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Figure 8.1: Schematic of the backstepping control design with boundary and dis-
tributed actuation augmented with disturbance estimation.

to force θ̃(ρ̂, t) to zero using distributed actuators vk ∀k ∈ [1, 5], and the boundary

actuator v6, while accounting for the effect of disturbance estimation errors.

8.4 Controller Design

8.4.1 Backstepping Transformation

Figure 8.1 illustrates the control design approach. A backstepping technique is used

to transform the original system into a particular target system. The target sys-

tem is then rendered asymptotically stable through the choice of design parameters,

boundary conditions, control laws for the distributed interior actuators, and update

laws for the disturbance estimations. The combined boundary+interior control law

is obtained using the inverse of the backstepping transformation.

By defining h = 1
N
, where N is an integer, and using the notation xi(t) = x(ih, t),
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i = 0, 1, ..., N , we discretize the system as

˙̃θi =

(
hi1a

θ̃i+1 − 2θ̃i + θ̃i−1

h2
+ hi1b

θ̃i+1 − θ̃i−1

2h

+hi1cθ̃
i
)
u1ff +

(
hi1a

θi+1 − 2θi + θi−1

h2

+hi1b
θi+1 − θi−1

2h
+ hi1cθ

i

)(
v1 + d̃1

)
+

4∑
k=2

hik

(
vk + d̃k

)
+ gi

(
v5 + d̃5

)
+ ĝiu5ff θ̃

i, (8.13)

with the boundary conditions written as

θ̃0 = 0, θ̃N = −k6

(
v6 + d̃6

)
. (8.14)

The following target system is considered:

˙̃wi =

(
hi1a

w̃i+1 − 2w̃i + w̃i−1

h2
+ hi1b

w̃i+1 − w̃i−1

2h

+hi1cw̃
i − C1w̃

i
)
u1ff + ĝiu5ff w̃

i + J i
(
v1 + d̃1

)
+

4∑
k=2

H i
k

(
vk + d̃k

)
+Gi

(
v5 + d̃5

)
, (8.15)

with the boundary conditions chosen to be

w̃0 = 0, w̃N = −k6d̃6, (8.16)
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and where

J i =

(
hi1a

θi+1 − 2θi + θi−1

h2
+ hi1b

θi+1 − θi−1

2h
+ hi1cθ

i

)
−

i−1∑
j=1

∂αi−1

∂θ̃j

(
hj1a

θj+1 − 2θj + θj−1

h2

+hj1b
θj+1 − θj−1

2h
+ hj1cθ

j

)
,

H i
k =hik −

i−1∑
j=1

∂αi−1

∂θ̃j
hjk, ∀k ∈ {2, 3, 4}

Gi =gi −
i−1∑
j=1

∂αi−1

∂θ̃j
gj.

The term α is a to-be-found backstepping transformation in the form

w̃i = θ̃i − αi−1
(
θ̃0, . . . , θ̃i−1

)
.

By subtracting (8.15) from (8.13), the expression α̇i−1 = ˙̃θi − ˙̃wi is obtained in terms

of αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, i.e.,

α̇i−1 =

(
hi1a

αi − 2αi−1 + αi−2

h2
+ hi1b

αi − αi−2

2h

+hi1cα
i−1 + C1w̃

i
)
u1ff +

(
hi1a

θi+1 − 2θi + θi−1

h2

+hi1b
θi+1 − θi−1

2h
+ hi1cθ

i − J i
)(

v1 + d̃1

)
+

4∑
k=2

(
hik −H i

k

) (
vk + d̃k

)
+
(
gi −Gi

) (
v5 + d̃5

)
+ u5ff ĝ

iαi−1,
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which can be solved for αi to yield

αi =
1

u1ff

(
hi1a
h2

+
hi1b
2h

)−1 [
−
(
hi1a
−2αi−1 + αi−2

h2

−hi1b
αi−2

2h
+ hi1cα

i−1 + C1w̃
i

)
u1ff + α̇i−1

−
(
hi1a

θi+1 − 2θi + θi−1

h2
+ hi1b

θi+1 − θi−1

2h

− hi1cθi − J i
) (
v1 + d̃1

)
−
(
gi −Gi

) (
v5 + d̃5

)
−

4∑
k=2

(
hik −H i

k

) (
vk + d̃k

)
− u5ff ĝ

iαi−1

]
, (8.17)

where α0 = 0 and α̇i−1 is calculated as

α̇i−1 =
i−1∑
k=1

(
∂αi−1

∂θ̃k
˙̃θk +

∂αi−1

∂θkff
θ̇kff

)
+

6∑
j=1

∂αi−1

∂ujff
u̇jff . (8.18)

Through its dependence on ˙̃θ, expression (7.37) depends on the to-be-designed

distributed control laws which will not in general be spatially causal and would vio-

late the strict-feedback structure required for backstepping. It also depends on the

disturbance terms, which are unknown. However, by our choice of target system,

the terms involving J i, H i
k, and Gi exactly remove the undesirable terms from the

recursive expression (8.17), upon substitution, i.e.,

αi =

(
hi1a
h2

+
hi1b
2h

)−1 [
−
(
hi1a
−2αi−1 + αi−2

h2

−hi1b
αi−2

2h
+ hi1cα

i−1 + C1θ̃
i − C1α

i−1

)
−u5ff

u1ff

ĝiαi−1 +
α̇i−1
strict

u1ff

]
, (8.19)
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where

α̇i−1
strict =

i−1∑
k=1

∂αi−1

∂θ̃k

[(
hi1a

θ̃k+1 − 2θ̃k + θ̃k−1

h2
+ hk1cθ̃

k

+hk1b
θ̃k+1 − θ̃k−1

2h

)
u1ff + ĝku5ff θ̃

k

]

+
6∑
j=1

∂αi−1

∂ujff
u̇jff +

i−1∑
k=1

∂αi−1

∂θkff
θ̇kff . (8.20)

Next, subtracting (8.16) from (8.14) and putting the resulting expression in terms of

αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, the control law for v6 can be defined as

v6 = − 1

k6

αN−1. (8.21)

8.4.2 Stability of Target System

We design the control laws for the distributed actuators, as well as the update laws

for the disturbance estimations to stabilize the target system. We consider the control

Lyapunov function

V =
1

2

N−1∑
i=1

Qi
w

(
w̃i
)2

+
1

2

6∑
k=1

d̃2
k

Kk

,
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whereQi
w, for i ∈ [1, N−1] are positive definite weights, andKk are positive constants.

We calculate its time derivative as

V̇ =
N−1∑
i=1

Qi
ww̃

i ˙̃wi +
6∑

k=1

d̃k
˙̃dk

Kk

≤−W TAWWu1ff +
5∑

k=1

vkΘk +
5∑

k=1

d̃k

[
Θk +

˙̃dk
Kk

]

+ d̃6

[
−k17Q

N−1
w w̃N−1

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff +

˙̃d6

K6

]
, (8.22)

where

A1,1
W = −

{[
−2h1

1a

h2
+ h1

1c − C1

]
u1ff + u5ff ĝ

1

}
,

A1,2
W = −

[
h1

1a

h2
− h1

1b

h

]
u1ff ,

Ai,i−1
W = −

[
hi1a
h2

+
hi1b
h

]
u1ff ,

Ai,iW = −
{[
−2hi1a

h2
+ hi1c − C1

]
u1ff + u5ff ĝ

i

}
,

Ai,i+1
W = −

[
hi1a
h2
− hi1b

h

]
u1ff ,

AN−1,N−2
W = −

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff ,

AN−1,N−1
W = −

{[
−2hN−1

1a

h2
+ hN−1

1c − C1

]
u1ff + u5ff ĝ

N−1

}
,
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are the elements of the positive definite matrix AW , and

Θ1 =
N−1∑
i=1

Qi
ww̃

iJ i,

Θk =
N−1∑
i=1

Qi
ww̃

iH i
k, ∀k ∈ {2, 3, 4}

Θ5 =
N−1∑
i=1

Qi
ww̃

iGi,

are nonlinear, time-varying functions of the error measurements. We take the control

laws and update laws

v1 =− T1Θ1, (8.23)

vk =− TkΘk, ∀k ∈ {2, 3, 4} (8.24)

v5 =− T5Θ5, (8.25)

˙̂
dk =KkΘk, (8.26)

˙̂
d6 =−K6Q

N−1
w w̃N−1

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff , (8.27)

where Tk ≥ 0 ∀k ∈ {1, 2, 3, 4, 5} are design constants. Assuming constant distur-

bances, this reduces (8.22) to

V̇ ≤ −W TAWW −
5∑

k=1

TkΘ
2
k. (8.28)

Since AW is positive definite, we have that V̇ ≤ 0. Since V ≥ 0 and V̈ is bounded, the

conditions of Barbalat’s lemma are satisfied, and we have that V̇ → 0. This implies

that w̃ is driven to zero, guaranteeing asymptotic stability of the target system,

and, consequently, θ̃. Note that the nonlinear control laws are linearized around the

feedforward trajectories for implementation in the PCS.
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8.4.3 Physical Actuator Requests

The nonlinear transformations (8.10), must be inverted to obtain references for the

physical actuators from the combined feedforward+feedback output of the controller.

However, because the output of the controller is u ∈ R6×1, whereas there are only five

physical actuators available, there is not, in general, a solution to the inverse trans-

formation. To overcome this, an additional actuator is required that provides heating

without driving current, allowing for Ptot to be independently modulated. On DIII-D,

this type of actuation could be achieved with a combination of co- and counter-current

beam injection that drives very little current, however, counter-current beams were

not used during the present experimental campaign. Instead, a weighted least squares

fit was used to find the the individual beam and gyrotron powers that would best

match the outputs of the controller.

The inverse nonlinear transformations between the controlled inputs (uk for k =

1, . . . , 6) and the physical actuators on DIII-D are

Ip = u6, Pec =
u2u5

u
2/3
1

, Pnbi,on =
u3u5

u
2/3
1

, Pnbi,off =
u4u5

u
2/3
1

,

Ptot =

(
u5

u1u6

)2

, un =
u5

u
1/3
1

. (8.29)

We consider a linear least squares problem of the form

β̂LS = arg min
β

(yLS −XLSβLS)T QLS (yLS −XLSβLS) ,
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where

yLS =



u2u5

u
2/3
1

u3u5

u
2/3
1

u4u5

u
2/3
1(
u5
u1u6

)2


, βLS =


Pec

Pnbion

Pnbioff

 , XLS =



1 0 0

0 1 0

0 0 1

1 1 1


,

and QLS is a diagonal weighting matrix included to weight the importance of each

element of the residual. This results in the solution

β̂LS =
[
(X ′LS)

T
X ′LS

]−1

(X ′)
T
y′LS, (8.30)

where

X ′LS = qLSXLS, y′LS = qLSy,

and qi,iLS =
√
Qi,i
LS. The references in the vector β̂LS can then be sent to the appropriate

physical actuators on DIII-D.

8.5 Simulation Results

In this section, we present results of the simulation study used to test and tune the

controller design and implementation prior to experimental testing.

8.5.1 Disturbance Rejection

In this simulation, one disturbance (d1 = d4 = −0.065, d6 = 0.1) was applied from

0.5s to 3.0s, and a different disturbance (d3 = d4 = −0.1, d5 = −0.25, d6 = 0.1 ) was

applied from 3.0s to the end of the simulation. The feedback controller was turned

on throughout the simulation. The time-varying controller matrices were updated

226



q

Time (s)

 

 

1 2 3 4 5

2

3

4

5

6
Closed Loop

Open loop

Target

(a) ρ̂ = 0.1

q

Time (s)

 

 

1 2 3 4 5

1.5

2

2.5

3

3.5

4

4.5 Closed Loop

Open loop

Target

(b) ρ̂ = 0.2

q

Time (s)

 

 

1 2 3 4 5

2

2.5

3

3.5

4
Closed Loop

Open loop

Target

(c) ρ̂ = 0.5

q

Time (s)

 

 

1 2 3 4 5

3

3.5

4

4.5

5 Closed Loop

Open loop

Target

(d) ρ̂ = 0.65

q

Time (s)

 

 

1 2 3 4 5

4

4.5

5

5.5

6

6.5

7
Closed Loop

Open loop

Target

(e) ρ̂ = 0.8

q

Time (s)

 

 

1 2 3 4 5

6

7

8

9

10

Closed Loop

Open loop

Target

(f) ρ̂ = 0.95

Figure 8.2: Time traces of q at various points during the disturbance rejection sce-
nario, comparing the nominal feedforward simulation (blue, solid) with the closed
loop, disturbed simulation (red, dashed) and the open loop, disturbed simulation
(black, dash-dot).

every 500ms between 0.5s and 3.0s. An artificial noise signal was also added to the

measurements of θ. Time traces of q at various points are shown in Figure 8.2. The

controller was able to quickly reject the initial condition errors in the outer part of

the domain (Figure 8.2d, 8.2e, and 8.2f), while the interior part of the domain took

longer (around 2-3s) to achieve the desired target, due to the slower dynamics in the

interior region (Figure 8.2a, 8.2b, and 8.2c). Despite the change in the disturbance

at t = 3.0s, the controller was able to keep the profile very close to the desired

target throughout the remainder of the simulation. Figure 8.3 shows the q and θ

profiles at several times, showing that the closed loop response is improved from

the open loop case, most noticeably in Figure 8.3d. Figure 8.4 shows the actuator

trajectories during the simulation. The plasma current (Figure 8.4a), which represents
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Figure 8.3: Comparison of q and θ profiles at various times for the disturbance re-
jection scenario. The closed loop profiles (q: red solid, θ: red dashed) and open loop
profiles (q: black dotted, θ: black dash-dot) are compared with the desired targets
(q: blue, triangular markers, θ: blue, circular markers).

the boundary actuator, was modified significantly by the backstepping controller. It

can be noted that the controller increased the off-axis beam power while decreasing

the on-axis power during the first disturbance. In response to the second disturbance,

the EC (electron-cyclotron) power and off-axis beam power were increased until they

reached saturation (around t = 4s and t = 5s, respectively), as seen in Figures

8.4c and 8.4e. As the controller determined additional power was still necessary to

maintain the desired profile, the on-axis beam power (Figure 8.4d) was increased

around t = 5s. The diagnostic power, shown in Figure 8.4f, is a portion of the on-axis

beam power that is required to be held constant for current profile measurements

in experiments. It was therefore held constant throughout the simulation to better
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Figure 8.4: Plots of plasma current, density, EC power, on-axis beam power, off-
axis beam power, and diagnostic beam power during the disturbance rejection sce-
nario comparing the unsaturated requests during the closed loop simulation (magneta,
dash-dot), the saturated values (red, dashed) from the feedback controller, and the
open loop values (black, dash-dot). Shaded regions indicated time intervals during
which the feedback controller was turned off.

recreate the conditions of experiments.

8.5.2 Profile Reference Tracking

To test the target tracking capability of the control scheme, two input trajectories

Feedforward 1 and Feedforward 2 were used to generate two distinct target current

profile evolutions Target 1 and Target 2. During the closed loop simulation, Feed-

forward 1 was provided to the controller throughout the simulation. The initial

conditions were perturbed, and the controller target was changed from 1 to 2 at 2.5s.

The feedback controller was turned on throughout the simulation. The time-varying

controller matrices were again updated every 500ms between 0.5s and 3.0s. An ar-
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Figure 8.5: Time traces of q at various points during the target tracking scenario,
comparing Targets 1 and 2 (black, dash-dot and blue, solid, respectively) with the
closed loop simulation (red-dashed). The controller targets were switched at 2.5s
(indicated by the vertical orange dashed line).

tificial noise signal was also added to the measurements of θ. Time traces of q at

various points are shown in Figure 8.5, showing that the controller was able to reject

the initial condition errors (most noticeable in Figures 8.5a and 8.5b) and to achieve

Target 1 prior to 2.5s. After the target was switched, as indicated by the vertical

orange dashed line, the controller was able to move the profile to Target 2 by around

4.0s. Figure 8.6 shows the q and θ profiles at several times. Figures 8.6a and 8.6b

clearly show the controller achieved Target 1 by t = 2.5s, while Figures 8.6c and 8.6d

show progress toward and achievement of Target 2. Figure 8.7 shows the actuator

trajectories during the simulation. While the actuators remained fairly close to the

feedforward values during the first part of the discharge, since they only needed to be

modified to account for initial condition errors, increased feedback actuation can be
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Figure 8.6: Comparison of q and θ profiles at various times for the profile tracking
scenario. The closed loop profiles (q: red solid, θ: red dashed) are compared with
Target 1 (q: blue, circular markers, θ: blue, triangular markers) and Target 2 (q:
magenta, square markers, θ: magenta, diamond markers).

noted in the second phase (after t = 2.5s). The plasma current was increased, while

the density was reduced (Figures 8.7a and 8.7b, respectively). The EC power and

off-axis beam power (Figures 8.7c and 8.7e) are essentially turned off to achieve Tar-

get 2, while the on-axis power (Figure 8.7d) remains close to the feedforward value.

The diagnostic beam power was again kept constant in the simulation, as shown in

Figure 8.7f.
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Figure 8.7: Plots of plasma current, density, EC power, on-axis beam power, off-
axis beam power, and diagnostic beam power during the first target tracking scenario
comparing the feedforward values (blue solid) and the closed loop values (red dashed).

8.6 Experimental Results

In this section, we present preliminary experimental results showing the controller’s

performance on the DIII-D device. A target profile was generated based on the re-

sults of an open loop reference shot #150320. Again, no balanced beam was available

during this closed loop experiment, removing a degree of freedom. In addition, two

of the beams were needed for current profile diagnostics and were therefore unavail-

able for feedback. Furthermore, the gyrotrons, which were turned on at 2.5s in the

reference shot, were unavailable during the closed loop shot. This reduced the avail-

able current drive and heating, and contributed to increased MHD instabilities. The

increased MHD activity during the shot caused the shot to be terminated early at

3.7s. Additional artificial disturbances were also introduced in the feedforward beam

232



q

Time (s)

 

 

1 1.5 2 2.5 3 3.5

2

3

4

5

6 Closed Loop (154396)

Target

(a) ρ̂ = 0.05

q

Time (s)
1 1.5 2 2.5 3 3.5

2

3

4

5

6

(b) ρ̂ = 0.15

q

Time (s)
1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

(c) ρ̂ = 0.3

q

Time (s)
1 1.5 2 2.5 3 3.5

3

3.5

4

4.5

5

5.5

(d) ρ̂ = 0.8

q

Time (s)
1 1.5 2 2.5 3 3.5

3.5

4

4.5

5

5.5

6

6.5

(e) ρ̂ = 0.8

q

Time (s)
1 1.5 2 2.5 3 3.5

4.5

5

5.5

6

6.5

7

7.5

8

(f) ρ̂ = 0.8

Figure 8.8: Time traces of q at various points, comparing the closed loop (blue, solid)
with the target (red-dashed) during shot #154398.

power trajectories. Time traces of q at various locations are presented in Figure (8.8),

showing that, despite the disturbances, the controller was able to achieve fairly good

tracking of the desired target throughout the discharge. Figure (8.9) shows the q pro-

file at various times, along with a shaded region representing the standard deviation

of the measurements over a window of 0.25s prior to the displayed time. Figure (8.10)

compares the achieved, requested (output of the controller), and feedforward actuator

trajectories, showing the modification of the input trajectories by the controller. In

response to the disturbances, the density was reduced. Because the lack of EC power

reduced the amount of off-axis current drive, the controller responded by increasing

the off-axis beam power (until it hit saturation) and decreasing the on-axis beam

power. The plasma current began to oscillate around the desired reference, appar-

ently because the controller was amplifying the measurement noise, which was much
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Figure 8.9: Comparison of q profiles at various times during shot #154398. The closed
loop profiles (blue solid) are compared with the target (red, diamond markers). The
shaded regions represent the standard deviation of the measurements over a window
of 0.25s prior to the time shown.

larger in this experiment than expected. This will be addressed in future experiments

by reducing the gain K6.

8.7 Conclusions

We have presented simulation and preliminary experimental results showing the per-

formance of a backstepping boundary+interior current profile controller based on first-

principles-driven model of H-mode DIII-D discharges. By employing a backstepping

control design technique, a transformation was found from the spatially discretized

system to a particular target system. The target system was rendered asymptotically
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(f) Diagnostic beam power.

Figure 8.10: Plots of density, plasma current, on-axis beam power, and off-axis beam
power during shot #154398 comparing the feedforward values (red dashed) and the
closed loop values (blue solid). Values actually achieved by the physical actuators are
also shown (magenta dash-dot).

stable via the design of distributed feedback control laws and disturbance estimation

update laws. The resulting feedback controller is designed to augment an arbitrary

set of feedforward input trajectories. Through a nonlinear transformation of the

control inputs, the scheme provides stabilizing reference values for the total plasma

current, total EC power, on-axis NBI power, off-axis NBI power, and plasma density.

A simulation study showed the performance of the controller during tracking and

disturbance rejection scenarios. Promising preliminary experimental results demon-

strated the ability of the scheme to track a desired profile evolution despite significant

disturbances. Further experimental testing, using EC power and an implementation

of the full nonlinear controller, will be done in the future to better assess the perfor-

mance of the control scheme in a variety of scenarios, including disturbance rejection,
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and target tracking.
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Chapter 9

Conclusions and Future Work

This dissertation has focused on developing and studying nonlinear burn condition

and kinetic profile control strategies in tokamak fusion plasmas. In this final chapter,

we summarize the results of the work and briefly describe some areas that merit future

research.

9.1 Contributions

The contributions of this dissertation are:

1. Nonlinear model-based zero-dimensional burn control combining available ac-

tuation. The effect of the tritium ratio on the fusion heating power is exploited

to modulate plasma heating and control the temperature through isotopic fuel

tailoring. For scenarios in which the combined modulation of auxiliary power

and isotopic mix cannot achieve stability and performance requirements, impu-

rity injection is used as a back-up actuator. The controller synthesis is based

on the full nonlinear model, allowing the controller to deal with a larger set

of perturbations in initial conditions than linear model based controllers. The
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controller handles both thermal excursions and quenches and depends paramet-

rically on the equilibrium point, allowing it to be used to drive the system from

one equilibrium point to another.

2. Nonlinear adaptive burn control with online operating point optimization. While

many of the model parameters necessary for implementation of the proposed

nonlinear control scheme are either measured or can be calculated based on

first-principles equations or scaling laws, some parameters will be, in practice,

uncertain or unknown. A nonlinear adaptive control scheme is proposed to en-

sure that the burn condition reference is asymptotically stable despite model

uncertainty. In addition, an online optimization scheme is used which alters the

controller references in real-time to optimize a given figure of merit for reactor

performance.

3. Nonlinear output feedback based burn control. Due to the extreme conditions

in fusion reactors the diagnostic systems needed to provide the state measure-

ment necessary for implementation of the proposed control designs may not all

be available. To overcome this obstacle, an observer is used to estimate the

required states based on the available measurements. Due to the nonlinearity

of the burning plasma dynamics and, in general, the measured output map,

a nonlinear observer is proposed. The observer is augmented with an integral

term, resulting in a nonlinear proportional-integral observer, which guarantees

convergence of the predicted and measured outputs, despite model uncertainty.

The output feedback control design is coupled with adaptive parameter estima-

tion and operating point optimization to ensure desired reactor performance is

achieved.

4. Simulation framework for testing burn control strategies in METIS. The fast
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integrated modeling code METIS is coupled with a volume averaged model of

particle dynamics and a general feedback control block in Simulink, enabling the

simulation of various burn control strategies. With this tool burn control strate-

gies can be simulated in a wide-range of operating conditions and scenarios, and

their effect on other plasma parameters can be assessed.

5. Backstepping density and temperature profile control in burning plasmas. The

novel design is an extension of the backstepping technique for PDE systems that

allows for simultaneous boundary+interior feedback control design and incorpo-

rates adaptive disturbance estimation to improve system response. The result-

ing nonlinear controller is demonstrated in simulations to be able to stabilize a

set of unstable equilibrium profiles, even in the presence of input disturbances.

6. Backstepping current profile control in L- and H-mode discharges in DIII-D.

A set of nonlinear profile control strategies were developed, based on a first-

principles-driven model of the current profile dynamics. The approaches were

successfully demonstrated in simulations, as well as in experiments on DIII-D

as part of the first ever campaign to experimentally test first-principles-driven

model-based current profile control laws.

9.2 Future Work

While the simulation framework for testing burn control designs in METIS is a sig-

nificant step towards the development of controllers for ITER, a comprehensive study

of controllers under the complete range of expected operating conditions (including

potential fault scenarios, like the loss of certain diagnostics or actuators) should be

carried out. As much as possible, burn control designs should be tested experimen-

tally in existing devices. Although present-day tokamaks cannot actually achieve
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burning plasma conditions, through careful experimental design, the dynamics of

burning plasmas can be mimicked to some degree.

Though the feasibility of controlling kinetic profiles in a burning plasma using a

combination of distributed and boundary feedback was shown in Chapter 6, more

study will be necessary to find physical methods for the modulation of the kinetic

variables at the edge of the plasma, i.e. achieving the desired values of uα, uDT ,

and uE. This will have to be done through modulation of the physical properties

of the plasma scrape-off layer (SOL) such as gas puffing, gas pumping, or impurity

injection. Moving forward, model improvements will be made by including models

for the diffusivity and pinch velocity, as well as models of the SOL in order to apply

more realistic boundary conditions to the system.

The current profile control strategy developed in Chapters 7 and 8 will be tested

through additional experiments and extended to other tokamaks, including NSTX

at Princeton Plasma Physics Laboratory. Because of the coupling of the dynamics

of the current, density, and temperature profiles, as well as the fact that they share

many of the same actuators, the problem of integrating current profile control and

burn control strategies must also be explored.
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Appendix A

Particle Recycling Model Derivation

The following particle recycling model derivation is based on a similar model derived

in [41]. The particle balance for deuterium and tritium ions can then be written as

dnD
dt

= −nD
τD

+ feffS
R
D + SinjD , (A.1)

dnT
dt

= −nT
τT

+ feffS
R
T + SinjT , (A.2)

where SRD and SRT represent the total recycling fluxes from the plasma facing compo-

nents that reaches the plasma edge. The recycled flux satisfies

SRD = fref
nD
τD

+
(
1− γPFC

)
SPFC + fref (1− feff )SRD, (A.3)

SRT = fref
nT
τT

+ γPFCSPFC + fref (1− feff )SRT , (A.4)

where γPFC is the tritium fraction of the particle flux from the plasma facing com-

ponents, SPFC . The third term in each expression represents the recycled flux that

is screened by the plasma due to imperfect core fueling efficiency and subsequently

reflected by the surface. To avoid the need for a self-consistent model of wall implan-
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tation, diffusion, and re-emmission to obtain the desorbed flux SPFC , we simplify the

model by considering a recycling coefficient defined as the ratio of total recycling flux

to the total flux to the surface, i.e.

Reff =
SRD + SRT
SSD + SST

=
SR

SS
. (A.5)

Note that the recycling coefficient includes the effect of wall pumping and active

pumping. In order to incorporate the recycling coefficient into the model, we must

write an expression for the flux to the surface

SSD =
nD
τD

+ (1− feff )
(
1− γPFC

)
SPFC + fref (1− feff )SSD, (A.6)

SST =
nT
τT

+ (1− feff ) γPFCSPFC + fref (1− feff )SST , (A.7)

where the third term represents the surface flux that is reflected and subsequently

returned to the surface due to imperfect fueling efficiency. Since the recycling coeffi-

cient compares total hydrogen fluxes, not individual isotopes, we sum corresponding

equations to obtain

SR = fref

(
nD
τD

+
nT
τT

)
+ SPFC + fref (1− feff )SR, (A.8)

SS =
nD
τD

+
nT
τT

+ (1− feff )SPFC + fref (1− feff )SS. (A.9)

Using these expressions, we can solve to obtain

SPFC = SR [1− fref (1− feff )]− fref
(
nD
τD

+
nT
τT

)
, (A.10)

SS =

(
nD
τD

+
nT
τT

)
+ (1− feff )SR.
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From the definition of the recycling coefficient, we have that SS = SR/Reff . Substi-

tuting this definition and rearranging, we can obtain

SR =
Reff

1−Reff (1− feff )

(
nD
τD

+
nT
τT

)
. (A.11)

Substituting into (A.10) yields

SPFC =

[
(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)
. (A.12)

Solving (A.3) and (A.4) for SRD and SRT , respectively, and substituting (A.12) results

in

SRD =
1

1− fref (1− feff )

{
fref

nD
τD

+
(
1− γPFC

) [(1− fref (1− feff ))Reff

1−Reff (1− feff )
− r
](

nD
τD

+
nT
τT

)}
, (A.13)

SRT =
1

1− fref (1− feff )

{
fref

nT
τT

+γPFC
[

(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)}
. (A.14)
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Appendix B

Lyapunov Stability Basics

In this appendix we review the basics of Lyapunov stability theory, which is crucial

to the stability proof in this paper. Consider a nonlinear dynamic system of the form

ẋ = f(x, u), (B.1)

where x (state variable) and u (control input) are vector valued functions of time.

We seek a feedback control law of the form

u = k(x), (B.2)

to achieve a desired property, for example, stability of a certain equilibrium point. A

point x = xe is an equilibrium of the system when

f (xe, k (xe)) = 0.

With a shift of the system’s origin, i.e, x̃ = x − xe the equilibrium can be made to

occur at x̃ = 0. An equilibrium x̃ = 0 of (B.1) and (B.2) is globally asymptotically
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stable if there exists a continuously differentiable function V (x̃) such that

V (x) > 0 for all x 6= 0 and V (0) = 0,

V (x)→∞ as |x| → ∞,

V̇ =
dV

dx̃
f (x, k (x)) < 0 for all x̃ 6= 0.

For example, if we can find a quadratic Lyapunov function V = x̃TPx̃ with V̇ =

−x̃TQx̃, P , Q > 0, all of the conditions are satisfied and the equilibrium xe is asymp-

totically stable.

The problem of finding a Lyapunov function V (x), even for a system known to be

stable, can be very difficult in general. It is often even more difficult when we have

to find V (x) and the feedback law k(x) at the same time.

We note that for linear systems, other stability tests exist, for example, Routh-

Hurwitz. However, for nonlinear systems such as the one considered in this work,

some form of Lyapunov analysis is the only tool available. See [51] for a complete

approach to the Lyapunov stability theory.
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