


Figure 5: Floating torso distributions. The top example was correctly classified as a
person, while the more fragmented bottom example was not.

4.2 Appearance + Motion-based Classifier

The second phase of testing involved evaluating the full-classifier in continuous, dy-

namic operations. Preliminary testing involved an approximately 5 minute run of driv-

ing the wheelchair across Lehigh’s Campus during normal hours to ensure sufficient

pedestrian traffic. Pedestrians were only counted once, meaning each entry was a

unique person. Classification was determined successful if an EKF track was estab-

lished on the pedestrian. For these tests, k = 5 and the Q parameters for the MC were

set to QP = 0.5 and Qmin = 0. The latter meant that if at least 1 of the 5 neigh-

bors believed the object was a person and an EKF track was established, the MC could

override the decision of the appearance classifier. Results are provide in the confusion

matrix below. From these results, it can be seen that 45 of 47 persons were classified

Table 2: Confusion Matrix for Complete Classifier
Decided

nonperson person

Actual nonperson 50 7
person 2 45
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correctly, for a detection rate of 95.7%. Examination of the two failure cases revealed

that both were instances where the pedestrian never completely entered the field of

view of the LIDAR. An example of this is shown at Figure 6, where the bottom half

of a pedestrian appears on the edge of the LIDAR’s field-of-view. If these cases are

excluded, the true positive detection rate would have been 100%.

Figure 6: A situation where the appearance classifier did not get a full view of the
pedestrian, deterring tracking and classification

During this experiment a false positive rate of over 12% was ascertained. The

increase from the static test can be attributed to the fact that during driving operations,

a single non-person object might be imaged 10s of times from a range of distances

and orientations. If it was incorrectly classified as a person for a single frame, it was

considered a false positive. In practice, associating conditional probabilities with such

cases would likely prove useful.

A strength of the MC for maintaining tracks is illustrated by Figure 7. In this exam-

ple, there are two persons in TEKF , meaning that EKF tracks have been established.

The person on the right side begins to migrate out of the LIDAR’s field-of-view to

a point where the appearance classifier no longer associates it with the person class.

Nevertheless, the MC is able to maintain a track until the person is almost entirely out
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Figure 7: A sequence of frames, showing the tracking of a person even after they fail
the appearance classifier.

of the LIDAR’s view.

5 DISCUSSION

5.1 Appearance Classifier And Features

As stated in the introduction, the success of pattern recognition is reliant on the fea-

tures extracted from the data. Many classifications methods exist, a review of which is

beyond the scope of this work. Some methods attempt to determine features on their

own; however, even these algorithms must be guided in the right direction.

A sizeable proportion of development time was spent on determining features that

would generate classifications correctly. The simplest features (height, width, and

depth) were chosen in the early stages of the algorithm and offered excellent results.

There are few classes that have similar height, width, and depth, implying that pedestri-

ans have a well defined mean (or distribution) in this feature space. To determine other

features, failure cases were examined. One of the earliest failure cases to be avoided
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was the “floating torso” distribution (Figure 5).

Failure when presented with floating torso’s was prevented in two manners. First,

the height, hk, for cluster Ck was determined by

hk = max
y

Ck (17)

This equation offset the height of floating torsos to the height of a scan of a full person.

Earlier equations used the height of the bounding box; this resulted in floating torso’s

height being halved, distancing it from the person class.

The failure case was also avoided by the introduction of λ, the top-heaviness fea-

ture.

λk =
|T |
|Ck|

where T =

{
~p | ~p ∈ Ck and py >

hk
2

}
(18)

The top heaviness feature depended on the heuristic that a person has more surface

area above their waste; more surface area equated to more pixels captured by the flash

LIDAR. However, this heuristic can be shown to fail. A specific, and interesting, failure

case occurred when women wore long dresses or skirts. The clothing provided enough

surface area to imbalance the top-heaviness ratio.

Of note-worthy mention is the density feature, ρ. Clusters Ck were taken and

flattened into the x-y plane (height and width plane.) This was achieved by ignoring

the z values of every point in the cluster. An example of the density feature can be

seen at Figure 4. The result was a two-dimensional, discrete binary image. Points were

indexed by pixel values (elements of N), instead of Euclidean values (elements of R).

As stated earlier, there is extensive research in using camera systems for pedestrian

detection. Most color approaches generate a mask, a binary image describing pixels

of interest, to examine the shape of a pedestrian. Extracting this binary image is a

computationally expensive procedure when working in RGB space. For LIDARs, this

procedure is computationally trivial. Upon extracting this mask, algorithms developed
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for analyzing geometry from a color image can be applied. These algorithms are refined

in producing powerful features for classification. It is important to reiterate that only

geometric features can be extracted. It is advantageous to reapply provenly powerful

techniques in new fields of research.

Not every feature developed was helpful, many features were discarded as they

proved to be disadvantageous. One of the earliest features discarded was the height-

width ratio, rk.

rk =
hk
wk

(19)

Heuristically, people are taller than they are wide, providing good grounds for use.

Computationally, this ratio was not consistent. Examination revealed the variation of

the ratio did not allow for proper segmentation from dissimilar classes (e.g., fire hy-

drants).

Attempts were made in describing the distributions of the clusters, Ck. The skew-

ness, γ, describes the assymetry of the distribution. Similar to the top-heaviness fea-

ture, it was expected that γ would favor the torso of the pedestrian.

γk =
µ(3)k

σ3
k

(20)

where µ(3)k represents the third moment arm from the mean of Ck and σk was the

standard deviation of the distribution.

The eigenvectors of the distribution of the clusters were also examined. Given a

covariance matrix Σk of cluster Ck, the eigenvectors were determined using

V−1ΣkV = D (21)

where V is the matrix of eigenvectors that diagnolizes the covariances matrix Σk into

the eigenvalues D of Σk. Eigenvectors describe the orientation of a distribution. It was

expected that pedestrians would typically be scanned while upright, producing a major
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eigenvector with nearly vertical orientation. Unfortunately, most scanned clusters of

other classes also had major vertical eigenvectors (e.g., trees, walls, posts).

5.2 k-NN Distance Metric

Pattern classification can neatly be described as assigning an object to a class given

the probabilities resultant from a priori information. k-NN classifiers are particularly

useful when there is no information on the probability of a class. The probability

distribution is estimated by a feature space populated by preclassified samples. k-NN

reduces to determining the class of the closest neighbors to the object in question. The

object in question is then assigned the majority class. The reader is reminded that

objects are described by a feature vector, and are thus points in feature space. Each

feature is a dimension in feature space. However, one can quickly infer that features

do not scale the same. The top-heaviness ratio, λk, is bounded between [0..1], while

height hk ∈ R. This difference in scale affects the distance, applying differing weight

to the distance of features.

Distance is a major aspect to the k-NN approach, thus a properly scaled distance

metric required careful consideration. Two approaches were extensively tested to pro-

vide the most consistent and accurate results: the Minkowski Metric and the Maha-

lanobis Distance.

The Minkowski Metric is defined using a level l parameter.

dl(x− x′) =
[
|x− x′|l

] 1
l

(22)

The reader should note that l = 1 is the Manhattan distance, and l = 2 is the well

known Euclidean distance metric. To normalize the feature spaces, such that each

feature has an equal part in the distance, a scaling factor α was applied to each feature

of the prototypes such that the feature’s standard deviation, σ = 1.

The Mahalanobis distance was described in Equation 5. Testing was done on what
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training data to use for the determination of the covariance matrix Σ. The training

data was classified by two classes, person P or non-person P̄ . A covariance matrix

determined using data from

1. P

2. P̄

3. Both P and P̄

was tested. Futhermore, Option 3 could be calculated in a number of ways. One attempt

calculated the covariance matrix of the set P ∪ P̄ . Another approach calculated the

covariance matrix of each class separately and averaged the two covariance matrices.

The latter approach provided consistently accurate results.

The Minkowksi metric consistently offered a lower false negative rate. A false neg-

ative is a person classified as a nonperson. This misclassification is considered costly,

and effort was taken for it to be avoided. The Minkowksi Metric also had a very high

false positive rate, a nonperson classified as a person. Mahalanobis distance offered an

overall lower rate. The false positive rate was much lower, while the false negative rate

was slightly higher. It was decided that the lower overall error rate of the Mahalanobis

distance was advantageous over the Minkowski’s Metric lower false negative rate. The

decision was influenced by the existance of the motion-based classifier’s added classi-

fication. A lower false positive rate reduces the number of tracks generated by the MC,

and false negatives are efficiently overruled by the tracking algorithm.

5.3 Evaluation of the Extended Kalman Filter

Time was spent examining the operation of the EKF, producing results worthy of dis-

cussion. A common trend of the filter was to relate the distance y of the object in

question to the gain value for the velocity. As y increased, the EKF was less and less

certain of the v measured, lowering the Kalman gain for the v term. This trend is un-

derstandable as measurements became inaccurate at larger distances; inaccuracies were
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caused by inherent noise from the sensor as well as the inconsistent quality of scans

of objects at a large distance. Inconsistent scans generated differing centroids as the

appearance of the object to the IFM changed.

The EKF consistently produced accurate predictions, adjusting well when a pedes-

trian made a sudden change in direction. Furthermore, the velocity was smoothed due

to the use of the Kalman gain. This smoothing increased the error of the prediction in

some frames by preventing a drastic change in velocity, even if that change was present;

however, in the common case, the drastic change in velocity was attributed to noise.

More importantly, the error caused by the Kalman gain was now consistent. Consistent

errors are more advantageous than sporadical accuracy.

6 FUTURE WORK

The greatest limitation of the IFM LIDAR system was its relatively coarse angular

resolution. This made it difficult to segment pedestrians that were walking in close

proximity to one another. An example is shown at Figure 8. In this instance, all three

persons were lumped into a single cluster where from the ground-truth camera image

they are obviously disconnected. One potential means for handling these cases would

be to refine larger connected components using a k-means clustering approach, where

k could be correlated to the geometry of the bounding box. More work is required in

this area.

An oversight in this work was the calculation of the density feature. Currently,

the feature is generated by binning all pixels into 10 cm × 10 cm boxes (in the x-y

plane), which discretized the Euclidean points. However, this approach took a coarse

scan and created an even coarser image as seen at Figure 4. The IFM LDAR returned

scans in three 64 × 50 matrices (x, y, and z). Using the discretization provided by

the original scan may prove advantageous. However, this would require a restructuring

of the prototype database. Currently, the database is populated by clusters of points
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Figure 8: Where the CCL was unable to seprate the objects of interest.

(where each cluster represents one prototype.) The pattern classifier converts each

cluster into a feature vector at intialization. The strength of the current structure is

the ability to generate new features without manipulating the database. However, the

current structure removes the contextual information provided by the organization of

the original scan. More research needs to be done into a method to discretize the points

in the database into a binary image.

The appearance classifier is still a work in progress. As discussed, there exist many

well developed features that can be extracted from binary images. Currently, research

on and application of this subset of features has not be undertaken. The search for

features is one that can be described as having no end. There are always properties

which can be discovered to further separate classes, creating more accurate classifiers.

However, even the most advanced features will be useless if the underlying knowledge

base is not populated. There is always room for more prototypes in a k-NN database, a

position taken by many pattern recognition researchers. The case for this position can

be made by examining Figure 9. The person class is not well enveloped in the presented

figure. Due to the bad distribution of prototypes (black dots), an object is misclassified

(red) as the closest neighbors to it are in the Person Class. More features may be helpful

in this particular instance, however a similar hole can be found in another area of the

feature space. In the perfect world, there would be a infinite number of prototypes,
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Figure 9: An instance in feature space where the person class is not well enveloped,
causing a misclassification (red). The black dots represent prototypes that are not part
of the Person Class.

thus generating the perfect distribution. It should be noted that increasing the size of

the database increases the complexity of the computation, as more distances need to be

determined. This dilemma is inherent to the k-NN classifier. A possible solution is to

construct an algorithm that spaces all prototypes in the database, filling in the holes as

misclassifications occur and pruning overpopulated areas. This algorithm can be run

offline as the database is indepedent of the classifier.

To this point, only single values for the parameters QP and Qmin have been exam-

ined. A sensitivity analysis to tune these parameters may in fact improve performance.

7 CONCLUSION

In this work, the potential of low-cost 3D LIDARs to be applied to a people tracking

task was demonstrated. While providing significantly lower angular resolution than

their more expensive cousins, these systems still provide the accurate distance estimates

and illumination invariance associated with LIDAR systems. A k-Nearest Neighbour
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classifier was constructed to determine objects to track based on appearance. An ex-

tended Kalman filter was established to aid the appearance classifier with fragmented

scans. Preliminary results to date indicated a successful tracking rate of over 95%

during dynamic operations. Nevertheless, there is significant room for improvement.
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