
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1982

Comparison of tree-like structures for data
maintenance.
John Chun-Hua Chen

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Chen, John Chun-Hua, "Comparison of tree-like structures for data maintenance." (1982). Theses and Dissertations. Paper 2431.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2431?utm_source=preserve.lehigh.edu%2Fetd%2F2431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

.:-~·:·:.•.::.;:Jt... ~:;.:~-- . ·.. ···..:. ... ~-.. .. . • •

...._ •,_ _~·-• _QJ)MPA!USO~..O..E TREE-LIKf...SRI. nn;:~---···· -
FOR DATA MAINTENANCE

by

John Chun-Hua Chen

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science

Lehigh University

December 1982

ProQuest Number: EP76707

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest EP76707

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml48106- 1346

···CERTIFICATE OF APPROVAL
4118-..-.

This thesis is accepted and approved in partial fulfillment of the

requirements for the degree of Master of Science.

D_ac, ;o) /9?2
(da t'e)

ii

Head of Division

:.::::.;.., .. ,. ·---:.:.:~ , --
........ ACKNOWL:mP.G.EMENTS

_. ... The author wishes to express his sincere thanks to his advisor,

Professor S.L. Gulden, for his guidance, his helpful consultation, his

inspiration and kind assistance while working for the thesis.

The author would like to give thanks to his dear parents, brother

and his dearest wife for their endless encouragement and blessing.

--::--::..-::"":"::'::.::.:···..::

TITLE PAGE

CERTIFICATE OF APPROVAL

ACKNOWLEUGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

ABSTRACT

1. INTRODUCTION
1. 1 Trees
1.2 Binary Trees

TABLE OF CONTENTS

1.3 Applications of Binary Trees

2. BALANCED BINARY TREE
2.1 Property of Balanced Binary Tree
2.2 Analysis of Balanced Binary Tree

Algorithm
2.3 Re~ults from Experiment

3. B-TREE
3.1 Properties of B-Tree
3.2 Analysis of B-Tree Algorithm
3.3 Results from Experiment

4. SYMMETRIC BINARY B-TREE
4.1 Properties of SBB Tree
4.2 Analysis of SBB Tree Algorithm
4.3 Results from Experiment

5. 2-3 TREE
5.1 Properties of 2-3 Tree
5.2 Analysis of 2-3 Tree algorithm
5.3 Results from Experiment

6. SON TREE
6.1 Properties of Son Tree
6.2 Analysis of Son Tree Algorithm
6.3 Results from Experiment

7. COMPARISONS OF DATA MAINTENANCE

8. CONCLUSION

i

iii

iv

vi

1

2
2
3
5

7
7

10
14

l~
21
23

24
24
27
30

31
31
33
35

36
36
41
42

44

45

REFERENCES

VITA

v.

46

47

LIST OF FIGURES

Figure 1. A sample tree

Figure 2. A binary tree

Figure 3. A complete binary tree

Figure 4. A binary tree constructed for
finding duplicates

Figure 5. A balanced binary tree with
indicator of each node

Figure 6. A balanced binary tree and
possible additions

Figure 7. A sample unbalanced binary tree

Figure 8. A sample unbalanced binary tree

Figure 9· An unbalanced binary tree from
Figure 7 after LL rotation
becomes a balanced binary tree

Figure 10. An unbalanced binary tree from
Figure 8 after LR rotation
becomes a balanced binary tree

Figure 11. Construction a B-tree by insertion
20t 40, 10t 30, 15t 35, 7

Figure 12. A B-tree after insertion 26t 18,
22t 5

Figure 1). A B-tree after insertion 42t 13t
46t 27 t 8

Figure 14. A B-tree after insertion 32, 38t
24

Figure 15. A B-tree after insertion
45, 25

Figure 16. The development of SBB trees with
insertion sequence of (a)

vi

2

4

4

6

7

8

9

9

10

10

16

18

19

20

21

26

Figure 17. The development of SBB trees with
insertion sequence of (b)

Figure 18. A sample 2-3 tree

Figure 20. The sample 2-3 tree after
inserting 7

Figure 21. Construction a son tree of B-tree type
by insertion 1, 2, 3, 4, 5

Figure 22. A son tree of B-tree type after
insertion 6, 7, 8

Figure 23. A son tree of B-tree type after
insertion 9, 10

Figure 24. A son tree of B-tree type after
insertion 11

vii

27

31

32

37

39

40

41

ABSTRACT

Digital computers and their programs are among man's most logically

complex artifacts. Computer process information a billion times faster
..._.... tflo. 4 .. 4·~- , •• ,../ ,. _.

---· ..,.., -.- • ,.. ... ··••··. ·.-•·-· ,, __ • II '(t,..-·ro·~·•-··--·. --·---
... ,. ... ~ 'lm:tr"a"pers-Ori with pencil and paper, under the control of programs that

sometimes contain hundreds of thousands of instructions. The feasibility

of a proposed computer application often hinges on the efficiency with

which large masses of data can be organized. Recognizing the importance

of this aspect of computation, we consider some methods of searching

through large amounts of data to find a particular piece of information.

As we shall see, certain methods of organizing data make the search

process more efficient. Since searching is such a common task in

computing, a knowledge of these methods goes a long way toward making a

good programmer. This paper is devoted to compare the tree-like

structures and their search techniques for data maintenance. A

comparative study on five different kind of tree structures was done

experimentally. These are balanced binary tree structure, B-tree

structure, symmetric binary B-tree structure, 2-3 tree structure and son

tree structure. The number of nodes is related to the tree construction

time, the height of trees and the search-time of all nodes.

1. INTRODUCTION

1.1 Trees

+IPD•• -·--d
......... .,... -·--A·:.JrF~-s-~·"f-tm-te·-a·et orelements that is either empty or contains

a specified element called the root of the tree where the remaining

elements are partitioned into disjoint subsets, each of which is itself

a tree. These subsets are called the subtrees of the original tree. Each

element of a tree is called a node of the tree.

There are many terms which are often used when referring to trees.

Consider the tree in Figure 1. This tree has 14 nodes, each data item of

a node being a single letter for convenience. The root is designated A,

and we will normally draw trees with their root at the top. The

indicated lines are not part of the tree but are used to indicate the

subtree relationship.

Figure 1. A sample tree

LEVEL
1

2

3

4

The number of subtrees of a node is called its degree. The degree of A

in Fig.1 is 3, that of C is 1, and that of G is 0. A node that has

degree zero is called a leaf or terminal node. The set

2.

........

\K, L, M, G, N, I, Jl is the set of leaf nodes of Figure 1. The other

nodes are referred to as nonterminals. The roots of the subtrees of a

node, X, are the chi-of X. ~.f.he·e·of iWJD fFPjifil P't'«•·L_
·':;Cil? b ,.,. ..)'"(; ·.t&HT t13f •I.IIDW: - - - -· •111111••

the children of D are H, I, J; the parent of D is A. Children of the

same parent are said to be siblings. For example H, I, and J are

siblings. The degree of a tree is the maximum degree of the nodes in

the tree. The tree in Figure 1 has degree 3. The ancestors of a node are

all the nodes along the path from the root to that node. The ancestors

of N are A, D, and H.

The level of a node is defined recursively as follows. The root is

taken to be at level one. If a node is at level p, then its children are

at level p+1. Figure 1 shows the levels of all nodes in that tree. The

maximum level of any element of a tree is said to be its depth or

height. The number of branches or edges which have to be traversed in

order to proceed from the root to a node X increased by one is called

the path length of X. The root has path length 1, its direct children

have path length 2, etc. The path length of a tree is defined as the sum

of the path lengths of all its components. It is called its internal

path length.

1 • 2 Binary Trees

A binary tree is a tree in which each node has degree no more than

two. The two subtrees at each node (possibly empty) are called its left

and right subtrees.

A conventional method of picturing a binary tree is shown in Figure

2. This tree consists of ten nodes with A as its root. Its left subtree

is rooted at B and its right subtree is rooted at C. This is indicated

by the two branches emanating from A: to B on the left and to C on the

right. The absence of a branch indicates an empty sl.ibf~~:.-~·~exampiif, ..
the left subtree of the binary tree rooted at C and the right subtree of

the binary tree rooted at E and D are both empty. The binary trees

rooted at G, H, I, and J have empty right and left subtrees.

Figure 2. A Binary Tree

A complete binary tree of level n is one in which each node of

level n is a leaf and in which each node of level less than n has

nonempty left and right subtrees and each node at level n is a leaf.

Figure 3 illustrates a complete binary tree.

Figure 3. A complete binary tree

•

1.3 Applications of Binary Trees

A binary tree is a useful data structure when two-way decisions

must be made at each point in a process. For example, suppose that we

wanted to find all duplicates in a list of numbers. One way of doing

this is to compare each number with all those that precede it. However,

this involves a large number of comparisons. The number of comparisons

can be reduced by using a binary tree. The first number is read and

placed in a node which is established as the root of a binary tree with

empty left and right subtrees. Each successive number in the list is

then compared to the number in the root. If it matches, we have a

duplicate. If it is smaller, the process is repeated with the left

subtree, and if it is larger, the process is repeated with the right

subtree. This continues until either a duplicate is found or an empty

subtree is reached. In the latter case, the number is placed into a new

node at that position in the tree. Figure 4 illustrates the tree that

would be constructed from the input 20, 25, 9, 16, 13, 29, 7, 10, 26, 9,

32, 28, 16, 20, 10, The output would indicate that 9, 16, 20, and 10 are

duplicates.

5·

20~
9/ 25

7/ ~16 ~29
/ /~

1 3 26 32

10/ ~28

Figure 4. A binary tree constructed for finding duplicates

6

2. BALANCED BINARY TREE

2.1 Property of Balanced Binary Tree

A tree is said to be balanced if and only if for every node the

heights of its two subtrees differ by at most 1. [AVL-balanced tree]

Each node in a balanced binary tree has a balance of 1, -1, or 0,

depending on whether the height of its right subtree is greater than,

less than, or equal to the height of its left subtree. The balance of

each node is indicated in Figure 5.

Figure 5. A balanced binary tree with indicator of each node

Suppose that we are given a balanced binary tree and insert a new

node into the tree. Then the resulting tree may or may not remain

balanced. Figure 6 illustrates all possible insertions that may be made

to the tree of Figure 5. Each insertion that yields a balanced tree is

indicated by a B. The unbalanced insertions are indicated by a U and are

numbered from to 12. It is easy to see that the tree becomes

unbalanced only if the newly inserted node is a right descendant of a

7.

node which previously had a balance 1 (this occurs in cases U9 through

U12) or if it is a left descendant of a node which previously had a

balance of -1 (cases U1 through US). In Figure 6, the youngest ancestor

that becomes unbalanced in each insertion is indicated by the numbers

contained in three of the nodes.

node

// ---------1-4 node

/'~ /~
node node 5-8 9-12

// \ /"" I~ / ""' node node B B node node node node

I\ I\ I\ /\ I\ I~
U1 U2 U3 U4 7\ 7\ B B B B ;r ?\e

US U6 U7 US U9 U10 U11 U12

Figure 6. A balanced binary tree and possible additions

To maintain a balanced tree, it may be necessary to perform

transformations called rotations on the tree. Consider the trees of

Figure 7 and Figure 8, Figure 9 indicates the balancing of the tree in

Figure 7 by a so-called LL rotation. Figure 10 indicates the balancing

of the tree in Figure 8 by a so-called LR rotation. By symmetry there

are also RR and RL rotations.

8

A
I \

I \
B

I \
I \

tree T3
of height

tree T1
of height

n

newly
inserted
node

n
tree T2
of height

n

Figure 7. A sample unbalanced binary tree

I
I

I
tree T1 of
height n

B

I
I

I

I

\
\
\
c

I
I

A

tree T2
of height
n-1

newly
inserted
node

\

\
\
\

\
\

tree T4 of
height n

tree T3
of height
n-1

Figure 8. A sample unbalanced binary tree

9.

I
I

I
tree T1 of
height n

B
\
\
\

A

I \
I \

I \
newly tree T2
inserted of
node height n

tree T3
of

height n

Figure 9. An unbalanced binary tree from Figure 7 after
LL rotation becomes a balanced binary tree

B

I
I

I

c
\
\
\

A
I \ I \

I \ I \
tree
T1 of
height
n

tree tree tree
T2 of T3 of T4 of
height height height
n-1 n-1 n-1

newly
inserted
node

Figure 10. An unbalanced binary tree from Figure 8 after
LR rotation becomes a balanced binary tree

2.2 Analysis of Balanced Binary Tree Algorithm

The following indica tea an algorithm to maintain a balanced tree.

See [1].

Data structure of the balanced binary tree:

10

TYPE ref = Anode;
node= RECORD

key:integer;
count:integer;
left,right:ref;
balance: -1 , 0, 1

END;

PROCEDURE search(x:integer;VAR p:ref;VAR h:boolean);
VAR p1,p2: ref; { h=false }
BEGIN

IF p=nil THEN
word is not in tree; insert it
ELSE
IF x<pA.key THEN
BEGIN

search(x,pA.left,h);
IF h THEN {left branch has grown higher}
CASE p"'. balance OF
1: adjust pA.balance=O; h=false;
0: adjust p"'.balance=-1;

-1: BEGIN
{need rotation to rebalance}
let p1 point to pA.left;
IF p1"'.balance•-1

THEN LL rotation transformation
ELSE LR rotation transformation;

adjust pA.balance=O; h=false
END{-1}

END {CASE}
END ELSE
IF x>p"'.key THEN
BEGIN

search(x,p"'.right,h);
IF h THEN {right branch has grown higher}
CASE pA. balance OF
-1: adjust p"'.balance=O; h=false;
0: adjust p"'.balance=1;
1: BEGIN

{need rotation to rebalance}
let p1 point to pA.right;
IF p1"'.balanceo:1

THEN RR rotation transformation
ELSE RL rotation transformation;

ad~ust p"'.balance=O; h=false
END { 11

1.1

END {CASE}
END ELSE
word is found, increase count by 1, h=false

END ! search} ;

The process of node insertion consists essentially of the following

three parts:

1. Follow the search path until it is found that the key

is not already in the tree.

2. Insert the new node and determine the resulting balance

factor.

3. Retreat along the search path and check the balance factor

at each node.

Finding the search path is straightforward, however, if it leads to a

dead end (i.e., to an empty subtree designated by a pointer value nil),

then the given element must be inserted in the tree at the palce of the

empty subtree. Prior to insertion on a left subtree, for example, we

must distinguish between the three conditions of a node's balance

factor(the height of its right subtree minus the height of its left

subtree) involving the subtree heights:

h(left) < h(right) +1, the previous imbalance at p will be
equilibrated.

h(left) = h(right) 0, the weight is now slanted to the left.

h(left) > h(right) -1, rebalancing is necessary.

The algorithm for insertion and rebalancing critically depends on the

way information about the tree's balance is stored. Because of its

recursive formulation it can easily accommodate an additional operation

12

on the way back along the search path. At each step, information must be

passed as to whether or not the height of the subtree had increased.

Therefore, extending the procedure's parameter list by the Boolean h

with the meaning that the subtree height has increased. The rebalancing

operations necessary are entirely expressed as a sequence of pointer-

reassignments. There are four cases that must be considered while

rebalancing a tree. These are the rotations indicated in some detail

below.

START ROTATION RESULT

(LL) B <-- C A <-- B <-- C B
I \ \ I \ \ \ I \

A A c
I \ I \ I \

(LR)
~!

A <-- C A --> B c B
I \ \ I I \ \ I \

B A c
I \ I \ I \

(RR) A --> B A --> B --> c B
I I \ I I I \ I \

c A c
I \ I \ I \

!~
(RL) A --> c A B <-- C B

I I \ I I \ \ I \
B A c

I \ I \ I \

In an extreme case rebalancing may propagate all the way up to the root.

on the way back along the search path. At each step, information must be

passed as to whether or not the height of the subtree had increased.

Therefore, extending the procedure's parameter list by the Boolean h

with the meaning that the subtree height has increased. The rebalancing

operations necessary are entirely expressed as a sequence of pointer-

reassignments. There are four cases that must be considered while

rebalancing a tree. These are the rotations indicated in some detail

below.

START ROTATION RESULT

(LL) B <-- c A <-- B <-- C B
I \ \ I \ \ \ I \

A A c
I \ I \ I \

(LR)
~!

A <-- c A --> B c B
I \ \ I I \ \ I \

B A c
I \ I \ I \

(RR) A --> B A --> B --> c B
I I \ I I I \ I \

c A c
I \ I \ I \

!~
(RL) A --> c A B <-- C B

I I \ I I \ \ I \
B A c

I \ I \ I \

In an extreme case rebalancing may propagate all the way up to the root.

1.3

2.3 Results from Experiment

An experiment was performed in constructing balanced trees using a

random number generator to provide data elements. Results are provided

in the following table.

(miliseconds) (miliseconds) Internal Path
Nodes Construction Time Search Time Length

1,000 324.0 257.0 9, 1 71
2,000 785.0 645.0 20, 392
3,000 1, 275.0 995.0 32,366
4,000 1, 683.0 1,288.0 44,851
5,000 2, 184.0 1,811.0 57,729
6,000 2, 493.0 2,268.0 70,900
7,000 3,026.0 2,458.0 84,299
8,000 3,861 .o 3,172.0 97,896
9,000 4,136.0 3,349.0 111,674

10,000 4,270.0 3,869.0 125,592

HEIGHT NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES
1 1
2 2
3 4
4 8
5 16
6 32
7 64
8 128
9 245

10 331
11 1 65
12 4
13
14
15
16
TOTAL 1,000

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4
8 8 8 8 8 8 8 8 8

16 16 16 16 16 16 16 16 16
32 32 32 32 32 32 32 32 32
64 64 64 64 64 64 64 64 64

1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28
256 256 256 256 256 256 256 256 256
487 506 511 512 512 512 512 512 512
622 862 951 982 1,005 1,015 1,022 1,024 1,024
357 853 1,244 1,498 1,668 1,788 1,885 1,935 1,973

23 261 707 1,224 1,657 2,049 2,369 2,677 2,932
7 76 273 634 1,051 1,495 1,943 2,402

13 74 206 398 645
1

2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10000

14

3. B-TREE

3.1 Properties of B-Tree

A B-tree is a data structure defined in an attempt to manage large

amounts of information effeciently. In our description we will follow

the standard usage and refer to the nodes as pages. In the case of a B-

tree we allow a page to contain more than a single item of information.

The items of information in each node are referenced by objects called

keys and we shall be only concerned with the keys in a page.

A tree is called a B-tree of order n iff

1. Each page contains at most 2n keys.

2. Each page other than the root contains at least n keys.

3. If a page is not a leaf page and contains m keys then it has
m+1 children.

4. All leaf pages have the same level.

Figure 11-15 shows the result of construction a B-tree of order 2(nc2)

with the following insertion sequence of keys:

20, 40, 10, 30, 15, 35, 7, 26, 18, 22, 5, 42, 13, 46, 27,
8, 32, 38, 24, 45, 25

(1)
!20

(2)
!20 40

(3)
! 10 20 40 !

(4)
! 10203040

(5)
! 10 15 20 30 40 ! overflow

! 20 !

I ~ -------- --------
! 1 0 1 5 ! ! 30 40 !

(6)

!20 !

_____ f==---~--------
! 1 0 1 5 ! uo 35 40 !

(7)
! 20!

-----~~---~~------
!7 10 15! !30 35 40!

Figure 11. Construction a B-tree by insertion 20, 40, 10,
30, 15, 7

(1)
! 20 !

------~- -~---------
!7 10 15! !26 30 35 40!

(2) ------
! 20 !

-------~~~----~~---------
!7 10 15 18! !26 30 35 40 !

(3)
! 20 !

--------~-- ~------------
!7 10 15 18! !22 26 30 35 40! overflow

!20 30!

-----------~---1- ~ -------
!7 10 15 18! !22 26! !35 40!

17

(4)
!20 30!

!57101518! !22 26! !35 40!

! 10 20 30!

-----~z-----s-~------
!5 7! ! 15 18! !22 26! !35 40!

Figure 12. A B-tree after insertion 26, 18, 22, 5
(1)

! 10 20 30!

----~~-----~~--------
!5 7! ! 15 18! !22 26! !35 40 42!

(2)

! 10 20 30!

!5 7! !13 15 18! !22 26! ! 35 40 42!

18

(3)
! 10 20 30!

----~~~~~--~~------------
!5 7! !13 15 18! !22 26! ! 35 40 42 46!

(4)

! 10 20 30!

!5 7! !13 15 18! !22 26 27! ! 35 40 42 46!

(5)
! 10 20 30!

----------~
------~--J-----~------- -------------
!5 7 8! !13 15 18! !22 26 27! ! 35 40 42 46!

Figure 13. A B-tree after insertion 42, 13, 46, 27, 8

(1)

! 10 20 30!

! 5 7 8! ! 1 3 15 18! ! 22 26 27! ! 32 35 40 42 46!

! 10 20 30 40!

-----~-z~---s.~-----
! 5 7 8! ! 1 3 15 18! ! 22 26 27! ! 32 35! ! 42 46!

(2)
! 10 20 30 40!

/7----y---~
------- ---------- ---------- ---------- -------
!57 8! !13 15 18! !22 26 27! !32 35 38! !42 46!

(3)
!10 20 30 40!

~---r----~
------- ---------- ------------- ---------- -------
!57 8! !13 15 18! !22 24 26 27! !32 35 38! !42 46!

Figure 14. A B-tree after insertion 32, 38, 24
(1) -------------

! 10 20 30 40!

~ -------------~
~/ l ~~

15 7 8 ' !n 15 18! 122 24 26 211 132 35 38! !42 45 46!

(2)
! 10 20 30 40!

!5 7 8! !13 15 18! !22 24 25 26 27! !32 35 38! !42 45 46!

20

! 1 0 20 25 30 40 ! overflow

~--~----\---~--------------
------- ---------- ------- ------- ---------- ----------
!5 7 8! !13 15 18! !22 24! !26 27! !32 35 38! !42 45 46!
------- ---------- ------- ------- ---------- ----------

!25!

~-----
! 10 20! !30 40!

~-----~~

------- ---------- ----------
! 5 7 8! ! 1 3 15 18! ! 22 24! ! 26 27! ! 32 35 38! ! 42 45 46!

Figure 15. A B-tree after insertion 45, 25

3.2 Analysis of the B-Tree Algorithm

The data structure of page & item :

item= RECORD page= RECORD
key: integer;
p: ref;

m:O •• nn;(*no.of items*)
pO: ref;
e:ARRAY(1 •• nn] OF item

END;
count: integer

END;

PROCEDURE eearch(x:integer;a:ref;VAR h:boolean;VAR u:item);
BEGIN

IF a=NIL THEN BEGIN (* x is not in tree *)

END

Assign x to item u, set h to true,
indicating that an item u is passed
up in the tree

ELSE WITH a"' DO
BEGIN (* search x on page a"' *)

Binary array search;
IF found

THEN increment the relevant item's
occurrence count

ELSE BEGIN
search(x,descendant,h,u);

21

END
END

END;

IF h THEN (* an item u is
being passed up*)

IF (no.items on aA) < 2n
THEN insert u on page

aA and set h to
false

ELSE split page and
pass middle item
up

The keys appear in increasing order from left to right if the B-

tree is squeezed into a single level by inserting the descendants in

between the keys of their ancestor page. This arrangement represents a

natural extension of the organization of binary search trees, and it

determines the method of searching an item with given key. Given a page

as indicated below where each Ki is a key and each Pi is a page pointer.

The in-page search is represented as a binary search upon the fixed

array, if the search is unsuccessful, we are in one of the following

situations :

1. Ki<x<Ki+1, for 1<=i<m. We continue the search on page PiA.

2. Km<x. The search continues on page PmA.

3. x<K1. The search continues on page POA.

page

PO K1 P1 K2 P2 ... Pm-1 Km Pm
--!-------!-------!----!-----!---------!--

! !
v v v v v v

If an item is to be inserted in a page with m < 2n items, the insertion

22

process is restricted to that page. It is only insertion into an already

full page which may cause the allocation of new pages by page splitting.

In particular, the split pages contain exactly n items. The insertion of

an item in the ancestor page may again cause that page to overflow,

thereby causing splitting to propagate. A recursive formulation is most

convenient because of the property of the splitting process to propagate

back along the search path.

3. 3 Results from Experiment

(miliseconds) (miliseconds) Internal Path
Nodes Construction Time Search Time Length

1,000 563.0 452.0 4,623
2,000 1, 458.0 1,116.0 11,272
3,000 1, 985.0 1, 708.0 16,883
4,000 2,735.0 2,229.0 22,543
5,000 3,289.0 3,217.0 33,159
6,000 4,487.0 3,645.0 39,770
7,000 4, 864.0 4, 404.0 46,426
8,000 5,925.0 5, 360.0 53,084
9,000 6,812.0 5,788.0 59,670

10,000 8,046.0 6, 364.0 66,326

HEIGHT
1

NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES
4 2 3 4 1 1 2 2 2 3

2
)

4
5
6
7

TOTAL

16 7 12 15 5 7 8 9 11 11
54 28 44 53 17 24 26 30 34 36

205 106 164 212 74 87 100 109 130 141
721 394 594 794 266 321 365 416 480 533

1 ' 46 3 2' 183 2, 922 988 1 , 1 90 1 ' 388 1 '580 1 '777 1 '968
3,649 4,370 5,111 5,854 6,566 7,308

1 , 000 2, 000 3, 000 4, 000 5 , 000 6 , 000 7 , 000 8 t 000 9, 000 1 0000

4. SYMMETRIC BINARY B-TREE (SBB TREE)

4.1 Properties of SBB Tree

A symmetric binary B-tree is a B-tree which is also a binary tree.

In order to compensate for the pages in the B-tree horizontal pointers

are introduced to represent page items which would be considered to be

all at the same level. The following conditions are required. Every

node contains one key and at most two(pointers to) subtrees. Every

pointer is either horizontal or vertical. There are no two consecutive

horizontal pointers on any search path. All terminal nodes appear at

the same level. Figure 16, and 17 show how one might construct a SBB

tree with the following insertion sequences of keys:

2,4

4. SYMMETRIC BINARY B-TREE (SBB TREE)

4.1 Properties of SBB Tree

A symmetric binary B-tree is a B-tree which is also a binary tree.

In order to compensate for the pages in the B-tree horizontal pointers

are introduced to represent page items which would be considered to be

all at the same level. The following conditions are required. Every

node contains one key and at most two(pointers to) subtrees. Every

pointer is either horizontal or vertical. There are no two consecutive

horizontal pointers on any search path. All terminal nodes appear at

the same level. Figure 16, and 17 show how one might construct a SBB

tree with the following insertion sequences of keys:

2.4

c~

0
r
r
~
c
-t

..

L
0
ll

(a) 19, 7, 3, 2, 20, 6, 9

(1)

(2)

(3)

(4)

(5)

v
19

v
'7 <-- 19

v
3 <--- 7 <-- 19

v
7

I \
3

v
7

I \
2 <--- 3

v
7

I \
2 <-- 3

19

19

19

two consecutive
siblings

--> 20

25

(6)

v

2 <--~~
7

~19 --> 20

(7)
v

/7~
2 <-- 3 --> 6 9 <-- 19 --> 20

Figure 16. The development of SBB trees with insertion
sequence of (a)

(b) 7, 3, 15, 1, 19, 6, 9
(1) !

(2)

(3)

v
7

v
3 <--- 7 --->15

v
1 <-- 3 <-- 7 -->15
two consecutive
siblings

(4)

(5)

(6)

v

v
3

I \
7 -->15

v
3

I \
1 7 -->15 --> 19

two consecutive
siblings

v
3 -->15

I I \
7 19

v
3 ------->15

I I \
1 6 <-- 7 19

3 ---------> 15
I I~

1 6 <--- 7 --> 9 19

Figure 17. The development of SBB trees with insertion
sequence of (b)

4.2 Analysis of the SBB Tree Algorithm

Data structure of the SBB tree:

TYPE ref aAnode;
node-= RECORD

key:integer;
count:integer;

27

left,right:ref;
lh,rh:boolean

END;

PROCEDURE search(x:integer;VAR p:ref; VAR h:integer);
VAR p1 ,p2: ref;
BEGIN

IF p=nil THEN
BEGIN

word is not in tree, insert it;
set h=2, lh, rh= false

END ELSE
IF x<pA.key THEN
BEGIN

search(x,pA.left,h);
IF h <> 0 THEN {need rotation to rebalance}
IF pA.lh {p has obtained a left sibling}
THEN BEGIN

let p1 point to pA.left;
IF p1A.lh {p1 has obtained a left sibling}

THEN LL rotation transformation

END
ELSE {h=O}
BEGIN

h=h-1;

ELSE IF p1A.rh {p1 has obtained a right
sibling}

THEN LR rotation transformation

IF h <> 0 {p has obtained a left sibling}
THEN pA.lh=true

END
END ELSE
IF x>pA.key THEN
BEGIN

search(x,pA.right,h);
IF h <> 0 THEN {need rotation to rebalance}
IF pA.rh {p has obtained a right sibling}
THEN BEGIN

let p1 point to pA.right;
IF p1A.right {p1 has obtained a right

sibling}
THEN RR rotation transformation
ELSE IF p1A.lh {p1 has obtained a left

sibling}

END
ELSE {h=O}
BEGIN

THEN RL rotation transformation

28

END
END ELSE

h:= h-1;
IF h <> 0 {p has obtained a right sibling)

THEN p"'.rh=true

word is found in tree; increase count by 1;
set h=O
END I search};

The recursive procedure search again follows the pattern of the

basic binary tree insertion algorithm. Each node now requires two

bi ts(Boolean variables lh and rh) to indicate the nature of its two

pointers. Whenever a subtree of node A without siblings grows, the root

of the subtree becomes the sibling of A. The parameter h indicates

whether or not the subtree with root P has changed, and it corresponds

directly to the parameter h of the B-tree search program. We must

distinguish between the case of a subtree(indicated by a vertical

pointer) that has grown and a sibling node(indicated by a horizontal

pointer) that has obtained another sibling and hence requires a page

split. The problem is solved by introducing a three-valued h with the

following meanings:

1. h=O : the subtree P requires no changes of the tree
structure.

2. h=1 node P has obtained a sibling.

3. h=2 the subtree P has increased in height.

The actions to be taken for node re-arrangement are virtually identical

to those of the balanced binary tree algorithm. The implementation of

the three-valued balance field(-1, 0, 1), in the case of the balanced

binary tree, is replaced by three boolean fields lh, rh in the case of

29

the SBB tree. In fact, the four cases (LL, RR, LR, RL) in the SBB tree

algorithm are slightly simpler than in the balanced binary tree

algorithm. It can be shown that the AVL-balanced tree is a special case

of tne SBB tree. [1]

4.3 Results from Experiment

(miliseconds) (miliseconds) Internal Path
Nodes Construction Time Search Time Length

1,000 368.0 298.0 9, 358
2,000 862.0 677.0 20,772
3,000 1 '258. 0 902.0 32,832
4,000 1, 782.0 1,269.0 45,381
5,000 2,562.0 1 '952.0 58,615
6,000 3,018.0 2,436.0 72,098
7,000 3,269.0 2,853.0 87,447
8,000 3,545.0 3,103.0 100,836
9,000 4,162.0 3,231.0 115,140

10,000 4,965.0 4,096.0 129,554

HEIGHT NODES NODES NODES NOSES NODES NODES NODES NODES NODES NODES
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 4 4 4 4 4 4 4 4 4 4
4 8 8 8 8 8 8 8 8 8 8
5 16 16 16 16 16 16 16 16 16 16
6 32 32 32 32 32 32 32 32 32 32
7 64 64 64 64 64 64 64 64 64 64
8 128 128 128 128 128 128 128 128 128 128
9 219 256 256 256 256 256 256 256 256 256

10 277 451 508 512 512 512 512 512 512 512
11 173 529 774 912 932 972 936 962 982 989
12 67 336 718 1,054 1,274 1,473 1,332 1,527 1 ,606 1, 677
13 9 122 349 712 1,099 1,371 1,426 1,809 2,028 2,189
14 37 116 258 529 790 1,233 1,469 1,740 2,054
1 5 14 20 40 125 313 730 839 1,010 1,275
16 4 1 16 51 250 275 435 557
17 2 7 60 83 153 174
18 10 1 3 23 52
19 10
TOTAL 1 , 000 2 , 000 3, 000 4, 000 5,000 6 , 000 7 ' 000 8, 000 9,000 10000

30

5. 2-3 TREE

5.1 Property of the 2-3 Tree

A 2-3 tree is a tree in which each vertex which is not a leaf has 2

or 3 children, and every path from the root to a leaf is of the same

length. Nodes which are not leaf nodes contain the maximum value of the

leftmost and the maximum value of the next child. Note that the tree

consisting of a single vertex is a 2-3 tree. Figure 18 shows a sample

2-3 tree. Figure 19 shows the sample 2-3 tree after inserting 2.

Figure 20 shows the sample 2-3 tree after inserting ?.

4 : 10

/1~
1 : 4 8. 9 12 15

1\ /\~ I~
1 4 8 9 10 12 15

Figure 18. A sample 2-3 tree

4 : 10

~~~ 
: 2 8 : 9 12 15 

/1\ /1\ /~ 
1 2 4 8 9 10 12 15 

Figure 19. The sample 2-3 tree after inserting 2 

~1 



4 : 10 

-~ \ ---------1 : 4 8 : 9 12 : 15 

I\ ,/I~ /'\. 
1 4 7 8 9 10 12 15 

overflow 

new 
node 

4:8 ! 

~~,,~ 
1:~ 7:~ .9:10 12:15 overflow 

1\ 1\ /\ I~ 
1 4 7 8 9 10 12 15 

new 
root 

/-~ 
4 : 8 new 

!\ 
1:4 7:8 

node 

~~ 
9:10 12 : 15 

1\ 1\ /\ /~ 
1 4 7 8 9 10 12 15 

8:15 

4:/~:15 
/~ /~'--. 

1:4 7:8 9:10 12:15 

/\ 1\ 1\ /~ 
1 4 7 8 9 10 12 15 

Figure 20. The sample 2-3 tree after inserting 7 

32 



5.2 Analysis of the 2-3 Tree Algorithm 

To build a 2-3 tree is essentially similar to construct a binary 

tree, except a 2-3 tree may have 3-way decisions making because of its 

property that each node(except leaf) has two or three children. 

Therefore, we need two pieces of information (L and M) store in each 

node(except leaf) to indicate the direction while inserting a new 

element. L[v], the element L stored at node v, indicates the largest 

element of the subtree whose root is the left most son of node v; M[v], 

the element M stored at node v, indicates the largest element to the 

subtree whose root is the second son of node v. With these information 

stored in the nodes, we can search a 2-3 tree analogous to binary tree 

search. 

To insert a new element e into a 2-3 tree, we must locate the place 

for the new leaf 1 that will contain element e. This is done by tracing 

the paths that are indicated by the value of L[v] and M[v]. If e<=L[v], 

then follow the path of the left most son of the node v. If 

L[v]<e<=M[v], then follow the path of the second son of node v. If none 

of the above cases are true, then follow the path of the right most son 

of the node v. Until an empty node is found, then we create a new leaf 1 

and insert element e into leaf 1, then insert 1 into tree. 

Suppose node r already has three leaves, s1, s2, and s3. We want to 

insert a new leaf 1 to be the appropriate son of node r. First, we must 

re-arrange the sequence of these four children by comparing the value of 

each of them. To maintain the 2-3 property, we create a new node n, and 

33 



assign the two right most sons as the two left most sons of n, keep the 

two left most sons of node r unchange. At this point, we have to up 

date the value of L and M that had been stored in the ancestors of node 

r, then we can insert node n into the tree and becomes a child of father 

of r. If f, father of r, had three children, we must repeat this 

procedure recursively until all ancestors in the tree has at most three 

children. Suppose f is the root of the tree, and had three children, r1, 

r2, r3 plus a newly created node n (assume n>r3). In this case, we 

create another new node n' to keep r3 and n, and create a new root to 

keep f and n'. 

Procedure SEARCH(a,r); 
IF any son of r is a leaf THEN Rm'URE r 
ELSE BEGIN 

let si be the ith son of r; 
IF a<=L[r) THEN Rm'URE SEARCH(a,s1) 

IF r has less than 3 children 
THEN adjust L, M 
ELSE addson(r) 

ELSE 
IF r has two sons or a<=M[r) THEN RETURN SEARCH(a,s2) 

IF r has less than 
3 children 

END 

ELSE Rm'URN SEARCH(a,s3) 
IF r has less than 3 children 

THEN adjust L, M 
ELSE addson(r) 

Procedure ADDSON(v); 
BEGIN 

create a new vertex v'; 

THEN adjust L, M 
ELSE add son( r) 

make the two rightmost sons of v the left and right sons of v'; 
IF v is not in the leaf level 

THEN adjust L, M 



END ; 

IF v has no father THEN 
BEGIN 

END 
ELSE 

create a new root r; 
make v the left son and v' the right son of r 
adjust L, M 

BEGIN 

END 

let f be the father of v; 
make v' a son of f immediately to the right of v; 
adjust L, M 
IF f now has four sons THEN ADDSON(f) 

5.3 Results from Experiment 

Nodes 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 

(miliseconds) 
Construction Time 

1,337-0 
3,205.0 
4,989.0 
7,526.0 
9,547.0 

11,773-0 
14,515.0 
16,720.0 
19,335.0 

HEIGHT 
8 
9 
9 

10 
10 
10 
10 
11 
11 

(miliseconds) 
Search Time 

262.0 
623.0 
919.0 

1 '389.0 
1, 709.0 
2,053.0 
2,446.0 
2,940.0 
3,580.0 

NODES 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 

35 

Internal Path 
Length 

8,000 
18,000 
27,000 
40,000 
50,000 
60,000 
70,000 
88,000 
99,000 



6. SON TREE 

6.1 Properties of Son Tree 

A binary tree is called a 1-2 tree iff each inner node is either 

unary or binary, and all leaves are on the same level. A 1 -2 tree is 

called a son tree if no two unary nodes are sucessive. The son tree we 

discuss here is one kind of B tree. Each page contains one or two nodes, 

the maximum sons of each page are three, each node can have either one 

or two sons. The node in the page may be an empty (E) node. 

node node 
---!--------!--------!---

v v v 

Figure 23-26 shows the result of construction a son tree with the 

following insertion sequence of keys: 

1, 2; 3, 4, 5, 6, 7, 8, 9, 10, 11 

36 



( 1 ) 
! 1 E! 

(2) 

! 1 2! 

(3) 

! 1 2 3! overflow 

!2 E! 

___ ~_---~----
! 1 E! ! 3 E! 

(4) 
!2 E! 

--~~-~------
! 1 E! !3 4 5! overflow 

!2 4! 

___ /--~~---
! 1 E! !3 E! !5 E! 

Figure 21. Construction a son tree of B-tree type by 
insertion 1, 2, 3, 4, 5 

37 



( 1 ) 
!2 4! 

! 1 E! !3 E! !5 6! 

(2) 
!2 4! 

! 1 E! !3 E! !5 6 7! overflow 

!2 4 6! overflow 

~-r---~ 
----- ----- -----
! 1 E! ! 3 E! !5 E! !7 E! 

!4 E! 

!2 E! !6 E! 

____ /~]~~ 
! 1 E! !3 E! !5 E! !7 E! 

38 



(3) 
!4 E! 

/---~----
!2 E! !6 E! 

___ / --y- I ---~ 
! 1 E! !3 E! !5 E! !7 8! 

Figure 22. A son tree of B-tree type after insertion 
6, 7' 8 

( 1 ) 
!4 E! 

____ / ---~---
!2 E! !6 E! 

/ ----\ / \ -------
! 1 E! !3 E! !5 E! !7 8 9! overflow 

-------

!4 E! 

/ ---~ 
!2 E! !6 8! 

/ ---\ / ---~~~~---
! 1 E! !3 E! !5 E! !7 E! !9 E! 

39 



(2) 
!4 E! 

~----~----
!2 E! !6 8! 

! 1 E! ! 3 E! !5 E! !7 E! ! 9 10! 

Figure 23. A son tree of B-tree type after insertion 
9, 10 

!4 E! 

/---~ 

!2 E! !6 8! 

---~ --~--
! 1 E! !3 E! !5 E! !7 E! !9 10 11! overflow 

!4 E! 

/---~ 

!2 E! !6 8 10! overflow 
--------

/\ ----~--l- '~~---
! 1 E! !3 E! ! 5 E! ! 7 E! ! 9 E! ! 11 E! 

40 



!4 8! 

----~~~--~-----
!2 E! !6 E! ! 10 E! 

/I ----- -----
! 1 E! !3 E! ! 5 E! ! 7 E! ! 9 E! ! 11 E! 

Figure 24. A son tree of B-tree type after insertion 11 

6.2 Analysis of the Son Tree Algorithm 

The data structure of page & item : 

item= RECORD page= RECORD 
key: integer; 
p: ref; 

m:1 •• 2;(*no.of items*) 
pO: ref; 

count: integer 
END; 

e:ARRAY[1 •• 2] OF item 
END; 

PROCEDURE search(x:integer;a:ref;VAR h:boolean;VAR u:item); 
BEGIN 

IF a=NIL THEN BEGIN (* x is not in tree *) 

END 

Assign x to item u, set h to true, 
indicating that an item u is passed 
up in the tree 

ELSE WITH a" DO 
BEGIN (* search x on page a" *) 

Binary array search; 
IF found 

THEN increment the relevant item's 
occurrence count 

ELSE BEGIN 
search(x,descendant,h,u); 
IF h THEN (* an item u is 

being passed up*) 
IF (no.items on a") < 2 

THEN insert u on page 
a" and set h to 
false 

41 



END 
END; 

END 

ELSE split page and 
pass middle item 
up 

The procedure search is straightward binary tree search, searching 

key x with root a, if found, increment counter, otherwise insert an item 

with key x and count 1 in tree. If an item emerges to passed to a lower 

level, this may cause that page to overflow, then, the procedure insert 

will call by the recursive formulation (parameter h=true) back along the 

search path. 

6.) Results from Experiment 

Nodes 
1 ,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 

(miliseconds) 
Construction Time 

642.0 
1,547.0 
2,512.0 
3,195.0 
4,612.0 
5,211.0 
6, 159.0 
6,999.0 
8,036.0 
9,805.0 

(miliseconds) 
Search Time 

535.0 
1, 321 .o 
2,067.0 
2,757.0 
3,793.0 
4,352.0 
5, 620.0 
6,472.0 
6, 569.0 
8,479.0 

Internal Path 
Length 
7,258 

16,504 
27' 777 
37,034 
46,302 
55.536 
71 '770 
82,056 
92' 347 

102,577 

HEIGHT NODES NODES NODES NODES NODES NODES NODES NODES NODES NODES 
1 2 1 1 1 2 2 1 1 1 1 
2 3 3 2 3 3 4 2 3 3 3 
3 9 6 5 5 7 10 5 5 5 5 
4 1 9 1 6 11 1 3 1 5 22 11 11 12 1 5 
5 44 38 25 32 41 49 24 27 31 33 
6 106 91 55 78 91 109 58 65 69 78 
7 245 214 1 30 181 224 269 1 35 155 175 194 
8 572 498 308 415 525 626 311 354 392 439 
9 1,133 746 975 1,226 1,472 726 831 938 1,042 

10 1,717 2,297 2,866 3,437 1,726 1,959 2,209 2,476 

42 



11 4,001 4,589 5,165 5,714 
TOTAL 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10000 

43 



7. COMPARISONS OF DATA MAINTENANCE 

CONSTRUCTION TIME : (miliseconds) 

Balanced Binary SBB B Son 2-3 
Nodes Tree Tree Tree Tree Tree 
1,000 324.0 368.0 563.0 642.0 1 '337. 0 
2,000 785.0 862.0 1 '458.0 1,547.0 3,205.0 
3,000 1 '275. 0 1 '258. 0 1 '985. 0 2,512.0 4,989.0 
4,000 1 '683.0 1 '782.0 2,735.0 3,195.0 7,526.0 
5,000 2,184.0 2,562.0 3,289.0 4,612.0 9,547.0 
6,000 2, 493.0 3,018.0 4,487.0 5,211.0 11,773.0 
7,000 3,026.0 3,269.0 4,864.0 6,159.0 14,515.0 
8,000 3,861.0 3,545.0 5,925.0 6,999.0 16,720.0 
9,000 4,136.0 4,162.0 6,812.0 8, 036.0 19,335.0 

10,000 4,270.0 4,965.0 8,046.0 9,805.0 

SEARCH TIME : (miliseconds) 

2-3 Balanced Binary SBB B Son 
Nodes Tree Tree Tree Tree Tree 
1,000 262.0 257.0 298.0 452.0 535.0 
2,000 623.0 645.0 677.0 1,116.0 1 ' 321 • 0 
3,000 919.0 995.0 902.0 1 '708.0 2,067.0 
4,000 1 '389. 0 1 '288.0 1,269.0 2,229.0 2,757.0 
5,000 1,709.0 1 '811 • 0 1,952.0 3,217.0 3, 793.0 
6,000 2,053.0 2,268.0 2,436.0 3,645.0 4,352.0 
7,000 2,446.0 2, 458.0 2,853.0 4,404.0 5,620.0 
8,000 2,940.0 3,172.0 3, 103.0 5' 360.0 6,472.0 
9,000 3,580.0 3,349.0 3,231.0 5,788.0 6,569.0 

10,000 3,869.0 4,096.0 6,364.0 8,479.0 

INTERNAL PATH LENGTH 

B 2-3 SON Balanced Binary SBB 
Nodes Tree Tree Tree Tree Tree 
1 ,000 4,623 8,000 7,258 9, 171 9, 358 
2,000 11 '272 18,000 16,504 20,392 20,772 
3,000 16,883 27,000 27,777 32,366 32,832 
4,000 22,543 40,000 37,034 44,851 45' 381 
5,000 33,1 59 50,000 46,302 57,729 58,615 
6,000 39,770 60,000 55,536 70,900 72,098 
7,000 46,426 70,000 71,770 84,299 87,447 
8,000 53,084 88,000 82,056 97,896 100,836 
9,000 59,670 99,000 92,347 111,674 115,140 

10,000 66,326 102' 577 125,592 129,554 

!+4 



8. CONCLUSION 

From the data that obtained by comparing five tree structures, 

we can conclude that Balanced 'Binary tree has the most efficient 

searching structure. In the decreasing order of efficiency, follows 

by SBB tree, 2-3 tree, B tree and Son tree. When using recursive 

formulation search in the balanced tree structures(we exclude B tree 

and Son tree here, because they involve in-page binary search also). 

The difference of search time and construction time between Balanced 

Binary tree and SBB tree are very small, because they have similar 

strutures. B tree and Son tree have shorter internal path lengths 

but they consume more search time and construction time, because 

they have in-page binary search within recursive formulation search. 

The Balanced Binary tree can be considered a well constructed 

tree structure for the general purposes of storing and searching, 

because it has the fastest search time and the construction time 

comparing it to other tree structures for very large numbers of 

nodes. The 2-3 tree may be used for special purposes where 

insertion is not an important time constraint. It has the slowest 

construction time. However it has fairly efficient speed on search 

time. The Son tree has the unique character of filling empty nodes 

into the tree structure, thereby, it delays the search time and 

construction time. The B tree may be used for large scale data bank 

in which insertions and deletions are necessary, but in which the 

primary storage of a computer is not large enough or is too costly 

to be used for long-time storage. 



REFERENCES 

1. N. Wirth, Algorithms + Data Structures 
(Prentice-· Hall, Englewood Cliffs, N. J, 1976). 

2. Data Structures for Set Manipulation Problems. 

= Programs 

3. H. Olivie, Information Processing Letters (Feb. 1980). 

4. E. Horowitz & s. Sahni, Fundamentals of Computer Algorithms, 
(Computer Science Press , Inc. 1978). 

5. H. Lorin, Sorting and Sort Systems (Addison-Wesley Publishing 
Company, 1 975). 

6. A. Tenenbaum & M. Augenstein, Data Structures Using Pascal 
(Prentice-Hall, Englewood Cliffs, N.J. 1981). 

46 



VITA 

John Chun-Hua Chen was born in Taiwan, Republic of China on 

November 1, 1950. He graduated from University of San Francisco in June 

1976 with a B.S. degree in accounting specialist. From 1977 to 1979, he 

worked in a public C.P.A. firm as an external auditor. In January 1981, 

he obtained a M.A. degree in accounting. 

In May 1981, the author entered the Computing and Information 

Science of Lehigh University as a graduate student. Since then, he 

worked under Professor S.L. Gulden in the field of the system 

programming language. 


	Lehigh University
	Lehigh Preserve
	1-1-1982

	Comparison of tree-like structures for data maintenance.
	John Chun-Hua Chen
	Recommended Citation


	tmp.1451580486.pdf.JRtvL

