of the sample functions. The most important adjust-

ment is located in the module where the distance of realization j from all quanta { fi}N
i=1 is

computed. The distance in the L2(Ξ) norm sense has to be evaluated in all n dimensions.

Finally, the methodology provides an optimal set of sample fields and associated rel-

ative weights that can be used for a simulation-based probabilistic analysis with an n-

dimensional function.

3.4 Differences between FQ-IDCVT and SROM

As already mentioned, FQ is not the only technique that aims at optimally approximating

random functions with a moderate number of samples. In particular, SROM (Grigoriu,

2009) is more popular in the field of civil engineering. For this reason it is important to

point out the similarities and differences between the two methodologies.
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There are three main conceptual contributions that can be identified in this line of re-

search.

1. The idea of approximating a random function with a “simple function” instead of a

parametric representation, as indicated in Equation (3.5). This idea is common to

FQ, SROM, and FQ-IDCVT.

2. The formulation of the problem and the choice of the optimality criterion. This is the

main difference between FQ and SROM. FQ-IDCVT uses the optimality criterion

introduced by FQ in 2002 (mean square optimality), whereas SROM minimizes the

discrepancy between selected statistics of the model and the random function being

approximated.

3. The way in which the problem is actually solved and the quantizers are computed.

This is the main novelty introduced by FQ-IDCVT: the optimization problem is

solved in a way that is completely different from what was done for SROM and

for previous FQ techniques, such as quantizer design (Luschgy et al., 2010).

Since FQ-IDCVT shares items 1 and 2 with FQ, and only item 1 with SROM, it is

presented as a variant of FQ, rather than as a variant of SROM. Depending on the specific

application, different techniques may turn out to be the most appropriate. For instance,

SROM are particularly suitable for problems involving stochastic partial differential equa-

tions, whereas FQ-IDCVT is more appropriate for problems where a mean square approx-

imation is sought, such as those involving hazard analysis.

3.5 Numerical Applications

The applicability to two-dimensional random functions is demonstrated through studying

a 2D lognormal field and the classical problem of a panel in traction with random modulus
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of elasticity. In the first numerical example the effectiveness of the FQ-IDCVT technique

is investigated for different values of the stochastic parameters, in an effort to identify

the limits of applicability in terms of the correlation length. In the second example the

FQ-IDCVT method is evaluated focusing on the characterization of the resulting output

quantities.

3.5.1 2D Lognormal field by SRM

The first example involves a stationary two-dimensional field with non-Guassian marginal

distribution. In this example, the technique used for the simulation of the two-dimensional

non-Gaussian field generates samples that match a prescribed non-Gaussian marginal dis-

tribution (PDF) and a prescribed Spectral Density Function (SDF) based on translation

field theory Grigoriu (1995). The methodology was first presented by Shields et al. Shields

et al. (2011) and extended later to the multi-dimensional case by the authors Christou and

Bocchini (2014a).

The target Spectral Density Function (SDF) is selected as:

SFF(κ1,κ2) = σ2 b1b2

4π
exp

[

−
(

b1κ1

2

)2

−
(

b2κ2

2

)2
]

−∞ < κ1 < ∞ and −∞ < κ2 < ∞

(3.18)

where b1 and b2 are parameters proportional to the correlation length of the stochastic field

along the axes ξ1 and ξ2. Figure 3.4 represents the SDF of a quadrant 2D-1V homogeneous

stochastic field when b1 = b2 = 1m and upper cutoff frequencies κu1 = κu2 = 5 rad/m. The

spatial domain of the random function in this numerical application is [0,40]m × [0,40]m.

The target marginal distribution is described by the following shifted Lognormal distri-
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Figure 3.4: SDF of the simulated random field with parameters b1 = b2 = 1 [m].

bution:

PDF(x) =
1√

2πσGx̄
exp

[

−(ln x̄−µG)
2

2σ2
G

]

(3.19)

where:

σ2
G = ln

(

1+
σ

µ̄2

)

; µG = ln µ̄ − σ2
G

2
; x̄ = x− µ̄. (3.20)

The values for the parameters µ̄ and σ are chosen as:

µ̄ = 1.8; σ2 = 1 (3.21)

For the generation of sample functions of F(ξ1,ξ2), the upper cut off frequency is

determined according to the following criterion Shinozuka and Deodatis (1996):

ε = 1−
∫ κu1

0

∫ κu2
0 SFF(κ1,κ2)dκ1 dκ2

∫ ∞
0

∫ ∞
0 SFF(κ1,κ2)dκ1 dκ2

< 0.0001 (3.22)

Having specified the probabilistic characteristics of the random field, FQ-IDCVT is
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applied considering four cases with different quantizer sizes (i.e. deterministic runs that

can be performed) N = 50,100 and 200. The value of the computational parameter Nsim

is set to 100 ·N and the algorithm is iterated until the percent of the difference between

the average change of the distortion among five succesive iterations is below 5%. For this

analysis, the set of samples is kept the same until convergence is met. After convergence is

satisfied, an additional iteration is performed with Nsim = 1000 ·N.

An important characteristic of the versatility of the technique is that the parameter Nsim

does not need to be constant throughout the iterations. However, for higher values of Nsim

the computation can become very time-consuming. Therefore, for two-dimensional fields

it is more efficient to keep the value of Nsim small until reaching a near-optimal level of

distortion and thereafter refine the results by performing an additional iteration with higher

value of Nsim.

Convergence plots of the distortion ∆ for different values of the quantizer size N and

with fixed parameters b1 = b2 = 20m are provided in Figure 3.5. It is evident that with

the convergence parameter being 5%, convergence is met before the twentieth iteration for

most simulations. Other results that are not presented herein show that the convergence

rate is not particularly affected by the initial seed and when different values of Nsim are

considered within the range N · k, where k ∈ [100,5000]. However, higher values of the

Nsim parameter yield a more accurate estimate of the probability masses pi.

The minimization of the distortion imposed by FQ-IDCVT leads to a holistic conver-

gence of the approximation to the random field, without focusing on a specific moment or

probabilistic characteristic (as opposed to other approximate techniques). Nevertheless, a

qualitative validation of the FQ-IDCVT technique can be done through the comparison of

the probabilistic characteristics of the quantizer and the random function. Such comparison

will be presented in the next subsection.
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Figure 3.5: Convergence of the Distortion for different values of N and fixed value of

parameter b = 20 [m].

3.5.1.1 Sensitivity analysis

Every reduced order method is accompanied by limits of applicability, beyond which the

approximation error is unacceptable for engineering applications. Similarly, also for FQ-

IDCVT it is important to identify the cases where it accurately approximates the investi-

gated random field and those where it should be used with more discretion.

FQ-IDCVT has been successfully applied, on random functions with relatively long

correlation length Miranda and Bocchini (2015b); Bocchini et al. (2014). In fact, the re-

peated use of Equation (3.12) at each iteration yields quanta that are obtained through a

series of averages. If the value of N is too small, these averages are performed over a re-

gion that is too broad and contains very diverse samples. This issue is an effect of the curse

of dimensionality. The random function F is infinite-dimensional because it can take a

different value at each of the infinite points of the spatial domain. However, the correlation

mitigates this effect. To explain this, two extreme cases can be considered. If the corre-

lation function is zero everywhere (except at the origin), then the value of F at each point
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Figure 3.6: Cumulative distribution functions obtained for N=50, b1 = b2 = 1 m (top left),

N = 50, b1 = b2 = 25 m (top right), N = 200, b1 = b2 = 1 m (bottom left) and N = 200, b1 =
b2 = 25 m (bottom right). The dashed bold line represents the CDF of the shifted lognormal

distribution (exact) and the colored continuous lines represent the CDFs computed at the

central grid point of the spatial domain [0, 40] m × [0, 40] m with 50 different seeds.

For small values of the correlation distance the CDF is highly diverged from the exact. In

those cases a much higher number of the quantizer size N has to be considered. For higher

values of the correlation distance (where the sample is relatively smooth) the outcome of

the FQ-IDCVT gives a very good approximation of the exact solution.
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Figure 3.7: Realization and quantizer for N = 100 and different values of the corre-

lation lengths b1 and b2. The column on the left represents realizations obtained for

b1 = b2 = 5,10,20 and 25 m from top to bottom. The column on the right represents

the corresponding quantizers obtained for b1 = b2 = 5,10,20 and 25 m from top to bottom.
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is an independent random variable. Hence, to completely describe one of its realizations,

an array with infinite entries would be required. Instead, if the autocorrelation function

is equal to σ2 everywhere, then all the points are perfectly correlated, all realizations are

constant and they can be described by a single value. In this extreme case, one parameter

can describe the entire function, so the dimensionality of F would effectively be 1. Sim-

ilar considerations can be done on the basis of the relevant terms of the Karhunen-Loéve

expansion.

FQ approximates F with a finite number of quanta, therefore, with a finite and small

number of parameters. Thus, the accuracy of the approximation depends on the difference

between the quantizer size and the effective dimensionality of F . The former is described

by parameter N, the latter is tuned by the correlation length of the field. A good accuracy is

achieved for large values of N or for large values of the correlation length (i.e., for large b1

and b2 in this example). Therefore, a parametric analysis has been performed to quantify

the accuracy of the FQ approximation of a two-dimensional random function with different

values of the quantizer size N and the correlation length.

The Cumulative Distribution Function (CDF) of the quantized model is used for the

performance assessment of the technique. CDF’s are determined for values of N = 50,100

and 200 and values of b1 = b2 = 1,5,10,15,20 and 25 m. It should be noted that, by con-

struction, the quantizer is non-stationary even if the represented random field is stationary.

Figure 3.6 compares the approximate CDF’s computed for N = 50 and 200, b1 = b2 = 1

m and 25 m at the midpoint of the field. The continuous lines represent the approximate

CDF’s are computed from FQ-IDCVT with 50 pseudo-random number generator seeds. It

is evident that in cases where low values of b1 and b2 are considered, FQ-IDCVT yields

a poor approximation of the exact marginal distribution. Instead, for higher values of the

parameter b1 = b2 = 25 m, the comparison shows a reasonable level of accuracy even at

the tails of the CDF.
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Figure 3.7 shows one realization and one representative quantum fi as computed by

FQ for N = 100 and different values of the correlation length b = 5,15,20 and 25. It is

observed that the quantum fi is generally smoother than the realizations, particularly for

the cases with smaller correlation length.

For a more rigorous evaluation of the convergence between the approximated and the

exact CDF, the Kolmogorov-Smirnov index DKS is utilized Benjamin and Cornell (2014).

This can be seen as a check on the uniform convergence (in the analytical sense) of the two

CDF’s. In particular, DKS measures the maximum discrepancy between the two CDF’s and

is considered the strictest possible type of convergence:

DKS = max |CDFapproximate −CDFexact | (3.23)

Figure 3.8 shows the DKS index obtained for different values of N, b1 and b2. It is observed

that for values of the parameter b1 = b2 > 15, (b1 and b2 are proportional to the correlation

length) the FQ-IDCVT technique converges faster and can effectively be utilized even for

small values of the quantizer size N.

3.5.1.2 Computational challenges in the extension to 2D

The FQ-IDCVT technique can support any simulation code for the generation of the ran-

dom samples. However, in this paper the Spectral Representation method is utilized due to

its popularity and computational efficiency when the FFT technique is incorporated. Nev-

ertheless, in such a case aliasing has to be avoided, and this can be accomplished when the

following criterion is satisfied:

M1 = A1 ·L1 ∧ M2 = A2 ·L2 ∧ A1,A2 ≥ 2 (3.24)
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Figure 3.8: Kolmogorov-Smirnov index obtained for different quantizer sizes N, and dif-

ferent values of the correlation length b1 and b2. DKS measures the uniform convergence

(in the analytical sense) of the approximate CDF to the exact. FQ has better accuracy when

the random functions have long correlation length.

where M1 and M2 are the number of points of the simulated stochastic field discretization

along the ξ1 and ξ2 axes, respectively, while L1 and L2 are the number of discretization

points in the wavenumber domain along axes κ1 and κ2, respectively.

The first challenge to be addressed is the proper adjustment of the cutoff frequencies

κu1 and κu2 and the number of points along ξ1 and ξ2 axes (i.e. M1 and M2), when samples

with high correlation lengths are considered. The selection of these parameters has to be

such, that the discretization of the space domain of interest is the same for all the simulated

stochastic fields with different correlation lengths. Small values of the cutoff frequency

determine the generation of very large samples when the FFT technique is utilized. Then,

the samples have to be cropped and still have a sufficient number of points within the

cropped region to be comparable with the samples characterized by small correlation length

(i.e smallest period when FFT is utilized). For consistency, all the simulated stochastic

fields are considered to have the same discretization of their Spectral Density (i.e., fixed

values of L1 and L2 which for this application are both consider to be equal to 32).
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From Equation (3.18), for large values of the parameters b1 and b2 the area under the

SDF concentrates at low values of the wave numbers κ1 and κ2. Among the values of

cutoffs that satisfy Equation (3.22), the smallest one should be selected, otherwise the

discretization in the relevant part of the SDF would be very coarse for large values of b1

and b2. As a result, the poor discretization of the SDF would yield random samples with

probabilistic characteristics different from the desired marginal distribution. The values of

κu1 and κu2 for different sets of parameters b1 and b2 are depicted in Table 3.1.

The stochastic field samples generated by SRM have period:

Tξ10 =
2π

∆κ1
along ξ1axis

Tξ20 =
2π

∆κ2
along ξ2axis

(3.25)

and ∆ξ1, ∆ξ2 and ∆κ1, ∆κ2 are related in the following way:

∆ξ1∆κ1 =
2π

M1
and ∆ξ2∆κ2 =

2π

M2
(3.26)

The wavenumber increments ∆κ1, ∆κ2 are defined as:

∆κ1 =
2π

L1
and ∆κ2 =

2π

L2
(3.27)

Combining Equations (3.27), (3.26) and solving for M1/L1
, the parameter A1 can be deter-

mined. Similar results can be obtained for parameter A2 when solving for M2/L2
:

A1 =
2π

κu1
∆ξ1

and A2 =
2π

κu2
∆ξ2

(3.28)

In this example the random function with b1 = b2 = 1 m yields realizations with period

of 40m in each direction. The space increments ∆ξ1 and ∆ξ2 computed for this case are
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used in Equation (3.28) for the computation of parameters A1 and A2. And again, the

goal is to produce realizations for different values of b which have the same number of

points within the domain [0,40;0,40]m. This is accomplished by increasing M1 and M2

so that the domain [0,40;0,40]m is a grid of (2 · 32)× (2 · 32) = 4096 points. Note that

for large correlation lengths, this yields big samples, which significantly slow down the

computations. As an example, the values of the discussed parameters for the different

cases of the correlation length are provided in Table 3.1.

Table 3.1: Input parameters for the sample generation of the two-dimensional random field

via SRM considering different correlation lengths.

b1 = b2 M1 = M2 κu1 = κu2

1 64 5.0

5 320 1.0

10 640 0.5

15 1088 0.3

20 1280 0.25

25 1600 0.2

3.5.2 Two-dimensional panel with random mechanical properties un-

der plane stress

The second example regards a square panel with uncertain Young modulus under plane

stress. The panel is loaded with a uniform load at one edge and constrained with pinned

connections at the opposite edge, as depicted in Figure 3.9. The example is based on the

application presented in Falsone and Impollonia (2002). In specific, the panel has side

dimensions `= 1m and thickiness t = 0.1m. For the linear static analysis of the structure, a

mesh of 100 four-node quadrilateral finite elements with 8 degrees of freedom (horizontal

and vertical displacement at each node) is considered. The Poisson ratio is assumed equal

to 0.3. The Young modulus is considered uncertain and is modeled as a two-dimensional
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Figure 3.9: Two-dimensional panel structure with uncertain Youngs modulus.

stochastic field with constant mean value Ē = 200 ·109 Pa :

E(x,y) = Ē (1+α(x,y)) (3.29)

where α(x,y) is a Gaussian field which has zero mean and covariance given by:

Σα (|∆∆∆xxx|)≡ σ2ρ(|∆∆∆xxx|) = σ2exp

(

−|∆∆∆xxx|
λ

)2

(3.30)

where ∆∆∆xxx is the distance between two points of the field, σ2 is the variance and λ = 1.0`

is the correlation length. The discretization of the random field is made according to the

midpoint method, which yields stepwise realization of the field with discontinuities along

the element boundaries and distances measured at the centroid of every finite element.

Each sample of the probabilistic Young modulus is associated with one deterministic

analysis. In order to more effectively run the large number of deterministic analyses, while
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better controlling the input and assessing the output quantities, an in-house finite element

code was developed. The accuracy of this finite element code was verified and validated

against the commercial software Abaqus Version (2013).

Having determined the probabilistic characteristics of the random field, the realizations

are generated using FQ-IDCVT and MCS. In the case where FQ-IDCVT is used, the output

of the deterministic analysis are weighted according to the probability mass associated with

the quantum used as input. In this example, FQ-IDCVT is applied considering four cases

with different quantizer sizes N = 50,100,200 and 500. The value of the computational

parameter Nsim is set to 100 ·N and the algorithm is iterated until the rate of convergence

(as explained in the previous example) is lower than 2.0%. In this example the samples

are generated once at the onset of the procedure and the time when convergence is met, an

additional Nsim = 1000 ·N samples are generated to improve the accuracy of the probability

masses associated with each quanta.

Looking at the quantized input quantities, the approximation of the Young modulus of

a corner finite element is not as accurate compared to the case where the center finite ele-

ment is considered. In general, when FQ-IDCVT is utilized for the generation of the input

fields, the center regions of the resulting quanta always exhibit higher accuracy compared

to the peripheral regions of the field. Because of the correlation, each point of the grid that

discretizes the field tends to have values that are similar to those of the surrounding grid

points. For peripheral points, part of the neighbor grid points are actually out of the domain.

Hence, they tend to influence the clustering phase less than the central points (which can

count also on the weight of all the neighbor points with similar values). As a result, central

points really drive the clustering phase and thus the quanta tend to represent better these

points. However, this observation applies only to the input quantities, whereas the accuracy

of the output quantities (i.e., vertical displacement) is mostly affected by the mechanical

filter itself. In fact, Figure 3.10 compares approximate CDFs computed by FQ-IDCVT for
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N = 100 with the exact solution. More specifically, the corner node (i.e., 111) and center

node (i.e., 61) of the plate are evaluated using the marginal distribution function. For the

other nodes of the plate, the CDFs of the vertical displacements exhibit similar accuracy.

The second validation of the methodology is based on the evaluation of the autocorre-

lation of the vertical displacements among the nodes of the plate. A comparison was made

between the correlation function yielded from FQ-IDCVT and the exact solution. The au-

tocorrelation of a two-dimensional field is a four-dimensional function R(ξ11,ξ21,ξ12,ξ22)

which cannot be easily depicted. In the later function, the first subscript refers to the

field axes in the spatial domain and the second subscript refers to the point of the field.

Two simplified representations are considered: (1) the autocorrelation R(ξ̄11,ξ21, ξ̄12,ξ22)

among single rows (or columns) of grid points, treated as 1D fields; (2) the autocorrela-

tion between a fixed point and all the other points of the grid R(ξ̄11, ξ̄21,ξ12,ξ22). Both

approaches yield good approximations of the exact autocorrelation function. Figure 3.11

represents the comparison between the quantized and the exact autocorrelation functions

of the corner vertical displacement with the vertical displacements of all the other nodes of

the structure. The approximation of the exact autocorrelation is sufficiently accurate even

for a small quantizer size (i.e., N = 100).

Figure 3.12 shows Box and Whisker plots of the autocorrelation on the vertical dis-

placement of the corner node (i.e., 111) with the center node (i.e., 61). The results from

FQ-IDCVT technique are obtained for N = 50,100,200 and 500 and compared with the

outcomes obtained by MCS for N = 50,100,200,500,1.000,5.000 and 10.000. For each

case the analysis is repeated 50 times using different seeds. Bias error (BE) and stochas-

tic error (SE) are popular metrics to assess the accuracy and robustness of a statistical

estimator. In this case they are used to quantify the quality of the representation of the au-

tocorrelation. In particular, they are applied to the autocorrelation between the value of the

displacement at the corner and center nodes. Similar results have been obtained for other

83



pairs of nodes. BE is the average difference between the various instances of the estimator

(obtained using the 50 different seeds) and the exact value, which in this case has been

computed by MCS with 500,000 samples because a closed form solution is not available:

BERvv(v111,v61) =
1

nseeds

nseeds

∑
iseed=1

Riseed
vv (v111,v61)− µ̄Rvv

(3.31)

where: nseeds is the total number of estimations, Rvv(v111,v61) is the autocorrelation be-

tween the value of the displacement at the corner and center node and µ̄Rvv
is the exact

mean value of Rvv(v111,v61) computed by MCS with 500,000 samples. MCS is known to

be unbiased, by construction. Instead, the FQ-IDCVT technique produces slightly biased

results. However, the absolute value of BE is very small, even for small quantizer sizes.

In this example, it always lies within the range [2.5− 5] · 10−8 compared to values of the

autocorrelation in the order of 5 ·10−7. A bias error smaller than 10% on a second order es-

timator like the autocorrelation with only 50 samples for a 2D field is perfectly satisfactory.

The value of BE drops if larger quantizer sizes are used. In terms of SE, FQ-IDCVT per-

forms significantly better compared to MCS. SE is computed as the standard deviation of

the estimator (i.e., the autocorrelation between corner and node displacement in this case)

obtained for different estimations (i.e., for 50 different seeds in this case):

SERvv(v111,v61) =

√
√
√
√ 1

nseeds

nseeds

∑
iseed=1

[Rvv(v111,v61)iseed −µRvv
]2 (3.32)

where: µRvv
is the mean value of Rvv(v111,v61) between the estimates. Looking at the sizes

of the boxes in Figure 3.12, it appears that FQ-IDCVT with quantizer size N = 50 yields

the same SE of MCS with 5,000 samples. The results in Figure 3.13 shows the trend of SE

and clearly quantifies the superior performance of FQ-IDCVT.
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Figure 3.10: Cumulative distribution functions obtained for N=100. The figure on the left

is the CDF of the corner node (i.e., 111) and the figure on the right is the CDF of the center

node (i.e., 61). In both figures the continuous black line represent the CDF obtained from

500,000 samples (exact) whereas the gray continuous lines represent the CDF’s computed

from FQ with sample size N=100 and 50 different seeds. For this example where the

correlation distance is equal to the the size of the plate, the outcome of the stochastic static

analysis, considering a small quantizer size (N=100), gives a very good approximation of

the exact solution.
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Figure 3.11: Comparison between the optimal quantization (left) and the exact (right) au-

tocorrelation function for quantizer size N=100 of the corner node (i.e., 111) vertical dis-

placement with the vertical displacements of all the other nodes of the structure. When

FQ-IDCVT is used, the autocorrelation is always underestimated, however, in this case the

approximation is very good for a relatively small number of quantizer size.
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Figure 3.12: Box and Whisker plots of the autocorrelation on the vertical displace-

ment between the corner and the center node. For FQ-IDCVT the results are obtained

for N = 50,100,200 and 500 and compared with the outcomes obtained by MCS for

N = 50,100,200,500,1.000, and 5.000. For small values of the quantizer size, the stochas-

tic error on the autocorrelation is significantly smaller. For example, MCS with 10,000

samples provides similar stochastic error with FQ-IDCVT and quantizer size N = 50
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Figure 3.13: Stochastic error of the autocorrelation on the vertical displacement be-

tween the corner and the center node. For FQ-IDCVT the results are obtained for

N = 50,100,200, and 500, with each quantizer size being evaluated fifty independent

times. These results are compared with the stochastic error obtained by MCS for N =
50,100,200,500,1.000,5.000 and 10,000. The different set of sample sizes have been run

for fifty independent times using different seeds each time. In terms of the percent error

of the same metric, MCS with 1000 and 10000 samples exhibit 12.56% and 3.51% error

respectively, whereas FQ with 50 quanta exhibits 3.15% error.
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3.6 Concluding Remarks

A novel methodology has been presented for the functional quantization of multi-dimensional

random functions. FQ-IDCVT has shown its versatility computing quantizers of uni-

dimensional Gaussian and non-Gaussian, stationary and non-stationary random processes

in the past. In this paper, the extension to the multi-dimensional space is explored and two

applications (a two-dimensional non-Gaussian random field and a two-dimensional panel

structure with uncertain Young modulus under plane stress state) have been presented to

demonstrate its applicability for engineering applications and investigate its accuracy. FQ

was established as a very general approach and thus some moderate adjustments had to be

made in the algorithm to consider the multi-dimensionality as explained in Section 3.3. To

the best of the authors’ knowledge, none of the techniques available in the literature has

ever been implemented in a way to provide optimal quantizers for non-Gaussian random

functions defined over multi-dimensional spaces.

A quantitative investigation on the accuracy of the FQ-IDCVT technique for different

values of the quantizer size N and the correlation length was performed. The method oper-

ates particularly well in cases of random functions with relatively large correlation length.

In cases with small correlation length the probabilistic characteristics of the quantizer do

not accurately approximate those of the desired random function, but they are still the best

possible approximation (in the mean square sense) for a fixed number of deterministic

analyses that can be run.

For different values of the quantizer size N the convergence rate of the distortion does

not change significantly, but for higher values of Nsim, the quanta are smoother and the

accuracy of the computed weights (Equation 3.17) is increased. However, when two or

more dimensional fields are considered, setting Nsim > 100 ·N can be computational very

expensive and thus it is suggested to increase Nsim as fine tuning, only after convergence on
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the distortion has been met.

In the first application, a detailed description of a few computational challenges was

provided when discussing the accuracy analysis, to facilitate the implementation of the

proposed methodology. In particular, the determination of the upper cutoff frequency, the

discretizations in the space and wave number domains while the FFT technique is utilized

in the SRM method and the difficulties associated with estimating the non-stationary CDF

in the investigated domain were presented.

Compared to naive MCS, the proposed technique allows to reduce by some orders of

magnitude the number of required samples and associated deterministic runs, for a similar

quality of the probabilistic characterization of the results. Compared to other techniques

for the representation of random functions with few samples, FQ has the characteristic of

providing optimal approximations in the mean square sense, which is important for several

applications, such as risk analysis. Compared to other FQ-based techniques, FQ-IDCVD is

the only one applied also to non-Gaussian and multi-dimensional functions, in addition to

the ability to handle non-stationarity/homogeneity. All this is achieved with a very simple

computational procedure presented in Section 3.3, which can be easily paired with any

subroutine for the generation of random samples.
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Chapter 4

Effective sampling of spatially correlated intensity maps

using Hazard Quantization: application to seismic events

4.1 Introductory remarks

In the past years, there has been increased attention on regional hazard analysis as a re-

sponse to the outcomes of severe natural catastrophes that occurred in the recent past. Be-

cause of the intensity and interdependency of the long-reaching effects of these catastrophes

at the regional scale, researchers realized that community infrastructure needs to be studied

comprehensively.

Examples of natural disasters with such effects include the 2011 Tohoku earthquake and

tsunami in Japan and the 2012 Hurricane Sandy. Although at both locations the direct losses

were destructive, it is the indirect losses that were most pervasive. Tohoku experienced

$319 billion in direct losses, and more than $619 billion in indirect losses (Tesfamariam

and Goda, 2013) from which it is still recovering. Likewise, after Sandy, indirect economic

losses were estimated at about $16.3 billion and business interruption losses were quantified

between $10.8 and $15.5 billion (Kunz et al., 2013).

Many structures are exposed to multi-hazard loads during their service life and thus

an effective technique for the regional multi-hazard analysis is auspicious. The term multi-

hazard refers to hazards that can be correlated or uncorrelated, sequential or non-sequential.

An example of a sequential and correlated event affected the Japanese Sendai region’s built
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environment, which was stricken by the Tohoku earthquake, and immediately thereafter by

a powerful tsunami. Conversely, an urbanized region affected by uncorrelated and non-

sequential events is the U.S. East Coast’s Charleston region, which is prone to both earth-

quakes and hurricanes. The technique proposed herein aims to be used for uncorrelated and

non-sequential hazards. In particular, this paper focuses on seismic hazard applications.

An accurate regional seismic hazard model is required for an accurate seismic risk

assessment, which may include infrastructure reliability assessments (Dueñas-Osorio and

Vemuru, 2009), risk analyses (Padgett et al., 2010), and community resilience predictions

(Karamlou and Bocchini, 2016). The joint earthquake hazard over two or more points of

a lifeline is crucial when investigating the simultaneous failure of a certain combination of

elements of the network which may result in the failure of the whole network (Rhoades

and McVerry, 2001; Bocchini and Frangopol, 2011b). One well-known method for seis-

mic risk evaluation uses the HAZUS-Earthquake tool (Department of Homeland Security,

2003); however, its probabilistic analysis lacks the consideration of correlated seismic exci-

tations, correlated structural capacities and correlated damage costs. For these reasons, and

the complexity of the overall analysis, the most popular and appropriate way to address

these probabilistic studies is through the use of the simulation-based techniques. These

techniques are usually combined with optimal sampling strategies that identify a small

stochastically representative catalog of intensity measure (IM) maps, which can be used

as an integral part of the traditional Performance-Based Earthquake Engineering (PBEE)

framework (McGuire, 2004; Kramer, 1996; McGuire, 2008).

The ground motion correlation describes the similarity of the IM at the various locations

of the region and is essential for the estimation of the distribution of losses. The seismic

IM maps are usually generated by using a ground motion prediction equation (GMPE),

which in common practice is a function of three components. The first component is the

median value of the ground motion, which introduces a correlation among sites that are
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close, gradually decaying with distance.

The second and third components capture the randomness of the observed amplitudes

around the median at different sites. In particular, the second component, called inter-

event residuals” or “between-earthquake variability,” models the variability of the ground

shaking intensities observed for different events with similar magnitudes and rupture mech-

anisms. This accounts for the fact that even the most sophisticated GMPEs adopt a simpli-

fied representation of the earthquake itself. The very complex relative motion of different

lithospheric plates (i.e., infinite degrees of freedom) is represented with a finite number of

parameters (e.g., location of the epicenter, magnitude, depth, type of rupture mechanism).

Therefore, even after these parameters have been fully defined, there is a large amount of

uncertainty in the event model, which is represented by the inter-event residuals. The inter-

event correlation of earthquake ground motion can be modeled as proposed by Wesson and

Perkins (2001).

The third component of a GMPE is called “intra-event residuals” or “within-earthquake

variability and it addresses the additional variability of the observed IM amplitudes from

site to site within the same seismic event. This variability is mainly due to the incomplete

knowledge (and, therefore, incomplete model) of the geological properties of the region. A

comprehensive description of the peculiarities of the propagation of seismic waves from the

epicenter to the various sites would require complete knowledge of the mechanical prop-

erties of every rock and grain of soil in the region (again, infinite parameters). Obviously,

in practice the GMPEs describe the seismic effect at each site using a finite number of pa-

rameters (e.g., soil type at the site). The uncertainty associated with the parameters that

are not directly modeled is captured by the intra-event residuals. When dense observations

from numerous earthquakes are available for the region of interest, several methods can be

adopted to estimate this within-earthquake correlation of ground motion residuals (Bom-

mer et al., 2003; Wang and Takada, 2005; Goda and Hong, 2008b; Baker and Jayaram,
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2008; Jayaram and Baker, 2009). In summary, inter-event residuals account for the incom-

plete description of the seismic event, and intra-event residuals account for the incomplete

description of the site.

The effect of ground motion correlation on the loss assessment of interdependent sys-

tems and distributed building assets has been a field of extensive research in past years.

Studies that used either comprehensive databases of strong ground motions (Lee and Kiremid-

jian, 2007; Goda and Hong, 2008a; Goda and Atkinson, 2009) or synthetic earthquake cata-

logs (Wesson and Perkins, 2001; Bommer and Crowley, 2006; Crowley and Bommer, 2006;

Park et al., 2007; Goda and Hong, 2008a, 2009) showed that the ground-motion correlation

can significantly affect the probability of joint damage and the characteristics of the loss

distribution. The rate of decay of the spatial correlation with separation distance was also

investigated for different historical events (Goda and Hong, 2008a; Goda and Atkinson,

2009). Furthermore, the relative influence of the intra-event and inter-event correlations on

the estimates of seismic losses for distributed portfolios has been shown to vary with the

level of hazard and thus return period (Sokolov and Wenzel, 2011a,b).

The seismic hazard model based on the Cornell-McGuire approach (Cornell, 1968;

McGuire, 1976) is a tool commonly used by researchers to assess the seismic risk of spa-

tially distributed building assets. Although this model yields accurate results for individual

locations and allows to evaluate the seismic hazard contour maps, it has some disadvantages

that can be overcome with the use of simulation-based analysis. Probabilistic simulation

naturally accounts for spatially correlated correlated ground motion characteristics and it

can easily consider non-homogeneous and non-Poissonian earthquake occurrence models.

A few of these simulation-based techniques have been developed for regional risk assess-

ment that try to incorporate the spatial correlation of ground motion, as will be further

explained in the following section.
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A pliable multi-hazard tool is presented in this paper, which accounts for the spatial

correlation through the optimal sampling of IM maps. One of the defining characteristics

of the proposed technique is its ability to consider the IM maps of a natural hazard as a

random field. This allows the technique to take advantage of methodologies developed

within the context of random field theory. An effective methodology of this family called

“Functional Quantization” (FQ) is used to provide an optimal (in the mean-square sense)

approximation of a random field with a relative small set of samples (Luschgy and Pagès,

2002; Miranda and Bocchini, 2015a; Christou et al., 2016b). The methodology suggested

in this paper, named “Hazard Quantization” (HQ) is based on the FQ technique, and this

yields several benefits. First, it confers versatility to HQ, in that it can be applied to different

hazard types, given the availability of sample IM maps. Second, the representation of the

regional hazard is supported by proofs of optimality. Finally, the resulting procedure is

elegant and simple to implement. For instance, all the random parameters involved in the

hazard simulation module are treated equally, without the need of specialized simulation

techniques or any hierarchical sampling, as required by other methodologies in the same

field.

4.2 Overview of available methodologies for regional haz-

ard analysis

Several techniques have been developed recently for probabilistic seismic hazard analysis.

The suggested methodology is proposed for multi-hazard analysis involving uncorrelated

and non-sequential hazard events. A brief description of the selected techniques for re-

gional hazard analysis follows.

One way of categorizing the techniques in contemporary literature is to distinguish be-

tween the simulation-based and the non-simulation-based methods, as shown in Figure 4.1
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Figure 4.1: Current techniques for regional hazard analysis are categorized in two classes:

non-simulation-based and simulation-based. The former class includes two subgroups con-

taining analytical and numerical techniques, and the latter includes three subgroups with

Monte Carlo Simulation (MCS), hazard-consistent techniques and techniques based on op-

timal sampling (Bocchini et al., 2016). The last box is shaded because HQ belongs to that

group.

(Bocchini et al., 2016). The non-simulation-based class includes two subgroups: analyti-

cal (Wesson and Perkins, 2001; Gardoni et al., 2003) and numerical methodologies (Boc-

chini and Frangopol, 2011b). Wesson and Perkins (2001), for example, presented a non-

simulation method, which directly uses the information of the spatial correlation of seismic

intensities for the computation of the distribution of losses for a portfolio of building assets.

Likewise, for an accurate analytical risk assessment of a transportation network, Lee and

Kiremidjian (2007) considered two types of ground motion correlation models: one that as-

sumes non-distance dependence between the sites of interest and a second which accounts

for distance dependence. These models are appealing and simple, yet rely on substantial

assumptions. Other researchers utilized numerical techniques based on random field theory

to assess bridge damage levels in order to directly control the ground motion and damage

correlation (Bocchini and Frangopol, 2011b).

The second and most commonly used family of techniques, the simulation-based class,

is based on the idea that spatial correlation is embedded in all real and realistic individual

IM maps. Therefore, if these maps are used in a simulation-based fashion, the correlation

present in each one of them carries over to the subsequent steps of a PBEE-like framework.

Methods based on Monte Carlo simulation (MCS) were first considered in seismic hazard

analyses almost two decades ago (Ebel and Kafka, 1999; Musson, 1999, 2000). At the time,
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however, the available GMPEs did not consider spatial correlation for the intra- and inter-

event residuals. This limitation was investigated extensively in the early 2000s (Rhoades

and McVerry, 2001). In 2006, Crowley and Bommer (2006) used MCS for the seismic loss

prediction of the North side of the Sea of Marmara in Turkey, while accounting for the

spatial variability of the ground motion intensity measures. If a large number of stochastic

scenarios is used (large enough to be representative of the hazard in the region), brute-force

MCS provides an accurate and unbiased characterization of the regional hazard that can be

taken as reference solution. Brute-force MCS, as used by Crowley and Bommer (2006), is

conceptually straightforward and tractable, though at the expense of increasing the required

computational resources, effort and time of the subsequent analysis phases.

A subgroup of the simulation-based techniques stems from the hazard-consistent prob-

abilistic method that was first introduced by Chang et al. (2000). A small number of earth-

quake events was selected semi-manually and the annual occurence probability was ad-

justed so that the probability of exceedance of the reduced set of IM maps matched the

probability of exceedance obtained from a comprehensive probabilistic analysis, like the

traditional USGS hazards maps or a brute-force MCS. More recently, similar techniques

have been developed based on probabilistic optimization (Campbell and Seligson, 2003;

Legg et al., 2010; Apivatanagul et al., 2011; Vaziri et al., 2012; Han and Davidson, 2012)

that minimizes for all sites of interest the discrepancy between the hazard curve obtained

from the weighted set of selected IM maps and the reference hazard curve. In particular

Han and Davidson (2012) provided an outstanding review of this entire research field.

Techniques from the hazard-consistent probabilistic subgroup have been applied also to

regional hazard analyses for different natural disasters. For instance, hurricane wind hazard

in the state of North Carolina was determined in Legg et al. (2010) by using a mixed-integer

linear optimization formulation. One year later, this methodology was extended to select

hurricanes whose annual occurrence probabilities match both the wind and surge hazards
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(Apivatanagul et al., 2011). In Vaziri et al. (2012) the authors applied the hazard-consistent

probabilistic approach to identify earthquake scenarios for Tehran. Later, a technique was

developed based on the methodology presented in Vaziri et al. (2012) to reduce the set of

ground motion maps for a specified earthquake event, minimizing once again the errors

on the annual probability of exceedance between the reduced set of ground motion maps

and the reference MCS solution (Han and Davidson, 2012). The latest development of this

class of simulation-based techniques is based on Han and Davidson’s four step generation-

reduction method, the difference being that Manzour et al. (2016) reduce the number of

earthquake scenarios using both reduction methods presented by Han and Davidson (2012).

Another group of simulation-based techniques uses variance reduction methods for an

effective sampling of a set of earthquake scenarios. Kiremidjian et al. (2007) introduced

importance sampling for the simulation of earthquakes over a range of strong-magnitude

events, while Jayaram and Baker (2010) used importance sampling also for magnitude sim-

ulation and the ground motion inter- and intra-event residuals. In the same paper, Jayaram

and Baker used k-means clustering to group similar IM maps and further reduce their num-

ber. The HQ technique presented in this paper, which belongs to the same category, shows

similarities with the k-means clustering technique, but it is based on a different perspective,

which will be discussed in the following section.

4.3 HQ methodology

A few studies have mentioned the idea of directly modeling IM maps as random fields.

For instance, Wang and Takada (2005) analyzed dense observation data of earthquakes

that occurred in Japan and Taiwan and proposed a correlation model for the residuals after

verifying that they constitute a homogeneous two-dimensional stochastic field. Along this

line , a key characteristic of the proposed HQ methodology that distinguishes it from the
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techniques listed in the previous section is that HQ rigorously considers the IM maps as

random fields.

Because of the inherent variability of their essential features, natural hazards are consid-

ered random phenomena. This randomness makes their characterization and the modeling

of their effects over a geographic region a complex problem with patterns of interdependen-

cies. The set of values of an IM of interest resulting from a natural hazard over a geographic

region is characterized by a certain degree of uncertainty and correlation, and this is pre-

cisely the definition of a 2D random field. Therefore, we can consider as a random field the

maximum wind speeds associated with a hurricane throughout a study region, as well as

the level of seismic ground shaking. The latter is usually modeled with the popular empir-

ical GMPEs for seismic spectral accelerations, in which the random field is broken down

into its (random) median values over the 2D spatial domain and the (random) fluctuations

around the median, the already mentioned residuals. Let Mi(lon,lat), lon ∈ [lonmin, lonmax],

lat ∈ [latmin, latmax] be the ith realization of a 2D non-homogeneous, non-Gaussian random

field representing the intensity measure over a region, where lonmin, lonmax, latmin and latmax

are the geographic boundaries along the longitude and latitude.

Hazard Quantization is a technique for the optimal selection of a desired number of

representative IM maps that can accurately approximate the hazard curve and spatial cor-

relation of the ground motion intensity. In particular, the quality of the approximation is

measured imposing mean-square convergence of the selected and weighted maps to the en-

tire IM random field. In other words, HQ does not focus on a few specific statistical param-

eters (e.g., the probability of exceedance at one site for one value of IM, or the correlation

between two sites), but instead aims to holistically capture the probabilistic description of

the IM. This main objective of HQ is illustrated in Figure 4.2. Mean-square optimality is

particularly valuable for analyses like risk assessment or expected loss prediction. A set of

IM maps needs to be available from historical records of past events, or as outcome of the
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Figure 4.2: The main objective of Hazard Quantization, is to optimally describe in a proba-

bilistic way a ground motion parameter over a region with a small set of selected IM maps

and their associated weights.

seismic characterization of the region and proper used of a GMPE (including the residuals).

HQ considers these IM maps as realizations of a two-dimensional random field as input and

provides an optimal representation with a small number of weighted IM maps as output.

This means that for a fixed number of scenarios to be analyzed, HQ provides the set of IM

maps and weights that most accurately represents the whole set of potential IM maps.

Hazard Quantization builds upon the theoretical basis of a technique called Functional

Quantization by Infinite-Dimensional Centroidal Voronoi Tesselation (FQ-IDCVT). The

FQ methodology consists of approximating a generic random function F by means of an-

other function FN . The function FN is fully described probabilistically by a collection of N

samples (i.e., quanta) and their associated weights, all together called quantizer (Christou

et al., 2016b). When the correlation length is average-to-large, FQ (and, in turn, HQ) has

been proven to work particularly well.

Following subsections provide a step-by-step description of the HQ algorithm to de-

termine representative ground motion IM maps. The algorithm requires initially a large

number Nevents of IM maps which can be provided either by simulation, from a modified

historical earthquake catalog or both. The analyst has to define the quantizer size NHQ,

which is the (small-to-moderate) number of IM maps that should be determined by HQ and

can later be used in the subsequent steps of a regional loss/risk/resilience analysis (Karam-

lou et al., 2016).
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4.3.1 Input large set of IM maps

The expansion of seismic arrays is providing sets of historical data recorded from large

regions. Appropriately modified versions of these sets, if available for either the region of

interest or a region with similar characteristics, can be used as input for HQ; however, the

most common way of obtaining large sets of samples of IM maps is simulation. This can

be done following an approach similar to those presented in Ebel and Kafka (1999) and

Crowley and Bommer (2006). The seismic characterization of the region should describe

with a certain degree of completeness the temporal and spatial distribution of earthquakes

which can occur. This should be coupled with a ground motion prediction model that can

simulate the ground shaking generated by each earthquake and its associated variability

and correlation (e.g., Boore and Atkison, 2008; Jayaram and Baker, 2009).

4.3.2 Quanta Identification

Once the input set of Nevents IM maps is available, the HQ module is initialized (Step 0),

selecting randomly out of the Nevents maps a subset of NHQ maps to be used as initial trial

quanta. The algorithm then consists of an iterative process. At each iteration the Nevents IM

maps are clustered in NHQ groups and each group is associated with a quantum Q j(lon, lat).

Iterations consist of the following steps.

1. Compute the L2 distance of each of the Nevents realizations {Mi(lon, lat)}Nevents

i=1 from

each quantum {Q j(lon,lat)}NHQ

j=1 :

di j = ‖Mi(lon,lat)−Q j(lon,lat)‖L2 =
√
∫ latmax

latmin

∫ lonmax

lonmin

[Mi(lon,lat)−Q j(lon,lat)]2 dlon dlat

(4.1)
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2. Associate to each quantum Q j(lon, lat) the IM maps for which di j < dih ∀ h 6= j. In

practice, each IM map is associated to its closest quantum.

3. Update each quantum with the average of the IM maps associated with it

Q j(lon,lat) =
∑

N j

k=1 M̂k
j (lon,lat)

N j
(4.2)

where M̂k
j (lon,lat) represents the sample maps associated with quantum Q j(lon,lat)

and N j is their number.

4. Iterate steps 1-3 until the following functional, called distortion, converges to a stable

value:

∆ =
NHQ

∑
j=1

N j

∑
k=1

1

N j
‖M̂k

j (lon,lat)−Q j(lon,lat)‖2
L2 (4.3)

The distortion becomes stable and it is minimized when no rearrangements of the

Nevents IM maps into the NHQ clusters occur during the one iteration.

For a pictorial representation of the proposed algorithm the reader can refer to Figure 4.3.

When clustering by exhaustive comparison is performed (as explained in Step 2), the

number of iterations to meet convergence can be very high, up to a few hundredths, and it

increases as Nevents increase. Nevertheless, to describe with a certain degree of complete-

ness the spatial and temporal distribution of earthquakes within a region, a large number

of Nevents, at least some tenths of thousands, is required. The number of iterations could be

reduced if smarter clustering methods are applied, as described by Gersho and Gray (1991).

For more robust results, the Nevents realizations could be regenerated at each iteration, which

makes the technique less sensitive to the initialization of the quanta, but requires additional

computational time for the sample IM maps regeneration. In this case, the iterative scheme

is terminated when either the reduction of ∆ during the past five iterations is smaller than

a certain percent or when a maximum number of iterations is completed (Christou et al.,
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𝑁𝑒𝑣𝑒𝑛𝑡𝑠 IM maps

HQ

Step 1: Compute L2 norm distance of 

samples and quanta using Eq. (1)

Step 2: Arrange Nevents samples based on 

minimum distance

Step 3: Update the quanta using Eq. (2)

Step 4: Return to Step 1 if Eq. (3) is not 

minimized

Quantizer

Optimal 𝑁𝐻𝑄
IM maps + 𝑁𝐻𝑄

weights

Step 0: Randomly select 𝑁𝐻𝑄 out of 𝑁𝑒𝑣𝑒𝑛𝑡𝑠 IM maps

Figure 4.3: Flowchart of the basic steps of the HQ algorithm.
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2016b). In the case the parameters in the ground motion prediction model (e.g., earthquake

magnitude) for the simulation of the Nevents IM maps are generated through variance re-

duction techniques (e.g., importance sampling), then the resulting corresponding sample

weights should be taken into account throughout the procedure, in particular Equations

(4.2)-(4.4).

4.3.2.1 Output

When the HQ algorithm has converged, the methodology provides a set of representative

IM maps (i.e., the final set of quanta {Q j(log,lat)}NHQ

j=1 ) along with their associated weights

{p j}NHQ

j=1 . In particular, the probability associated with each IM map Q j(log,lat) is com-

puted as:

p j =
N j

Nevents
(4.4)

The hazard-consistent annual probability of occurrence of an IM map can be computed by

using a Poissonian model, and thus dividing Equation (4.4) by the annual occurrence rate

of any event:

pannual j
=

p j

λannual

(4.5)

If, for a specific application, it is preferable to use a set of real maps rather than the quanta,

then the analyst can replace each quantum with its closest map according to the L2 distance.

4.4 Alternative techniques for the selection of representa-

tive IM maps

A direct comparison of results obtained by HQ and two techniques will be provided as part

of the numerical applications. First, the “optimization-based probabilistic scenario” (OPS)

method will be described (Han and Davidson, 2012; Manzour et al., 2016). The second
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methodology is part of the approach presented by Jayaram and Baker (2010). This ap-

proach includes several modules, such as importance sampling of earthquake magnitudes

and residuals. These modules can be applied also to HQ and OPS, and are particularly use-

ful for the assessment of specific probabilistic metrics, such as the reliability of distributed

systems, but not as much for general studies like expected loss estimation or risk analysis.

The actual selection of IM maps is independent of these modules, and Jayaram and Baker

(2010) proposed to do it using a methodology called “k-means” clustering.

4.4.1 Optimization-based probabilistic scenario method

This method uses mixed integer linear programming optimization to select first a reduced

set of median IM maps (OPS-1), and then a reduced set of IM maps including residuals

(OPS-2). The optimization formulation is the same for both selection steps. The objective

of the optimization is to make the regional hazard estimated by the reduced set of maps

match as closely as possible the reference hazard at a selected set of locations and return

periods. It should be emphasized that this objective does not account for the spatial corre-

lation of the IM values. The overall correlation is induced solely by the intrinsic correlation

embedded in each map.

4.4.2 k-means clustering

k-means clustering (MacQueen, 1967) is used by Jayaram and Baker (2010) as a data re-

duction technique to develop a small catalog of ground motion IM maps. The k-means

algorithm is the same as Lloyd’s algorithm (Lloyd, 1982), which served as a starting point

for the development of FQ-IDCVT and, in turn, HQ (Miranda and Bocchini, 2015a). The

main difference is that HQ uses the quanta to represent the clusters, while Jayaram and

Baker pick a random map from each cluster.
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k-means works with vectors: Mk is a vector of values taken by the IM map at a finite

set of locations (e.g., important facilities, or a regular grid) and Qj is the centroidal vector

of cluster j, which can be interpreted as a discrete version of a quantum Q j(lon,lat). The

discrepancies among IM maps in the k-means technique are usually measured by the Eu-

clidean distance and the clustering is performed through the minimization of the following

metric:

U =
Nkmeans

∑
j=1

∑
Mk∈G j

‖Mk −Q j‖2 (4.6)

where Nkmeans = NHQ is the number of clusters and Gj denotes the set of maps that belong

in cluster j.

The steps followed by the k-means algorithm are the same as those presented for HQ,

but with discretized versions of the maps. Therefore, there are two important similarities

between k-means clustering and the HQ technique: First, both techniques cluster maps in

groups whose members have similar characteristics and, secondly, both algorithms use an

iterative refinement to group maps in clusters using comparable discrepancy metrics.

On the other hand, HQ and the methodology proposed by Jayaram and Baker (2010)

have a different genesis that results in important differences. First, HQ stemmed from

methodologies developed for random functions. For this reason it naturally treats continu-

ous functions over a space, and therefore accounts for the value of the IM at all infinite sites

of the region. k-means was developed for vector clustering, and thus considers IM values

at a discrete set of locations. Second, HQ uses the quantum as representative map from

each cluster (or the map closest to the quantum), which is proven to be an optimal choice,

whereas Jayaram and Baker (2010) suggest to pick a random IM map from each cluster.
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4.5 Application: Regional seismic hazard of the Charleston

seismic zone

In this section, HQ is applied to the Charleston seismic zone to demonstrate the utility

of proposed framework for regional probabilistic hazard analysis. Charleston and the sur-

rounding area are prone to multiple hazards, including earthquakes, and have dense infras-

tructure networks, making it a good case study for regional hazard analysis. The regional

hazard is calculated with HQ and compared to three other techniques: conventional MCS

to have a reference solution; k-means clustering (Jayaram and Baker, 2010); and OPS (Han

and Davidson, 2012).

4.5.1 Charleston seismic characterization

The input data and the probabilistic description of the parameters for the seismic char-

acterization of the Charleston region are based on the Central and Eastern United States

Seismic Source Characterization Project (CEUS-SSCn, 2012). The seismic sources of the

Charleston area that are used in the 2014 USGS National Seismic Hazard Mapping Project

(Peterson et al., 2014) are adapted from the CEUS-SSCn.

The CEUS-SSCn project follows an event-tree procedure for the complete seismic char-

acterization of Charleston’s repeated large-magnitude earthquake (RLME) source. This

procedure includes spatial and temporal information and descriptions of fault geometry

and style, among other parameters. In this application, the CEUS-SSCn report is used

for spatial characterization, while the USGS information is considered for the recurrence

uncertainty.

Geological surveys show that the available historical data for the spatial seismic char-
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acterization of the Charleston region do not identify any causative faults. For example,

neither the prehistoric earthquakes nor the 1886 earthquake is considered to belong to any

specific fault or fault zone. However, the Charleston region is associated with a pattern of

observed seismicity, which, based on the field evidence, can be characterized as a RLME

source. In particular, for the Charleston region, RLME sources are locations of repeated

earthquakes with magnitude M≥6.5 in the historical and paleoearthquake records.

The predicted Charleston earthquakes are expected to occur at uniformly distributed

locations within local, narrow, and regional area sources (or zones), represented in Fig-

ure 4.4(a). The local Charleston source is given a weight of 0.50 in the model and the

predicted ruptures have a NE orientation, parallel to the zone’s long axis. The local source

has strict boundaries, such that the ruptures are not allowed to extend beyond them. Sim-

ilarly, the narrow Charleston source, receiving a weight of 0.30, is modeled as an area

of distributed faults or active tectonic features instead of a particular fault. In the narrow

model, the orientation of the predicted ruptures is parallel to the zone’s long axis and in this

case their lengths are allowed to extend beyond the NE and NW boundaries. The regional

zone, which also has strict boundaries, is the largest zone in the Charleston area, approxi-

mately 260 x 150 km, and envelops both the local and narrow zones. In the current model,

the regional source configuration is given a 0.20 weight, and its predicted orientations are

either parallel to the long axis of the zone with probability 0.80 or oriented perpendicular

to the long axis of the zone with probability 0.20.

Figures 4.4(b)-(d) depict the distribution of 100 sample event faults in the three Charleston

RLME source zones. In this application, the predicted ruptures in all the Charleston sources

are modeled as occurring on vertical strike-slip faults. The shear-wave velocity, or soil type,

in the upper 30 m of the crust is VS30 = 760 m/s, given that the wave travels through a firm

rock. It should be noted that considering a uniform soil condition in the study region re-

duces the variability of the IM maps and introduces an approximation; however, this is a
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Figure 4.4: Distribution of 100 scenarios (i.e., epicenters with their corresponding fault

rupture lengths) generated by plain MCS from each of the Charleston RLME source zones.

16 and 4 simulated epicenters with their corresponding fault ruptures parallel and perpen-

dicular to the Regional zone’s long axis, respectively (b), 40 and 10 simulated epicenters

with their corresponding fault ruptures parallel and perpendicular to the Local zone’s long

axis, respectively (c) and 30 simulated epicenters with their corresponding fault ruptures

parallel to the Narrow zone’s long axis (d).

simplification that does not interfere with the objectives of this research.

The magnitudes of the predicted large earthquakes in the Charleston RLME zone are

based on the assessment of the various sources of available data and modeled with a uni-

form distribution with bounds and weights indicated in Table 4.1.

Sequences of earthquakes within the Charleston seismic zone are usually spaced about

500 to 1000 years apart, but sometimes quiescent intervals can last a few thousand years
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Table 4.1: Expected Charleston RLME magnitudes, and lower and upper bounds of the

associated uniform distributions based on CEUS-SSCn (2012).

Type Expected Charleston RLME (M) Weight Lower bound Upper bound

(M) (M) (M)

1 6.7 0.10 6.46 6.95

2 6.9 0.25 6.65 7.15

3 7.1 0.30 6.85 7.35

4 7.3 0.25 7.05 7.55

5 7.5 0.10 7.25 7.75

(CEUS-SSCn, 2012), making predicted earthquake recurrence highly uncertain and highly

variable through time. Following the USGS provisions, this application considers a return

period of 529 years and uses the time-independent Poisson model for the recurrence of an

event.

For the generation of the surface rupture length of an earthquake event, the following

equation is used (Department of Homeland Security, 2003; Wells and Coppersmith, 1994):

log10(L) = a+b ·M (4.7)

where L is the rupture length (km), M is the moment magnitude of the earthquake and a,

b are regression coefficients defined as a = −3.55 and b = 0.74. Finally, the hypocenter

depth, (i.e., the point at which the rupture begins and the first seismic waves originate) is

modeled with a uniform distribution between 5 and 20 km.

Ground motion prediction model

The ground motion intensities are simulated based on the GMPE:

ln(Sa(T=1.0s)(lon,lat)i) = ln(Sa(T=1.0s)(lon,lat)
i
)+ ε(lon,lat)i ·σi +ηi · τi (4.8)
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where Sa(T=1.0s)(lon, lat)i denotes the i-th IM map of the two-dimensional spectral ac-

celeration (Sa) at period T = 1.0 sec, “lon” and “lat” denote the longitude and latitude

coordinates in the spatial domain, Sa(lon, lat)i denotes the i-th realization of the predicted

median value of the ground acceleration obtained from the empirical ground motion pre-

diction model, and the products ε(lon, lat)i ·σi and ηi · τi are the i-th realizations of the

intra- and inter-event residuals, respectively. Specifically, parameter ε(lon, lat)i denotes

the i-th realization of the normalized intra-event residual, modeled as a normal random

field with zero mean and unit standard deviation. The scalar parameter σi denotes the i-th

realization of the standard deviation term and scales ε(lon, lat)i. It is estimated as part of

the empirical GMPE model and is a function of the period T of interest. Parameter ηi is

constant over the region, and is the normalized inter-event residual, modeled as a normal

random variable with zero mean and unit standard deviation. Finally, the scalar parameter

τi is standard deviation of the inter-event residual and is likewise calculated as part of the

empirical GMPE.

This application uses Boore and Atkinson’s 2008 empirical GMPE to calculate the

median ln(Sa(lon,lat) term, σ and τ . The normalized intra-event residual ε is computed

based on the work presented by Jayaram and Baker (2009). Their predictive model for

spatial correlation constructs the covariance of ε. The correlation between the residuals at

two sites is a function of the distance h between the sites, the period of interest and the soil

condition similarity:

ρε(log,lat),ε(log,lat)(h) = exp(−3h/bε) (4.9)

where bε denotes the rate of decay of spatial correlation, and thus the ratio 3/bε is propor-

tional to the correlation length. In this application, parameter bε equals 25.7 for T = 1.0s.
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Figure 4.5: IM maps resulting after performing HQ on the study region with quantizer size

equal to 135. One of the 135 quantum IM maps (a), the closest IM map in L2 distance to

the quantum (b) and a random IM maps selected from the cluster of IM maps which the

quantum represents (c).

4.5.2 Parameters of the algorithms

Each hazard representation methodology requires the selection of input values for its pa-

rameters, and in this application, considerable effort was put into selecting parameters for

each technique in a way that allowed for a fair comparison among them. Some parameters

are specific to a certain methodology, such as OPS’s return periods of interest, whereas

others are common to all of them, such as the target number N of desired IM maps. Even

common parameters may be used in different ways by the various techniques. N, for in-

stance, is taken as the exact number of IM maps to be selected by HQ and k-means, whereas

it serves as maximum number of IM maps for OPS.

In the OPS method, 3,000 sample median IM maps (NeventsOPS1) were generated as

input for OPS-1, which then selected no more than 500 (NOPS1) output median maps and

their corresponding annual occurrence probability. Before OPS-2, the samples of the intra-

and inter-event residuals were generated and then superimposed to the median maps from

OPS-1. For this application, the sample intra- and inter- event residual maps were paired to

each of the median maps based on their annual occurrence probabilities. As a result of this

pairing, OPS-2 receives as input NeventsOPS2 = 3,000 IM maps and the target number of

outcome maps (NOPS2) is set to 300. A 6 x 6 grid encompassing the geographic coordinates

111



32,730◦ N - 32,910◦ N (latitude range) and 79.780 W - 80.100 W (longitude range) was

selected as the resolution in both OPS-1 and OPS-2. The selected return periods for the two

phases of OPS are 800; 1,200; 2,500 and 5,000 years, and the mixed-integer programming

optimizations were performed using the Gurobi solver (Manzour et al., 2016). While it is

not possible to relate directly Nevents with the pair of parameters NeventsOPS1 and NeventsOPS2,

in some sense it could be said that with these parameters OPS investigated a set of 3,000 x

3,000 = 9 million IM maps.

For the HQ method the sample space of all possible realizations is defined by Nevents

IM maps and for this application it was set equal to 50,000. The IM maps are discretized

on a 30 x 30 point grid, resulting in a study region mesh of 1 km x 0.7 km. The number

NHQ of reduced IM maps was set to 135, because this was the average number of IM maps

eventually selected by OPS. In this application, there is no sample regeneration during

the iterations of the HQ algorithm and clustering is performed by exhaustive comparison

without the use of smart clustering techniques.

Similarly, in the k-means methodology number NeventsKmeans of IM vectors was 50,000

(like NHQ) and the IM values were computed at the same 30 x 30 grid. Also, the number

of outcome IM maps equals the choice made for HQ: NKmeans = NHQ = 135. Therefore,

for a fair comparison, the discretized {Mi(lon,lat)}Nevents

i=1 and {MMMi}NeventsKmeans

i=1 are the same.

Furthermore, the initial sets {Q j(lon,lat)}NHQ

j=1 and {QQQ j}Nkmeans

i=1 for HQ and k-means to initi-

ate the iterative procedures were always selected to be the same. This guarantees that HQ

and k-means iterative algorithms perform the same number of iterations and yield the same

clusters.

The generation of the initial IM maps was performed through entirely random sampling

of their parameters (e.g., earthquake location, magnitude, fault orientation, residuals). Im-

portance sampling or other sampling techniques could have been used, but in this case there
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was no reason to focus on any particular type of seismic event.

An important characteristic of all methods is the number of locations considered in the

IM maps. In the OPS and k-means methods a set of specific geographic locations should

be identified, sometimes on a regular grid. For example, they can include the locations

of significant assets in an infrastructure network. For HQ, it is more natural that the dis-

cretization of the IM random field is made on a regular grid with a resolution that captures

the spatial correlation for the points of interest. In the case of seismic hazard analysis, a

discretization of the IM grid with approximately 1 km resolution is considered adequate

for applications in civil engineering (Jayaram and Baker, 2010; Han and Davidson, 2012;

Manzour et al., 2016).

Each method was run 100 times with different inputs. For HQ and k-means 100 sets of

50,000 IM maps were generated, and for OPS the procedure was run 100 times with differ-

ent sample events for the OPS1 and OPS2 phases. The solutions obtained from HQ, OPS

and k-means are compared with the reference solution obtained by MCS with 500,000 sam-

ples and the results are evaluated to showcase the benefits and drawbacks of each method.

4.6 Results and discussion

The product of HQ, when one analysis was run, was a set of 135 IM maps and their asso-

ciated weights. Figure 4.5(a) shows the representative map from one of the 135 partitions

of the sample space. Similarly, the outcome of k-means after the first analysis was a set of

135 IM maps and their associated weights. An example of one of the IM maps resulting

from the k-means technique is depicted in Figure 4.5(c). The result of the first of 100 anal-

yses, when the OPS was used, was a set of 144 IM maps and their corresponding annual

probabilities of occurrence. The outcome of any of these methodologies can later be used

as input in following regional loss estimation analysis steps. The IM at certain locations
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extracted from one of the resulting IM maps can be used as input of a structural simula-

tion to calculate demands parameters which characterize the structure’s response in terms

of acceleration, for instance. This structural response will then be weighted based on the

weight of the input IM map.

In the OPS method, after 100 analyses have been run, an average of 8 median IM maps

were selected at the end of OPS-1 and an average of 135 IM maps were selected at the

end of OPS-2. Neither the output of OPS-1 nor of OPS-2 could be controlled precisely by

parameters NOPS1 and NOPS2. As such, the analyst does not benefit from the selection of a

number of median IM maps or IM maps with residuals that are greater than 8 or 135 and

smaller than the NeventsOPS1 and NeventsOPS2, respectively. For example, in this application

the average number of IM maps selected by OPS does not change increasing NOPS2 until it

reaches the value 800. This means that the methodology cannot find a combination of IM

maps of number between 135 and 800 that is better than what can be achieved with only

135 IM maps.

The first quantitative comparison is done on the ability to correctly represent the hazard

at all locations of the region, considered individually. The comparison is done at the loca-

tions of the 30 x 30 grid in the study region, and focuses on the values of the hazard curve

at eight return periods (i.e., T = 800; 1,000; 1,200; 1,600; 2,000; 2,500; 4,000 and 5,000).

This choice has been made because according to FEMA 366 (FEMA, 2008), loss estimates

can be generated with as few as eight return periods. For instance, Figure 4.6 shows the

reference and the approximated hazard curves at location 32.760◦N, 79.830◦W as obtained

from one run (i.e., one random seed number). This geographic location belongs also to the

6 x 6 grid considered by the OPS method. The eight circles represent the hazard related to

eight selected return periods. When 135 IM maps are considered, this picture shows that

all three methods provide a good estimation of the hazard at the selected return periods.

Similar results on the estimation of the hazard curve are obtained for other locations within
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Figure 4.6: Hazard curve plot in logarithmic scale obtained with reference MCS, OPS and

quanta samples at location 32.760◦N, 79.83◦W.

the region.

The error in the hazard curve in terms of the spectral acceleration at T = 1.0s (Sa(T=1.0s))

is defined as (Han and Davidson, 2012):

Qr(lonl, latk)− Q̃r(lonl, latk)

Q̃r(lonl, latk)
(4.10)

where r is the return period index, Qr(lonl, latk) and Q̃r(lonl, latk) are the assessed and

reference ground motion intensities for a site with coordinates (lonl, latk) and return period

r, respectively. The overall hazard curve error over the study region is captured by the mean

over all sites (lonl, latk) and all return periods rm:

EHC =
1

nrnlonnlat

nr

∑
r=1

nlon

∑
l=1

nlat

∑
k=1

∣
∣
∣
∣

Qr(lonl, latk)− Q̃r(lonl, latk)

Q̃r(lonl, latk)

∣
∣
∣
∣

(4.11)

where nr, nlon and nlat are the upper bounds of the indexes running over the return periods,

the longitudinal axes and the latitudinal axes respectively, in this case nr = 4, nlon = 30 and

nlat = 30.
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Figure 4.7: Box and Whisker plots of the EHC when 100 experiments are conducted for

each method: OPS, HQ and k-means. The EHC is evaluated at the 30x30 grid points and

at the eight return periods. Additionally, the EHC obtained by OPS when it is evaluated at

the 6x6 selected points of the grid and for four return periods is shown for the same 100

experiments at the last column.

Figure 4.7 shows box and whisker plots of the EHC as defined in Equation (4.11) for

each method. As mentioned, the analyses have been repeated 100 times using different

random seeds and thus Figure 4.7 provides an overview of the stochastic error on the hazard

curve for each method. The last box depicts the EHC evaluated for the reduced set of IM

maps yielded by OPS only at the points and return periods considered for the optimization.

The objective function in OPS is to minimize precisely EHC at these points and return

periods and thus, when only these specific points and return periods are considered, OPS

provides better results compared to the other methods. OPS, however, is constrained by the

problem’s dimensionality because the computational time and resources needed to optimize

the objective function increase non-linearly as resolution increases. It would not have been

possible to expand the OPS method to optimize a 7 x 7 grid with the available resources.

The EHC errors obtained by HQ evaluated at the 30 x 30 grid points and at eight return

periods are slightly smaller than those yielded by the other methods, showing that HQ

accurately approximates the hazard at each site as well as these established methodologies.
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Figure 4.8: Box and Whisker plots of the EAC when 100 experiments are conducted for

each method: OPS, HQ and k-means. The EAC is evaluated at all combinations of pairs of

geographic locations.

After assessing HQ’s ability to capture the hazard at each individual site, it is important

to assess the ability of HQ to correctly capture the correlation among different sites. To

accomplish this, an estimation of the autocorrelation was computed between every pair of

locations in the grid used to represent the IM map. If NHQ values of IM for each one of the

discrete locations of the grid at coordinates (lonl, latk) are available, then the autocorrela-

tion is computed as:

RQQ(lonl, latk, lonh, latg) =
NHQ

∑
j=1

Q j(lonl, latk) Q j(lonh, latg) p j (4.12)

where

lonl = lonmin +(l −1) ·∆lon l = 1, . . . ,nlon

latk = latmin +(k−1) ·∆lat k = 1, . . . ,nlat

lonnlon
= lonmax

latnlat
= latmat

(4.13)

and p j is defined in Equation (4.4). As Equation (4.12) shows, the autocorrelation is a 4
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dimensional surface, so it cannot be visualized. The overall error for all pairs of geographic

locations can be expressed as the mean error over all pairs of sites:

EAC =
2

(nlon ·nlat)4 +(nlon ·nlat)
·

nlon

∑
l=1

nlat

∑
k=1

l

∑
h=1

k

∑
g=1

∣
∣
∣
∣

RQQ(lonl, latk, lonh, latg)− R̂QQ(lonl, latk, lonh, latg)

R̂QQ(lonl, latk, lonh, latg)

∣
∣
∣
∣

(4.14)

Figure 4.8 shows box and whisker plots of the autocorrelation error for all considered

methods. In this particular example, EAC is small for all methods. The error associated with

HQ is negligible and, furthermore, it is up to one order of magnitude smaller than the error

obtained from OPS. The figure also highlights HQ’s near-zero error estimator variance.

Based on the way HQ and k-means have been implemented in this application, they

differentiate only in the last step of the algorithm, in which IM maps are selected to rep-

resent each cluster. It is important to mention that a higher number of Nevents sample IM

maps (e.g., 500,000) would improve the HQ results. Mean square convergence of the en-

semble of representative samples to the desired IM field is satisfied for a high number of

Nevents realizations. The higher this number, the better the results on the EHC and EAC errors

for HQ. Conversely, for k-means, a higher Nevents may have adverse effects, as randomly

selected IM maps from each cluster with more samples are less likely to be the optimal

representative sample.

Another important consideration is the possible limitation imposed by the computa-

tional time and resources which OPS requires. All the analyses were run on a 12-core CPU

with 64MB of RAM and each run of the OPS-2 finished in less than one hour when a 6

x 6 grid and four return periods were considered. Any increase in the resolution of the

IM maps or in the number of sample IM maps in OPS-2 would result in a much longer

computational time and it would reach the limit of these specific computational resources.
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Table 4.2: Comparison and contrast table of the features of the frameworks discussed. The

gray hatch cells indicates the superiority of one framework over the others for a specific

characteristic.

Framework

Features HQ K-means OPS

Selects exactly the desired number

of IM maps
X X Not always

Input IM maps size limits

methodology
X

Ease of implementation Easiest Complex if IS is implemented Complex

Requires external optimization

solver
X

Accurate hazard curves estimate

for all locations
Accurate Accurate Accurate1

Can select IM maps targeting

specific hazard levels
X

Requires multiple selection steps X

Accurate on regional

autocorrelation estimate
Most accurate Accurate Less accurate

Was developed to work together

with specialized simulation

techniques

X X

Robustness (σ in Fig. 4.8) 0.0021 0.0036 0.0593

1Most accurate when the locations of interest are those used for the optimization.

For example, an increase in the resolution of the IM maps to a grid of 7 x 7 points took

more than 15 hours for the optimization to reach convergence and thus the analyses were

terminated. Therefore, the coarser grid of 6 x 6 points for each of the 3,000 IM maps and

the four return periods were selected in OPS-2.

Table 4.2 compares and contrasts the features of the three discussed frameworks. Some

aspects have already been discussed, therefore only the features which have not yet been

reviewed are analyzed next.

Ease of implementation: The framework presented by Jayaram and Baker, which con-

siders k-means for the selection of the IM maps, uses importance sampling for the genera-

tion of a few of the GMPE’s parameters. Similarly, OPS requires advanced sampling tech-

niques (stratified sampling) for the same parameters and some preliminary knowledge on

the use of optimization techniques, making this technique more challenging to implement
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in practice. Additionally, OPS necessitates a two-stage IM maps generation and selection

process. HQ, on the other hand, requires only a purely random sampling of the parameters

for the generation of the IM maps. Like k-means, in the selection phase, only basic oper-

ations are needed to code the iterative algorithm, making this technique the easiest of the

three to implement.

Requires solver: The solution of the two optimization formulations in the OPS frame-

work requires the use of an appropriate mixed-integer linear programming solver. Depend-

ing on which solver is chosen, the results may be different. In contrast, HQ and k-means

do not need a solver, which makes these frameworks less dependent on external software

whose calculations may not be fully controlled by the analyst.

Accurate regional hazard estimate: Based on the results presented in Figure 4.7,

HQ provides the best regional hazard estimate for this application. OPS provides accurate

estimates in this application even though the regional hazard was evaluated at denser grid

points than the 6 x 6 grid which it used in OPS-1 and OPS-2. If the regional hazard estimate

is evaluated only at the locations used in OPS, then the average error for all the points’

hazard curves (at the selected return periods) is minimized. In this case, OPS yields the

most accurate results.

Selects IM maps targeting specific hazard levels: One of the input parameters in the

OPS optimization formulation is the identification of the specific return periods at which

the hazard curve error is minimized, which are equivalent to the probability of occurrence

of interest. These return periods can be arbitrarily defined, therefore specific hazard rates

can be selected to be analyzed, such as only rare events with high return periods. In other

words, the error minimization can focus on the upper tail of the cumulative distribution.

Conversely, HQ does not minimize the hazard error at specific points on the hazard curve.

It focuses on the main bulk of the distribution, making it ideal for regional loss analyses.
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Robustness: Figure 4.8 shows that standard deviation of the autocorrelation error EAC

obtained from HQ is at least 50% smaller than the corresponding σ yielded from k-means.

The standard deviation on the EAC resulting from OPS is one order of magnitude higher

than HQ and k-means. In conclusion, this makes HQ the most robust framework among

k-means and OPS for the selection of a reduced set of IM maps.

4.7 Concluding Remarks

A novel methodology called Hazard Quantization is presented for the selection of a set

of optimal stochastic IM maps representing the regional hazard over a geographic region.

Hazard Quantization treats the regional IM maps as realizations of a two-dimensional non-

Gaussian and non-homogeneous random field. The method imposes mean-square conver-

gence of the ensemble of representative samples to the desired IM field. HQ is applied

to the regional seismic hazard analysis of the Charleston, South Carolina region. Other

popular techniques are reviewed and applied in this example for comparison.

The results of this application showcase this technique’s versatility and accuracy, and,

most importantly, they showcase that it is an easily implementable, robust technique that

can be used without requiring specialized simulation techniques or hierarchical parameter

sampling. These features can make HQ particularly appropriate and appealing to accelerate

the process that is bringing regional hazard analysis to engineering practice.
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Chapter 5

Hurricane simulation framework of synthetic directional

wind speeds for hazard and risk analysis in the United

States

5.1 Introduction remarks

Hurricanes are among the most destructive natural disasters. A hurricane is a tropical

cyclone that occurs in the Atlantic ocean and in this chapter the term hurricane is used

interchangeably with tropical cyclone and storm. A Category 4 or 5 hurricane landfalling

in the South or East Coast of the United States lowers the U.S production (EIA, 2018), in-

creases unemployment (Brown, 2006), and, even smaller storms depress the stock market

(Finance.yahoo, 2017). The United States is vulnerable to hurricane damage due to its pop-

ulation and infrastructure distribution. Coastal shoreline counties create 40% of America’s

jobs and they are responsible for the 45.6% of its gross domestic income (NOAA, 2017).

Moreover, despite the decrease of the country’s death toll from hurricanes over the years

(Goklany, 2009; Blake et al., 2011) due to improved forecasting systems, improved struc-

tures with higher load resistance, and the ability to provide timely warning to public, there

has been a significant increase in economic losses. Four of the six costliest U.S. tropical

cyclones occurred in the past 7 years as depicted in Table 5.1 (NHC/NOAA, 2018).

Wind damage from hurricane contributes significantly to the cost among other sources

(e.g., storm surge, precipitation). The Congressional Budget Office (CBO) estimates an

expected annual economic loss of $55 billion due to hurricane wind and storm-related
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Table 5.1: Costliest landfalling U.S. tropical cyclones between 1900-2018 in billion dollars

of damage (not adjusted for inflation) (NHC/NOAA, 2018).

Death toll

Rank Name Year Cost(B$) States (US only)

1 Katrina 2005 125 SE, FL, LA, MS 1,245-1,836

2 Harvey 2017 125 TX, LA 106

3 Maria 2017 90 SE, FL, LA, MS 7

4 Sandy 2012 65 NY, NJ, PA, MA 157

5 Irma 2017 50 FL 96

6 IKE 2008 30 TX, LA 113

flooding on the residential, commercial and public sectors. The wind source damage alone

comprises 41.2% of the total annual expected cost (CBO, 2019).

To reduce the hurricane wind induced risk, engineers work to build resilient structures

and infrastructure systems (Bocchini et al., 2019) to reduce short and long term losses, and

to accelerate the community’s socio-economic recovery after a natural disaster (reduce long

term losses). However, thus far emphasis has been given in modeling and prediction of the

hurricane wind intensity. Recently published studies demonstrate that accurate assessment

of structural behavior—a predictor of structural damage and risk—under wind load requires

reliable information about both wind intensity and directionality (Mara and Hong, 2013;

Gao and Wang, 2018; Ma et al., 2019).

Until the late 1990s, the mathematical simulation of hurricanes were exclusively based

on single site probabilistic models and sometimes it is still being used during the past recent

years. Examples of such models used for risk analysis applications in the U.S. including:

Neumann (1991); Georgiou et al. (1983); Georgiou (1986); DeMaria et al. (2006). These

models were based on the pioneer work of the hurricane simulation approach introduced

by Russell (1969). They require site-specific probability distributions to model key pa-

rameters of hurricane mathematical models, such as the radius to maximum wind, central

pressure deficit of the approaching hurricane, hurricane heading angle, translation speed,
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and the closest crossing distance of the hurricane’s eye. These variables are created using

historical data from the specific site. After the probability distribution has been constructed,

samples are drawn using Monte Carlo approaches, and the hurricane’s path is modeled as

a straight line. The hurricane’s intensity is assumed to be constant until the storm makes

landfall and then it starts decaying based on a filing rate model. During this process, wind

field models are utilized to estimate the wind speed intensity. The most notable differences

of the various site-specific models are concentrated on the physical and statistical models

used. For example, different physical models can be found in the various wind field mod-

els, and different statistical models can be found in the filling rate models, the probability

distributions used to fit the historical data, and the models used to approximate the distance

of the storm’s center form the site.

A probabilistic approach for the hurricane hazard assessment was introduced by Vick-

ery et al. (2000a), who first proposed to generate synthetic tropical cyclone tracks. In his

pioneer work, the full track of a tropical cyclone and its intensity are modeled, starting

from the storm genesis over water, its propagation over water and land (for landfalling

storm), and ending with its dissipation. In contrast to previous models that were limited

to a specific site or a small, confined region, Vickery’s stochastic model was innovative in

that it modeled hurricane risk along the North American continent’s entire coastline. Vari-

ous models based on Vickery’s stochastic model have been proposed to accurately predict

hurricane occurences, storm size, landfall locations, and maximum windspeeds; however,

very little progress has been made in estimating expected hurricane damage. This is for

three reasons: First, very few academic research groups conducting research in the field

or insurance and reinsurance companies have put together such simulators. Thus, access-

ing proprietary data is untenable. Second, the published documentation does not always

provide the required information for implementing and putting together a stochastic hurri-

cane simulator. Third, and mostly importantly, the current models predict risk based on the
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maximum wind intensity, but fail to take into consideration joint wind and directionality.

This chapter proposes a framework for simulating synthetic directional hurricane wind

speeds. The outcome of the simulator can be used to construct joint probability density

functions (PDFs) of wind intensity and directionality along the Gulf of Mexico, East Coast

of the U.S. and offshore. The joint PDFs and the marginal wind directionality distribution,

displayed in polar PDFs, can be utilized for site-specific hazard analysis and long-term

risk studies. In addition, the data can be used for event based short-term studies such as

post-event damage assessments.

For the simulation of joint hurricane wind intensity and wind directionality, the hur-

ricane track modeling approach is adopted. The modeling of wind speed intensities and

directionalities requires the implementation of many modules, which will be described

below. Each of these modules is used to model a characteristic aspect of the hurricane sim-

ulator. Together, the modules combined, produced accurate directional wind speeds. In the

rest of the chapter, each modules is presented and implementation details are discussed.

5.2 Hurricane track modeling

The currently documented hurricane track simulation models are reviewed in summary next

and in a chronological order.

The first full-scale hurricane track model was introduced by Vickery et al. (2000a). The

authors used a multiple linear regression analysis to model the storm’s translation speed

and heading angle in each of the 5◦ x 5◦ grids covering the entire Atlantic Basin, and

the regression coefficients were determined separately for westerly and easterly headed

storms. During the storm’s track simulation process the starting values of the variables

describing the storm’s track are sampled from the existing historical HURDAT database
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(Jarvinen et al., 1984). Knowing the storm’s position, time, speed and heading angle at

time ti, the translation speed at time ti+1 can be determined. Similarly the storm’s heading

angle at time ti+1 is determined as a function of the storm’s location, translation speed

and heading angle at time ti and heading angle at time ti−1. This model has been used in

many of the proprietary models developed by insurance companies to predict losses due

to hurricanes (AIG personal communication, February 2019 ). Despite its widespread use,

the track’s propagation does not consider properly the local topology. Rather, it depends

exclusively on historical data that are discretized in 5◦×5◦ geographic grids. That is to say,

a hurricane track that barely crosses the boundary of an adjacent geographic cell does not

take into account half of its local topological information, but only relies on the information

included in the current geographic cell.

Other researchers have since adopted this modeling approach. Casson and Coles (2000)

proposed a simplistic approach where the simulated tracks are sampled from the historical

catalog and a random perturbation is superimposed uniformly throughout the simulated

track’s path. The authors proposed a perturbation distributed as N(0,σ2), where σ=100

nautical miles. The authors, however, did not provide comparisons between the spatial

directional distributions and translation speed distributions of both the historical and simu-

lated hurricane tracks.

In 2005, a modeling approach based on the Markov Chain was introduced (Powell et al.,

2005). The authors simulated 1-h increments of intensity, translation speed and heading an-

gle. Each dependent variable is condition on one prior. For example, the translation speed

at time ti+1 is conditional on the translation speed at time ti, current location and month.

The authors derived the PDFs for variable-sized regions centered at every 0.5◦ latitude and

longitude grid cells. However, they did not provide further detail regarding the criteria

to select the region size, the interval sizes of the variables during their distribution cali-

bration, or the distribution type (e.g., parametric distribution, non-parametric distribution,
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etc.) Similar to Casson and Coles (2000), these authors also did not provide a comparison

between the historical and simulated tracks.

James and Mason (2005) developed an autoregression stochastic process for the simu-

lation of the tropical cyclones propagation over the Queensland Coast of Australia. Due to

the limited amount of historical data, the authors performed a multiple linear regression us-

ing all the data over the Coral Sea without breaking their analysis down to specific regions

or a grid of geographic cells. Their model is similar to the model proposed by Vickery

et al. (2000a), however, the independent and dependent variables in their analysis were ve-

locity components along the latitude and longitude direction and not velocity magnitude

and heading angle as modeled in Vickery et al. (2000a).

Emanuel et al. (2006) introduced two approaches for the storm’s track simulation. The

first approach is based on Markov Chain theory and uses conditional PDFs to sample the

translation acceleration and heading angle rate of change. Many conditional PDFs were

constructed and those used are selected based on a sampling schedule in order to ensure

that the track simulation also propagates in regions where the historical data are limited.

The genesis module in this approach considers time and space dependent PDFs which

are developed from histograms of genesis points and smoothing. The second approach

introduced by the authors proposes a track generation from synthetic wind time series. The

underlying assumption in this technique is that the storm moves with some vertical mean

wind which is modeled as an average mean of the winds occurring at two predefined levels

plus a drift term. The storm’s track simulation methodology developed for this thesis is

based on the first approach presented by Emanuel et al. (2006). A more detailed description

will follow.

Hall and Jewson (2007) simulated the track propagation by modeling the displacement

increments on two perpendicular directions. Their innovation is that at each time step the
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authors sample the forward displacement by first assessing all historical increments by in-

versely weighting with distance from the storm’s current location all historical incremental

displacements. At each location of the track they compute the following information: i)

the weighted mean latitude and longitude by averaging all historical data, ii) the weighted

variances parallel and normal to the weighted mean direction, and, iii) the autocorrelation,

as a measure of the displacement anomalies, parallel and normal to the mean track again

by weighting all historical track data. This approach properly considers the local geogra-

phy; however, it is computationally expensive. Specifically, for every new location of the

storm’s track, the algorithm used needs to perform multiple distance calculations, as many

as the number of data points in the basin.

5.2.1 Tropical cyclone dataset

The most well-known historical hurricane dataset is the “best-track” database which has

been used in all documented research on tropical cyclone track simulation methods. This

dataset is the best track and intensity estimates of tropical cyclones as determined in a post-

storm analysis of all available data. This database is available for all basins (i.e., areas of

tropical cyclone formation). For the North Atlantic basin specifically is documented as the

Hurricane Databases (HURDAT) first reported by Jarvinen et al. (1984). The HURDAT

dataset has been updated throughout the years and is provided by the National Hurricane

Center (NHC) of the National Oceanic and Atmospheric Administration (NOAA). The

range of years covered from the HURDAT dataset and used in this work span from 1951 to

2017.

Nowadays, the information to estimate the “best track” is obtained from multiple sources

such as satellites, ships and buoys, aerial reconnaissance, radio sondes, radar and automated

surface observation systems (ASOS). Historically, however, these data were not accurately

recorded. The reliability of the instruments used to record these data increased significantly
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AL182012  SANDY 45

20121021 1800    LO  14.3N   77.4W 25 1006 0 0 0 0 0 0 0 0 0 0 0 0

20121022 0    LO  13.9N   77.8W 25 1005 0 0 0 0 0 0 0 0 0 0 0 0

20121022 600    LO  13.5N   78.2W 25 1003 0 0 0 0 0 0 0 0 0 0 0 0

20121022 1200    TD  13.1N   78.6W 30 1002 0 0 0 0 0 0 0 0 0 0 0 0

20121022 1800    TS  12.7N   78.7W 35 1000 50 60 0 0 0 0 0 0 0 0 0 0

20121023 0    TS  12.6N   78.4W 40 998 50 60 0 0 0 0 0 0 0 0 0 0

20121023 600    TS  12.9N   78.1W 40 998 70 80 0 0 0 0 0 0 0 0 0 0

20121023 1200    TS  13.4N   77.9W 40 995 100 100 0 0 0 0 0 0 0 0 0 0

20121023 1800    TS  14.0N   77.6W 45 993 100 120 0 0 0 0 0 0 0 0 0 0

20121024 0    TS  14.7N   77.3W 55 990 100 150 40 40 0 70 0 0 0 0 0 0

20121024 600    TS  15.6N   77.1W 60 987 100 150 50 50 50 70 20 20 0 0 0 0

20121024 1200    HU  16.6N   76.9W 65 981 120 160 70 70 50 60 40 30 20 20 0 0

20121024 1800    HU  17.7N   76.7W 75 972 150 180 70 70 50 60 40 40 25 30 20 25

20121024 1900  L  HU  17.9N   76.6W 75 971 150 180 70 70 50 60 40 40 25 30 20 25

20121025 0    HU  18.9N   76.4W 85 964 180 240 70 70 50 60 40 40 30 30 25 25

20121025 525  L  HU  20.0N   76.0W 100 954 240 240 70 120 50 60 40 40 30 30 25 25

20121025 600    HU  20.1N   76.0W 100 954 240 240 70 120 50 60 40 40 25 20 20 20

20121025 900  T  HU  20.9N   75.7W 95 960 240 240 70 180 50 60 40 40 25 20 20 20

20121025 1200    HU  21.7N   75.5W 95 966 240 240 70 240 60 60 40 50 30 30 20 20

20121025 1800    HU  23.3N   75.3W 90 963 270 270 120 270 60 60 40 50 30 30 20 20

20121026 0    HU  24.8N   75.9W 75 965 300 300 160 270 70 60 40 60 30 30 20 30

20121026 600    HU  25.7N   76.4W 70 968 300 300 160 240 90 70 50 70 30 20 0 60

20121026 1200    HU  26.4N   76.9W 65 970 360 240 170 240 90 80 90 120 0 0 0 90

20121026 1800    HU  27.0N   77.2W 65 971 400 210 170 240 60 70 90 140 0 0 0 90

20121027 0    TS  27.5N   77.1W 60 969 450 210 180 270 0 0 120 160 0 0 0 0

20121027 600    TS  28.1N   76.9W 60 968 450 260 180 280 0 0 120 160 0 0 0 0

20121027 1200    HU  28.8N   76.5W 70 956 450 300 210 280 30 120 160 200 0 0 120 120

20121027 1800    HU  29.7N   75.6W 70 960 450 300 240 280 30 150 180 200 0 0 150 180

20121028 0    HU  30.5N   74.7W 65 960 480 300 300 280 30 180 180 210 0 0 150 180

20121028 600    HU  31.3N   73.9W 65 959 450 300 300 270 0 180 180 210 0 0 150 180

20121028 1200    HU  32.0N   73.0W 65 954 450 300 300 270 0 150 200 210 0 0 150 180

20121028 1800    HU  32.8N   72.0W 65 952 450 300 350 270 0 150 200 210 0 0 150 180

20121029 0    HU  33.9N   71.0W 70 950 450 300 400 270 150 150 200 200 0 0 150 0

20121029 600    HU  35.3N   70.5W 80 947 420 360 450 270 150 150 200 180 0 0 150 0

20121029 1200    HU  36.9N   71.0W 85 945 420 420 400 270 200 150 200 180 0 70 120 0

20121029 1800    HU  38.3N   73.2W 80 940 420 420 400 420 220 150 200 150 180 80 120 0

20121029 2100  S  EX  38.8N   74.0W 75 943 420 420 400 420 220 150 200 150 180 80 120 0

20121029 2330  L  EX  39.4N   74.4W 70 945 460 370 400 490 180 150 80 50 70 80 60 0

20121030 0    EX  39.5N   74.5W 70 946 460 370 400 490 150 150 80 50 65 0 0 0

20121030 600    EX  39.9N   76.2W 55 960 450 400 160 530 150 150 30 30 0 0 0 0

20121030 1200    EX  40.1N   77.8W 50 978 450 490 0 500 0 0 0 260 0 0 0 0

20121030 1800    EX  40.4N   78.9W 40 986 0 530 0 430 0 0 0 0 0 0 0 0

20121031 0    EX  40.7N   79.8W 35 992 0 0 0 410 0 0 0 0 0 0 0 0

20121031 600    EX  41.1N   80.3W 35 993 0 0 0 380 0 0 0 0 0 0 0 0

20121031 1200    EX  41.5N   80.7W 30 995 0 0 0 0 0 0 0 0 0 0 0 0

AL basin – Atlantic

18 cyclone number 

for that year

2012 year

SANDY Name, if available, or else 

“UNNAMED”
45 Number of best track entries, 

rows to follow

Year, month 

and day

Hours in UTC

Status of system, TS: tropical cyclone

Latitude

Longitude

Record identifier, L: landfall

Maximum sustained wind (knot)

Minimum pressure (mb)

34kt wind radii max extent in NE, 

SE, SW, NW quadrants

50kt wind radii max extent in NE, 

SE, SW, NW quadrants

64kt wind radii max extent in NE, 

SE, SW, NW quadrants

Figure 5.1: HURDAT2 format for hurricane SANDY from 2012.

during last few decades.

Prior the development of satellites during the 1960s, the data relied heavily on recon-

naissance aircraft flying into hurricanes. The first flights collecting valuable data started

in 1943 and flying routinely in a annual basis. However, reliable pressure measurements

were obtained from planes after the 1940s and it was not until the 1990s when the aircraft

reconnaissance would measure directly the winds in a hurricane. The first weather radar

network to survey the coastline of the U.S. was established in 1957 by the U.S. Weather

Bureau, which is known today as the National Weather Service (NWS) and in the 1990s
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the radar network adopted Doppler technology.

Given the technologies reviewed thusfar—which are mostly land-based—one can ex-

pect the genesis location of a hurricane to be inaccurate until the introduction of weather

satellites in 1960. The first satellite was named TIROS and was launched by NASA in

1960. Soon after, more satellites with a variety of measurement instruments were intro-

duced. Then, in the 2000s microwave imagery greatly improved diagnoses of tropical

cyclone strength, intensity, and track location.

The last available revision of the Atlantic hurricane database (HURDAT2) provided by

the National Hurricane Center (NHC) is used in this chapter (NHC, 2014). The format

of the HURDAT2 data is give in Figure 5.1 through an example of hurricane Sandy from

2012.

5.2.2 Tropical cyclone track simulation

The algorithm developed in this chapter for the tropical cyclone track simulation is based

on the work presented by Emanuel et al. (2006). In Emanuel et al. (2006) the authors de-

veloped a methodology in which the track’s simulation is broken down to three phases: the

genesis phase, the transition or track propagation phase and the dissipation phase. For all

three phases the authors used the 6-h time step increments of the HURDAT database. They

proposed to model the track as a Markov Chain after realizing that the correlation length

of the temporal autocorrelation spectra of key motion characteristics of the track such as

the heading angle and the translation speed is relatively small. This means that the three

6-h time step priors accurately condition the transition probabilities. Similar to Emanuel

et al. (2006) Markov Chain-based methodology, the Markov Chain approach is likewise

used in this chapter; however, there are notable differences, which will be discussed in de-

tail in the subsequent paragraphs. This chapter also includes details on implementation and
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simulation—details which are omitted in the work published by Emanuel et al. (2006)—

thus enhancing this methodology’s applicability.

5.2.2.1 Genesis model

The genesis model implemented in this work is a combination of the models proposed

by Vickery et al. (2000a) and Emanuel et al. (2006). Emanuel et al. (2006) proposed to

construct a three dimensional probability density function of the genesis location and time

developed from three-dimensional Gaussian kernel. The smoothing kernel is isotropic with

varying scale for the geographic axes and a varying time range (between 5 and 15 days)

for the time axis; however, no specific information was provided on the time or space

discretization. Vickery et al. (2000a) on the contrary sampled initiation location, date,

time, initiation translation speed and heading angle directly from the HURDAT database

in an effort to maintain the climatology and the seasonal preference associated with the

genesis location.

For the track genesis model developed in this chapter, the post-1970 HURDAT data

were utilized to construct a two dimensional PDF from which the new locations are sampled

from. The information on the date, time, initiation speed and angle is also adopted from

the post-1970 database and specifically from the event that is geographically closest to the

simulated genesis location.

The hurricane genesis locations are assumed to occur over water and not over land on

the Americas. Therefore, land-based genesis locations are excluded from the subsequent

steps. The most recent available data identifies 11 out of 782 hurricane events in the Amer-

icas with a land-based genesis location. Having filtered out these data points, the remaining

data points are partitioned into square bins of 0.5◦× 0.5◦ which mesh the Atlantic basin,

Caribbean Sea and the Gulf of Mexico (Figure 5.2). The selected region to scan for data is
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[5N : 55N] in latitude and [-110W : 0W] in longitude. Next, an isotropic Gaussian kernel

 100°W 
  75°W   50°W 

  25°W 

   0
°  

  10°N 

  20°N 

  30°N 

  40°N 

  50°N 

Figure 5.2: Spatial probability distribution of annual genesis locations produced from the

post-1970 hurricane data when binned in a 0.5◦×0.5◦ grid.

with standard deviation of 1◦ is applied to the binned data. The value of 1◦ is found to

reproduce reasonable results given the amount of data and a kernel with fixed standard de-

viation. Any overland region which has a nonzero weight is filtered out and the distribution

function is renormalized to produce a volume equal to 1. The resulting annual genesis PDF

is depicted in Figure 5.3. This approach is considered as a middle-ground approach for

the genesis model compared to what was proposed by Vickery et al. (2000a) and Emanuel

et al. (2006). The former suggested to sample directly form the historical genesis locations

and the latter form a distribution resulting from smoothing with variable but higher (and

unknown) than 1◦ standard deviation at the regions with little activity.
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Figure 5.3: Spatial probability distribution of annual genesis locations produced from the

post-1970 hurricane data and a two-dimensional isotropic Kernel with σ = 1.

For the simulation of the genesis locations, a modified version of the inverse cumulative

distribution function (CDF) transform method is implemented. We assume that X is a

discrete random variable such that P(X = xi) = pi and ∑
N
j=1 P(X = x j) = ∑

N
j=1 p j = 1.

Variable X represents the geographic bin where the hurricane genesis occurs. Here it is

assumed the the exact location of the hurricane genesis in a 0.5◦× 0.5◦ geographic bin is

uniformly distributed. To sample a genesis location, a sample for X must be generated first

as the following steps indicate:

• construct discrete CDF from the joint discrete genesis PDF by scanning the bins row-

wise. Each bin is assigned an index k and the bin’s weight is added to the CDF under

construction
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• generate U ∼ Unif(0,1)

• determine the index k such that ∑
k−1
j=1 p j ≤U < ∑

k
j=1 p j

• generate Udlon ∼ Unif(0,1) ·0.5◦ and Udlat ∼ Unif(0,1) ·0.5◦

• Add Udlon and Udlat to the origin (SE edge) of bin k

After the track’s genesis location is defined, the initialization speed and heading angle

are sampled. These parameters are sampled from corresponding initiation PDFs which are

constructed for each cell of a 2◦× 2◦ geographic grid. For their construction, the first 6-h

increments of all post-1970 storm records are utilized. The raw data do not yield robust

PDFs for most of the geographic cells and therefore subsequent smoothing operations are

performed–one spatial smoothing and one along the variable’s range. The spatial smooth-

ing uses data from neighboring geographic cells, by inversely weighting the cells with

distance. The data in a neighbor cell are all taking the same weight which is determined

based on a two-dimensional isotropic Gaussian function that is centered on the centroid of

the cell that the genesis location belongs in. Histogram smoothing is performed in much

the same way after spatial smoothing occurs. More details on the implementation of the

two smoothing operations are presented in the following section.

The discretization bin of the initialization speed variable and initialization heading an-

gle variable is 20 km/6h and 10 ◦, respectively, and, they are fixed for all geographic cells.

For the spatial smoothing, the data included in 25 geographic cells (5 cells in each di-

rection) are considered and each cell is weighted based on an isotropic two-dimensional

Gaussian function with standard deviation equal to 4◦. To smooth the histogram of the

speed variable, the data included in a window of 7 bins are considered and each bin is

weighted based on a unidimensional Gaussian function with standard deviation equal to

20 km/6h. Similarly, to smooth the histogram of the heading angle, the data included in

a window of 7 bins are considered and each bin is weighted based on a unidimensional
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Gaussian function with standard deviation equal to 10 ◦. Figure 5.4 displays the smoothed

PMFs of initialization translation speed and heading angle for geographic cell with [11N :

13N] latitude and [-52W : -50W] longitude.

To simulate from the empirical PMFs, the inverse CDF transformed method is utilized.

One uniform random number is drawn to sample the bin of the empirical PMF, and a second

independent uniform (within the range of values of the selected bin) random number is

drawn to simulate the actual value. The information of the Coordinated Universal Time

(UTC), day and month are adopted from the historical record which genesis point is the

closest to the simulated genesis point. In the HURDAT2 database; however, it so happens

that more than one storms initiate from the same genesis location. In that case a randomly

selected record among those which initiate from the same genesis location is selected to

adopt information on time.

5.2.2.2 Propagation model

The track propagation model proposed herein is based on the Markov Chain Theory. At

each geographic location, the track transitions from one state to the next based on a tran-

sition probability. This probability is expressed as P(Xi|Xi−1) in its general form, and the

outcomes sampled from it determine how the track moves to its next location. The term X is

the state variable of the Markov Chain and the index i refers to the i-th 6-hourly increment.

The term Xi to the left of the conditional probability is referred to as the predictand ran-

dom variable and predictor random variable is the term to the right Xi−1. The transitional

probability considered herein is defined as:

P
(
~̇vi|~pi,~vi−1

)
(5.1)
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Figure 5.4: Probability mass functions of the initialization translation speed s0 (left column)

and initialization heading angle (right column) for the square geographic cell with centroid

coordinates [12N, -51W] and side length equal to 1◦. The top row displays the raw data,

the middle row displays the spatially smoothed data and the last row shows the final PMFs

used in the simulation.

where ~̇vi and ~pi are the random variables of the acceleration vector and position vector

respectively at the i-th 6-hourly increment and~vi−1 is the random variable speed vector at

the (i−1)-th 6-hourly increment. These vectors are defined as follows:

~p = (lon, lat) (5.2)

136



where lon and lat are random variables of the longitude and latitude respectively,

~v = (s,θ) (5.3)

where s and θ are the random variables of the translation speed and heading angle respec-

tively,

~̇v =
d~v

dt
= (ṡ, θ̇) (5.4)

where ṡ and θ̇ are the random variables of the translation speed rate of change (or trans-

lation acceleration) and the heading angle rate of change respectively. When these vectors

are used with a subscript, this refers to the time step of the track’s time history.

Vector ~v is expressed in polar coordinate system and each point on a “plane” is deter-

mined by a distance from a reference location and an angle from a reference direction. For

any 6-hourly increment i, the reference location is the current geographic position of the

track and the reference direction is always a vector facing North. Herein, the “plane” is

the surface of the earth and the distance is the great-cycle distance, which by definition is

the shortest distance between two points on the surface of a sphere. One can conclude that

for equally spaced in time track’s translation increments, the velocity magnitude is equiv-

alent to the great-cycle measurement between two locations (‖~v‖ = s). Additionally, it is

assumed that the track always follows great-cycle paths when moving between consecutive

6-hourly increments.

Replacing the vectors with their components, the probability expressed in (5.1) can be

written as:

P
(
ṡi, θ̇i|loni, lati,si−1,θi−1

)
(5.5)

This density function is a 6-dimensional PDF, which is not easily quantified. To address its

quantification, one should consider the following assumptions:
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assump. 1: independence between the rate of change of the translation velocity and the rate of

change of the heading angle, that is ṡi⊥θ̇i

assump. 2: independence between the rate of change of the translation velocity and the prior

heading angle, that is ṡi⊥θi−1

assump. 3: independence between the rate of change of the heading angle and the prior transla-

tion velocity, that is θ̇i⊥si−1

which permit the computation of the transition probability P
(
ṡi, θ̇i|loni, lati,si−1,θi−1

)
as

follows:

P
(
ṡi, θ̇i|loni, lati,si−1,θi−1

) ass.1
= P(ṡi|loni, lati,si−1,θi−1) ·P

(
θ̇i|loni, lati,si−1,θi−1

)

ass.2
= P(ṡi|loni, lati,si−1) ·P

(
θ̇i|loni, lati,si−1,θi−1

)

ass.3
= P(ṡi|loni, lati,si−1) ·P

(
θ̇i|loni, lati,θi−1

)

(5.6)

Therefore, when a track is located in a geographic cell, it transitions based on the cell’s

transitional probabilities P(ṡi|si−1) and P(θ̇i|θi−1). The authors in Emanuel et al. (2006)

selected the change rates of the translation speed and heading angle as predictands in order

to take advantage of a coarse spatial resolution representation of the transitional probabil-

ities while capturing the smoothness of the track. In Emanuel et al. (2006) the authors

pointed out that plotting pairs of historical data of the current speed (si) versus the previous

states of translation speed (si−1) results in a nearly linear relationship. In other words, the

translation speed varies slowly with time. This makes the rate-based representation bene-

ficial because it makes the transition probability densities insensitive to resolution. Similar

conclusions can be drawn for heading angle θ .

Computationally, the translation speed variables, heading angles and their rate of change
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are defined by:

• translation speed si = dist(pi, pi+1) in [rad/6h]

• heading angle θi = direc(pi, pi+1) in [rad]

• speed rate of change ṡi = si − si−1 in [rad/6h/6h]

• angle rate of change θ̇i = θi −θi−1 in [ran/6h]

where “dist” is the great cycle distance between two location pi(= (lati, loni)) and pi+1,

“direc” is the angle between the track’s velocity vector ~vi at position i, (that is the “great

circle” vector connecting pi and pi+1) and a vector pointing North. Angles θ are clock-

wise positive and their range is [−180◦,+180◦]. The great cycle distance is determined in

𝑥𝑖+1, 𝑦𝑖+1
N

N N

𝜃𝜄−1𝜃𝜄  𝑣𝑖−1 = 𝑠𝑖−1, 𝜃𝑖−1
 𝑣𝑖 = 𝑠𝑖 , 𝜃𝑖

𝑥𝑖−1, 𝑦𝑖−1𝑥𝑖 , 𝑦𝑖

  𝑠𝑖 =  𝑠𝑖 ,  𝜃𝑖

𝑠𝑖−1 𝜃𝑖

N

0 0
+180−180

𝑠𝑖−1 × 6 hrs

 𝜃𝑖 = 𝜃𝜄 − 𝜃𝜄−1
𝜃 ∈ −180°, 180°

Figure 5.5: A tropical cyclone track crossing three geographical locations in two 6-hourly

increments. The blue arrows along the track represent the velocity vectors.
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radians by using the haversine formula:

∆σ = 2arctan

√

sin2

(
∆lat

2

)

+ cos(lat1)cos(lat2)sin2

(
∆lon

2

)

(5.7)

where ∆σ is the angular distance, ∆lon and ∆lat are the differences in longitude and latitude,

respectively, between two geographic locations. The radial distance can be converted to

kilometers by multiplied with the earth radius which is assumed herein to be 6,371 km.

Figure 5.5 shows the path of a tropical cyclone’s track moving through three geograph-

ical locations in two 6-hourly increments. The corresponding vectors and time parameter

indexes of the measurements are displayed. The tranlsation velocity vectors have units of

[distance/6h] and the vectors of velocity rate of change have units of [distance/6h/6h].

The values of the translation speed, heading angle and their rate of change are calculated

for each tropical cyclone record of the HURDAT database. Figure 5.6 shows corresponding

values for each of the 6-hourly increments of Hurricane Sandy from 2012.

The historical data need to be “cleaned” before computing the aforementioned quanti-

ties in each track and populate the conditional probabilities. Several data cleaning opera-

tions require attention:

• Removal of records with less than three data points from the database. Computations

of the speed and direction rate of change require three data points at minimum. In

this step 32 records were excluded from the analysis. It should be noted that 31 of

the 32 excluded records were recorded prior to 1970.

• Removal of records which do not yield hurricane movement. Three historical storms

were found to have multiple static geographic location records and thus excluded

from the analysis. These records were also measured prior to 1970.
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20121021 1800  14.3N   77.4W 0.00973 N/A -2.37063 N/A

20121022 0  13.9N   77.8W 0.00973 8.16E-06 -2.36979 0.00084

20121022 600  13.5N   78.2W 0.00974 7.93E-06 -2.36898 0.00081

20121022 1200  13.1N   78.6W 0.00719 -0.00256 -2.90237 -0.53339

20121022 1800  12.7N   78.7W 0.00540 -0.00179 1.89942 -1.48140

20121023 0  12.6N   78.4W 0.00731 0.00192 0.77234 -1.12708

20121023 600  12.9N   78.1W 0.00937 0.00205 0.37104 -0.40130

20121023 1200  13.4N   77.9W 0.01164 0.00228 0.45159 0.08055

20121023 1800  14.0N   77.6W 0.01323 0.00159 0.39289 -0.05869

20121024 0  14.7N   77.3W 0.01607 0.00284 0.21084 -0.18205

20121024 600  15.6N   77.1W 0.01777 0.00171 0.18936 -0.02148

20121024 1200  16.6N   76.9W 0.01949 0.00171 0.17150 -0.01786

20121024 1800  17.7N   76.7W 0.00387 -0.01562 0.44405 0.27255

20121024 1900  17.9N   76.6W 0.01776 0.01390 0.18700 -0.25705

20121025 0  18.9N   76.4W 0.02030 0.00253 0.32917 0.14217

20121025 525  20.0N   76.0W 0.00175 -0.01855 0.00000 -0.32917

20121025 600  20.1N   76.0W 0.01480 0.01305 0.33688 0.33688

20121025 900  20.9N   75.7W 0.01434 -0.00046 0.22821 -0.10867

20121025 1200  21.7N   75.5W 0.02811 0.01377 0.11431 -0.11390

20121025 1800  23.3N   75.3W 0.02787 -0.00024 -0.34810 -0.46241

20121026 0  24.8N   75.9W 0.01758 -0.01029 -0.46377 -0.11567

20121026 600  25.7N   76.4W 0.01452 -0.00306 -0.56862 -0.10485

20121026 1200  26.4N   76.9W 0.01147 -0.00305 -0.41892 0.14970

20121026 1800  27.0N   77.2W 0.00886 -0.00261 0.17557 0.59449

20121027 0  27.5N   77.1W 0.01092 0.00205 0.28592 0.11036

20121027 600  28.1N   76.9W 0.01367 0.00275 0.46392 0.17800

20121027 1200  28.8N   76.5W 0.02085 0.00717 0.71359 0.24967

20121027 1800  29.7N   75.6W 0.01948 -0.00136 0.76794 0.05435

20121028 0  30.5N   74.7W 0.01840 -0.00109 0.70558 -0.06236

20121028 600  31.3N   73.9W 0.01811 -0.00029 0.82637 0.12079

20121028 1200  32.0N   73.0W 0.02030 0.00219 0.80769 -0.01868

20121028 1800  32.8N   72.0W 0.02411 0.00381 0.64470 -0.16299

20121029 0  33.9N   71.0W 0.02547 0.00136 0.28345 -0.36125

20121029 600  35.3N   70.5W 0.02880 0.00333 -0.24477 -0.52822

20121029 1200  36.9N   71.0W 0.03902 0.01022 -0.88247 -0.63770

20121029 1800  38.3N   73.2W 0.01398 -0.02504 -0.89222 -0.00976

20121029 2100  38.8N   74.0W 0.01179 -0.00219 -0.47524 0.41698

20121029 2330  39.4N   74.4W 0.00221 -0.00959 -0.65699 -0.18175

20121030 0  39.5N   74.5W 0.02387 0.02167 -1.26456 -0.60757

20121030 600  39.9N   76.2W 0.02167 -0.00220 -1.40008 -0.13552

20121030 1200  40.1N   77.8W 0.01556 -0.00611 -1.22141 0.17867

20121030 1800  40.4N   78.9W 0.01303 -0.00253 -1.15229 0.06912

20121031 0  40.7N   79.8W 0.00960 -0.00343 -0.75418 0.39811

20121031 600  41.1N   80.3W 0.00873 -0.00087 -0.64201 0.11217

20121031 1200  41.5N   80.7W N/A N/A N/A N/A

𝒀/𝑴/𝑫 𝑼𝑻𝑪 𝑳𝒂𝒕. 𝑳𝒐𝒏. 𝒔𝒊  𝒔𝒊 𝜽𝒊  𝜽𝒊Sandy Position Transl. Speed Heading Angle

Figure 5.6: Geographic positions of hurricane Sandy in 6-hourly increments extracted from

the HURDAT database and the resulting values of the translation speed si in [rad/6h], head-

ing angle θi in [rad], and their respective rate of change ṡi in [rad/6h/6h], and θ̇i in [rad/6h].

• Removal of starting datapoints from the records until the tropical cyclone develops

speed. There are several records indicating storm initiation; however, the storm de-

velops speed at much later time increments. These datapoints can bias the population

of the transition probabilities of this geographic cell and can also erroneously yield

extreme values of the velocity rate of change and heading angle rate of change. Dur-

ing this cleaning step, 7 records were modified.

• Removal of data from storm records which are not 6-hourly increments. The revised

database, HURDAT2 includes additional data points within the 6-hourly increments
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in some storms when extra information is available—for example, before landfall or

when the storm reaches its maximum intensity. If not removed, these data bias the

conditional probabilities.

In total, 38 records were excluded and the subsequent stochastic models used 1,810 of the

original 1,848 records provided in the HURDAT database.

The conditional transitional probabilities P(ṡi|loni, lati,si−1) and P(θ̇i|loni, lati,θi−1)

constructed in this chapter are kernel smoothed non-parametric distributions of the raw

histograms. These transitional probabilities are 4-dimensional probability densities. For

estimating them computationally, all predictors and predictands need to be discretized into

finite mutually exclusive numerical categories. The Atlantic basin, for example, is dis-

cretized into a grid of 1◦ × 1◦ cells and its resulting mesh is shown in Figure 5.7. Let

Figure 5.7: Discretization of the Atlantic basin, Gulf of Mexico and Caribbean Sea into a

1◦×1◦ grid of cells.

position vector (lonk
i , latk

i ) refer to the track at time step i when located in geographic cell

k. When the transitional probabilities are determined for geographic cell k, these are two-

dimensional densities and are expressed as P
(
ṡi|lonk

i , latk
i ,si−1

)
and P

(
θ̇i|lonk

i , latk
i ,θi−1

)
.
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When the speed of the track at the prior step is assumed to belong in the p-th speed bin

(si−1
p), then the transitional probability is expressed as P

(
ṡi|lonk

i , latk
i ,si−1

p
)

and is a uni-

dimensional probability density function. The probability that the speed rate belongs in

the m-th speed rate bin, (ṡm
i ), when considering this uni-dimensional probability density, is

expressed as P
(
ṡm

i |lonk
i , latk

i ,si−1
p
)

and is a scalar number.

For the development of uni-dimensional probability densities P
(
ṡi|lonk

i , latk
i ,si−1

p
)

and P
(
ṡi|lonk

i , latk
i ,si−1

p
)
, a set of steps is presented next. Comments are given only for

P(ṡi|si−1) and the extension to P(θ̇i|θi−1) is straightforward.

Step 1: Convert units of speed to [rad/6h], speed rate to [rad/6h/6h], heading angle to [rad]

and heading angle rate to [rad/6h] and parse the pre-processed data to an easy-to-

process data array. Each row of this array refers to one data point and includes the

following information:

lati loni si−1 ṡi θi−1 θ̇i

At this stage there are approximately 4.6 ·104 data points.

Step 2: Distribute all data points to the 1◦×1◦ geographic cells.

Step 3: The data points in each geographic cell are distributed to the preselected speed bins

and the data in each speed bin are subsequently distributed to the preselected speed

rate bins. The resolution of the speed bins and speed rate bins is [40km/6h] and

[8km/6h/6h] respectively. Similarly, the same data are used to populate the prese-

lected heading angle bins and heading angle rate of change bins. Their bin resolu-

tion is [20◦] and [3◦/6h] respectively. The speed range is considered to span 0-700

[km/6h] and the range of the heading angle spans [-180◦ – 180◦]. The range of the

speed rate of change and heading angle rate of change are kept variable to keep the

array size requirements as low possible. For the considered resolutions, there are
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110×50× (700/40)≈ 1 ·105 speed rate histograms that need to be populated. Sim-

ilarly, there are 110× 50× (360/20) ≈ 1 · 105 histograms of the heading angle rate

of change that need to be populated.

Step 4: In order to populate the histograms described in the previous step with the avail-

able amount of data, two types of smoothing operations are employed: 1) a spatial

smoothing over the geographic region and 2) a smoothing of the empirical distribu-

tion of the variable at hand. The spatial smoothing is applied first and the datapoints

in each geographic cells are updated by considering the data points from its neigh-

bor cells with some weight. Let the main geographic cell named master cell and

the neighbor cells named slave cells. The weights assigned to each cell, including

the master and all slaves cells, is determined from the volume prescribed by a two-

dimensional isotropic Gaussian distribution centered at the master cell’s centroid.

The characteristics of the two-dimensional isotropic Gaussian kernel can vary based

on the number of data included under the kernel. However, in this chapter a fixed

case of the two-dimensional isotropic Gaussian distribution N(µ2D,Σ2D) is consid-

ered which spans 4◦ towards each direction from the master cell and thus covers 80

slave cells and 1 master cell.

The distribution parameters are:

µ2D =






¯lon

¯lat




 , Σ2D =






σ2
lon 0

0 σ2
lat






The weight of each slave geographic cell is determined as follows:

wcell =
1

2πσlonσlat

∫ lonEast

lonWest

∫ latNorth

latSouth

·

exp

(

−1

2

[(
lon− ¯lon

)2

σ2
lon

+

(
lat − ¯lat

)2

σ2
lat

])

dlat dlon

(5.8)
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where lonWest, lonEast, latSouth and latNorth are the geographic boundaries of cell (k, l),

where k and l are the relative indices along the longitude and latitude respectively,

parameters ¯lat and ¯lon are the latitude and longitude coordinates of the master’s

cell centroid. The values of the standard deviations considered herein are σlat = 2◦

and σlon = 2◦. Figure 5.8 displays the weight of each cell when the described 2D

Gaussian distribution is considered.

W
ei

g
h
t

Figure 5.8: Weights assigned to each cell during the spatial smoothing resulting form a

two-dimensional Gaussian kernel.

After the spatial smoothing of a geographic cell is performed, the speed rate of

change conditional to a prior speed bin is a relative distribution which can be smoothed

even further. A uni-dimensional Gaussian kernel is applied to each of the speed rate

bins. When the kernel is centered at a bin (master), this bin’s information is updated

using the information from the neighbor bins with some weight. The weight of each

bin is determined from the area under the Gaussian kernel N(µ1D,σ1D), which is

computed as follows:

wbin =
1

2πσ1D

∫ binUpperBoundary

binLowerBoundary

exp

(

−(x−µ1D)
2

2σ2
1D

)

dx (5.9)

where binLowerBoundary and binU pperBoundary are the lowest and highest values respec-
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tively of the bin’s range, and parameter µ1D is the master’s bin centroid. The char-

acteristics of the uni-dimensional Gaussian kernel can vary; however, in this chapter

the parameters are fixed and the kernel covers 3 slave bins to the left and right of

the master bin. When the kernel is used to smooth the values of the speed rate of

change, a standard deviation σ1D = 8 [km/6h] is used, whereas, when it is used to

smooth the values of the heading angle rate of change, a standard deviation σ1D = 3◦

is considered. Figures 5.9 and 5.10 display the weight of the bins when a Gaussian

kernel is used for the speed rate bins and the heading angle rate bins respectively.
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Figure 5.9: Weights assigned to each bin of the heading angle rate of change resulting from

a uni-dimensional Gaussian kernel.

Summarizing the steps mentioned above, the probability of a speed rate belong in speed

rate bin m while the track is located in geographic cell (k̄, l̄) with a speed at its prior step

which belongs in speed bin p is determined by:

P(ṡm|lonk̄, lat l̄,sp) =

=
∑

p=p̄+3
p=p̄−3 wbin

p ·
[

∑
l=l̄+4
l=l̄−4

∑
k=k̄+4
k=k̄−4

wcell
k,lH(ṡm, lonk, lat l,sp)

]

∑m

(

∑
p=p̄+3
p=p̄−3 wbin

p ·
[

∑
l=l̄+4
l=l̄−4

∑
k=k̄+4
k=k̄−4

wcell
k,lH(ṡm, lonk, lat l,sp)

])

(5.10)

where H(ṡm, lonk, lat l,sp) is the number of data points falling in the geographic cell (k.l),
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Figure 5.10: Weights assigned to each bin of the heading angle rate of change resulting

from a uni-dimensional Gaussian kernel.

with speed at the prior step which falls in bin p and speed rate that belongs in speed rate

bin m.

To propagate the track from one location to the next, the speed and heading angle are

required. For a given location of the track, prior speed and heading angle, the track is

propagating by first sampling probabilities P(ṡi|loni, lati,si−1) and P(θ̇i|loni, lati,θi−1) to

set the speed rate of change bin and angle rate of change bin, respectively. After the bins

are sampled, a random number is drawn in each case from a uniform distribution with its

range defined from the bin’s edges. The speed and heading angle are calculated by using

the sampled speed rate of change and heading angle rate of change, given by:

si = si−1 + ṡi · (6h)

θi = θi−1 + θ̇i · (6h)

(5.11)

Recalling that when the speed increments are equally spaced in time, they are synonymous

with measurements of displacement. Therefore, Equation (5.11) sets the distance and head-
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ing angle for the subsequent position, which is determined by:

lati+1 = asin [sin(lati) · cos(δ )+ cos(lati) · sin(δ ) · (θi)]

loni+1 = loni + atan2 [sin(θi) · sin(δ ) · cos(lati),cos(δ )− sin(lati) · sin(lati)]

(5.12)

where (lati, loni) are the latitude and longitude of the current location, δ is the angular

distance covered to reach forward location i+1 and is defined as δ = si/R where R is the

earth’s radius equal to 6,371 km.

5.2.2.3 Termination model

The track is terminated based on two criteria: One, the point at which the track crosses the

geographic termination boundary, and two, when the track’s maximum intensity becomes

lower than a predefined threshold. The predefined threshold is expressed here in terms of

central pressure and is set to mb greater than 1,012. The termination boundary is a free-

form of the area with intense hurricane activity. Termination occurs following the steps

below:

Step 1: Collection of tropical cyclone activity data for a 2◦× 2◦ grid mesh of the Atlantic

basin

Step 2: Application of a two-dimensional Gaussian isotropic kernel with standard deviation

equal to ◦

Step 3: Linear interpolation of the smoothed activity to obtain a 0.5◦×0.5◦ resolution mesh

Step 4: Retainment of bins with smoothed activity exceeding the value of 12.5

The resulting termination boundary is displayed in Figure 5.11. The second termination

criterion—the track’s maximum intensity crossing a predefined threshold—is applied after
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Figure 5.11: Termination boundary of the tropical cyclone activity.

the track and its intensity have been generated. For the track’s intensity, please refer to

Section 5.3.1. In addition to the two termination criteria described above, the track can also

be terminated when it requires conditional PDFs that are unavailable for a given position

and value of the prior speed and/or heading angle. To avoid such a scenario, Emanuel

et al. (2006) proposed a sampling scheduler in which the geographic cell size increases

gradually, first from 0.5◦ × 0.5◦ to 5◦ × 5◦, then from three mutually exclusive latitude

belts, and finally to a single global bin. In this framework, when the track fails to propagate

due to lack of data, a second level of conditional distribution is utilized which changes

only the parameters of the two-dimensional Gaussian kernel while keeping everything else

fixed. In this case, the two-dimensional isotropic Gaussian kernel spans 8◦ towards each

direction with standard deviation σlat = 4◦ and σlon = 4◦. If the track continues to fail when
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the wider spatial window is used, then the analysis terminates and the track is sampled from

the beginning.

5.2.2.4 Test of independence

This section evaluates the assumptions of independence presented in Equation (5.6) by uti-

lizing a chi-square test of independence. The three independence assumptions introduced

in Equation (5.6) are tested. In all of them, the population used for analysis is the collection

of data enclosed in a geographic cell. Two types of spatial discretizations are used–one with

a fine mesh and one with a coarser mesh. The study region in Figure 5.12 is discretized into

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 5.12: Discretization of the Atlantic basin, Gulf of Mexico and Caribbean Sea into

a 5◦× 5◦ grid of cells. The cells which are subjected to the χ2 test of independence are

enclosed into the magenta polygon and are enumerated in green color.

5◦×5◦ grid cells and the investigated cells are included in the purple polygon with corre-

sponding green reference numbers. Similarly, in Figure 5.13 the study region is discretized

into a grid of 10◦× 20◦ cells and the cells being examined are in green. The 5◦× 5◦ dis-

cretization is selected because this is the size of the cells used to calibrate the transitional

probabilities. However, because of the limited number of data points in many cells of the
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Figure 5.13: Discretization of the Atlantic basin, Gulf of Mexico and Caribbean Sea into

a 10◦×20◦ grid of cells. The cells which are subjected to the χ2 test of independence are

enclosed into the magenta polygon and are enumerated in green color.

refined mesh, a more coarse discretization is examined as well. In this case only the data

from post-1970 tropical cyclone records are used. The two hypotheses—common in all

tests—are:

H0 : The investigated variables are independent

H1 : The investigated variables are not independent

The chi-square test statistic and its p-value are computed under the assumption that H0 is

true —that is that the variables are independent.

Assumption 1 is investigated for 57 of the 5◦×5◦ size cells and the results are depicted

in Figure 5.14. Out of the 57 cells, 23 result in a p-value which exceeds 0.005 and only 14

of them exceed 0.05. The null hypothesis is rejected in all 6 coarse-mesh cells. The results

of the χ2 test for assumption 2 are depicted in Figure 5.15. In this case, 43 cells result

in a p-value which exceeds 0.005 and 40 of them exceed 0.05. For the case of 10◦× 20◦
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Cell chi2 statistic p -value dof ndata

34 383.3310442 3.06E-14 196 328

35 284.380 3.74E-05 196 382

36 399.347 5.20E-16 196 389

37 405.154 1.14E-16 196 411

38 350.500 7.68E-11 196 364

39 232.687 6.61E-03 182 354

40 316.507 1.07E-07 196 225

50 378.072 1.13E-13 196 1110

51 274.686 1.77E-04 196 642

52 279.695 8.02E-05 196 485

53 331.122 5.35E-09 196 545

54 361.818 5.63E-12 196 783

55 442.081 4.81E-21 196 632

56 446.488 1.38E-21 196 568

57 366.670 1.79E-12 196 544

58 259.790 0.000135007 182 433

59 318.363 7.36E-08 196 327

60 321.985 3.55E-08 196 272

61 227.592 1.22E-02 182 176

62 248.681 6.41E-05 169 136

69 286.748 2.52E-05 196 585

70 305.920 8.24E-07 196 876

71 327.792 1.07E-08 196 955

72 293.527 7.85E-06 196 964

73 259.477 1.61E-03 196 651

74 251.596 4.50E-03 196 808

75 354.563 3.04E-11 196 752

76 351.269 6.45E-11 196 636

77 249.115 6.11E-03 196 489

78 230.617 4.57E-02 196 395

91 248.821 0.006333529 196 590

92 297.690 3.75E-06 196 1118

93 267.000 5.59E-04 196 1115

94 242.428 0.013384346 196 1151

95 285.594 3.05E-05 196 1145

96 294.208 6.96E-06 196 881

97 231.708 0.041144074 196 922

98 224.928 0.076634012 196 684

99 289.166 1.67E-05 196 443

114 190.314 6.01E-01 196 328

115 240.765 1.61E-02 196 600

116 226.597 0.066181809 196 658

117 284.709 3.54E-05 196 1340

118 294.642 6.45E-06 196 1073

119 208.923 0.250670016 196 746

120 212.305 0.201798797 196 612

121 206.240 0.293918744 196 502

138 183.019 0.464844137 182 105

139 201.117 0.385969434 196 389

140 224.539 0.079243799 196 742

141 242.710 1.30E-02 196 694

142 187.808 0.650212664 196 556

143 226.132 0.068969526 196 433

162 305.910 2.44E-08 182 190

163 174.620 0.861669153 196 279

164 217.872 0.135781068 196 364

165 188.665 0.633608097 196 310

Assumption 1 - Grid ( 5 x 5 ) 

Figure 5.14: Chi-square test of independence of assumption 1 for the 5◦×5◦ grid.

cells, 5 out of 6 cells exceed 0.005 and 4 of them exceed 0.05. Lastly, for assumption

3, and in the case of the fine mesh 37 out of 57 cells result in a p-value which exceeds

0.005 and 33 of them exceed 0.05. These results conclude that assumption 1 is quite strong

as the outcome for most of the cells reject the null hypothesis of independency between

the rate of change of the translation speed and the rate of change of the heading angle.

Assumptions 2 and 3 are more reasonable because most of the investigated cells do not

reject the null hypothesis of independence at the 0.05 level of significance. In other words,

assuming that the speed rate of change being independent of the prior heading angle and

the rate of change of the heading angle being independent of the prior translating speed are
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Cell chi2 statistic p -value dof #of_datapoints

34 82.216 0.9511 105 328

35 495.329 0.0000 147 382

36 319.072 0.0000 119 389

37 80.296 0.9651 105 411

38 119.129 0.9831 154 364

39 196.842 0.0112 154 354

40 223.017 0.0000 114 225

50 530.343 0.1187 493 1110

51 559.665 0.0000 416 642

52 474.511 0.6839 490 485

53 327.486 0.0460 286 545

54 313.903 1.0000 480 783

55 272.067 0.1958 253 632

56 638.797 0.0000 200 568

57 369.974 0.0000 266 544

58 180.205 0.1556 162 433

59 481.835 0.0000 161 327

60 124.476 1.0000 209 272

61 123.239 0.9973 170 176

62 132.312 0.3325 126 136

69 371.936 1.0000 512 585

70 576.630 0.0000 442 876

71 463.267 0.9318 510 955

72 553.159 0.3835 544 964

73 396.534 0.9905 465 651

74 395.256 0.9652 448 808

75 730.586 0.0000 390 752

76 249.595 0.9411 286 636

77 591.506 0.0000 320 489

78 570.489 0.0000 322 395

91 727.168 0.0002 595 590

92 597.438 0.9675 663 1118

93 567.749 0.9478 624 1115

94 772.938 1.0000 952 1151

95 637.453 0.2307 612 1145

96 584.591 0.0122 510 881

97 657.446 0.0001 527 922

98 612.483 0.0000 448 684

99 299.240 0.9809 352 443

114 337.576 0.6023 345 328

115 508.449 0.9999 630 600

116 575.229 1.0000 752 658

117 689.340 1.0000 901 1340

118 566.732 0.6232 578 1073

119 457.959 0.9523 510 746

120 688.234 0.0506 629 612

121 429.976 0.9957 510 502

138 213.137 0.9848 260 105

139 600.292 1.0000 765 389

140 640.318 0.9774 714 742

141 389.632 1.0000 629 694

142 415.415 1.0000 612 556

143 474.810 0.9994 578 433

162 265.286 1.0000 440 190

163 460.137 0.2447 440 279

164 488.099 0.3892 480 364

165 422.897 0.9908 494 310

Assumption 2 - Grid ( 5 x 5 )

Figure 5.15: Chi-square test of independence of assumption 2 for the 5◦×5◦ grid

acceptable approximations. Therefore, some deviations of the model from the historical

data are expected to occur due to these simplifications.

153



Cell chi2 statistic p -value dof #of_datapoints

34 291.722 1.31E-09 161 328

35 444.549 1.17E-31 147 382

36 326.112 6.91E-17 140 389

37 133.731 0.776147 147 411

38 94.304 0.910414 114 364

39 131.097 0.000989 85 354

40 445.125 1.75E-33 140 225

50 344.403 4.69E-01 343 1110

51 329.320 3.48E-01 320 642

52 256.616 0.220103 240 485

53 281.933 5.59E-05 196 545

54 320.240 6.34E-06 217 783

55 351.505 6.99E-12 189 632

56 396.259 1.05E-11 224 568

57 462.054 5.45E-13 264 544

58 325.749 3.62E-11 175 433

59 150.355 0.000847 100 327

60 205.675 1.10E-01 182 272

61 163.475 0.004292 119 176

62 74.162 0.944046 95 136

69 230.703 0.860442 255 585

70 348.262 9.15E-04 270 876

71 417.582 3.10E-05 308 955

72 308.647 0.855274 336 964

73 253.228 0.466408 252 651

74 254.793 9.52E-01 294 808

75 305.636 5.07E-03 245 752

76 228.646 0.179699 210 636

77 205.369 0.948769 240 489

78 404.208 2.01E-14 210 395

91 1437.663 3.24E-125 371 590

92 290.929 7.99E-01 312 1118

93 335.545 7.02E-01 350 1115

94 409.031 1.00E+00 558 1151

95 617.583 1.01E-06 459 1145

96 418.439 9.75E-01 477 881

97 692.678 2.66E-06 531 922

98 479.022 2.50E-01 459 684

99 338.146 9.83E-03 280 443

114 237.570 0.894407 266 328

115 308.073 0.674 320 600

116 296.399 0.999791 387 658

117 630.663 9.56E-01 693 1340

118 666.839 6.74E-01 684 1073

119 484.608 9.82E-01 552 746

120 535.363 0.003415 450 612

121 467.432 9.73E-01 528 502

138 258.358 0.011343 209 105

139 361.828 0.796244 385 389

140 533.611 2.78E-02 473 742

141 583.931 0.652005 598 694

142 592.040 5.84E-01 600 556

143 552.850 5.65E-01 559 433

162 214.548 0.729526 228 190

163 285.526 0.944018 325 279

164 341.803 0.989939 405 364

165 501.132 0.113217 464 310

Assumption 3 - Grid ( 5 x 5 )

Figure 5.16: Chi-square test of independence of assumption 3 for the 5◦×5◦ grid

5.3 Tropical cyclone intensity

The widely acceptable indicator of the tropical cyclone’s intensity is its central pressure

at the storm’s eye. In general, larger central pressure difference causes larger pressure

gradient forces and thus stronger winds. However, in the stochastic models, central pressure

is not a desirable variable from which to base a simulation, as its values must fall within

certain limits to have physical meaning. Darling (1991) introduced a relative intensity

measure which transforms the central pressure to a non-dimensional index I, and first used
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Cell chi2 statistic p -value dof ndata

2.00E+00 8.39E+02 3.97E-12 576 1.37E+03

3.00E+00 1.12E+03 1.65E-37 576 1.97E+03

4.00E+00 1.05E+03 3.15E-30 576 1.38E+03

5.00E+00 7.75E+02 5.45E-08 576 2.49E+03

6.00E+00 6.99E+02 0.000331 576 2.17E+03

10 7.23E+02 2.76E-05 576 2.32E+03

Assumption 1 - Grid ( 10 x 20 )

Cell chi2 statistic p -value dof ndata

2 352.91 0.30341 340 1366

3 285.49 0.71733 300 1966

4 297.30 0.22828 280 1382

5 410.77 0.00507 340 2492

6 418.05 0.00243 340 2173

10 380.15 0.06576 340 2324

Assumption 2 - Grid (10 x 20 )

Cell chi2 statistic p -value dof ndata

2 570.082 7.14E-02 522 1366

3 887.265 5.34E-48 352 1966

4 2003.487 1.98E-232 342 1382

5 769.747 6.57E-02 712 2492

6 953.989 8.79E-15 640 2173

10 1097.423 3.45E-02 1014 2324

Assumption 3 - Grid (10 x 20 )

Figure 5.17: Chi-square test of independence all three assumptions for the 10◦×10◦ grid

it in single-point simulation. This measure takes into account the concept of the hurricane

as a heat engine which is constrained by the inflow (sea surface) and outflow (tropopause

surface) temperatures.

5.3.1 Relative intensity model

The tropical cyclone’s intensity is estimated by the changes in the central pressure as related

to this relative intensity index. Vickery et al. (2000a) used first this index to construct a

model for the storm’s intensity evolution along its path. In this model, the track’s relative

intensity at the forward location is modeled as a multiple linear regression coupled to the

sea surface temperature. When the storm’s eye is located over the ocean, the values of I are
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obtained from:

ln(Ii+1) = c0 + c1 ln(Ii)+ c2 ln(Ii−1)+ c3 ln(Ii−2)+ c4 SSTi+1 + c5 (SSTi+1 −SSTi)+ εI

(5.13)

where Ii is the relative intensity at the i-th time increment, SSTi is the sea surface temper-

ature at the location of the storm’s eye at time increment i, and parameters c0 − c5 are the

coefficients of the input variables.

Figure 5.18: Monthly average sea surface temperature (SST) in Celsius over the years of

available data provided in the HadISST database. Mean variations of the STT over the

Atlantic basin, Gulf of Mexico and Caribbean Sea are in display for the months May to

October.

The procedure to derive these coefficients follows the guidelines suggested by Vickery

et al. (2000a). The coefficients c0, . . . ,c5 of the regression model vary with geographic

location and direction among other parameters. The coefficients are estimated using a
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grid of 5◦×5◦ cells over the Atlantic basin and a different set is assessed for easterly and

westerly traveling hurricanes. Geographic cells without the required number of data match

the derived coefficients of the closest cell with adequate number of data.

The sea surface temperature (SST) at the storm center is determined based on the

HadISST (Hadley Centre Global Sea Ice and Sea Surface Temperature ) dataset, obtained

from www.metoffice.gov.uk. The dataset provides monthly mean SSTs for the period 1870-

2018 on a 1◦×1◦ geographical grid in degrees Celsius, which was averaged throughout the

years from each month. Figure 5.18 displays the average SSTs for the months between

May and October.

The relative intensity index I introduced by Darling (1991) utilizes a simplified version

of the minimum central pressure formula—introduced by Emanuel (1988a)— defining a

hurricane’s intensity which models the tropical cyclone as a heat engine (Emanuel, 1988b).

For the calculation of the relative intensity the following definitions and steps are followed.

The notation has been adopted from Darling (1991). The surface value of the partial pres-

sure of ambient dry air, pda in mb is given by:

pda = 1013− (RH× es) (5.14)

where RH indicates the relative humidity of ambient air given by RH= 0.75, es indicates

the saturation vapor pressure, given by:

es = 6.112exp

{
17.67(Ts −273)

ts −29.5

}

(5.15)

where Ts and T0 indicate the temperatures in degrees kelvin of the ocean surface and of the

top of the troposphere (which is assumed to be at the 100-mb pressure) at the center of the

tropical cyclone.
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The minimum sustainable surface value of central pressure (of dry air) for a hurricane

is pdc give by:

pdc = x pda (5.16)

where x is the solution of the following nonlinear equation:

ln(x) =−A

[
1

x
−B

]

(5.17)

where parameter A is defined by:

A ≡ ε Lv es

(1− ε) Rv Ts pda

(5.18)

parameter B is defined by:

B ≡ RH

[

1+
es ln(RH)

pda A

]

(5.19)

where Rv indicates the gas constant of water vapor, given by Rv = 461, ε indicates the

efficiency of the cyclone as a heat engine and given by:

ε =
Ts −T0

Ts
(5.20)

parameter Lv indicates the latent heat of vaporization given by:

Lv = 2.5 (106)−2320 (Ts −273) (5.21)

Nonlinear Equation 5.17 can be solved using different solvers ( Newton-Raphson, Secant,

fixed point), however, for the results obtained in this chapter a bisection method was im-

plemented.
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The relative intensity I is given by:

I ≡ pda − (p̃− es)

pda − pdc

(5.22)

where p̃ is supposed to be the actual central pressure of a tropical cyclone under the pre-

scribed climatic conditions, and the term in the parenthesis (p̃− es) named p̃d in Darling

(1991) stands for the corresponding partial pressure for dry air.
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Figure 5.19: Monthly average tropopause temperature in Celsius over the years of available

data provided in the NCEP/NCAR database. Mean variations of the temperature over the

Atlantic basin, Gulf of Mexico and Caribbean Sea are in display for the months May to

October.

The temperature at the top of the troposphere at the storm center is determined from

the NCEP/NCAR Reanalysis dataset, which provides monthly means for the period 1948

until the present on a 2.5◦× 2.5◦ geographical grid in degrees Celsius. The dataset was
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obtained from www.esrl.noaa.gov and monthly tropopause temperatures were interpolated

and averaged throughout the years for each month. Figure 5.19 displays the tropopause

temperature for the months of May to October.

A significant constraint of the relative intensity simulation approach is the limited size

of available central pressure data in the HURDAT database. For example, the post-1970

tracks have central pressure measurements for most of their time history increments, but

1,200 of the HURDAT track records have no information on central pressure. To address

this issue and populate some of these historical track time series, a relationship between

central pressure and maximum gradient wind speeds, when available, is utilized Darling

(1991).

The formula for deriving central pressure from maximum wind is given by:

pc = 1013−
(

Vg −5.843+0.558 N

14.118

)2

(5.23)

where N is the latitude north of the equator, Vg is the maximum gradient wind given by:

Vg =Vmax −1.5 S0.63 (5.24)

where S is the estimated translation speed (in knots), and Vmax is the maximum wind speed

as recorded in the HURDAT database which has to exceed 35 kt.

After calculating the relative intensity index at each time increment —when required

information is available either directly from the recorded minimum central pressure or in-

directly through converting the maximum recorded wind— all data are parsed to an easy-

to-process data set array. Based on this array, each row refers to one data point and includes

the following information:
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199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

92 127 127 127 127 127

47 47 47 48 49 28 29 30 31 32 40 63 63 63 63

47 47 47 48 49 63 63 63 63

47 47 63 63 63

69 69 84 84 84 84

105 105 105 105 105

163 164 161 166 167 168 191 170 171 172 172 172 172 172

150 150 150 150

140 171 171 171 171 171

163 164 165 166 167 168 169 170 171 171 171 171 171 171

Figure 5.20: Atlantic basin mesh of the Westerly heading tropical cyclones. The cells with

inadequate number of data get the relative intensity model coefficients from their neighbor

cell numbered in red.

lati loni RIi+1 RIi RIi−1 RIi−2 SSTi+1 SSTi θi

Each data point is distributed to a geographic cell based on its geographic coordinates and

further distributed to the Easterly or Westerly group based on the heading angle θi. For

the cells with at least 7 data points, a regression analysis is performed and the coefficients

described in Equation 5.13 are obtained. For the geographic cells which do not have at

least 7 data points, the cells’ coefficients are matched with those coefficients obtained from

the closest cell with a minimum of 7 data points. Figure 5.20 shows the discretization of

the Atlantic basin to 5◦× 5◦ grid cells and their reference number and depicts the results

for the Westerly heading tropical cyclones. The cells without an adequate number of data

points include an index in red, which which indicates the cell from which they match the

regression coefficient. Figure 5.21 shows similar results for the Easterly heading storms.

The regression coefficients in Equation 5.13 are obtained from a least-square fit between

the observed and the modeled values of the response. After the regression coefficients are

161



199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
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Figure 5.21: Atlantic basin mesh of the Easterly heading tropical cyclones. The cells with

inadequate number of data get the relative intensity model coefficients from their neighbor

cell numbered in red.

determined, the model response in each geographic cell is obtained and the difference (i.e.,

error) from the observations is calculated. The error is approximated separately with a

normal and an unbounded Johnson distribution (Liu, 2014). The unbounded Johnson (UJ)

distribution is given by:

z = γ +δ × log







(
ε −ξ

λ

)

+

[(
ε −ξ

λ

)2

+1

] 1
2






,∞ < ε <+∞ (5.25)

where z is the standard normal random variable, ε is the data population to be estimated,

γ , δ are shape parameters, λ is the scale parameter and ξ is the location parameter. The

UJ distribution fit to the data is made by matching 4 standardized normal quantiles, [z1 =

−1.5,z− 2 = −0.5,z3 = 0.5,z4 = 1.5]. Having selected the evenly spaced quantiles, the

standard normal cumulative probabilities at these values are computed first, and the quan-

tiles of the elements in the data vector of the previously determined cumulative probabilities

are computed next. Then, a system of four nonlinear equations is solved and the UJ dis-

tribution parameters (γ,δ ,ξ ,λ ) are obtained. For all geographic cells the four-parametric
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Figure 5.22: Errors of the relative intensity model for three geographic cells in the Atlantic basin, Caribbean Sea and Gulf of Mexico.

From top to bottom: data response vs model response (top); empirical CDF of the of the errors with Normal distribution and Unbounded

Johnson distribution fits (middle); scatter plot of logarithmic modeling errors (bottom).
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Johnson distribution provides superior fit to the observational data.

Equation 5.13 demonstrates that information on the relative intensity index at the cur-

rent and two previous positions is required to predict the relative intensity index of a an-

ticipated geographic location. Post-1970 historical data was used to initiate the simulation

of the track’s relative intensity. The track with the closest genesis location to the simulated

genesis location is selected form the historical record. The values of the relative intensity

index at the fist three positions of the historic track are used as input in Equation 5.13.

When there is more than one genesis location for a given historical record, one is selected

at random. Lastly, the error εI in Equation 5.13 is simulated from the fitted Johnson SU

distribution and its values are constrained to lie within ±1.5σεI
.

Equation (5.13) is used also for hurricanes which have already crossed the coastline

and moved back to sea however, with the new grid-based intensity coefficients. To deter-

mine the relative intensity at the first location over water, the value of the central pressure

obtained from the decay model (presented below) are used to estimate the relative intensity

index which is used for all three priors required in Equation (5.13).

5.3.2 Assessment of relative intensity model

Figure 5.22 depicts errors of the relative intensity model for three geographic cells of the

Westerly tropical cyclones. Similar results are also obtained for Easterly storms. The ob-

served and modeled relative intensity fall around the first diagonal, indicating an unbiased

model fit. The same conclusion can be drawn from the scatter plot of the relative intensity

model errors which are distributed around zero. The cumulative distribution function of

the errors implies that its distribution can be very well-approximated with an unbounded

Johnson distribution.
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5.4 Overland Filling Rate

A key component of the tropical cyclone simulation model is the modeling of the decay

of the storm’s intensity as the eye of the tropical cyclone crosses the coastline (i.e., makes

landfall). Once a storm makes landfall it weakens and its central pressure rises. The rate of

the storm’s intensity loss is a function of the following variables, among others: geographic

location at landfall, local topology and climatology, radius to maximum wind velocity, and

translation velocity. Although these aspects are clearly understood, this wasn’t the case 40

years ago when one of the first hurricane filling rate models was introduced by Schwerdt

et al. (1979) who realized the importance of the location the storms makes landfall on its

rate of intensity degradation. As the amount and the quality of full-scale data available

increased substantially over the following years, many researchers developed empirical

filing rate models as a function of multiple physical parameters. A collection of some of

the most characteristic publications proposed filling rate models and their key components

are presented in Table 5.2.

5.4.1 Filling rate model

This chapter utilizes the Vickery (2005) model which models the pressure decay after land-

fall as a function of the storm’s intensity, size and translation speed at landfall, time after

landfall and the landfalling region. The four landfall regions along with the geographic

coordinates of their starting and ending locations along the coastline are depicted in Fig-

ure 5.23. The regions in order of Westerly to Easterly are the Gulf Coast, the Florida

Peninsula, the min-Atlantic and the region of New England. The filling rate model is an

exponential function yielding the difference of the central pressure and the far field pressure

165



Table 5.2: Filling rate models and their key characteristics

Dependent Variable Independent Variable

Central

Pressure

Wind

speed

Intensity

@ landfall

Max. wind

@ landfall

Regional

inf.

Angle

@ landfall
RWM

Storm

speed

t after

landfall

d. from

landfall

Batts et al. (1980) X - X - - X - - X -

Georgiou (1986) X - X - X - - - - X

Vickery (1995) X - X - X - - - X -

Kaplan (1995) - X - X - - - - X -

vickery (2005) X - X - X - X X X -

1
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45°10’12”N, 67°00’00”E

39°30’00”N, 75°34’48”E

31°00’00”N, 81°30’00”E

30°00’00”N, 84°25’12”E

25°45’00”N, 97°10’12”E

Figure 5.23: The four geographic regions described by the decay constant α (Equa-

tions 5.27, 5.28) and the regression parameters provided in Table 5.3. The coastline with

magenta color refers to the Gulf Coast, the green color coastline refers to the Florida Penin-

sula, the blue coastline refers ro the Mid-Atlantic Coast and the red coastline refers to the

New England Coast.

after landfall, ∆Pc in millibars [mb] and is given by:

∆Pc(t) = ∆po exp(−αt) (5.26)

where ∆po is the difference between the central pressure of the storm and the far field

pressure at the time the storm makes landfall, ∆po = Pc −Po, t is the time after landfall

in unit of hours and α is the filling constant. In the case of the Gulf Coast, the Florida

Peninsula and the mid-Atlantic Coast, the filling constant α is modeled as:

α = α0 +α1 (∆p0 c/RMW )+ εα (5.27)

where c is the storm’s translation speed at the time of landfall in [m/s], RMW is the radius

to maximum wind in [km], εα is the modeling error resulting from the regression analysis,

α0 and α1 are region-specific constants resulting from the linear regression analysis. In the
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case of New England, the filling constant α is modeled as:

α = α0 +α1∆po + εα (5.28)

The values of the filling rate model constants and the modeling error parameter are given

in Table 5.3 along with the sample size (N) used in the regression (Vickery, 2005). The far

field pressure equals 1,013 mb. The storm dissipates when the central pressure of the eye

reaches 1012 mb.

The central pressure at the time of landfall is determined and used as input in the filling

rate models (Equations 5.26, 5.27 and 5.28). Landfall central pressure is equivalent to the

last simulated oceanic central pressure. The time the storm spent over land until it reaches

the first simulated overland position is considered proportional to the overland distance

covered during the 6-hourly increment. This is because the storm’s speed is considered

constant between subsequent locations. The minimum allowable value of a sampled filling

coefficient εα is set to 0.015, with the sampled error limited to lie within ±3σεα .

Figure 5.24: Track of hurricane Ivan occurred in 9/2/2004.

For the tracks which cross the coastline Southern to the Gulf Coast region (Figure 5.23),

such as hurricane Harvey depicted in Figure 5.26, it is assumed that their filling constant
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Table 5.3: Decay constant α , regression parameters (RMW in [km]; translation speed c, in [m s−1]; and ∆po, in [mb]; α0 is the intercept

and α1 is the slope).

α = α0 +α1∆po α = α0 +α1∆poc/RMW

Landfall region N α1 α0 r2 σε α1 α0 r2 σε

Gulf Coast 26 - - - - 0.00181 0.0414 0.5884 0.0169

Florida Peninsula 13 - - - - 0.00167 0.0225 0.8378 0.0158

Mid-Atlantic Coast 13 - - - - 0.00156 0.0370 0.4206 0.0161

New England Coast 6 0.00099 0.0034 0.5471 0.0114 - - - -

1
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follows the model described by Equation 5.27.

Figure 5.24, and 5.26 depict the tracks of 2004 Hurricane Ivan and 2017 Hurricane

Harvey, respectively. Both of these hurricanes made landfall at the Gulf Coast. Figures 5.25

and 5.27 show 200 simulated samples of the central pressure of hurricanes Ivan and Harvey,

respectively.

Figure 5.25: Simulated central pressures of hurricane Ivan formed in September 2, 2004.

The red solid line shows the observed central pressure, in solid black line is the mean

simulated value and the dashed black lines depict ±1σ . The gray lines are showing the

central pressure values over water for different samples and the blue segments refer to the

overland values.

5.5 Radius to maximum wind model

Radius to maximum wind (RMW) is the most important determinant of a tropical cyclone’s

size. The first empirical models of the RMW were developed by Vickery and Twisdale

(1995). Vickery et al. (2000a) performed the same analysis using 8 more storms and up-

dated the regression equations for prediction of RMW. As more accurate and better reso-

lution data became available for the storm radius by the National Weather Services (NWS)

and by the Hurricane Research Division’s H*Wind snapshots of storm’s wind fields, new

statistical models were developed. Vickery and Wadhera (2008) used the updated database
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Figure 5.26: Track of hurricane Harvey occurred in 8/16/2017.

until 2005 and developed new statistical models relating RMW to latitude and central pres-

sure, and compared them with the regression models derived from U.S. land falling storms

alone.

Three RMW models were developed for hurricanes in the Gulf of Mexico, in the At-

lantic ocean, and in both oceans combined (Vickery and Wadhera, 2008). The RMW mod-

els used in this chapter are following the guidelines developed by Vickery et al. (2009b)

and part of the models developed in Vickery and Wadhera (2008). Specifically, the all-

storms RMW model developed in Vickery and Wadhera (2008) is applied to the Atlantic

ocean hurricanes and the Gulf of Mexico RMW model is applied to the hurricanes in the

Gulf of Mexico. The RMW model applied ot the Gulf of Mexico storms is given by:

ln(RMWGulf) = 3.859−7.700 ·10−5∆p2 + εGulf (5.29)

and the error εGulf is approximated with Normal distribution, N(0,1) · σlnRMW, where

171



Figure 5.27: Simulated central pressures of hurricane Harvey formed in August 17, 2004.

The solid red line shows the observed central pressure. The solid black line is the mean

simulated value. The dashed black lines depict ±1σ . The gray lines are showing the

central pressure values over water for different samples and the blue segments refer to the

overland values.

σlnRMW is given by:

σlnRMW = 0.396; ∆p ≤ 100hPa,

σlnRMW = 1.424−0.01029∆p; 100hPa ≤ ∆p ≤ 120hPa

σlnRMW = 0.19; ∆p > 120hPa

(5.30)

The RMW model for Atlantic hurricanes is given by:

ln(RMWAtlantic) = 3.015−6.291 ·10−5∆p2 +0.0337Ψ+ εAtlantic (5.31)

and the error εAtlantic is approximated with Normal distribution, N(0,1) ·σlnRMW, where

σlnRMW is given by:

σlnRMW = 0.448; ∆p ≤ 87hPa,

σlnRMW = 1.137−0.00792∆p; 87hPa ≤ ∆p ≤ 120hPa

σlnRMW = 0.19; ∆p > 120hPa

(5.32)
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where ∆p is the central pressure difference in [mb] and Ψ is the latitude in [deg].

To yield one statistical model of the RMW applied to the simulated storm, the two

models described by Equations 5.29 and 5.31 are combined as follows:

RMW = α1RMWAtlantic +(1−α1)RMWGulf

α1 =
Σ∆pAtlantic

Σ[∆pAtlantic+∆pGulf]

(5.33)

where the summation is performed over all six-hour time steps from storm genesis to the

current time.

For the simulation of both errors εAtlantic and εGulf a common random number is drawn

from a N(0,1) distribution and then scaled with the corresponding error’s standard devia-

tion. This is performed only once in the beginning of each simulated storm and the error

value is used throughout the simulation.

As will be seen later, the RMW has no effect on the magnitude of the maximum wind

speeds; however, it has a significant influence on the area affected by a tropical cyclone.

For a single-site wind risk study, the modeling of the RMW impacts the likelihood of the

site experiencing strong winds in cases of near misses. Accurate modeling of the RMW is

critical to storm surge, wave and wind field modeling, as well as to the estimation of prob-

able maximum losses for insurance modeling purposes. RMW magnitudes are inversely

correlated with central pressure differences, such that RMW decreases as storm intensity

increases, and vice-versa. The RMW also increases with increasing latitudes.

5.6 Holland B parameter

In the hurricane hazard modeling, the inclusion of the Holland B parameter plays an impor-

tant role in the hurricane risk studies. In 1980, Holland proposed a representation of the gra-
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dient hurricane wind field by introducing an additional parameter to define the maximum

wind in a hurricane. in an effort to differing central and far field pressures, Holland initially

modeled hurricane radial surface pressure profiles using parameter (p − p0)/(pn − p0),

where p is the pressure at radius r, p0 the central pressure and pn the far field pressure. He

approximated the radial profiles of this parameter with a rectangular hyperbola function,

which in a rearranged form is given by:

p(r) = p0 +(pn − p0)exp

(

− A

rB

)

(5.34)

It has been shown that RMW = A1/B and thus Equation 5.34 becomes:

p(r) = p0 +(pn − p0)

[

exp

(

−RMW

r

)]B

(5.35)

Parameter B in Equation 5.35 is the Holland B parameter, which defines the shape of the

radial profile. Equation 5.35 and Holland B parameter have since their introduction been

used by many researchers as part of their wind field models (Georgiou, 1986; Thompson

and Cardone, 1996; Vickery et al., 2000b). Vickery et al. (2000a) used Holland B as random

variable for first time in his hurricane simulation methodology where he estimated B using

reconnaissance aircraft data and modeled it as a function of RMW and central pressure

difference (∆p).

5.6.1 Holland B parameter: Oceanic model

The latest statistical model for Holland B, which is utilized herein, was developed by Vick-

ery and Wadhera (2008) introducing the latitude term in their model. The authors compared

B values estimated from reconnaissance and H*Wind data with those estimated using a
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wind field model and surface level wind speed measurements. Parameter B is given by:

B = 1.7642−1.2098
√

A+ εB (5.36)

where A is a nondimensional variable and εB is the model error. Variable A is defined by:

A =
RMW fc

√

2Rd(Ts −273) ln
(

1+ ∆p
pce

) (5.37)

where RMW is the radius to maximum wind in [m], fc is the Coriolis force, defined as

2Ωsinψ , where Ω is the rotational rate of the earth given as 7.2921 ·10−5 in [rad/sec], ψ is

the latitude in [degrees], Rd is the gas constant for dry air given as 287 [N m / ( kg K )], Ts

is the mean sea surface temperature in [kelvin], p0 is the pressure at the center of the storm

in [mb], ∆p is the difference between p0 and the far field pressure taken here as 1,013 [mb]

and e is the base of the natural logarithms. Parameter εB is the model error approximated

with normal distribution, N(0,σ2
B) and σB = 0.226. This error is sampled only once prior

to the start of each simulated storm and is used throughout the simulation as a shift from

the regression model. From Equations 5.36 and 5.37 the following observations are made:

(i) as RMW decreases B increases

(ii) as latitude increases sinψ increases and thus B decreases

(iii) as Ts increases B decreases

(iv) as the ratio ∆p
pc

increases B decreases

5.6.2 Holland B parameter: Land model

The Holland B model described in Equations 5.36 and 5.37 has been derived for the sim-

ulation of tropical cyclones over ocean. Vickery et al. (2009b) proposed a decay model in
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which parameter B after landfall is given by:

B(t) = B0 exp(α t) (5.38)

where parameter α is given by:

a = 0.0291−0.0429 B0; a ≤−0.005 (5.39)

where B0 is the value of B at landfall and t is the time the storm spent over land in [h].

5.7 Gradient wind field

Wind field models differ in the input they require, the output provided, implementation

difficulty, and computational resources needed to accurately model a storm’s wind field

along its path. In this chapter, the choice of the wind field model is made based on the

idea to develop joint probability densities of wind intensity and directionality at many geo-

graphic locations. Therefore, an effective yet computationally efficient algorithm should be

selected and thus the gradient wind field model developed by Georgiou (1986) is adopted.

The gradient wind equation considered in Georgiou’s model describes the balanced atmo-

spheric flow at the 700 [mb] level (or 3,000m height), which is given by:

1

ρ

∂ p

∂ r
=

V 2

r
+ fV

Vrad <<V

(5.40)

where, V,Vrad are the tangential and radial velocity components, ρ is the air density, f

is the Coriolis parameter, p is the pressure and r is the distance from the storm center.

Equation (5.40) assumes a steady state flow and therefore the mean wind speed of the air

parcels are computed as an outcome. Georgiou (1986) considered also the effect of the
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storm’s translation speed (V T ) using the Blaton’s formula which is given by:

r̃ =
r

1− V T
V

sin(α)
(5.41)

where V T is the storm’s translation speed and α is the angle, clockwise positive, from the

d
A

B

C

b

c

a

A

d
B

d
C

Figure 5.28: Schematic of three locations over a sphere with their great cycle distances.

storm translation direction to the target location. Using Equation 5.35 in Equation 5.40 and

replacing the radial distance r in Equation 5.40 with Equation 5.41, the gradient balance

wind field is thus given by:

V (r,α) =
1

2
(V T sin(α)− f r)+

√
√
√
√1

4
(V T sin(α)− f r)2 +B

∆p

ρ

(
RMW

r

)B

· exp

[

−
(

RMW

r

)B
] (5.42)

Angle α can be computed using spherical trigonometry and is considered clockwise posi-

tive with range [0◦, 360◦]. Given three geographic locations A,B and C and their in between

great circle distances dA,dB and dC as depicted in Figure 5.28, the angle a can be computed

by:

a = cos−1

[
cos(dA)− cos(dB) · cos(dC)

sin(dB) · sin(dC)

]

(5.43)

Figure 5.29 shows a track making landfall at the Gulf Coast and the simulated gradient

winds at 3,000m before the eye crosses the coastline.
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Figure 5.29: Simulated gradient 1-min sustained wind speed at 3,000 m height. The track

and central pressure information is adopted from Hurricane Ivan (2004) at 650 UTC. The

gradient wind has been simulated suing a sample of RMW = 61.69 km and a sample of

Holland B equal to 1.256. The path is depicted with solid black line and the dashed black

line shows the coastline. The wind intensity is in [m/s].

The asymmetric wind field given by Equation 5.42 which can be seen as a translation

vortex, is a function of four parameters: RMW, Holland B parameter, central pressure

difference from far field pressure ∆p and storm’s translation speed V T .

5.8 Boundary layer model

The boundary layer model (BLM) describes the profile of the mean wind speed over the

height of a hurricane. When the mean wind speed at the gradient height is estimated,

the atmospheric boundary layer model provides the wind speed at any height down to the

surface of 10 m above the ground or water. These semi-empirical models are providing

more information and higher accuracy at the surface wind speed than the more commonly
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used speed reduction factors. The models developed by Vickery et al. (2009a) are used

herein for the estimation of the over water and land wind speeds. This hurricane boundary

layer model reproduces the shape of the hurricane boundary layer for heights between 1,000

and 10 m. The model, besides the height information, account also for the transition and

shift of the roughness regime from open water to overland and if given by:

U(z) =
u∗
k

[

ln

(
z

z0

)

−α
( z

H∗

)n
]

(5.44)

where U(z) is the wind speed at height z above the surface of the land or water, k is the

Kármán coefficient having a value of 0.4, u∗ is the friction velocity, z0 is the surface rough-

ness in [m], parameters α and n are having values equal to 0.4 and 2, respectively and H∗

is the boundary layer height parameter.

5.8.1 Oceanic Boundary layer model

For the over water (marine) boundary layer, the boundary layer height parameter H∗ is

given by:

H∗ = 343.7+0.260/I + εH (5.45)

where εH is Normally distributed with zero mean and σεH
= 99 m (constraint within 2σεH

)

and I is the inertial stability. The inertial stability (Kepert, 2001; Vickery et al., 2009a) is

given in by:

I =

√
(

f +
2V

r

)(

f +
V

r
+

∂V

∂ r

)

(5.46)

where V is the gradient wind speed at 1,000 m in [m/s], r is the radial distance from the

storm’s center in [m] and f is the Coriolis parameter.

To estimate the wind speed at one site, 10 m over water, we first estimate the friction

velocity by sampling the boundary layer height parameter H∗ using Equation 5.45 and
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Figure 5.30: Marine boundary layer profiles for RMW = 20 [km], and velocities at that

distance take the values [ 26.85, 34.75, 42.67, 51.02, 60, 63.58]. The surface roughness is

taken as z0 = 0.0013 and the latitude is assumed 32◦N.

substitute in Equation 5.44 along with the estimated gradient wind speed at 1,000m. The

friction velocity u∗ is the only unknown and can be readily assessed. The wind speed at

10 m is assessed by replacing z = 10, the estimated u∗ and sampled H∗ in Equation 5.44.

The water roughness z0 is considered equal to 0.0013 m. Figure 5.30 shows boundary layer

profiles for different wind speeds.

5.8.2 Land boundary layer model

For the sea-land transition, the wind speed at the top of the boundary layer, considered

here 1,000, is assumed to remain unchanged as the flow moves over the new roughness

regime. To estimate the wind speed at a sit, 10 m over open terrain, a similar approach

as previously explained for the over water case is followed. The boundary layer height

parameter H∗ is determined by first computing the jet height or boundary layer height H
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according to Kaplan and DeMaria (2001):

H =

√

2K

I

[

π + tan−1

(

−1− 2

χ

)]

χ =CdV

√

2

KI

(5.47)

where Cd is the drag coefficient, K is the turbulent diffusivity of momentum taken as con-

stant and equal to k = 75 [m2 / s−1] (Vickery et al., 2009a).

Parameter H∗ which is then given by H∗ = H/1.12 (Vickery et al., 2009a), is then sub-

stituted into Equation 5.44 along with the estimated gradient wind speed and Equation 5.44

is solved for u∗. Parameter u∗ is back substituted with H∗ into Equation 5.44 and for z = 10

m the wind speed at 10 m height over land is estimated. The surface roughness of an open

terrain is taken equal to z0 = 0.03 m which corresponds to a Cd = 0.00475 (Powell, 2008).

Figure 5.31 displays surface 1-min sustained wind speed at 10 m height for a track prior

to landfall.

5.9 Wind directionality

Hurricane wind directionality and the inflow angle are outcomes of the storm’s characteris-

tics and the relative location of a geographic position of interest with respect to the storms

center and direction. The inflow angle at a geographic position refers to the angle between

the true wind direction and a tangent to a circle with center at the storms center. It has

been identified that the inflow angle depends upon many characteristics of the hurricane

such as the surface roughness, the storm quadrant, storm’s transnational velocity, latitude,

and storm’s intensity and radius to maximum wind (Dunn and Miller, 1964; Simpson and

Riehl, 1981). However, not many studies have been developed on inflow angles of tropical

cyclones –especially over land (Zhang, 2019)– mainly due to the lack of observations with
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Figure 5.31: Simulated surface 1-min sustained wind speed at 10 m height. The track

and central pressure information is adopted from Hurricane Ivan (2004) at 650 UTC. The

gradient wind has been simulated using a RMW of 61.69 km and Holland B equal to 1.256.

The path is depicted with solid black line, the dash black line shows the coastline and the

white dashed line represents the RMW. The wind intensity is in [m/s] and the higher wind

speed reduction over land is clearly depicted along the coastline. It should be noted that no

fetch distance was considered in this simulation.

good coverage and accuracy.

Historical wind direction observation had been very sparse even compared to the sur-

face wind speed data (Zhang and Uhlhorn, 2012). The reported observations in the liter-

ature were initially only enough to provide mean estimates of the inflow angles. Graham

and Nunn (1959) reported inflow angles changing as a function of the distance from the

storm. The authors suggested a mean inflow angle of 20◦ for locations within the radius to

maximum wind RMW , 20◦−25◦ for locations within RMW −1.2RMW and 25◦ for loca-

tions 1.2RMW and beyond. Dunn and Miller (1964) reported angles of average inflow to
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be 23◦ over water and 38◦ over land. Whereas, other literature reported mean values over

water between 15◦−20◦ for moderate hurricanes and 20◦−40◦ for severe hurricanes plus

an additional 10◦− 30◦ over land (Simpson and Riehl, 1981). The most cited studies on

observations on inflow angles are publications by Powell M.D. and his co-workers. Pow-

ell (1982) reported inflow angles to range between +12◦ and −55◦ over open water for

hurricane Frederic, with greater inflow in the right-rear quadrant and weaker inflow in the

left-front quadrant.
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Figure 5.32: Schematic structure of a steady state flow in a mature storm, where in a)

the primary circulation and the gradient wind balance is seen and in b) and the secondary

circulation with the frictionally-induced convergence.

The primary reason of the inflow angle is the effect of frictional force occurring in the

boundary layer close to the ground. For better understanding, the flow structure in a mature

hurricane shall be examined. The spiralling flow observed in a tropical cyclone is a result

of two transverse circulations, the primary circulation depicted in Figure 5.32 a) which is

horizontal and the secondary circulation depicted in Figure 5.32 b) which is vertical. The

forces act on an air parcel, which is quite distant from the ground, are the pressure gradient

force, which is due to the pressure drop directing the air parcel inwards towards the storm

center, and, the centrifugal and Coriolis forces which act to move the parcel outwards and

balance the pressure gradient force. This balance is known as the gradient wind balance

and is depicted in Figure 5.32 a). For air parcels located closer to the ground, the surface

friction starts appearing, with increasing magnitude as getting closer to the ground, and
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acts additionally to the rest of the forces.

The surface friction forces turn out to have a significant influence on the dynamics of the

tropical cyclone. More specifically, the frictional force reduces the tangential wind speed

near the surface and as a result it reduces the centrifugal and Coriolis forces as depicted

schematically in Fiugre 5.32. However, the effect of friction is limited on the pressure field

in the boundary layer and the redial pressure gradient force is approximately the same as

that immediately above the layer. Therefore, the pressure gradient force acting on a parcel

of air is almost the same throughout the whole depth of the layer. The consequence is that

by getting closer to the surface, the pressure gradient force is higher than the superposition

of the centrifugal and Coriolis forces and the parcel of air is leaning inward towards the

center of the storm. The resulting inflow angle is stronger close to the ground and a height

of about 50 to 100 m (Vogl, 2009).

Traditionally, when wind directionality was studied parametrically, the inflow angles

were considered to take a fixed value contingent upon the location being over land or water

and its distance from the storm’s center being within the radius to maximum wind or ex-

ceeding it (Sanchez-Sesma et al., 1988; Boose et al., 1994). The latest observation-based

parametric model for sea surface inflow angle was proposed by Zhang and Uhlhorn (2012).

The author proposed a model for the spatial distribution of the near-surface inflow angle

which is composed of two parts, the axisymmetric part of mean values, and the asymmetric

part. The model is accounting for the storm motion speed, intensity, size and the relative

position of the location of interest with respect to the storm’s center and direction.

5.9.1 Over water paramteric inflow angle model

The parametric inflow angle proposed by Zhang and Uhlhorn (2012) is utilized in this

chapter for the over water locations. The parametric model of the storm-relative inflow
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angle αSR is given by:

αSR(r
∗,θ ,Vmax,Vs) = Aα0(r

∗,Vmax)−Aα1(r
∗,Vs) · cos [θ −Pα1

(r∗,Vs)]+ εαSR
(5.48)

where r∗ is the normalized radial distance given by r∗ = r/RMW , θ is the storm-relative

azimuthal direction (i.e., clockwise positive from the bearing direction), Vmax is the storm’s

maximum wind intensity in [m/s], Vs is the storm’s motion speed in [m/s]. The axisymmet-

ric inflow angle Aα0 is given by:

Aα0 = aA0r∗+bA0Vmax + cA0 (5.49)

where coefficients aA0, bA0 and cA0 are given in Table 5.4. The asymmetric model is a

harmonic function consisting of a mean plus wavenumber-1 component described by the

normalized amplitude Aα1
/Aα0

and phase Pα1
. The normalized amplitude is given by:

Aα1

Aα0

= aA1 r ∗+bA1Vs + cA1 (5.50)

where coefficients aA1, bA1 and cA1 are given in Table 5.4. The phase Pα1
is given by:

Pα1 = aP1 r∗+bP1Vs + cP1 (5.51)

where coefficients aP1, bP1 and cP1 are given in Table 5.4. The wind directionality α at a

site of interest is determined by:

α = αt −90◦+αSR (5.52)

where αt is the angle between a reference vector pointing North to a vector pointing towards

the site of interest starting from the storm’s center, and, takes values in the closed interval

[-π , π]. Parameters αSR and α take values in the closed interval [−π/2,π/2] and [-π ,
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Table 5.4: Mean µ and standard deviation σ values of the coefficients for the parametric

inflow angle model.

Eq. Variables a b c

(5.49) Aα0
(◦)

µ -0.90 -0.09 -14.33

σ 0.29 0.07 4.22

(5.50) Aα1
/Aα0

µ 0.04 0.05 0.14

σ 0.04 0.06 0.32

(5.51) Pα1
(◦)

µ 6.88 -9.60 85.31

σ 5.80 9.42 56.86

π], respectively, and are depicted in Figure 5.33. The model yields mean inflow angle of
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Figure 5.33: Schematic of the hurricane track and angle definition for site of interest.

22.6◦±2.2◦ with 95% confidence (Zhang and Uhlhorn, 2012).

5.9.2 Over land paramteric inflow angle model

As already mentioned, the observational wind directionality records are too sparse over

land even compered to the adequate wind directionality data over the ocean. Therefore, a

parametric model does not exist to yield the distribution of the overland inflow angle and

traditionally the wind direction estimation is then arrived at by applying a constant inflow

angle to the counterclockwise tangential direction (Dunn and Miller, 1964; Boose et al.,
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1994)

The most significant source of data used for the investigation of the near-surface in-

flow angle over a broad range of tropical cyclones is the dropwindsonde devices. These

devices provide data with good accuracy which has not changed over the years and thus re-

liable studies can be performed (Powell et al., 2009; Zhang and Uhlhorn, 2012). However,

dropwindsonde devices are used only over ocean. Other reasons for the limited amount of

hurricane wind directionality data is that the traditional methods used to measure hurricane

wind intensity are not providing reliable information on wind directionality. For example,

the Nadir-viewing passive microwave radiometers (e.g., SFMR) are insensitive to wind di-

rection (Zhang and Uhlhorn, 2012), active microwave sensors such as the NASA Quick

Scatterometers (QuikSCAT) are affected by the rain contamination which complicates the

interpretation of QuikSCAT wind direction retrievals (Brennan et al., 2009), and the syn-

thetic aperture radar (SAR) provide single views and thus difficulties in assessing the wind

direction (Shen et al., 2009).

Additionally, the surface weather stations are coarsely distributed and many do not

survive the storm if their location is too close to the track of the tropical cyclone (Boose

et al., 1994; Powell et al., 1996). Moreover, reconnaissance aircraft wind directionality

data are limited over land because as Powell (1982) mentioned “the Air Force and NOAA

reconnaissance aircraft are unable to penetrate the storm or fly over land because of the

danger of added mechanical and convective turbulence and the possibility of tornadoes.”

In cases where the hurricanes approaches the land, the reconnaissance aircraft continue to

provide information by flying parallel to the coast. The importance of retrieving hurricane

wind directionality over land has increased past years and researchers are investigating

on new techniques for extracting more accurate estimates from methods already used for

hurricane wind assessment. For example, Gao et al. (2018) presented a new approach for

hurricane wind directionality retrieval from SAR images.
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Considering the limited documented information on overland inflow angles (Dunn and

Miller, 1964; Simpson and Riehl, 1981; Powell, 1982; Powell et al., 1996) a model is pro-

posed based on the available overland inlfow angle references and the model proposed by

Zhang and Uhlhorn (2012). Specifically the spatial variability and asymmetry of the over

water inflow angle proposed by Zhang and Uhlhorn (2012) is adopted and superimposed

with a structure which shifts the inflow angle and further increases it with the radial distance

from the center. The over land model used in this paper is given by:

āSR = aSR +aA2
r∗

r∗max

+aC2 (5.53)

where aSR is given by Equation (5.48), aC2 is the shifting parameter that is modeled as aC2 ∼

N(−15,2.5) and constraint within [−10,−20], and aA2 is the scale parameter modeled

as aA2 ∼ N(−5,2.5) and constraint within [0,−10]. Figure 5.34 depicts the streamlines

resulting from the simulated wind directionalities in a rectangular mesh for a hurricane

prior to landfall. For the depicted streamline realization, overland parameters αC2 and αA2

were sampled as -14.67◦ and -4.06◦, respectively. The differences on the over ocean and

over land inflow angles are clearly distinguished along the coastline.

5.10 Concluding Remarks

The chapter presents a framework for the simulation of synthetic directional wind speeds

for hazard and risk analysis. The framework consists of many modules such as the track

model, the relative intensity model, the decay model, the radius to maximum wind model,

the Holland parameter model, the gradient wind speed model, the boundary layer model

and the wind inflow model. Different versions of most of these models are presented for

over land and over water cases.

The tropical cyclone track model is based on the Markov Chain approach introduced
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Figure 5.34: Simulated streamlines of the 1-min sustained wind speed at 10 m height. The

track and central pressure information is adopted from Hurricane Ivan (2004) at 650 UTC.

The sampled RMWis 61.69 km and Holland B parameter is equal to 1.256. The path is

depicted with solid black line.

by Emanuel et al. (2006), however, the solution approach herein is different than theirs,

in the sense that the Atlantic basin is discretized in a fine mesh and the transition proba-

bilities are developed while considering information from the neighbor cells with weight.

Weighting the cells and adjusting the kernel properties can yield good results while keeping

the computational time in acceptable levels. In addition, implementation details are pre-

sented for all modules and data preprocessing instructions are provided. Assessment of the

implemented modules is provided as well, with the constraints of limited available data.

An original overland wind inflow model is proposed. Site-specific wind directionality

distributions and joint distributions of wind intensity and directionality can be yielded for

any location of the United States East coastline and Gulf of Mexico and used for hazard
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analysis or long-term hurricane loss studies. Moreover, estimates of surface wind speed

and direction due to a single event can also be extracted for postevent damage assessment.
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Chapter 6

Reserach contributions

6.1 Significant contributions

The original contributions of this research are the following:

1. Development of a technique for the optimal representation of multi-dimensional ran-

dom fields with a moderate number of samples using Functional Quantization. This

research showcased the technique’s applicability in engineering mechanics involving

the simulation of two-dimensional stochastic fields.

2. Development of a methodology named Hazard Quantization for the selection of an

optimal set of stochastic intensity measure maps representing the regional hazard

over a geographic area, used for the analysis of spatially distributed infrastructure

systems. This involved:

• Showcasing the framework’s applicability to seismic hazard

• Comparing the framework with the current state-of-the-art methodologies in the

literature and a benchmark Monte Carlo solution

• Providing in-depth discussion on the features of each methodology and quanti-

tatively comparing the errors on the hazard curve and auto-correlation

• Applying Hazard Quantization to hurricane hazard for the optimal selection of

wind intensity measure maps
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3. Development of a hurricane simulation framework which can model: genesis loca-

tions, propagation tracks, size and intensity, key features (e.g., Holland B parameter,

regional intensity decay models), wind intensity and directionality. The developed

framework yields probability density functions of hurricane wind directionality and

joint probability distributions of the hurricane wind speed and wind directionality

at any location of the continental United States which can potentially be exposed

to a hurricane. In addition to the site-specific outcomes, the developed framework

provides correlated intensity measure maps of maximum wind speed and direction

allowing analysts to model the hurricane risk along spatially distributed infrastructure

systems.

4. A generalization of the proof that the multi-variate samples generated with a well-

known version of the classical Spectral Representation Method (SRM) utilizing dis-

crete Fourier transform (DFT) and frequency double indexing (FDI) are ergodic. The

previous proof (Deodatis, 1996) is valid in the limit, when the frequency interval

tends to zero and the period tends to infinity; the new proof holds also for the case of

finite frequency intervals and samples with finite period, which is the case of practical

interest. Moreover, Deodatis (1996) proved that the samples match the input CSDM

in the limit. In here, it is shown that in the case of practical applications, when the

frequency domain is discretized, the actual CSDM does not match the input CSDM.

A closed-form expression of the actual resulting CSDM of the generated samples is

also derived, and, it is shown that such expression converges to the input CSDM in

the limit, so generalizing Deodatis (1996) results.

5. A proof demonstrating that the discrete multi-variate samples generated with a well-

known version of the classical Spectral Representation Method (SRM) utilizing dis-

crete Fourier transform (DFT) and frequency double indexing technique (FDI) are

ergodic, but the resulting spectrum does not match the input (or target) spectrum.
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Additionally, a proof demonstrating that the resulting spectrum of the discrete sam-

ples matches the input spectrum at the limit as the discretization step approaches

zero.

6. Extension an iterative technique which generates one-dimensional, univariate non-

Guassian random processes to the case of multi-dimensional univariate non-Gaussian

random fields. The random field matches both the arbitrarily prescribed spectral

density function and the non-Gaussian marginal distribution.
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Appendix A

Passage from continuous to discrete time domain

Let κ be a specific value in the continuous wave number domain: κ ∈ R and 0 < κ ≤ κu.

In the corresponding discretized wave number domain, κ is approximated by l∆κ , where:

∆κ := κu/N, with N ∈ N
+ (A.1)

l :=
⌈ κ

∆κ

⌉

(A.2)

which yields that:

l ∈ N and 1 ≤ l ≤ N (A.3)

We can observe that when ∆κ tends to 0, then both N and l tend to ∞.

Let’s also define the number of components m ∈ N
+, with m << N, and index j ∈ N

with 1 ≤ j ≤ m.

Theorem 1.

lim
∆κ→0

(l −1)∆κ = lim
∆κ→0

l∆κ = κ (A.4)

Proof. Due to the ceiling operator in Eq. (A.2), we can bound κ as follows:

(l −1)∆κ < κ ≤ l∆κ (A.5)

When ∆κ → 0, the bounds of the inequality in Eq. (A.5) tend to coincide, because their
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difference tends to 0:

lim
∆κ→0

[l∆κ − (l −1)∆κ] = lim
∆κ→0

∆κ = 0 (A.6)

Because of the Squeeze Theorem, if the two bounds have the same limit, then also κ has

the same limit. In this case we know the latter, so:

lim
∆κ→0

(l −1)∆κ = lim
∆κ→0

l∆κ = lim
∆κ→0

κ = κ (A.7)

Corollary 1.

lim
∆κ→0

[

(l −1)∆κ +
j

m
∆κ

]

= κ (A.8)

Proof. By definition of j and m, we have that 0 < j/m ≤ 1, hence:

(l −1)∆κ < (l −1)∆κ +
j

m
∆κ ≤ l∆κ (A.9)

When ∆κ → 0, by Theorem 1 and the Squeeze Theorem we obtain the thesis.
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