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ABSTRACT 

Digital computers and their programs are among man's most logically 

complex artifacts. Computer process information a billion times faster 
..._.... tflo. .... 4 .. 4·~- , •• ,../ ..... ,. ..... _. 

---· ..,.., ..... -.- • ,.. ... ··••··. ·.-•·-· ,, __ ..... • II '(t,..-·ro·~·•-··--·. --·---
... ,. ... ~ .... 'lm:tr"a"pers-Ori with pencil and paper, under the control of programs that 

sometimes contain hundreds of thousands of instructions. The feasibility 

of a proposed computer application often hinges on the efficiency with 

which large masses of data can be organized. Recognizing the importance 

of this aspect of computation, we consider some methods of searching 

through large amounts of data to find a particular piece of information. 

As we shall see, certain methods of organizing data make the search 

process more efficient. Since searching is such a common task in 

computing, a knowledge of these methods goes a long way toward making a 

good programmer. This paper is devoted to compare the tree-like 

structures and their search techniques for data maintenance. A 

comparative study on five different kind of tree structures was done 

experimentally. These are balanced binary tree structure, B-tree 

structure, symmetric binary B-tree structure, 2-3 tree structure and son 

tree structure. The number of nodes is related to the tree construction 

time, the height of trees and the search-time of all nodes. 



1. INTRODUCTION 

1.1 Trees 

+IPD•• -·--d 
......... .,... -·--A·:.JrF~-s-~·"f-tm-te·-a·et orelements that is either empty or contains 

a specified element called the root of the tree where the remaining 

elements are partitioned into disjoint subsets, each of which is itself 

a tree. These subsets are called the subtrees of the original tree. Each 

element of a tree is called a node of the tree. 

There are many terms which are often used when referring to trees. 

Consider the tree in Figure 1. This tree has 14 nodes, each data item of 

a node being a single letter for convenience. The root is designated A, 

and we will normally draw trees with their root at the top. The 

indicated lines are not part of the tree but are used to indicate the 

subtree relationship. 

Figure 1. A sample tree 

LEVEL 
1 

2 

3 

4 

The number of subtrees of a node is called its degree. The degree of A 

in Fig.1 is 3, that of C is 1, and that of G is 0. A node that has 

degree zero is called a leaf or terminal node. The set 

2. 
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\K, L, M, G, N, I, Jl is the set of leaf nodes of Figure 1. The other 

nodes are referred to as nonterminals. The roots of the subtrees of a 

node, X, are the chi-of X. ~.f.he·e·of iWJD fFPjifil P't'«•·L_ 
·':;Cil? b ,.,. .. )'"(; ·.t&HT t13f •I.IIDW: - - - -· •111111•• 

the children of D are H, I, J; the parent of D is A. Children of the 

same parent are said to be siblings. For example H, I, and J are 

siblings. The degree of a tree is the maximum degree of the nodes in 

the tree. The tree in Figure 1 has degree 3. The ancestors of a node are 

all the nodes along the path from the root to that node. The ancestors 

of N are A, D, and H. 

The level of a node is defined recursively as follows. The root is 

taken to be at level one. If a node is at level p, then its children are 

at level p+1. Figure 1 shows the levels of all nodes in that tree. The 

maximum level of any element of a tree is said to be its depth or 

height. The number of branches or edges which have to be traversed in 

order to proceed from the root to a node X increased by one is called 

the path length of X. The root has path length 1, its direct children 

have path length 2, etc. The path length of a tree is defined as the sum 

of the path lengths of all its components. It is called its internal 

path length. 

1 • 2 Binary Trees 

A binary tree is a tree in which each node has degree no more than 

two. The two subtrees at each node (possibly empty) are called its left 

and right subtrees. 

A conventional method of picturing a binary tree is shown in Figure 



2. This tree consists of ten nodes with A as its root. Its left subtree 

is rooted at B and its right subtree is rooted at C. This is indicated 

by the two branches emanating from A: to B on the left and to C on the 

right. The absence of a branch indicates an empty sl.ibf~~:.-~·~exampiif, .. 
the left subtree of the binary tree rooted at C and the right subtree of 

the binary tree rooted at E and D are both empty. The binary trees 

rooted at G, H, I, and J have empty right and left subtrees. 

Figure 2. A Binary Tree 

A complete binary tree of level n is one in which each node of 

level n is a leaf and in which each node of level less than n has 

nonempty left and right subtrees and each node at level n is a leaf. 

Figure 3 illustrates a complete binary tree. 

Figure 3. A complete binary tree 

• 



1.3 Applications of Binary Trees 

A binary tree is a useful data structure when two-way decisions 

must be made at each point in a process. For example, suppose that we 

wanted to find all duplicates in a list of numbers. One way of doing 

this is to compare each number with all those that precede it. However, 

this involves a large number of comparisons. The number of comparisons 

can be reduced by using a binary tree. The first number is read and 

placed in a node which is established as the root of a binary tree with 

empty left and right subtrees. Each successive number in the list is 

then compared to the number in the root. If it matches, we have a 

duplicate. If it is smaller, the process is repeated with the left 

subtree, and if it is larger, the process is repeated with the right 

subtree. This continues until either a duplicate is found or an empty 

subtree is reached. In the latter case, the number is placed into a new 

node at that position in the tree. Figure 4 illustrates the tree that 

would be constructed from the input 20, 25, 9, 16, 13, 29, 7, 10, 26, 9, 

32, 28, 16, 20, 10, The output would indicate that 9, 16, 20, and 10 are 

duplicates. 

5· 



20~ 
9/ 25 

7/ ~16 ~29 
/ /~ 

1 3 26 32 

10/ ~28 

Figure 4. A binary tree constructed for finding duplicates 
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2. BALANCED BINARY TREE 

2.1 Property of Balanced Binary Tree 

A tree is said to be balanced if and only if for every node the 

heights of its two subtrees differ by at most 1. [AVL-balanced tree] 

Each node in a balanced binary tree has a balance of 1, -1, or 0, 

depending on whether the height of its right subtree is greater than, 

less than, or equal to the height of its left subtree. The balance of 

each node is indicated in Figure 5. 

Figure 5. A balanced binary tree with indicator of each node 

Suppose that we are given a balanced binary tree and insert a new 

node into the tree. Then the resulting tree may or may not remain 

balanced. Figure 6 illustrates all possible insertions that may be made 

to the tree of Figure 5. Each insertion that yields a balanced tree is 

indicated by a B. The unbalanced insertions are indicated by a U and are 

numbered from to 12. It is easy to see that the tree becomes 

unbalanced only if the newly inserted node is a right descendant of a 

7. 



node which previously had a balance 1 (this occurs in cases U9 through 

U12) or if it is a left descendant of a node which previously had a 

balance of -1 (cases U1 through US). In Figure 6, the youngest ancestor 

that becomes unbalanced in each insertion is indicated by the numbers 

contained in three of the nodes. 

node 

// ---------1-4 node 

/'~ /~ 
node node 5-8 9-12 

// \ /"" I~ / ""' node node B B node node node node 

I\ I\ I\ /\ I\ I~ 
U1 U2 U3 U4 7\ 7\ B B B B ;r ?\e 

US U6 U7 US U9 U10 U11 U12 

Figure 6. A balanced binary tree and possible additions 

To maintain a balanced tree, it may be necessary to perform 

transformations called rotations on the tree. Consider the trees of 

Figure 7 and Figure 8, Figure 9 indicates the balancing of the tree in 

Figure 7 by a so-called LL rotation. Figure 10 indicates the balancing 

of the tree in Figure 8 by a so-called LR rotation. By symmetry there 

are also RR and RL rotations. 

8 



A 
I \ 

I \ 
B 

I \ 
I \ 

tree T3 
of height 

tree T1 
of height 

n 

newly 
inserted 
node 

n 
tree T2 
of height 

n 

Figure 7. A sample unbalanced binary tree 

I 
I 

I 
tree T1 of 
height n 

B 

I 
I 

I 

I 

\ 
\ 
\ 
c 

I 
I 

A 

tree T2 
of height 
n-1 

newly 
inserted 
node 

\ 

\ 
\ 
\ 

\ 
\ 

tree T4 of 
height n 

tree T3 
of height 
n-1 

Figure 8. A sample unbalanced binary tree 
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I 
I 

I 
tree T1 of 
height n 

B 
\ 
\ 
\ 

A 

I \ 
I \ 

I \ 
newly tree T2 
inserted of 
node height n 

tree T3 
of 

height n 

Figure 9. An unbalanced binary tree from Figure 7 after 
LL rotation becomes a balanced binary tree 

B 

I 
I 

I 

c 
\ 
\ 
\ 

A 
I \ I \ 

I \ I \ 
tree 
T1 of 
height 
n 

tree tree tree 
T2 of T3 of T4 of 
height height height 
n-1 n-1 n-1 

newly 
inserted 
node 

Figure 10. An unbalanced binary tree from Figure 8 after 
LR rotation becomes a balanced binary tree 

2.2 Analysis of Balanced Binary Tree Algorithm 

The following indica tea an algorithm to maintain a balanced tree. 

See [ 1 ]. 

Data structure of the balanced binary tree: 
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TYPE ref = Anode; 
node= RECORD 

key:integer; 
count:integer; 
left,right:ref; 
balance: -1 , 0, 1 

END; 

PROCEDURE search(x:integer;VAR p:ref;VAR h:boolean); 
VAR p1,p2: ref; { h=false } 
BEGIN 

IF p=nil THEN 
word is not in tree; insert it 
ELSE 
IF x<pA.key THEN 
BEGIN 

search(x,pA.left,h); 
IF h THEN {left branch has grown higher} 
CASE p"'. balance OF 
1: adjust pA.balance=O; h=false; 
0: adjust p"'.balance=-1; 

-1: BEGIN 
{need rotation to rebalance} 
let p1 point to pA.left; 
IF p1"'.balance•-1 

THEN LL rotation transformation 
ELSE LR rotation transformation; 

adjust pA.balance=O; h=false 
END{-1} 

END {CASE} 
END ELSE 
IF x>p"'.key THEN 
BEGIN 

search(x,p"'.right,h); 
IF h THEN {right branch has grown higher} 
CASE pA. balance OF 
-1: adjust p"'.balance=O; h=false; 
0: adjust p"'.balance=1; 
1: BEGIN 

{need rotation to rebalance} 
let p1 point to pA.right; 
IF p1"'.balanceo:1 

THEN RR rotation transformation 
ELSE RL rotation transformation; 

ad~ust p"'.balance=O; h=false 
END { 11 

1.1 



END {CASE} 
END ELSE 
word is found, increase count by 1, h=false 

END ! search} ; 

The process of node insertion consists essentially of the following 

three parts: 

1. Follow the search path until it is found that the key 

is not already in the tree. 

2. Insert the new node and determine the resulting balance 

factor. 

3. Retreat along the search path and check the balance factor 

at each node. 

Finding the search path is straightforward, however, if it leads to a 

dead end (i.e., to an empty subtree designated by a pointer value nil), 

then the given element must be inserted in the tree at the palce of the 

empty subtree. Prior to insertion on a left subtree, for example, we 

must distinguish between the three conditions of a node's balance 

factor( the height of its right subtree minus the height of its left 

subtree) involving the subtree heights: 

h(left) < h(right) +1, the previous imbalance at p will be 
equilibrated. 

h(left) = h(right) 0, the weight is now slanted to the left. 

h(left) > h(right) -1, rebalancing is necessary. 

The algorithm for insertion and rebalancing critically depends on the 

way information about the tree's balance is stored. Because of its 

recursive formulation it can easily accommodate an additional operation 

12 



on the way back along the search path. At each step, information must be 

passed as to whether or not the height of the subtree had increased. 

Therefore, extending the procedure's parameter list by the Boolean h 

with the meaning that the subtree height has increased. The rebalancing 

operations necessary are entirely expressed as a sequence of pointer-

reassignments. There are four cases that must be considered while 

rebalancing a tree. These are the rotations indicated in some detail 

below. 

START ROTATION RESULT 

(LL) B <-- C A <-- B <-- C B 
I \ \ I \ \ \ I \ 

A A c 
I \ I \ I \ 

(LR) 
~! 

A <-- C A --> B c B 
I \ \ I I \ \ I \ 

B A c 
I \ I \ I \ 

(RR) A --> B A --> B --> c B 
I I \ I I I \ I \ 

c A c 
I \ I \ I \ 

!~ 
(RL) A --> c A B <-- C B 

I I \ I I \ \ I \ 
B A c 

I \ I \ I \ 

In an extreme case rebalancing may propagate all the way up to the root. 



on the way back along the search path. At each step, information must be 

passed as to whether or not the height of the subtree had increased. 

Therefore, extending the procedure's parameter list by the Boolean h 

with the meaning that the subtree height has increased. The rebalancing 

operations necessary are entirely expressed as a sequence of pointer-

reassignments. There are four cases that must be considered while 

rebalancing a tree. These are the rotations indicated in some detail 

below. 

START ROTATION RESULT 

(LL) B <-- c A <-- B <-- C B 
I \ \ I \ \ \ I \ 

A A c 
I \ I \ I \ 

(LR) 
~! 

A <-- c A --> B c B 
I \ \ I I \ \ I \ 

B A c 
I \ I \ I \ 

(RR) A --> B A --> B --> c B 
I I \ I I I \ I \ 

c A c 
I \ I \ I \ 

!~ 
(RL) A --> c A B <-- C B 

I I \ I I \ \ I \ 
B A c 

I \ I \ I \ 

In an extreme case rebalancing may propagate all the way up to the root. 
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2.3 Results from Experiment 

An experiment was performed in constructing balanced trees using a 

random number generator to provide data elements. Results are provided 

in the following table. 

(miliseconds) (miliseconds) Internal Path 
Nodes Construction Time Search Time Length 

1,000 324.0 257.0 9, 1 71 
2,000 785.0 645.0 20, 392 
3,000 1, 275.0 995.0 32,366 
4,000 1, 683.0 1,288.0 44,851 
5,000 2, 184.0 1,811.0 57,729 
6,000 2, 493.0 2,268.0 70,900 
7,000 3,026.0 2,458.0 84,299 
8,000 3,861 .o 3,172.0 97,896 
9,000 4,136.0 3,349.0 111,674 

10,000 4,270.0 3,869.0 125,592 

HEIGHT NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES 
1 1 
2 2 
3 4 
4 8 
5 16 
6 32 
7 64 
8 128 
9 245 

10 331 
11 1 65 
12 4 
13 
14 
15 
16 
TOTAL 1,000 

1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 
4 4 4 4 4 4 4 4 4 
8 8 8 8 8 8 8 8 8 

16 16 16 16 16 16 16 16 16 
32 32 32 32 32 32 32 32 32 
64 64 64 64 64 64 64 64 64 

1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 
256 256 256 256 256 256 256 256 256 
487 506 511 512 512 512 512 512 512 
622 862 951 982 1,005 1,015 1,022 1,024 1,024 
357 853 1,244 1,498 1,668 1,788 1,885 1,935 1,973 

23 261 707 1,224 1,657 2,049 2,369 2,677 2,932 
7 76 273 634 1,051 1,495 1,943 2,402 

13 74 206 398 645 
1 

2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10000 

14 



3. B-TREE 

3.1 Properties of B-Tree 

A B-tree is a data structure defined in an attempt to manage large 

amounts of information effeciently. In our description we will follow 

the standard usage and refer to the nodes as pages. In the case of a B-

tree we allow a page to contain more than a single item of information. 

The items of information in each node are referenced by objects called 

keys and we shall be only concerned with the keys in a page. 

A tree is called a B-tree of order n iff 

1. Each page contains at most 2n keys. 

2. Each page other than the root contains at least n keys. 

3. If a page is not a leaf page and contains m keys then it has 
m+1 children. 

4. All leaf pages have the same level. 

Figure 11-15 shows the result of construction a B-tree of order 2(nc2) 

with the following insertion sequence of keys: 

20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27, 
8, 32, 38, 24, 45, 25 

( 1 ) 
!20 

(2) 
!20 40 



(3) 
! 10 20 40 ! 

(4) 
! 10203040 

(5) 
! 10 15 20 30 40 ! overflow 

! 20 ! 

I ~ -------- --------
! 1 0 1 5 ! ! 30 40 ! 

(6) 

!20 ! 

_____ f==---~--------
! 1 0 1 5 ! uo 35 40 ! 

(7) 
! 20! 

-----~~---~~------
!7 10 15! !30 35 40! 

Figure 11. Construction a B-tree by insertion 20, 40, 10, 
30, 15, 7 



( 1 ) 
! 20 ! 
------

------~- -~---------
!7 10 15! !26 30 35 40! 

(2) ------
! 20 ! 

-------~~~----~~---------
!7 10 15 18! !26 30 35 40 ! 

(3) 
! 20 ! 
------

--------~-- ~------------
!7 10 15 18! !22 26 30 35 40! overflow 

!20 30! 

-----------~---1- ~ -------
!7 10 15 18! !22 26! !35 40! 

17 



(4) 
!20 30! 

!57101518! !22 26! !35 40! 

! 10 20 30! 

-----~z-----s-~------
!5 7! ! 15 18! !22 26! !35 40! 

Figure 12. A B-tree after insertion 26, 18, 22, 5 
( 1 ) 

! 10 20 30! 

----~~-----~~--------
!5 7! ! 15 18! !22 26! !35 40 42! 

(2) 

! 10 20 30! 

!5 7! !13 15 18! !22 26! ! 35 40 42! 

18 



(3) 
! 10 20 30! 

----~~~~~--~~------------
!5 7! !13 15 18! !22 26! ! 35 40 42 46! 

(4) 

! 10 20 30! 

!5 7! !13 15 18! !22 26 27! ! 35 40 42 46! 

(5) 
! 10 20 30! 

----------~ 
------~--J-----~------- -------------
!5 7 8! !13 15 18! !22 26 27! ! 35 40 42 46! 

Figure 13. A B-tree after insertion 42, 13, 46, 27, 8 

( 1 ) 

! 10 20 30! 

! 5 7 8! ! 1 3 15 18! ! 22 26 27! ! 32 35 40 42 46! 

! 10 20 30 40! 

-----~-z~---s.~-----
! 5 7 8! ! 1 3 15 18! ! 22 26 27! ! 32 35! ! 42 46! 



(2) 
! 10 20 30 40! 

/7----y---~ 
------- ---------- ---------- ---------- -------
!57 8! !13 15 18! !22 26 27! !32 35 38! !42 46! 

(3) 
!10 20 30 40! 

~---r----~ 
------- ---------- ------------- ---------- -------
!57 8! !13 15 18! !22 24 26 27! !32 35 38! !42 46! 

Figure 14. A B-tree after insertion 32, 38, 24 
( 1 ) -------------

! 10 20 30 40! 

~ -------------~ 
~/ l ~~ 

15 7 8 ' !n 15 18! 122 24 26 211 132 35 38! !42 45 46! 

(2) 
! 10 20 30 40! 

!5 7 8! !13 15 18! !22 24 25 26 27! !32 35 38! !42 45 46! 

20 



! 1 0 20 25 30 40 ! overflow 

~--~----\---~--------------
------- ---------- ------- ------- ---------- ----------
!5 7 8! !13 15 18! !22 24! !26 27! !32 35 38! !42 45 46! 
------- ---------- ------- ------- ---------- ----------

!25! 

~-----
! 10 20! !30 40! 

~-----~~ 

------- ---------- ----------
! 5 7 8! ! 1 3 15 18! ! 22 24! ! 26 27! ! 32 35 38! ! 42 45 46! 

Figure 15. A B-tree after insertion 45, 25 

3.2 Analysis of the B-Tree Algorithm 

The data structure of page & item : 

item= RECORD page= RECORD 
key: integer; 
p: ref; 

m:O •• nn;(*no.of items*) 
pO: ref; 
e:ARRAY(1 •• nn] OF item 

END; 
count: integer 

END; 

PROCEDURE eearch(x:integer;a:ref;VAR h:boolean;VAR u:item); 
BEGIN 

IF a=NIL THEN BEGIN (* x is not in tree *) 

END 

Assign x to item u, set h to true, 
indicating that an item u is passed 
up in the tree 

ELSE WITH a"' DO 
BEGIN (* search x on page a"' *) 

Binary array search; 
IF found 

THEN increment the relevant item's 
occurrence count 

ELSE BEGIN 
search(x,descendant,h,u); 
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END 
END 

END; 

IF h THEN (* an item u is 
being passed up*) 

IF (no.items on aA) < 2n 
THEN insert u on page 

aA and set h to 
false 

ELSE split page and 
pass middle item 
up 

The keys appear in increasing order from left to right if the B-

tree is squeezed into a single level by inserting the descendants in 

between the keys of their ancestor page. This arrangement represents a 

natural extension of the organization of binary search trees, and it 

determines the method of searching an item with given key. Given a page 

as indicated below where each Ki is a key and each Pi is a page pointer. 

The in-page search is represented as a binary search upon the fixed 

array, if the search is unsuccessful, we are in one of the following 

situations : 

1. Ki<x<Ki+1, for 1<=i<m. We continue the search on page PiA. 

2. Km<x. The search continues on page PmA. 

3. x<K1. The search continues on page POA. 

page 

PO K1 P1 K2 P2 ... Pm-1 Km Pm 
--!-------!-------!----!-----!---------!--

! ! 
v v v v v v 

If an item is to be inserted in a page with m < 2n items, the insertion 
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process is restricted to that page. It is only insertion into an already 

full page which may cause the allocation of new pages by page splitting. 

In particular, the split pages contain exactly n items. The insertion of 

an item in the ancestor page may again cause that page to overflow, 

thereby causing splitting to propagate. A recursive formulation is most 

convenient because of the property of the splitting process to propagate 

back along the search path. 

3. 3 Results from Experiment 

(miliseconds) (miliseconds) Internal Path 
Nodes Construction Time Search Time Length 

1,000 563.0 452.0 4,623 
2,000 1, 458.0 1,116.0 11,272 
3,000 1, 985.0 1, 708.0 16,883 
4,000 2,735.0 2,229.0 22,543 
5,000 3,289.0 3,217.0 33,159 
6,000 4,487.0 3,645.0 39,770 
7,000 4, 864.0 4, 404.0 46,426 
8,000 5,925.0 5, 360.0 53,084 
9,000 6,812.0 5,788.0 59,670 

10,000 8,046.0 6, 364.0 66,326 

HEIGHT 
1 

NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES 
4 2 3 4 1 1 2 2 2 3 

2 
) 

4 
5 
6 
7 

TOTAL 

16 7 12 15 5 7 8 9 11 11 
54 28 44 53 17 24 26 30 34 36 

205 106 164 212 74 87 100 109 130 141 
721 394 594 794 266 321 365 416 480 533 

1 ' 46 3 2' 183 2, 922 988 1 , 1 90 1 ' 388 1 '580 1 '777 1 '968 
3,649 4,370 5,111 5,854 6,566 7,308 

1 , 000 2, 000 3, 000 4, 000 5 , 000 6 , 000 7 , 000 8 t 000 9, 000 1 0000 



4. SYMMETRIC BINARY B-TREE (SBB TREE) 

4.1 Properties of SBB Tree 

A symmetric binary B-tree is a B-tree which is also a binary tree. 

In order to compensate for the pages in the B-tree horizontal pointers 

are introduced to represent page items which would be considered to be 

all at the same level. The following conditions are required. Every 

node contains one key and at most two(pointers to) subtrees. Every 

pointer is either horizontal or vertical. There are no two consecutive 

horizontal pointers on any search path. All terminal nodes appear at 

the same level. Figure 16, and 17 show how one might construct a SBB 

tree with the following insertion sequences of keys: 
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4. SYMMETRIC BINARY B-TREE (SBB TREE) 

4.1 Properties of SBB Tree 

A symmetric binary B-tree is a B-tree which is also a binary tree. 

In order to compensate for the pages in the B-tree horizontal pointers 

are introduced to represent page items which would be considered to be 

all at the same level. The following conditions are required. Every 

node contains one key and at most two(pointers to) subtrees. Every 

pointer is either horizontal or vertical. There are no two consecutive 

horizontal pointers on any search path. All terminal nodes appear at 

the same level. Figure 16, and 17 show how one might construct a SBB 

tree with the following insertion sequences of keys: 

2.4 



c~ 

0 
r 
r 
~ 
c 
-t 

.. 

L 
0 
ll 



(a) 19, 7, 3, 2, 20, 6, 9 

( 1 ) 

(2) 

(3) 

(4) 

(5) 

v 
19 

v 
'7 <-- 19 

v 
3 <--- 7 <-- 19 

v 
7 

I \ 
3 

v 
7 

I \ 
2 <--- 3 

v 
7 

I \ 
2 <-- 3 

19 

19 

19 

two consecutive 
siblings 

--> 20 
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(6) 

v 

2 <--~~
7

~19 --> 20 

(7) 
v 

/7~ 
2 <-- 3 --> 6 9 <-- 19 --> 20 

Figure 16. The development of SBB trees with insertion 
sequence of (a) 

(b) 7, 3, 15, 1, 19, 6, 9 
( 1 ) ! 

(2) 

(3) 

v 
7 

v 
3 <--- 7 --->15 

v 
1 <-- 3 <-- 7 -->15 
two consecutive 
siblings 



(4) 

(5) 

(6) 

v 

v 
3 

I \ 
7 -->15 

v 
3 

I \ 
1 7 -->15 --> 19 

two consecutive 
siblings 

v 
3 -->15 

I I \ 
7 19 

v 
3 ------->15 

I I \ 
1 6 <-- 7 19 

3 ---------> 15 
I I~ 

1 6 <--- 7 --> 9 19 

Figure 17. The development of SBB trees with insertion 
sequence of (b) 

4.2 Analysis of the SBB Tree Algorithm 

Data structure of the SBB tree: 

TYPE ref aAnode; 
node-= RECORD 

key:integer; 
count:integer; 
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left,right:ref; 
lh,rh:boolean 

END; 

PROCEDURE search(x:integer;VAR p:ref; VAR h:integer); 
VAR p1 ,p2: ref; 
BEGIN 

IF p=nil THEN 
BEGIN 

word is not in tree, insert it; 
set h=2, lh, rh= false 

END ELSE 
IF x<pA.key THEN 
BEGIN 

search(x,pA.left,h); 
IF h <> 0 THEN {need rotation to rebalance} 
IF pA.lh {p has obtained a left sibling} 
THEN BEGIN 

let p1 point to pA.left; 
IF p1A.lh {p1 has obtained a left sibling} 

THEN LL rotation transformation 

END 
ELSE {h=O} 
BEGIN 

h=h-1; 

ELSE IF p1A.rh {p1 has obtained a right 
sibling} 

THEN LR rotation transformation 

IF h <> 0 {p has obtained a left sibling} 
THEN pA.lh=true 

END 
END ELSE 
IF x>pA.key THEN 
BEGIN 

search(x,pA.right,h); 
IF h <> 0 THEN {need rotation to rebalance} 
IF pA.rh {p has obtained a right sibling} 
THEN BEGIN 

let p1 point to pA.right; 
IF p1A.right {p1 has obtained a right 

sibling} 
THEN RR rotation transformation 
ELSE IF p1A.lh {p1 has obtained a left 

sibling} 

END 
ELSE {h=O} 
BEGIN 

THEN RL rotation transformation 
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END 
END ELSE 

h:= h-1; 
IF h <> 0 {p has obtained a right sibling) 

THEN p"'.rh=true 

word is found in tree; increase count by 1; 
set h=O 
END I search}; 

The recursive procedure search again follows the pattern of the 

basic binary tree insertion algorithm. Each node now requires two 

bi ts(Boolean variables lh and rh) to indicate the nature of its two 

pointers. Whenever a subtree of node A without siblings grows, the root 

of the subtree becomes the sibling of A. The parameter h indicates 

whether or not the subtree with root P has changed, and it corresponds 

directly to the parameter h of the B-tree search program. We must 

distinguish between the case of a subtree(indicated by a vertical 

pointer) that has grown and a sibling node( indicated by a horizontal 

pointer) that has obtained another sibling and hence requires a page 

split. The problem is solved by introducing a three-valued h with the 

following meanings: 

1. h=O : the subtree P requires no changes of the tree 
structure. 

2. h=1 node P has obtained a sibling. 

3. h=2 the subtree P has increased in height. 

The actions to be taken for node re-arrangement are virtually identical 

to those of the balanced binary tree algorithm. The implementation of 

the three-valued balance field(-1, 0, 1 ), in the case of the balanced 

binary tree, is replaced by three boolean fields lh, rh in the case of 
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the SBB tree. In fact, the four cases (LL, RR, LR, RL) in the SBB tree 

algorithm are slightly simpler than in the balanced binary tree 

algorithm. It can be shown that the AVL-balanced tree is a special case 

of tne SBB tree. [1] 

4.3 Results from Experiment 

(miliseconds) (miliseconds) Internal Path 
Nodes Construction Time Search Time Length 

1,000 368.0 298.0 9, 358 
2,000 862.0 677.0 20,772 
3,000 1 '258. 0 902.0 32,832 
4,000 1, 782.0 1,269.0 45,381 
5,000 2,562.0 1 '952.0 58,615 
6,000 3,018.0 2,436.0 72,098 
7,000 3,269.0 2,853.0 87,447 
8,000 3,545.0 3,103.0 100,836 
9,000 4,162.0 3,231.0 115,140 

10,000 4,965.0 4,096.0 129,554 

HEIGHT NODES NODES NODES NOSES NODES NODES NODES NODES NODES NODES 
1 1 1 1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 2 2 2 
3 4 4 4 4 4 4 4 4 4 4 
4 8 8 8 8 8 8 8 8 8 8 
5 16 16 16 16 16 16 16 16 16 16 
6 32 32 32 32 32 32 32 32 32 32 
7 64 64 64 64 64 64 64 64 64 64 
8 128 128 128 128 128 128 128 128 128 128 
9 219 256 256 256 256 256 256 256 256 256 

10 277 451 508 512 512 512 512 512 512 512 
11 173 529 774 912 932 972 936 962 982 989 
12 67 336 718 1,054 1,274 1,473 1,332 1,527 1 ,606 1, 677 
13 9 122 349 712 1,099 1,371 1,426 1,809 2,028 2,189 
14 37 116 258 529 790 1,233 1,469 1,740 2,054 
1 5 14 20 40 125 313 730 839 1,010 1,275 
16 4 1 16 51 250 275 435 557 
17 2 7 60 83 153 174 
18 10 1 3 23 52 
19 10 
TOTAL 1 , 000 2 , 000 3, 000 4, 000 5,000 6 , 000 7 ' 000 8, 000 9,000 10000 
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5. 2-3 TREE 

5.1 Property of the 2-3 Tree 

A 2-3 tree is a tree in which each vertex which is not a leaf has 2 

or 3 children, and every path from the root to a leaf is of the same 

length. Nodes which are not leaf nodes contain the maximum value of the 

leftmost and the maximum value of the next child. Note that the tree 

consisting of a single vertex is a 2-3 tree. Figure 18 shows a sample 

2-3 tree. Figure 19 shows the sample 2-3 tree after inserting 2. 

Figure 20 shows the sample 2-3 tree after inserting ?. 

4 : 10 

/1~ 
1 : 4 8. 9 12 15 

1\ /\~ I~ 
1 4 8 9 10 12 15 

Figure 18. A sample 2-3 tree 

4 : 10 

~~~ 
: 2 8 : 9 12 15 

/1\ /1\ /~ 
1 2 4 8 9 10 12 15 

Figure 19. The sample 2-3 tree after inserting 2 

~1 



4 : 10 

-~ \ ---------1 : 4 8 : 9 12 : 15 

I\ ,/I~ /'\. 
1 4 7 8 9 10 12 15 

overflow 

new 
node 

4:8 ! 

~~,,~ 
1:~ 7:~ .9:10 12:15 overflow 

1\ 1\ /\ I~ 
1 4 7 8 9 10 12 15 

new 
root 

/-~ 
4 : 8 new 

!\ 
1:4 7:8 

node 

~~ 
9:10 12 : 15 

1\ 1\ /\ /~ 
1 4 7 8 9 10 12 15 

8:15 

4:/~:15 
/~ /~'--. 

1:4 7:8 9:10 12:15 

/\ 1\ 1\ /~ 
1 4 7 8 9 10 12 15 

Figure 20. The sample 2-3 tree after inserting 7 
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5.2 Analysis of the 2-3 Tree Algorithm 

To build a 2-3 tree is essentially similar to construct a binary 

tree, except a 2-3 tree may have 3-way decisions making because of its 

property that each node(except leaf) has two or three children. 

Therefore, we need two pieces of information (L and M) store in each 

node(except leaf) to indicate the direction while inserting a new 

element. L[v], the element L stored at node v, indicates the largest 

element of the subtree whose root is the left most son of node v; M[v], 

the element M stored at node v, indicates the largest element to the 

subtree whose root is the second son of node v. With these information 

stored in the nodes, we can search a 2-3 tree analogous to binary tree 

search. 

To insert a new element e into a 2-3 tree, we must locate the place 

for the new leaf 1 that will contain element e. This is done by tracing 

the paths that are indicated by the value of L[v] and M[v]. If e<=L[v], 

then follow the path of the left most son of the node v. If 

L[v]<e<=M[v], then follow the path of the second son of node v. If none 

of the above cases are true, then follow the path of the right most son 

of the node v. Until an empty node is found, then we create a new leaf 1 

and insert element e into leaf 1, then insert 1 into tree. 

Suppose node r already has three leaves, s1, s2, and s3. We want to 

insert a new leaf 1 to be the appropriate son of node r. First, we must 

re-arrange the sequence of these four children by comparing the value of 

each of them. To maintain the 2-3 property, we create a new node n, and 
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assign the two right most sons as the two left most sons of n, keep the 

two left most sons of node r unchange. At this point, we have to up 

date the value of L and M that had been stored in the ancestors of node 

r, then we can insert node n into the tree and becomes a child of father 

of r. If f, father of r, had three children, we must repeat this 

procedure recursively until all ancestors in the tree has at most three 

children. Suppose f is the root of the tree, and had three children, r1, 

r2, r3 plus a newly created node n (assume n>r3). In this case, we 

create another new node n' to keep r3 and n, and create a new root to 

keep f and n'. 

Procedure SEARCH(a,r); 
IF any son of r is a leaf THEN Rm'URE r 
ELSE BEGIN 

let si be the ith son of r; 
IF a<=L[r) THEN Rm'URE SEARCH(a,s1) 

IF r has less than 3 children 
THEN adjust L, M 
ELSE addson(r) 

ELSE 
IF r has two sons or a<=M[r) THEN RETURN SEARCH(a,s2) 

IF r has less than 
3 children 

END 

ELSE Rm'URN SEARCH(a,s3) 
IF r has less than 3 children 

THEN adjust L, M 
ELSE addson(r) 

Procedure ADDSON(v); 
BEGIN 

create a new vertex v'; 

THEN adjust L, M 
ELSE add son( r) 

make the two rightmost sons of v the left and right sons of v'; 
IF v is not in the leaf level 

THEN adjust L, M 



END ; 

IF v has no father THEN 
BEGIN 

END 
ELSE 

create a new root r; 
make v the left son and v' the right son of r 
adjust L, M 

BEGIN 

END 

let f be the father of v; 
make v' a son of f immediately to the right of v; 
adjust L, M 
IF f now has four sons THEN ADDSON(f) 

5.3 Results from Experiment 

Nodes 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 

(miliseconds) 
Construction Time 

1,337-0 
3,205.0 
4,989.0 
7,526.0 
9,547.0 

11,773-0 
14,515.0 
16,720.0 
19,335.0 

HEIGHT 
8 
9 
9 

10 
10 
10 
10 
11 
11 

(miliseconds) 
Search Time 

262.0 
623.0 
919.0 

1 '389.0 
1, 709.0 
2,053.0 
2,446.0 
2,940.0 
3,580.0 

NODES 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 
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Internal Path 
Length 

8,000 
18,000 
27,000 
40,000 
50,000 
60,000 
70,000 
88,000 
99,000 



6. SON TREE 

6.1 Properties of Son Tree 

A binary tree is called a 1-2 tree iff each inner node is either 

unary or binary, and all leaves are on the same level. A 1 -2 tree is 

called a son tree if no two unary nodes are sucessive. The son tree we 

discuss here is one kind of B tree. Each page contains one or two nodes, 

the maximum sons of each page are three, each node can have either one 

or two sons. The node in the page may be an empty (E) node. 

node node 
---!--------!--------!---

v v v 

Figure 23-26 shows the result of construction a son tree with the 

following insertion sequence of keys: 

1, 2; 3, 4, 5, 6, 7, 8, 9, 10, 11 

36 



( 1 ) 
! 1 E! 

(2) 

! 1 2! 

(3) 

! 1 2 3! overflow 

!2 E! 

___ ~_---~----
! 1 E! ! 3 E! 

(4) 
!2 E! 

--~~-~------
! 1 E! !3 4 5! overflow 

!2 4! 

___ /--~~---
! 1 E! !3 E! !5 E! 

Figure 21. Construction a son tree of B-tree type by 
insertion 1, 2, 3, 4, 5 
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( 1 ) 
!2 4! 

! 1 E! !3 E! !5 6! 

(2) 
!2 4! 

! 1 E! !3 E! !5 6 7! overflow 

!2 4 6! overflow 

~-r---~ 
----- ----- -----
! 1 E! ! 3 E! !5 E! !7 E! 

!4 E! 

!2 E! !6 E! 

____ /~]~~ 
! 1 E! !3 E! !5 E! !7 E! 
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(3) 
!4 E! 

/---~----
!2 E! !6 E! 

___ / --y- I ---~ 
! 1 E! !3 E! !5 E! !7 8! 

Figure 22. A son tree of B-tree type after insertion 
6, 7' 8 

( 1 ) 
!4 E! 

____ / ---~---
!2 E! !6 E! 

/ ----\ / \ -------
! 1 E! !3 E! !5 E! !7 8 9! overflow 

-------

!4 E! 

/ ---~ 
!2 E! !6 8! 

/ ---\ / ---~~~~---
! 1 E! !3 E! !5 E! !7 E! !9 E! 
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(2) 
!4 E! 

~----~----
!2 E! !6 8! 

! 1 E! ! 3 E! !5 E! !7 E! ! 9 10! 

Figure 23. A son tree of B-tree type after insertion 
9, 10 

!4 E! 

/---~ 

!2 E! !6 8! 

---~ --~--
! 1 E! !3 E! !5 E! !7 E! !9 10 11! overflow 

!4 E! 

/---~ 

!2 E! !6 8 10! overflow 
--------

/\ ----~--l- '~~---
! 1 E! !3 E! ! 5 E! ! 7 E! ! 9 E! ! 11 E! 
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!4 8! 

----~~~--~-----
!2 E! !6 E! ! 10 E! 

/I ----- -----
! 1 E! !3 E! ! 5 E! ! 7 E! ! 9 E! ! 11 E! 

Figure 24. A son tree of B-tree type after insertion 11 

6.2 Analysis of the Son Tree Algorithm 

The data structure of page & item : 

item= RECORD page= RECORD 
key: integer; 
p: ref; 

m:1 •• 2;(*no.of items*) 
pO: ref; 

count: integer 
END; 

e:ARRAY[1 •• 2] OF item 
END; 

PROCEDURE search(x:integer;a:ref;VAR h:boolean;VAR u:item); 
BEGIN 

IF a=NIL THEN BEGIN (* x is not in tree *) 

END 

Assign x to item u, set h to true, 
indicating that an item u is passed 
up in the tree 

ELSE WITH a" DO 
BEGIN (* search x on page a" *) 

Binary array search; 
IF found 

THEN increment the relevant item's 
occurrence count 

ELSE BEGIN 
search(x,descendant,h,u); 
IF h THEN (* an item u is 

being passed up*) 
IF (no.items on a") < 2 

THEN insert u on page 
a" and set h to 
false 
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END 
END; 

END 

ELSE split page and 
pass middle item 
up 

The procedure search is straightward binary tree search, searching 

key x with root a, if found, increment counter, otherwise insert an item 

with key x and count 1 in tree. If an item emerges to passed to a lower 

level, this may cause that page to overflow, then, the procedure insert 

will call by the recursive formulation (parameter h=true) back along the 

search path. 

6.) Results from Experiment 

Nodes 
1 ,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 

(miliseconds) 
Construction Time 

642.0 
1,547.0 
2,512.0 
3,195.0 
4,612.0 
5,211.0 
6, 159.0 
6,999.0 
8,036.0 
9,805.0 

(miliseconds) 
Search Time 

535.0 
1, 321 .o 
2,067.0 
2,757.0 
3,793.0 
4,352.0 
5, 620.0 
6,472.0 
6, 569.0 
8,479.0 

Internal Path 
Length 
7,258 

16,504 
27' 777 
37,034 
46,302 
55.536 
71 '770 
82,056 
92' 347 

102,577 

HEIGHT NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES 
1 2 1 1 1 2 2 1 1 1 1 
2 3 3 2 3 3 4 2 3 3 3 
3 9 6 5 5 7 10 5 5 5 5 
4 1 9 1 6 11 1 3 1 5 22 11 11 12 1 5 
5 44 38 25 32 41 49 24 27 31 33 
6 106 91 55 78 91 109 58 65 69 78 
7 245 214 1 30 181 224 269 1 35 155 175 194 
8 572 498 308 415 525 626 311 354 392 439 
9 1,133 746 975 1,226 1,472 726 831 938 1,042 

10 1,717 2,297 2,866 3,437 1,726 1,959 2,209 2,476 
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11 4,001 4,589 5,165 5,714 
TOTAL 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10000 
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7. COMPARISONS OF DATA MAINTENANCE 

CONSTRUCTION TIME : (miliseconds) 

Balanced Binary SBB B Son 2-3 
Nodes Tree Tree Tree Tree Tree 
1,000 324.0 368.0 563.0 642.0 1 '337. 0 
2,000 785.0 862.0 1 '458.0 1,547.0 3,205.0 
3,000 1 '275. 0 1 '258. 0 1 '985. 0 2,512.0 4,989.0 
4,000 1 '683.0 1 '782.0 2,735.0 3,195.0 7,526.0 
5,000 2,184.0 2,562.0 3,289.0 4,612.0 9,547.0 
6,000 2, 493.0 3,018.0 4,487.0 5,211.0 11,773.0 
7,000 3,026.0 3,269.0 4,864.0 6,159.0 14,515.0 
8,000 3,861.0 3,545.0 5,925.0 6,999.0 16,720.0 
9,000 4,136.0 4,162.0 6,812.0 8, 036.0 19,335.0 

10,000 4,270.0 4,965.0 8,046.0 9,805.0 

SEARCH TIME : (miliseconds) 

2-3 Balanced Binary SBB B Son 
Nodes Tree Tree Tree Tree Tree 
1,000 262.0 257.0 298.0 452.0 535.0 
2,000 623.0 645.0 677.0 1,116.0 1 ' 321 • 0 
3,000 919.0 995.0 902.0 1 '708.0 2,067.0 
4,000 1 '389. 0 1 '288.0 1,269.0 2,229.0 2,757.0 
5,000 1,709.0 1 '811 • 0 1,952.0 3,217.0 3, 793.0 
6,000 2,053.0 2,268.0 2,436.0 3,645.0 4,352.0 
7,000 2,446.0 2, 458.0 2,853.0 4,404.0 5,620.0 
8,000 2,940.0 3,172.0 3, 103.0 5' 360.0 6,472.0 
9,000 3,580.0 3,349.0 3,231.0 5,788.0 6,569.0 

10,000 3,869.0 4,096.0 6,364.0 8,479.0 

INTERNAL PATH LENGTH 

B 2-3 SON Balanced Binary SBB 
Nodes Tree Tree Tree Tree Tree 
1 ,000 4,623 8,000 7,258 9, 171 9, 358 
2,000 11 '272 18,000 16,504 20,392 20,772 
3,000 16,883 27,000 27,777 32,366 32,832 
4,000 22,543 40,000 37,034 44,851 45' 381 
5,000 33,1 59 50,000 46,302 57,729 58,615 
6,000 39,770 60,000 55,536 70,900 72,098 
7,000 46,426 70,000 71,770 84,299 87,447 
8,000 53,084 88,000 82,056 97,896 100,836 
9,000 59,670 99,000 92,347 111,674 115,140 

10,000 66,326 102' 577 125,592 129,554 
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8. CONCLUSION 

From the data that obtained by comparing five tree structures, 

we can conclude that Balanced 'Binary tree has the most efficient 

searching structure. In the decreasing order of efficiency, follows 

by SBB tree, 2-3 tree, B tree and Son tree. When using recursive 

formulation search in the balanced tree structures(we exclude B tree 

and Son tree here, because they involve in-page binary search also). 

The difference of search time and construction time between Balanced 

Binary tree and SBB tree are very small, because they have similar 

strutures. B tree and Son tree have shorter internal path lengths 

but they consume more search time and construction time, because 

they have in-page binary search within recursive formulation search. 

The Balanced Binary tree can be considered a well constructed 

tree structure for the general purposes of storing and searching, 

because it has the fastest search time and the construction time 

comparing it to other tree structures for very large numbers of 

nodes. The 2-3 tree may be used for special purposes where 

insertion is not an important time constraint. It has the slowest 

construction time. However it has fairly efficient speed on search 

time. The Son tree has the unique character of filling empty nodes 

into the tree structure, thereby, it delays the search time and 

construction time. The B tree may be used for large scale data bank 

in which insertions and deletions are necessary, but in which the 

primary storage of a computer is not large enough or is too costly 

to be used for long-time storage. 
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