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momentum are discretized into algebraic equations to solve for the flow variables at the 

grid points [39, 131-133]. The dimensionless Reynolds number is a criterion used to 

characterize the flow regimes pattern in internal flow [134]. It is defined as the ratio of 

the flow inertial force to the viscous force: 


UDRe , where U is the velocity, D is the 

tube diameter, and  is the kinematic viscosity,  /  where   is the fluid dynamic 

viscosity and   is the fluid density. For the flow in a perfect circular tube, the flow is 

characterized as laminar when Re < 2300, transient when 2300 < Re < 4000, and 

turbulent when Re > 4000  [134]. The jet caused by flow through the endotracheal tube 

and complex features of the geometry (like curvatures, asymmetry, successive branching 

angle and non-uniform cross-sections) contributes additional disturbances to the flow. 

Consequently, the critical values of Re , where the transition to turbulence is initiated, 

become lower in bifurcated tubes [135, 136]. Therefore, the turbulence was modeled in 

the current study using a high order turbulence model.  

 Traditionally, CFD modeling flow in the airways uses two equation RANS 

models like k-ε and k-ω (k: turbulence kinetic energy, ε: turbulence dissipation rate, ω: 

specific dissipation)  [34, 39]. A list of different models used can be found in Table 3.1. 

However, such low order models are not able to capture anisotropic turbulence, which is 

significant near the wall boundaries of the upper airway regions. Additionally, they 

involve model constants, which should be experimentally calibrated [39]. Furthermore, in 

the case of modeling particle transport while using RANS to model continuous phase, an 

additional model is needed to account for the influence of the velocity fluctuation on the 

particle transport, which could reduce the modeling accuracy [39, 53]. The flow field can 
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dimensions. This was also observed and reported by Comerford et al [178] in their study 

of structured tree outflow boundary conditions for modeling the airflow in patient specific human 

lungs. These observations are different from that inside classical simplified models where the 

pressure uniformly drops throughout the domain as results of the symmetric and uniform 

geometries [178].  Figure 5.11 shows the wall shear stress (WSS) distribution along unit 26 

for the cases of using MF and R&C BCs. The data presented correspond to the EnIn 

phase. Regions of high WSS occurred around the daughter tubes while using MF BCs 

(see Fig. 5.11a). 

 

 

Figure 5.11 Comparison of the wall shear stress (WSS) distributions at unit 26 between 

the cases of using coupled R&C (f=10 Hz, CR=1) and using MF BCs. The WSS was 

computed at EnIn (t/T=0.49, f=10 Hz). (a) The mass flow rate fraction BCs (MF) and (b) 

coupled R&C BCs. 

 

While using R&C BCs, a drastic change in the WSS distribution was observed. A high 

WSS was noticed in the region surrounding the flow divider (carina ridge, see 
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demarcated region in Fig. 5.11b) as opposed to the case of MF BCs, where a minimal 

WSS occurred at the same site (Fig. 5.11a). This is a consequence of the pendelluft flow, 

which occurred during this period (i.e., EnIn) while using R&C BCs. The gas flows from 

branch 45 to branch 44, moving over the carina ridge; consequently, a high velocity 

gradient is created near the wall, which causes the higher WSS.  

 

5.5. Conclusions 

A LES model was used to study the flow transport under HFOV conditions with 

physiologically relevant outlet BCs. A time-dependent pressure was employed as a 

function of the instantaneous flow rate and coupled airways resistance-compliance. A 

significant change in the regional flow distribution was observed when using coupled 

R&C BCs for healthy and diseased lungs. In addition, the pressure drop throughout the 

lung domain demonstrated a significant deviation from the case of MF BCs due to the 

ability of the applied physiological resistance-compliance BCs to account for the 

geometry morphology. Unlike traditional BCs, the coupled R&C BCs successfully 

captured pendelluft flow in all of the lungs’ major lobes and terminal units, which 

enables accurate HFOV modeling. Varying compliance between the right and left lungs 

demonstrated a significant effect on the flow distribution, and it was more pronounced for 

the highest HFOV frequency. Increasing the CR locally between lung units induced 

maximum pendelluft flow with a five-fold increase in some units. The coaxial counter 

flow and flow structures were significantly influenced by the modified BCs. The 

pendelluft flow significantly induced a WSS surrounding carina due to gas exchange 

between the units’ branches. The pendelluft intensity in different regions may be used as 
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an important indication of the respiratory diseases and the severity of lung pathway 

diseases. The intensity of the pendelluft flow associated with the ventilator setting (e.g., 

frequency, tidal volume, and waveform shape) could help in improving treatment 

protocols for patients undergoing HFOV treatment.  
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regional geometry features, such as branching angle, diameter, unit orientation, and 

structure abnormity, which could play a major role in the pendelluft intensity  [184]. 

Comparing the Vratio of He to denser gas mixtures than air (i.e., SF6-O2), the ratio further 

increased, depending on the location, which emphasizes the impact of the gas density on 

the gas exchange (see Fig. 7.7).         

 

 

Figure 7.7 The pendelluft volume ratio (Vratio) for He to air and He to SF6-O2. The ratio is 

defined as .  and are the pendelluft volume percent of gas 

1(He) and  gas 2 (air and  SF6-O2). 
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   7.3.4. Particle Deposition  

The role of carrier gas properties in particle transport and deposition at the ETT and 

tracheobronchial tree during HFOV were explored and presented in terms of global and 

local deposition fractions.   

 7.3.4.1. Global Deposition  

The global deposition fraction was defined as the total particles deposited in the 

whole domain to the total particles entering the ETT [222]. The global deposition 

characteristics under different carrier gases were presented in Table 7.3. The deposition 

associated with inspiratory flow was always higher than with the expiration phase as 

found in chapter 6. However, the ratio of the deposition during inspiration phase (In) to 

expiration (Ex) phase (In/Ex ratio) significantly increased as the carrier gas density 

increased, ranging from 2.51 to 6.77 for the lowest to highest gas density (see Table 7.3). 

A decreasing gas density minimizes the particle relaxation time, as well as the turbulence 

and flow resistance, which effectively reduces the impaction role and particle 

dispersion [120]. Consequently, the particle deposition during the inspiration phase 

increases (decreases) for higher (lower) carrier gas density. This resulted in the wide 

range of In/Ex ratios, which significantly affected the total global deposition throughout 

the whole domain. For example, He and Heliox reduced the deposition on the upper 

tracheobronchial tree by ~32% and ~25.36% (relative difference) compared to air. This 

suggests that using Heliox with high concentrations of Helium could deliver more 

particles into deeper regions of the pulmonary tract. The total deposition for the highest 

density carrier gases (i.e., Xe-O2 and SF6-O2) was significantly enhanced and was 
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identical for both gases. It was ~70% higher than the lowest density gas (see Table 7.3). 

The identical deposition indicates that by increasing density beyond that of Xe-O2, the 

deposition rate becomes independent of the density under HFOV conditions. The 

deposition in the right lung is consistently higher than the left lung with insignificant 

differences between considered carrier gases.  

 

Table 7.3 Details of global particle deposition under different carrier gases. 

Carrier Gas 
DFG% 

In Ex In/Ex ratio
a 

R/ L ratio
b 

Total
 

He 22.35 8.91 2.51 1.31 31.26 

He-O2 26.46 7.83 3.38 1.36 34.29 

air 38.65 7.30 5.30 1.29 45.94 

Xe-O2 45.33 8.30 5.46 1.18 53.63 

SF6-O2 46.49 6.87 6.77 1.23 53.36 
a
In/Ex ratio is the ratio of the total deposition during inspiratory flow to the total 

deposition during expiratory flow.
 

b
R/ L ratio is the ratio of total deposition in the right lung to the total deposition in the left 

lung. 

 

For further insight on the role of the carrier gas on the deposition, the global 

deposition for various particle size ranges under He-gas (lowest density) is compared to 

air in Table 4. Katz et al [120] derived a formula for the relaxation time ratio ( R ) of the 

particles in the case of Heliox to air (applicable to any carrier gas), and it is defined as the 

following: 

gasairairgas dCdCR  )(/)(  

where )(dC is a factor that accounts for non-continuum slip effects of the interaction 

between particles and the gas. )(dC  is a function of the Knudsen number, pdKn /2 , 
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where  is the gas mean free path. Based on the observation of Katz et al [120], the 

deposition is enhanced for the particles with 1R  and vice versa. For the Heliox mixture, 

R < 1 was found for the particle diameter greater than 0.4 µm. For the range of the 

particle size (5> dp > 0.5 µm) used in the present study, the deposition under air was ≥ 

40% higher than He (see Table 4). This is due lower relaxation time ratio ( R < 1) as 

indicated by the theoretical formula of Katz et al [120] when using Heliox in addition to 

the reduction in turbulence and flow resistance. 

Table 7.4 Comparison of the total global deposition for a wide range of the particles’ 

diameters in the case of He and air carrier gases. 

dp  range 

(µm) 

DFG 
100

DF

DFDF
%difference Relative

He

airHe 


  
He air 

0.5< dp<1 1.26 2.12 68.25 

1< dp<2 4.56 6.78 48.68 

2< dp<3 5.99 8.73 45.74 

3< dp<4 7.17 11.60 61.79 

4< dp<5 12.50 17.44 39.52 

 

7.3.4.2. Local Deposition under Different Carrier Gases 

The local deposition in the major lobes of the lung was quantified during 

inspiratory, expiratory, and whole cycle flow and presented in Fig. 7.8. The local 

deposition fraction is defined as the total particles deposited in a selected region to the 

total particles entering the ETT [222]. The local deposition behavior had similar trends 

regardless of the carrier gas type. During the inspiration phase, the main bronchi received 

the majority of the particle deposition, due to enhancement of the impaction role and 

ETT-jet impingement [222], followed by the lower lobes; however, the deposition in any 
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lobe was consistently lower as the gas density decreased. Consequently, in the case of 

using a carrier gas with low density such as Heliox (He-O2), the aerosol-drug could 

penetrate deeper into the lung and have a better chance to deposit in the lower region of 

the pulmonary tract. During expiratory flow, the local deposition was almost the same in 

all lung lobes without any significant differences between all carrier gases. The 

deposition in the ETT was highest during the expiration phase. This is because a high 

population of the particles stayed active and were convected with the flow that 

experienced sudden contraction, which may have enhanced impaction and particle 

dispersion in this region. The total local deposition trend  
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Figure 7.8 Particle local deposition for different carrier gases: (a) during the 

inspiration phase, (b) during the expiration phase, and (c) the total deposition during the 

whole cycle. 

 

 

followed the trend during inspiratory flow due to high deposition that occurred during 

this phase  [222]. However, the differences in the deposition fraction magnitude in each 

lobe diminished as the carrier gas density increased, and the differences became 

insignificant for gases with densities higher than the density of air. The ventilatory circuit 

is a key factor for reducing the aerosol-drug, and allows only a small portion of the drug 
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to reach the lung  [41]. It is therefore essential to reduce the deposition in the circuit to 

maximize the drug delivery to the lung.  

For deeper insight on the role of the carrier gas on the aerosol particles deposited 

in the ventilator circuit, the local particle deposition and pattern of the deposition on the 

ETT are presented in Fig. 7.9. Employing carrier gases with low gas density was 

observed to drastically change the deposition rate in the circuit (see Fig. 7.9). The 

deposition was highly concentrated around the ETT in the case of high gas density (i.e., 

air and SF6-O2).  

 

Figure 7.9 Comparison of the deposition pattern at the endotracheal tube wall for 

different carrier gases. 

 

The local deposition factor DFL in the ETT was drastically reduced by ~79% and ~83% 

in the case of using He-gas compared to air and SF6-O2, respectively. Likewise, DFL was 

reduced by ~65% and ~72% when using Heliox rather than air and SF6-O2, respectively. 
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Table 7.5 compares the decreased deposition fraction in the ventilator circuit 

between the current study and existing experimental studies when using Heliox instead of 

air. A mean reduction of 38% of the deposition at the ETT was observed by Katz et 

al  [120] in their clinical measurement of using Heliox as a carrier gas. Similarly, Goode 

et al [231]  achieved 50% reduction of the lost particles in the ventilator circuit. The 

difference between the current predictions (65%) to their measurement arises from a 

couple of factors. First, the reported local deposition in the present CFD study was only 

for a part of ETT. Second, their studies were conducted under conventional mechanical 

ventilation, i.e., lower flow rate and longer respiratory cycle time.  

 

Table 7.5 Comparison between current prediction and experimental studies of the 

decreased deposition fraction in the ventilator circuit due to the use of Heliox 

as a carrier gas 

Study Approach 
Flow rate 

(L/min) 

Ventilation 

mode 
Decreased DF* 

 

Katz et al [120]
 In vivo

 
18  CMV 38%

+ 

 

Goode et al  [231] 
In vitro  40  CMV 50% 

 

Present study 

 

CFD 94  HFOV 65% 

+
It is a mean value for different cases.  

 
*
Decreased DF is calculated as  100



air

Helioxair

DF

DFDF
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 7.3.4.3. Deposition Pattern  

The pattern of the deposition, which illustrates the most localized and 

concentrated deposition sites, is displayed in Fig. 7.10 for the cases of He, He-O2, air, and 

SF6-O2. The reduction of the localized deposition when using a low-density carrier gas 

was evident. The relaxation time of the particles, the turbulence intensity, and the airways 

resistance decreased as the density decreased, which reduced the role of the deposition 

mechanisms, i.e., impactions and particle diffusion. Consequently, more particles escaped 

the domain and had a greater chance to deposit in the lower region of the lung. This can 

be seen by comparing the pattern of the deposition in the case of low-density gas (He and 

Heliox) to high-density gas (air and SF6-O2) in Fig. 7.10. The particles were more 

concentrated at the main bronchi covering the inner walls in all cases, however, as the gas 

density increases, the concentration increases. When using He or Heliox, mostly large 

particles deposited in the tracheobronchial domain; in contrast, the dense gases led to a 

deposition of a wide range of particle sizes. In general, the deposition on the usual sites 

was reduced by utilizing a carrier gas with low density. This can be observed by 

comparing the deposition in the encircled region of the domain (1-4) in Fig. 7.10 in all 

cases. Furthermore, the deposition on the sharp transition region (constrictions) are 

compared in the enlarged plot (see insets in Fig. 7.10).  
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Figure 7.10 Deposition pattern at the tracheobronchial tree as a function of the particle 

diameter for different carrier gases. 

Clearly, lower localized deposition occurred when using He and He-O2 compared to air 

and SF6-O2, where highly concentrated deposition was observed. This affirms the 

importance of the role of the carrier gas on aerosol-drug delivery and the requirement for 

lower density gas to deliver more drug to deeper regions of the lung under rapid 

ventilation cycles.     
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7.3.5. Enhancement of HFOV Therapy  

The carrier gas properties were found to have significant impact on the gas 

transport and drug delivery under HFOV conditions. Several past studies recognized an 

enhancement of drug delivery using a helium-oxygen mixture, yet the majority of these 

studies have been conducted under normal breathing conditions in an extrathoracic 

model  [220, 232]. In our previous study of drug delivery under HFOV parameters, it was 

found that the strong dependency of the global and regional deposition rate on the 

operating frequency could be used for targeted drug delivery [222]. For further insight on 

the role of coupled ventilator frequency and carrier gas on particle deposition, a 

simulation of HFOV frequency of 6 Hz was carried out using helium gas. The deposition 

was found to be significantly affected with reductions of ~35% and ~ 56% observed in 

the global deposition in the tracheobronchial tree for the cases of He and air when 

compared to the case of 10 Hz frequency. This implies that more particles penetrated 

deeper into the pulmonary tract and increased the chance of higher deposition in the 

lower generations. Consequently, systemic drug delivery could be enhanced under 

coupled low-density gas and low operating frequency. Furthermore, during the 

inspiration phase the local deposition on the considered portion of the ETT was 

drastically reduced by decreasing ventilator frequency to 6 Hz. A ~13-fold reduction of 

the deposition in ETT occurred indicating that higher amounts of the aerosol-drug could 

pass the ventilator circuit and be delivered to the lung. This is because decreasing 

frequency reduces the flow rate, which, along with low density, tend to stabilize the flow 

field. As reported in section 3.3.2, a reduction of 18% in the TKE effectively decreased 

the airways’ resistance, which reduced the deposition in the ETT and upper 
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tracheobronchial tree. The effectiveness of reducing the TKE on decreasing particle 

deposition on the extrathoracic region has been observed by Ari et al [221] even with 

very low difference in TKE between cases of using Heliox and air (i.e., 5%). The 

improvement of the gas exchange under HFOV management employing low-density gas 

was observed by different studies in animal models  [223, 224]. However, the effect of 

utilizing different carrier gases on the flow mechanisms cannot be quantified during in 

vivo studies. In contrast, the current CFD study successfully quantified the effect of 

carrier gas on the pendelluft flow in different lung regions. Great enhancement of the 

pendelluft flow occurred by reducing (increasing) carrier gas density (kinematic 

viscosity) and indicated improvement of the regional ventilation and gas mixing during 

HFOV. The reduction of the airways’ resistance by employing low-density carrier gas not 

only improves drug delivery, it is most likely to reduce the risk of hyperinflation of the 

lung  [229].   

 

7.4. Conclusion 

The effects of carrier gas properties on HFOV therapy outcomes were studied. A 

large eddy simulation model was used to simulate the continuous phase while user-

defined Fortran subroutines were used to implement a Lagrangian approach model for the 

dispersed phase. A physiological pressure boundary was employed using resistance and 

compliance of the airways. Gases with a wide range of densities and kinematic viscosities 

were used and compared to the use of air. The main conclusions can be summarized as 

the follows:  
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1. The carrier gas density was found to play a major role on the flow structures 

under HFOV conditions. A reduction (increase) of 7-fold in the gas density 

(kinematic viscosity) reduced the turbulence kinetic energy by 18%, which 

significantly decreased the tracheobronchial tree resistance by 65%. The 

significant reduction of the airways resistance could effectively reduce the risk 

of lung hyperinflation. 

2. The pendelluft flow was significantly enhanced by reducing the carrier gas 

density. An increase of 15-fold of the pendelluft flow in some lung regions 

was observed, indicating improvement of the gas exchange under HFOV 

when employing low-density gas.     

3. Use of low-density helium, which has the lowest gas density, significantly 

reduced deposition in the "hot-spots" and constriction sites in the upper 

tracheobronchial, and resulted in a ~32% reduction of the global deposition 

factor, indicating that the more Helium concentration in the Heliox, the 

greater benefit of the gas mixture.  

4. Heliox can be effectively used to enhance lung periphery aerosol-drug 

delivery under HFOV therapy, whereas carrier gases with higher density can 

be used to enhance lobar- to-segmental airways treatment.   

5. Significant reduction of aerosol-drug deposited in the ETT was achieved by 

using a low-density carrier gas; this implies that Heliox could improve drug 

delivery to the lung during HFOV. 

6. Coupling low-frequency ventilation with a Heliox carrier gas resulted in 

further decreasing the deposition throughout the ETT and upper 
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tracheobronchial tree, and indicated further enhancement of lung periphery 

delivery.   
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CHAPTER 8 

CONCLUSIONS AND FUTURE 

WORKS 
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8.1. CONCLUSIONS 

The gas transport and drug delivery by high frequency oscillatory ventilation were 

computationally investigated and validated against available measurements in the 

literature. The lung model was reconstructed from CT- scans data set for a mechanically 

ventilated patient. Large eddy simulation along with WALE subgrid scale model were 

implemented to model the airflow inside the lung model. Lagrangian approach was used 

to model the solid particle transport.  The main results can be summarized as follows: 

 

(i) Flow Transport and Gas Mixing during Invasive High Frequency 

Oscillatory Ventilation 

Gas transport and mixing in HFOV for three different waveform shapes and 

frequencies. The primary focus was to understand how different flow mechanisms were 

altered as a result of changes to waveform and frequencies. It is concluded from the study 

that: 

1- The coaxial counter flow existed near flow reversal for all three waveforms with 

different features. The non-sinusoidal waveforms exhibited a uniform coaxial 

counter flow compared to the sinusoidal case at End-Inspiration/Early Expiration 

phase.  

2- Pendelluft flow was present for the sinusoidal waveform at all frequencies but 

occurred only at early inspiration for the square waveform at highest frequency, 

whereas this was absent in the case of using exponential waveform. 

3- A square waveform shape resulted in higher secondary flow strength (SFS>0.6) 

and higher turbulence intensity, which could lead to more efficient mixing.  
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4- A reduction of ~87% in the wall shear stress occurred during inspiration phase 

when the intubation was absent. The turbulence kinetic energy in the case of using 

ETT was found to be 20 times greater than when the ETT was absent. 

5- The square waveform resulted in the least wall shear stress on the lung epithelium 

layer and may be used in patients without the risk of barotrauma to both airways 

and the alveoli.  

 

(ii) The Role of Coupled Resistance-Compliance in Upper Tracheobronchial 

Airways under High Frequency Oscillatory Ventilation  

 

The gas transport under HFOV conditions with physiologically relevant outlet 

BCs was studied. A time-dependent pressure was employed as a function of the 

instantaneous flow rate and coupled airways resistance-compliance. A significant change 

in the regional flow distribution was observed when using coupled R&C BCs for healthy 

and diseased lungs. In addition, the pressure drop throughout the lung domain 

demonstrated a significant deviation from the case of MF BCs due to the ability of the 

applied physiological resistance-compliance BCs to account for the geometry features of 

the model. Unlike traditional BCs, the coupled R&C BCs successfully captured 

pendelluft flow in all of the lungs’ major lobes and terminal units, which enables accurate 

HFOV modeling. Varying compliance between the right and left lungs demonstrated a 

significant effect on the flow distribution, and it was more pronounced for the highest 

HFOV frequency. Increasing the CR locally between lung units induced maximum 

pendelluft flow with a five-fold increase in some units. The coaxial counter flow and 

flow structures were significantly influenced by the modified BCs. The pendelluft flow 
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significantly induced a WSS surrounding carina due to gas exchange between the units’ 

branches. The pendelluft intensity in different regions may be used as an important 

indication of the respiratory diseases and the severity of lung pathway diseases. The 

intensity of the pendelluft flow associated with the ventilator setting (e.g., frequency, 

tidal volume, and waveform shape) could help in improving treatment protocols for 

patients undergoing HFOV treatment. 

 

 

 

(iii) Aerosolized Drug Delivery in Specific-Patient Lung Model during 

Invasive High Frequency Oscillatory Ventilation 

The aerosol-drug delivery under high frequency oscillatory ventilation was 

carried out under various ventilator settings and lung conditions. The Lagrangian tracking 

method was implemented to model the dispersed phase. User-enhanced FORTRAN 

subroutines were compiled with the solver to implement the Lagrangian model. A 

physiological time-dependent pressure boundary condition was employed as a function of 

the coupled airways resistance-compliance and compared to the traditional boundary 

condition. The main observations can be summarized as the follows: 

 The particle deposition during the inspiration phase was five-fold greater than 

expiration phase, and the asymmetric lung compliance was found to significantly affect 

the deposition, especially during expiration phase. Furthermore, the deposition fraction 

was strongly influenced by the release time of the particles’ injection.  

 The existence of the pendelluft flow and airflow redistribution due to resistance-

compliance BCs application demonstrated a significant influence on the local deposition 

magnitude and pattern compared to the traditional mass fraction BCs. 



207 

 

results will be compared to the invasive ventilation, which could result in a better 

ventilation strategy.  

6. The airways are compliant structures. Considering fluid-structure interactions 

could reveal important effects in the lung ventilation and the particle trajectory. 

Starting with simple bifurcation and then increasing the geometry complexity may 

result in more accurate modeling.     

7. Experimental work: Develop a 3D realistic multi-generation lung model including 

the larynx, and fabricate a physical model with a material that satisfies the 

experimental and optical conditions. Design experiment components to allow for 

advanced diagnostics and to allow investigation of a wide range of lung 

ventilation strategies (i.e. normal breathing, conventional mechanical ventilation 

(CMV), and high frequency ventilation (HFOV)). The physical model can be 

made with separate regions and connected with appropriate methods such that it 

allows for local particle deposition measurements. Furthermore, to include the 

effect of resistance and compliance, rubber tubes with different lengths and 

material properties can be connected to the model outlets.    
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CREATION 
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Figure B.1 Cross-sections of the single bifurcation in different directions [88]. Adopted 

with permission from ASME publishing. 

 

The single bifurcation used for the validation purpose in current dissertation was created 

following the method by Zhao and Lieber  [88]. The equations that define all points, lines 

and curves in the above illustration are as follows: 
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 Note: Point P and K share same x coordinate.   

The flow divider is described as follows:   
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The variables 
1 and 

2 are found be solving the following equations:  
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The MATLAB code used to solve the described equations:  

Function []=geometry() 

al=35; 

be=18; 

D=3.81; 

d=D/sqrt(2); 

L=2.5*D; 

R=7*d; 

a1=(8*d*cosd(be)-(L-d*sind(be))*tand(be)-4*D)/(6*(L-d*sind(be))^2); 

b1=((L-d*sind(be))*tand(be)-2*d*cosd(be)+D)/(6*(L-d*sind(be))^8); 

la=tand(be)*(L-d*sind(be))/(d*cosd(be)); 

a=0.5*d*cosd(be)/(0.5*L-0.5*d*sind(be))^la; 

Ax=L-(R+0.5*d)*sind(be); 

Mx=0; 

Nx=0; 

Cx=L; 

Gx=L/2; 

Ex=Cx-d*sind(be); 

Kx=Cx-d/2*sind(be); 

Px=Kx; 

Jx=Kx+2*R*sind(0.5*(al-be))*cosd(be+0.5*(al-be)); 

Fx=Jx-0.5*d*sind(al); 

Hx=Jx+0.5*d*sind(al); 

dx=0.01; 

dt=0.1; 

%line ME 

xme=(Mx:dx:Ex)'; 
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yme=a1*xme.^2+b1*xme.^8+0.5*D; 

zme=zeros(size(xme)); 

%line EF 

xef=(Ex:dx:Fx)'; 

yef=(R+0.5*d)*cosd(be)-((R-0.5*d)^2-(xef-L+(R+0.5*d)*sind(be)).^2).^(1/2); 

zef=zeros(size(xef)); 

%line GK 

xgk=(Gx:dx:Kx)'; 

ygk=a*(xgk-0.5*L).^la; 

zgk=zeros(size(xgk)); 

%line KJ 

xkj=(Kx:dx:Jx)'; 

ykj=(R+0.5*d)*cosd(be)-(R^2-(xkj-L+(R+0.5*d)*sind(be)).^2).^(1/2); 

zkj=zeros(size(xkj)); 

%line CH 

xch=(Cx:dx:Hx)'; 

ych=(R+0.5*d)*cosd(be)-((R+0.5*d)^2-(xch-L+(R+0.5*d)*sind(be)).^2).^(1/2); 

zch=zeros(size(xch)); 

%line NP 

xng=(Nx:dx:Gx)'; 

xnp=[xng;xgk]; 

ynp=[zeros(size(xng));ygk]; 

znp=0.5*(d-D)*xnp/(L-0.5*d*sind(be))+0.5*D; 

plot3(xme,yme,zme,'.','Color',[rand(1) rand(1) rand(1)]); 

hold on 

plot3(xef,yef,zef,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xgk,ygk,zgk,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xkj,ykj,zkj,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xch,ych,zch,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xnp,ynp,znp,'.','Color',[rand(1) rand(1) rand(1)]); 

xlim([-15,15]); 

ylim([-15,15]); 

zlim([-15,15]); 

plot3(xme,-yme,zme,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xef,-yef,zef,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xgk,-ygk,zgk,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xkj,-ykj,zkj,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xch,-ych,zch,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xnp,ynp,-znp,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xnp,-ynp,-znp,'.','Color',[rand(1) rand(1) rand(1)]); 

plot3(xnp,-ynp,znp,'.','Color',[rand(1) rand(1) rand(1)]); 

hold off 

figure; 

plot(xme,yme,'.','Color',[rand(1) rand(1) rand(1)]); 

hold on 

plot(xef,yef,'.','Color',[rand(1) rand(1) rand(1)]); 

plot(xgk,ygk,'.','Color',[rand(1) rand(1) rand(1)]); 

plot(xkj,ykj,'.','Color',[rand(1) rand(1) rand(1)]); 

plot(xch,ych,'.','Color',[rand(1) rand(1) rand(1)]); 

xlim([0,15]); 

ylim([0,15]); 

hold off 

xmef=[xme;xef]; 

ymef=[yme;yef]; 
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zmef=[zme;zef]; 

file=fopen('curveMEF.txt','wt'); 

for i=1:length(xmef) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xmef(i),ymef(i),zmef(i)); 

end 

fclose(file); 

xgkj=[xgk;xkj]; 

ygkj=[ygk;ykj]; 

zgkj=[zgk;zkj]; 

file=fopen('curveGKJ.txt','wt'); 

for i=1:length(xgkj) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xgkj(i),ygkj(i),zgkj(i)); 

end 

fclose(file); 

file=fopen('curveCH.txt','wt'); 

for i=1:length(xch) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xch(i),ych(i),zch(i)); 

end 

fclose(file); 

xnpkj=[xnp;xkj]; 

ynpkj=[ynp;ykj]; 

znpkj=[znp;zkj+d/2]; 

file=fopen('curveNPKJ1.txt','wt'); 

for i=1:length(xnpkj) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xnpkj(i),ynpkj(i),znpkj(i)); 

end 

fclose(file); 

xnpkj=[xnp;xkj]; 

ynpkj=[-ynp;-ykj]; 

znpkj=[znp;zkj+d/2]; 

file=fopen('curveNPKJ2.txt','wt'); 

for i=1:length(xnpkj) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xnpkj(i),ynpkj(i),znpkj(i)); 

end 

fclose(file); 

xnpkj=[xnp;xkj]; 

ynpkj=[ynp;ykj]; 

znpkj=[-znp;-(zkj+d/2)]; 

file=fopen('curveNPKJ3.txt','wt'); 

for i=1:length(xnpkj) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xnpkj(i),ynpkj(i),znpkj(i)); 

end 

fclose(file); 

xnpkj=[xnp;xkj]; 

ynpkj=[-ynp;-ykj]; 

znpkj=[-znp;-(zkj+d/2)]; 

file=fopen('curveNPKJ4.txt','wt'); 

for i=1:length(xnpkj) 

    fprintf(file,'%1.8f %1.8f %1.8f\n',xnpkj(i),ynpkj(i),znpkj(i)); 

end 

fclose(file); 

function []=pr(xl,dx,th,yl,wh) 

al=35; 

be=18; 
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D=3.81; 

d=D/sqrt(2); 

L=2.5*D; 

R=7*d; 

a1=(8*d*cosd(be)-(L-d*sind(be))*tand(be)-4*D)/(6*(L-d*sind(be))^2); 

b1=((L-d*sind(be))*tand(be)-2*d*cosd(be)+D)/(6*(L-d*sind(be))^8); 

la=tand(be)*(L-d*sind(be))/(d*cosd(be)); 

a=0.5*d*cosd(be)/(0.5*L-0.5*d*sind(be))^la; 

ps1=(xl(1):dx:xl(2))'; 

ps2=(xl(1):dx:xl(2))'; 

y=L/2*tand(be)-ps1.*cosd(th)-a1.*(L/2+ps1.*sind(th)).^2-b1.*(L/2+ps1.*sind(th)).^8-0.5*D; 

%w=- cosd(th) - 2*a1*sind(th)*(L/2 + ps1*sind(th)) - 8*b1*sind(th)*(L/2 + ps1*sind(th)).^7; 

z=L/2*tand(be)-ps2.*cosd(th)-a.*(ps2.*sind(th)).^(la); 

w=- cosd(th) - a*la*sind(th)*(ps2*sind(th)).^(la - 1); 

if(wh==0) 

    plot(ps1,z); 

elseif(wh==1) 

    plot(ps1,w); 

elseif(wh==2) 

    plot(ps1,z,ps1,w); 

end 

if(yl) 

    ylim([-.1,.1]); 

end 

function [y]=ps1eq(th,ps1) 

be=18; 

D=3.81; 

d=D/sqrt(2); 

L=2.5*D; 

a1=(8*d*cosd(be)-(L-d*sind(be))*tand(be)-4*D)/(6*(L-d*sind(be))^2); 

b1=((L-d*sind(be))*tand(be)-2*d*cosd(be)+D)/(6*(L-d*sind(be))^8); 

y=L/2*tand(be)-ps1.*cosd(th)-a1.*(L/2+ps1.*sind(th)).^2-b1.*(L/2+ps1.*sind(th)).^8-0.5*D; 

function [y]=ps2eq(th,ps2) 

be=18; 

D=3.81; 

d=D/sqrt(2); 

L=2.5*D; 

la=tand(be)*(L-d*sind(be))/(d*cosd(be)); 

a=0.5*d*cosd(be)/(0.5*L-0.5*d*sind(be))^la; 

y=L/2*tand(be)-ps2.*cosd(th)-a.*(ps2.*sind(th)).^(la); 

 

The FORTRAN subroutine code used to impose Womersley velocity 

profile at the single bifurcation model inlet:  

       

SUBROUTINE WOMTEST (  

     &  NLOC, NRET, NARG, RET, ARGS, CRESLT, CZ,DZ,IZ,LZ,RZ ) 

      IMPLICIT NONE 

CD User routine: template for user CEL function 

CC -------------------- 

CC        Input 
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CC -------------------- 

CC  NLOC   - size of current locale 

CC  NRET   - number of components in result 

CC  NARG   - number of arguments in call 

CC  ARGS() - (NLOC,NARG) argument values 

CC -------------------- 

CC      Modified 

CC -------------------- 

CC  Stacks possibly. 

CC -------------------- 

CC        Output 

CC -------------------- 

CC  RET()  - (NLOC,NRET) return values 

CC  CRESLT - 'GOOD' for success 

CC -------------------- 

CC       Details 

CC -------------------- 

C ------------------------------ 

C     Preprocessor includes 

C ------------------------------ 

C        Global Parameters 

C ------------------------------ 

C ------------------------------ 

C        Argument list 

C ------------------------------ 

      INTEGER NLOC,NARG,NRET 

      CHARACTER CRESLT*(*) 

      REAL ARGS(NLOC,NARG), RET(NLOC,NRET) 

      INTEGER IZ(*) 

      CHARACTER CZ(*)*(1) 

      DOUBLE PRECISION DZ(*) 

      LOGICAL LZ(*) 

      REAL RZ(*) 

C ------------------------------ 

C        External routines 

C ------------------------------ 

C ------------------------------ 

C        Local Parameters 

C ------------------------------ 

      COMPLEX I 

      PARAMETER(I=(0,1)) 

C ------------------------------ 

C        Local Variables 

C ------------------------------ 

      INTEGER ILOC 

      REAL AL(1:NLOC,1), R(1:NLOC,1), T(1:NLOC,1), 

     &  A(1:NLOC,1), W(1:NLOC,1), P(1:NLOC,1) 

      COMPLEX B, C 

C --------------------------- 

C    Executable Statements 

C --------------------------- 

      R(1:NLOC,1) = ARGS(1:NLOC,1) 

      T(1:NLOC,1) = ARGS(1:NLOC,2) 

      A(1:NLOC,1) = ARGS(1:NLOC,3) 
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      W(1:NLOC,1) = ARGS(1:NLOC,4) 

      P(1:NLOC,1) = ARGS(1:NLOC,5) 

      AL(1:NLOC,1) = ARGS(1:NLOC,6) 

C Initialise RET(1:NLOC*NRET) to zero. 

      DO ILOC = 1, NLOC 

        CALL CBESSJ(COMPLEX(AL(ILOC,1)* 

     &    R(ILOC,1)/0.0381,0.)*(I**(3./2.)),0,B) 

        CALL CBESSJ(COMPLEX(AL(ILOC,1),0.)*(I**(3./2.)),0,C) 

        B=(COMPLEX(A(ILOC,1)/(P(ILOC,1)*W(ILOC,1)),0.)/I) 

     &   *(COMPLEX(1.0,0.)-B/C)*EXP(I*COMPLEX(W(ILOC,1) 

     &   *(T(ILOC,1)+18.6603434349),0.)) 

        RET(ILOC,1)=REAL(B) 

      ENDDO 

      WRITE(*,*)EXP(I*COMPLEX(W(1,1) 

     &   *(T(1,1)+18.6603434349),0.)) 

C 

C Set success flag. 

      CRESLT = 'GOOD' 

C 

C======================================================================= 

      END SUBROUTINE WOMTEST 

C 

        real*8 Function Fact(K) 

        integer i 

        real*8  f 

          F=1.d0 

          do i=2, k  

            f=f*dfloat(i) 

          end do 

          Fact=f 

        return 

        End Function Fact 

*           FUNCTION  GAMMA(X)            * 

* --------------------------------------- * 

* Returns the value of Gamma(x) in double * 

* precision as EXP(LN(GAMMA(X))) for X>0. * 

      real*8 Function Gamma(xx) 

      parameter(ONE=1.d0,FPF=5.5d0,HALF=0.5d0) 

        real*8 xx 

        real*8 cof(6) 

        real*8 stp,x,tmp,ser 

        integer j 

        cof(1)=76.18009173d0 

        cof(2)=-86.50532033d0 

        cof(3)=24.01409822d0 

        cof(4)=-1.231739516d0 

        cof(5)=0.120858003d-2 

        cof(6)=-0.536382d-5 

        stp=2.50662827465d0 

        x=xx-ONE 

        tmp=x+FPF 

        tmp=(x+HALF)*LOG(tmp)-tmp 

        ser=ONE 

        do j=1, 6 
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          x=x+ONE 

          ser=ser+cof(j)/x 

        end do 

        Gamma = EXP(tmp+LOG(stp*ser)) 

      return 

      End function gamma 

      Subroutine CBESSJ(z, nu, z1) 

C!--------------------------------------------------- 

C!                       inf.     (-z^2/4)^k 

C!   Jnu(z) = (z/2)^nu x Sum  ------------------ 

C!                       k=0  k! x Gamma(nu+k+1) 

C!  (nu must be >= 0). 

C!--------------------------------------------------- 

        Parameter(MAXK=20,ZERO=0.d0) 

        Complex z,z1 

        Integer k 

        Complex sum,tmp 

        Real*8 Fact, Gamma 

        sum = CMPLX(ZERO,ZERO) 

        do k=0, MAXK 

          !calculate (-z**2/4)**k 

      tmp = (-z*z/4.d0)**k 

          !divide by k! 

      tmp = tmp / Fact(k) 

          !divide by Gamma(nu+k+1) 

          tmp = tmp / Gamma(dfloat(nu+k+1)) 

          !actualize sum 

      sum = sum + tmp 

        end do 

        !calculate (z/2)**nu 

        tmp = (z/2)**nu 

        !multiply (z/2)**nu by sum 

        z1 = tmp*sum 

      return 

      End 

C!end of file wom.F 
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APPENDIX C 

MATLAB SCRIPT USED FOR 

VENTILATION WAVEFORMS 

CREATION 
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function [Vmax,Qmax,Qmin]=wave2(pvq,n,R,C,Tp,nmcycles,sc) 

%pvq-control type ('p','v',or 'q') 

%n-waveform function number 

%R-resistance (4.333333333) 

%C-compliance (0.126666667) 

%Tp-total breathing cycle time 

%nmcycles-number of cycles to produce 

%sc-scale factor (needs to be iteratively adjusted until desired tidal 

%     volume is reached) 

global TI 

global T 

global trans 

T=Tp; 

trans=0.005;%time to transition from inspiration to expiration  

TI=0.5*T-0.5*trans; 

T2=0.5*T; 

Ain=pi/4*(8*10^(-3))^2;%area of the inlet 

dt=0.0002; 

t1=(0:dt:TI);%inspiration time (or length of time to apply the specified control function) 

ttrans=(TI+dt:dt:T2); 

t2=(T2+dt:dt:T);%expiration time 

t=[t1,ttrans,t2]; 

disp([length(t1),length(ttrans),length(t2),length(t)]) 

tpart=(0.3+dt:dt:4*TI); 

P=zeros(size(t)); 

V=zeros(size(t)); 

Q=zeros(size(t)); 

 

if(pvq=='p')%pressure controlled 

    %P(1:length(t1))=PC(t1,sc,n);%set the pressure for inspiration 

    V(1:length(t1))=runkut(V(1),t1,@DE,R,C,@PC,sc,n);%find volume for inspiration by 

Runga-Kutta 

    Q(1:length(t1))=DE(t1,V(1:length(t1)),R,C,@PC,sc,n);%find flow rate for inspiration 

by differential equation 

    Q(length(t1)+1:length(t1)+length(ttrans))=Q(length(t1))*rsig(ttrans,TI);%smoothly 

transition the flowrate to zero 

    if(mod(length(t),2)) 

      extra=-1 

    end 

     %extra=0 

    Q(length(t1)+length(ttrans)+1:length(t))=-

fliplr(Q(1:length(t1)+length(ttrans)+extra));%set expiration flow as the inverse of 

inspiration flow 

    V(1)=0;%find volume by integration 

    for i=2:length(t) 

        V(i)=V(i-1)+(Q(i)+Q(i-1))*(t(i)-t(i-1))/2; 

    end 

    P=Q*R+V/C;%find pressure for cycle 

elseif(pvq=='v')%volume controlled 
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    V(1:length(t1))=VC(t1,sc,n);%set volume for inspiration (needs to be modified later to 

include sigmoid for flow) 

    for i=1:length(t1)-1%find flow by finite difference and apply sigmoid to it 

        Q(i)=((V(i+1)-V(i))/(t1(i+1)-t1(i)))*sig(t1(i)); 

    end 

    Q(length(t1))=(V(length(t1))-V(length(t1)-1))/(t1(end)-t1(end-1)); 

    Q(length(t1)+1:length(t1)+length(ttrans))=Q(length(t1))*rsig(ttrans,TI);%smoothly 

transition the flowrate to zero 

    if(mod(length(t),2)) 

      extra=-1 

    end 

    Q(length(t1)+length(ttrans)+1:length(t))=-

fliplr(Q(1:length(t1)+length(ttrans)+extra));%set expiration flow as the inverse of 

inspiration flow 

    V(1)=0;%find volume by integration 

    for i=2:length(t) 

        V(i)=V(i-1)+(Q(i)+Q(i-1))*(t(i)-t(i-1))/2; 

    end 

    P=Q*R+V/C;%find pressure for cycle 

elseif(pvq=='q')%flow controlled 

    Q(1:length(t1))=QC(t1,sc,n);%find flow rate for inspiration 

    Q(length(t1)+1:length(t1)+length(ttrans))=Q(length(t1))*rsig(ttrans,TI);%smoothly 

transition the flowrate to zero 

    if(mod(length(t),2)) 

      extra=-1 

    end 

    Q(length(t1)+length(ttrans)+1:length(t))=-

fliplr(Q(1:length(t1)+length(ttrans)+extra));%set expiration flow as the inverse of 

inspiration flow 

    V(1)=0;%find volume by integration 

    for i=2:length(t) 

        V(i)=V(i-1)+(Q(i)+Q(i-1))*(t(i)-t(i-1))/2; 

    end 

    P=Q*R+V/C;%find pressure for cycle 

else 

    error('invalid waveform control type'); 

end 

 

V=V*1000; 

Q=Q*60; 

 

Vmax=max(V); 

Qmax=max(Q); 

Qmin=min(Q); 

 

vfrr=153846153.846154; 

 

np=ceil(Q*0.000016666666667*vfrr*dt); 

Np=V*10^(-6)*vfrr*.5; 
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disp(sum(np(1:ceil(length(np)*1.042/4)))); 

disp(ceil(length(np)*1.042/4)); 

 

po='b'; 

subplot(3,1,1); 

plot(t,P,po); 

title('Pressure'); 

xlabel('time(s)'); 

ylabel('Pressure(cm H_2O)'); 

subplot(3,1,2); 

plot(t,V,po); 

title('Volume'); 

xlabel('time(s)'); 

ylabel('Volume(mL)'); 

subplot(3,1,3); 

plot(t,Q,po); 

title('Flow'); 

xlabel('time(s)'); 

ylabel('Flow(L/min)'); 

 

K=Q/60/1000/Ain; 

 

%figure; 

%plot(t,Np,'b.'); 

 

filename=strcat(pvq,num2str(n),'.csv'); 

file=fopen(filename,'wt'); 

fprintf(file,'[name]\ninlet\n\n[Spatial Fields]\nt\n\n[Data]\nt [s],Velocity [m s^-1]\n'); 

for j=1:nmcycles 

  for i=1:length(t) 

      fprintf(file,'%1.6E,%1.6E\n',t(i)+(j-1)*T,K(i)); 

  end 

end 

fclose(file); 

 

filename=strcat('N',pvq,num2str(n),'.csv'); 

file=fopen(filename,'wt'); 

fprintf(file,'[name]\nRealPartNum\n\n[Spatial Fields]\nt\n\n[Data]\nt [s],NPR []\n'); 

for i=1:length(t1) 

    fprintf(file,'%1.6E,%1.6E\n',t(i),Np(i)); 

end 

fclose(file); 

 

function [z]=PC(t,sc,n) 

global T 

 

if(n==1) 

    z=sc*ones(size(t)).*sig(t); 
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elseif(n==2) 

    z=sc*(1-exp(-4*t/.0335)); 

    elseif(n==3) 

    z=sc*sin(2/T*pi*t); 

end 

 

function [z]=VC(t,sc,n) 

global TI 

if(n==1) 

    z=sc*t; 

elseif(n==2) 

    z=sc*(1/2-1/2*cos(pi*t/TI)); 

end 

 

function [z]=QC(t,sc,n) 

global T 

if(n==1) 

    z=sc*(2*t); 

elseif(n==2) 

    z=sc*(2-2*t).*sig(t); 

elseif(n==3) 

    z=sc*sin(2/T*pi*t); 

end 

 

%sigmoid function (for a smooth start up) 

function [z]=sig(t) 

td=0.0025; 

z=(1/2-1/2*cos(t*pi/td)).*(1-heaviside(t-td))+1*heaviside(t-td); 

%sigmoid function (for a smooth transition to expiration) 

function [z]=rsig(t,s) 

global trans 

z=cos((t-s)*pi/trans); 

 

function [z]=Pout(t,p) 

global TI 

z=p*rsig(t,TI); 

 

%differential equation 

function [Vdot]=DE(t,V,R,C,Pr,varargin) 

Vdot=Pr(t,varargin {:})/R-V/(C*R); 

 

function [w]=runkut(y0,t,f,varargin {:}) 

w=zeros(size(t)); 

w(1)=y0; 

for i=1:length(w)-1 

    dt=(t(i+1)-t(i)); 

    k1=dt*f(t(i),w(i),varargin); 

    k2=dt*f(t(i)+dt/2,w(i)+k1/2,varargin{:}); 

    k3=dt*f(t(i)+dt/2,w(i)+k2/2,varargin{:}); 
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    k4=dt*f(t(i)+dt,w(i)+k3,varargin{:}); 

    w(i+1)=w(i)+1/6*(k1+2*k2+2*k3+k4); 

end  
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APPENDIX D 

FORTRAN SUBROUTINES USED 

FOR PARTICLE TRACKING 

  



244 

 

i. Particle injection code 

#include "cfx5ext.h" 

dllexport(pinject) 

      SUBROUTINE PINJECT (  

     &  NLOC, NRET, NARG, RET, ARGS, CRESLT, CZ,DZ,IZ,LZ,RZ ) 

      IMPLICIT NONE 

#include "parallel_partitioning.h" 

      INTEGER NLOC,NARG,NRET 

      CHARACTER CRESLT*(*) 

      REAL ARGS(NLOC,NARG), RET(NLOC,NRET) 

      INTEGER IZ(*) 

      CHARACTER CZ(*)*(1) 

      DOUBLE PRECISION DZ(*) 

      LOGICAL LZ(*) 

      REAL RZ(*) 

C ------------------------------ 

C        Local Variables 

C ------------------------------ 

      INTEGER I,NPI,TOLD,TNEW 

      LOGICAL FLAG 

      REAL RLAST 

      SAVE NPI,TOLD,RLAST,FLAG 

      DATA FLAG/.TRUE./ 

C --------------------------- 

C    Executable Statements 

C --------------------------- 

      IF(FLAG)THEN 

        NPI=INT(ARGS(1,1)+0.001) 

        FLAG=.FALSE. 

      END IF 

      RET(1,1)=0.0 

      TNEW=INT(ARGS(1,2)+0.1) 

      IF(TNEW.EQ.1)THEN 

        TOLD=1 

        RLAST=0.0 

      END IF 

      IF(TOLD.NE.TNEW)THEN 

        I=INT(ARGS(1,1))-NPI 

        IF((ARGS(1,1)-NPI).LT.1)THEN 

          RLAST=0.0 

        ELSE 

          RLAST=REAL(I)-0.45 

          NPI=NPI+I 

          TOLD=TNEW 

        END IF 

      ELSE 

        RET(1,1)=RLAST 

      END IF       

Set success flag. 

      CRESLT = 'GOOD' 

      END SUBROUTINE PINJECT 
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C!end of file Pinject.F 

 

ii. Particle tracking code 

#include "cfx5ext.h" 

dllexport(ptrack) 

C  CFX subroutine 

      SUBROUTINE PTRACK(NLOC,NRET,NARG,RET,ARGS,CRESLT, 

     &                         CZ,DZ,IZ,LZ,RZ) 

      IMPLICIT NONE 

c     inputs 

      INTEGER NLOC,NARG,NRET,I,J 

      REAL ARGS(NLOC,NARG), RET(NLOC,NRET) 

      CHARACTER CRESLT*(*) 

      INTEGER IZ(*) 

      CHARACTER CZ(*)*(1) 

      DOUBLE PRECISION DZ(*) 

      LOGICAL LZ(*) 

      REAL RZ(*) 

#include "parallel_partitioning.h" 

C     ARGS(1:NLOC,1)     -Air.Density 

C     ARGS(1:NLOC,2)     -Air.Dynamic Viscosity 

C     ARGS(1:NLOC,3:5)   -Air.Velocity 

C     ARGS(1:NLOC,6)     -MyDrg.Mean Particle Diameter 

C     ARGS(1:NLOC,7)     -MyDrg.Particle Integration Timestep 

C     ARGS(1:NLOC,8:10)  -MyDrg.Velocity 

C     ARGS(1:NLOC,11)    -Wall Distance 

C     ARGS(1:NLOC,12:14) -wall normal 

C     ARGS(1:NLOC,15:17) -MyDrg.Particle Position 

C     ARGS(1:NLOC,18)    -MyDrg.Particle Time 

C     locals 

      REAL CCF,A,B,TMP,LA,KB,FS(1:NLOC,3) 

      REAL FD(1:NLOC,3), FB(1:NLOC,3) 

      CHARACTER FILENM*8!3!-------------------------------------------------------------------------  

      INTEGER GETPID,SEED!-------------------------------------------------------------------------- 

      SAVE TMP,LA,KB,SEED 

      DATA TMP/298.15/ 

      DATA LA/65.0E-9/ 

      DATA KB/1.38E-23/ 

      DATA SEED/15846/ 

!      CALL NORM([ARGS(1,12),ARGS(1,13),ARGS(1,14)]) 

      CALL FSAFF(ARGS(1,1),ARGS(1,6),ARGS(1,11), 

     &          [ARGS(1,12),ARGS(1,13),ARGS(1,14)], 

     &          [ARGS(1,3),ARGS(1,4),ARGS(1,5)], 

     &          [ARGS(1,8),ARGS(1,9),ARGS(1,10)],FS(1,:)) 

      A=CCF(ARGS(1,6),LA) 

      CALL FDRAG(ARGS(1,1),ARGS(1,6),ARGS(1,2),A, 

     &          [ARGS(1,3),ARGS(1,4),ARGS(1,5)], 

     &          [ARGS(1,8),ARGS(1,9),ARGS(1,10)],FD(1,:)) 

      CALL FBROWN(TMP,ARGS(1,7),A,ARGS(1,2), 

     &                ARGS(1,6),KB,SEED,FB(1,:)) 

      RET=(FS+FD+FB) 
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C 

!       open(8,FILE="NLOC.TXT",POSITION="APPEND") 

!       WRITE(8,*)'ARGS             ',(',',ARGS(1,J),J=1,NARG) 

!       WRITE(8,*)'LIFT FORCE       ',(',',FS(1,J),J=1,3) 

!       WRITE(8,*)'DRAG FORCE       ',(',',FD(1,J),J=1,3) 

!       WRITE(8,*)'BROWNIAN FORCE   ',(',',FB(1,J),J=1,3) 

!       CLOSE(8) 

C 

C      WRITE(FILENM,'(i8)')GETPID()!--------------------------------------------- 

C      OPEN(9,FILE=FILENM,POSITION="APPEND") 

C      WRITE(9,*)ARGS(1,6),ARGS(1,18),ARGS(1,15) 

C     &         ,ARGS(1,16),ARGS(1,17),ARGS(1,11) 

C      CLOSE(9) 

      END SUBROUTINE PTRACK 

C---------------------------------------------------------------------------- 

C  PARTICLE FORCE SUBROUTINES 

C     SHEAR INDUCED SAFFMAN LIFT FORCE IS PUT INTO FS 

      SUBROUTINE FSAFF(RF,DP,HP,N,U,V,FS) 

      IMPLICIT NONE 

C     inputs-fluid density, particle diameter, particle wall distance, 

C            wall normal vector, fluid velocity, particle velocity, (output) saffman lift force 

      REAL RF, DP, HP, N(3), U(3), V(3), FS(3) 

C     locals 

      REAL KA, LA, GA, US, THAT(3), FDOT, G, A, B 

      INTEGER I 

      CALL FINDTHAT(V,N,THAT) 

      US=FDOT(V,THAT)-FDOT(U,THAT) 

      IF(US*HP .NE. 0.0)THEN 

        GA=FDOT(U,THAT)/HP 

        KA=DP/(2.0*HP) 

        B=GA*DP/2.0 

        IF(ABS(US).LT.ABS(B))THEN 

          LA=SIGN(1.0,B*US) 

        ELSE 

          LA=B/US 

        END IF 

        A=-RF*(DP/2.0)**2.0*(US**2.0*G(KA,LA)) 

        DO I=1,3 

          FS(I)=A*N(I) 

        END DO 

      ELSE 

        FS(1)=0.0 

        FS(2)=0.0 

        FS(3)=0.0 

      ENDIF 

      END SUBROUTINE FSAFF 

C     DRAG FORCE WITH CUNNINGHAM CORRECTION FACTOR IS PUT INTO FD 

      SUBROUTINE FDRAG(RF,DP,MU,CCF,U,V,FD) 

      IMPLICIT NONE 

C     inputs-fluid density, particle density, particle diameter, fluid viscosity, cunningham correction factor, 

C            fluid velocity, particle velocity, (output) drag force 

      REAL RF, DP, MU, CCF, U(3), V(3), FD(3) 

C     locals 

      REAL A, RE, MAG, CD 
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      INTEGER I 

      RE=RF*MAG(U-V)*DP/MU 

      A=0.39269908*CD(RE)*RE*DP*MU/CCF!PI/8 

      DO I=1,3 

        FD(I)=A*(U(I)-V(I)) 

      END DO 

      END SUBROUTINE FDRAG 

C     BROWNIAN MOTION FORCE IS PUT INTO FB 

      SUBROUTINE FBROWN(T,DT,CCF,MU,DP,KB,SEED,FB) 

      IMPLICIT NONE 

C     inputs-fluid temperature, particle integration time step, cunningham correction factor, 

C            fluid viscosity, particle diameter, Boltzman constant,(output) brownian motion force 

      REAL T,DT,CCF,MU,DP,KB,FB(3) 

      INTEGER SEED 

C     local 

      REAL D,ZE,A 

      INTEGER I 

      D=(KB/(9.424777961))*(T/DP)*(CCF/MU)!3*PI 

      A=SQRT(2.0/D*KB*T**2.0*KB/DT) 

      DO I=1,3 

        CALL GET_RANDOM_NORM(ZE,1,0.0,1.0,-3.0,3.0,SEED) 

        FB(I)=ZE*A 

      END DO 

      END SUBROUTINE FBROWN 

C----------------------------------------------------------------------------  

C  SUBROUTINES FOR PARTICLE FORCE CALCULATIONS 

C     CUNNINGHAM CORRECTION FACTOR SUBROUTINE 

      REAL FUNCTION CCF(DP,LA) 

      IMPLICIT NONE 

C     inputs-diameter of the particle, mean free path 

      REAL DP,LA 

      CCF=1.0+LA/DP*(2.34+1.05*EXP(-0.39*DP/LA)) 

      END FUNCTION CCF 

C     DRAG FACTOR SUBROUTINE 

      REAL FUNCTION CD(RN) 

      IMPLICIT NONE 

C     inputs-particle reynolds number 

      REAL RN 

      IF(RN.LE.0.0)THEN 

            CD=0.0 

      ELSEIF(RN.LE.0.1)THEN 

            CD=24.0/RN 

      ELSEIF(RN.LE.1.0)THEN 

            CD=22.73/RN+0.0903/RN**2.0+3.69 

      ELSEIF(RN.LE.10.0)THEN 

            CD=29.1667/RN-3.8889/RN**2.0+1.222 

      ELSEIF(RN.LE.100.0)THEN 

            CD=46.5/RN-116.67/RN**2.0+0.6167 

      ELSEIF(RN.LE.1000.0)THEN 

            CD=98.33/RN-2778.0/RN**2.0+0.3644 

      ELSEIF(RN.LE.5000.0)THEN 

            CD=148.62/RN-4.75E4/RN**2.0+0.357 

      ELSEIF(RN.LE.10000.0)THEN 

            CD=-490.546/RN+57.87E4/RN**2.0+0.46 
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      ELSEIF(RN.GT.10000.0)THEN 

            CD=-1662.5/RN+5.4167E6/RN**2.0+0.5191 

      ENDIF 

      END FUNCTION CD 

C     INTEGRAL CURVE FIT FOR SAFFMAN LIFT FORCE 

      REAL FUNCTION G(KA,LA) 

      IMPLICIT NONE 

      REAL KA, LA 

      G=(1.7631+0.3561*KA-1.1837*KA**2.0+0.845163*KA**3.0) 

      G=G-(3.24139/KA+2.6760+0.8248*KA-0.4616*KA**2.0)*LA 

      G=G+(1.8081+0.8796*KA-1.9009*KA**2.0+0.98149*KA**3.0)*LA**2.0 

      END FUNCTION G 

C     FIND THE DIRECTION VECTOR OF THE WALL TANGENT PARTICLE VELOCITY 

      SUBROUTINE FINDTHAT(V,N,T) 

      IMPLICIT NONE 

C     inputs-particle velocity vector, wall normal vector, (outputs) wall tangent particle velocity vector 

      REAL N(3), V(3), T(3), A(3), W 

      CALL CRS(N,V,A) 

      CALL CRS(A,N,T) 

      CALL NORM(T) 

      END SUBROUTINE FINDTHAT 

C----------------------------------------------------------------------------  

C   VECTOR OPERATION SUBROUTINES 

C     CROSS PRODUCT 

      SUBROUTINE CRS(A,B,C) 

      IMPLICIT NONE 

      REAL A(3), B(3), C(3) 

      C(1)=A(2)*B(3)-A(3)*B(2) 

      C(2)=A(3)*B(1)-A(1)*B(3) 

      C(3)=A(1)*B(2)-A(2)*B(1) 

      END SUBROUTINE CRS 

C     DOT PRODUCT 

      SUBROUTINE DOT(A,B,C) 

      REAL A(3), B(3), C 

      INTEGER I 

      DO I=1, 3 

        C=C+A(I)*B(I) 

      END DO 

      END SUBROUTINE DOT 

C     DOT PRODUCT 

      REAL FUNCTION FDOT(A,B) 

      IMPLICIT NONE 

      REAL A(3), B(3) 

      INTEGER I 

      DO I=1, 3 

        FDOT=FDOT+A(I)*B(I) 

      END DO 

      END FUNCTION FDOT  

C     NORMALIZES THE VECTOR A 

      SUBROUTINE NORM(A) 

      IMPLICIT NONE 

      REAL A(3),MAG 

      IF(MAG(A) .NE. 0.0)THEN 

      A=A/MAG(A) 
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      ENDIF 

      END SUBROUTINE NORM 

C     RETURNS THE MAGNITUDE OF THE VECTOR A 

      REAL FUNCTION MAG(A) 

      IMPLICIT NONE 

      REAL A(3) 

      MAG=SQRT(A(1)**2.0+A(2)**2.0+A(3)**2.0) 

      END FUNCTION MAG 

 

 

 

 

iii. Particle deposition code 

#include "cfx5ext.h" 

dllexport(pdep) 

      SUBROUTINE PDEP(NLOC,NRET,NARG,RET,ARG,CRESLT, 

     &                      CZ,DZ,IZ,LZ,RZ) 

 

#include "cfd_sysdep.h" 

#include "cfd_constants.h" 

C ------------------------------ 

C        Argument list 

C ------------------------------ 

      INTEGER            NARG, NRET, NLOC 

      REAL               ARG(NLOC,NARG), RET(NLOC,NRET) 

      CHARACTER*(4)      CRESLT 

      INTEGER IZ(*) 

      CHARACTER CZ(*)*(1) 

      DOUBLE PRECISION DZ(*) 

      LOGICAL LZ(*) 

      REAL RZ(*) 

C     Return variables: 

C     Perpendicular Coefficient of Restitution (dummy)     : RET(1,1) 

C     Argument variables  

C     Particle Diameter                                : ARG(1,1) 

C     Particle time                                    : ARG(1,2) 

C     Particle Position                                : ARG(1,3:5) 

      CHARACTER FILENM*20 

      INTEGER GETPID 

      WRITE(FILENM,*)'DEP',GETPID()!--------------------------------------------- 

      OPEN(9,FILE=FILENM,POSITION="APPEND") 

      WRITE(9,*)ARG(1,1),ARG(1,2),ARG(1,3),ARG(1,4),ARG(1,5) 

      CLOSE(9) 

      RET(1,1)=0.0 

      END SUBROUTINE PDEP 
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