1977

Connections between equipment and structures subject to seismic loading -- preliminary bibliography, December 1977 PB286054/AS

G.C. Driscoll

U. Yuceoglu

J. W. Tedesco

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/495

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
CONNECTIONS BETWEEN EQUIPMENT AND STRUCTURES SUBJECT TO SEISMIC LOADING
-- PRELIMINARY BIBLIOGRAPHY

by
Umur Yuceoglu
Joseph W. Tedesco
George C. Driscoll
CONNECTIONS BETWEEN EQUIPMENT AND STRUCTURES
SUBJECT TO SEISMIC LOADING
-- PRELIMINARY BIBLIOGRAPHY

by
Umur Yuceoglu
Joseph W. Tedesco
George C. Driscoll

This material is based upon research supported by the National Science Foundation under Grant No. ENV76-01551. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Department of Civil Engineering
Fritz Engineering Laboratory #13
Lehigh University
Bethlehem, Pennsylvania 18015

December 1977
LEHIGH/FL/424--2

Fritz Engineering Laboratory Report No. 424.2
ABSTRACT

Literature on earthquake and dynamic response, analysis, and design approaches for connections between equipment or machinery and structures are covered in this comprehensive bibliographic survey. The equipment or machinery involved includes a wide range of units found in typical industrial installations such as materials processing plants, chemical plants, petroleum refineries, and fossil fuel power plants.

Connections are treated in their role as a component in an overall dynamic system including equipment or machinery, connections, structure, and foundations. The interaction of several components of the dynamic system is identified as the main problem in connection design.

Over 700 reference citations are presented including over 450 references on general analysis and design and over 250 references on equipment and machinery. Subdivisions of the portions on general analysis and design cover damage, codes, damping, details and decision analysis. Among the categories of equipment and machinery are generators, motors, pumps, pressure vessels, piping, tanks, stacks, electrical equipment, furnaces, bins, conveyor systems, mixers, precipitators and cranes.

Findings of the survey are that literature specifically treating the connections of concern is scarce, especially with regard to earthquake problems. Persons seeking design information must interpolate and extrapolate from information gathered from other related areas. Synthesis of the references into a state-of-the-art report will be done in a separate paper.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. OBJECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>3. MAIN PROBLEMS</td>
<td>5</td>
</tr>
<tr>
<td>4. SUMMARY AND OUTLOOK</td>
<td>8</td>
</tr>
<tr>
<td>5. REFERENCES ON GENERAL ANALYSIS AND DESIGN</td>
<td>9</td>
</tr>
<tr>
<td>5.1 Earthquake Damage</td>
<td>9</td>
</tr>
<tr>
<td>5.2 Seismic Analysis and Design</td>
<td>12</td>
</tr>
<tr>
<td>5.3 Codes, Specifications and Guides</td>
<td>22</td>
</tr>
<tr>
<td>5.4 Soil-Foundation-Structure Interaction</td>
<td>29</td>
</tr>
<tr>
<td>5.5 Damping Effects, Shock and Vibration Isolation in Structure and Machinery</td>
<td>35</td>
</tr>
<tr>
<td>5.6 Design Details</td>
<td>47</td>
</tr>
<tr>
<td>5.7 Seismic Design Decision Analysis</td>
<td>50</td>
</tr>
<tr>
<td>6. REFERENCES ON EQUIPMENT AND MACHINERY</td>
<td>52</td>
</tr>
<tr>
<td>6.1 Turbine-Generators, Motors</td>
<td>52</td>
</tr>
<tr>
<td>6.2 Pumps, Fans, Compressors</td>
<td>59</td>
</tr>
<tr>
<td>6.3 Pressure Vessels</td>
<td>63</td>
</tr>
<tr>
<td>6.4 Piping</td>
<td>64</td>
</tr>
<tr>
<td>6.5 Low-Pressure Liquid Storage Tanks</td>
<td>68</td>
</tr>
<tr>
<td>6.6 Stacks, Towers and Chimneys</td>
<td>70</td>
</tr>
<tr>
<td>6.7 High Voltage Electrical Equipment (Transformers, Switch Gears, etc.)</td>
<td>71</td>
</tr>
<tr>
<td>6.8 Light Mechanical and Electrical Equipment</td>
<td>72</td>
</tr>
<tr>
<td>6.9 Furnaces and Incinerators</td>
<td>74</td>
</tr>
<tr>
<td>6.10 Bins and Hoppers</td>
<td>75</td>
</tr>
<tr>
<td>6.11 Conveyor Systems</td>
<td>76</td>
</tr>
<tr>
<td>6.12 Mixers and Separators</td>
<td>78</td>
</tr>
<tr>
<td>6.13 Precipitators and Dust Collectors</td>
<td>79</td>
</tr>
<tr>
<td>6.14 Cranes and Hoists</td>
<td>80</td>
</tr>
<tr>
<td>7. ACKNOWLEDGEMENTS</td>
<td>81</td>
</tr>
<tr>
<td>8. FIGURES</td>
<td>82</td>
</tr>
</tbody>
</table>
1. **INTRODUCTION**

Earthquake effects on a structure and the equipment or machinery connected to it are very much dependent on earthquake ground motion and on the mechanical and dynamic properties of the structure and equipment and their connecting elements. The most important of these properties are the strength and energy absorbing capacity of the entire load carrying structure and of the connections joining the equipment to the structure.

In order to establish the proper relationships between equipment and the rest of the structure, the so-called systems approach may be used. Then, any structure whether it is an industrial plant, a commercial building, or a public building can be considered in terms of a combination of components or subsystems. These subsystems are (see, for instance, Figs. 1 and 2):

1. Soil-Foundation System
2. Main Structural System
3. Non-Structural System (curtain walls, ceilings, cladding, etc.)
4. Equipment or Machinery and their Connecting Systems

The connecting system includes "connections" as a component. In general, connections are made up of fasteners, detail material added to accommodate fasteners or to stiffen the joint, and any parts of a machine or structure which are extended to accommodate fastening. Within the context of this report, connections are also assumed to be composed of machinery or equipment supports, shock absorbing and damping elements.
(pads, springs, viscoelastic layers), hanging or suspension systems, mounting platforms, pedestals, etc. (A more precise definition of the connecting system will be introduced in Sec. 3.) This report will be primarily concerned with the literature related to the dynamic response of equipment and connections to earthquakes.

Equipment and machinery for purposes of this report, will include machines used in industrial processes as well as other associated apparatus, equipment, and devices. Any class of equipment or machinery is included if it might be subject to earthquake hazard by virtue of its own size and mass distribution or if it might contribute to the earthquake hazard of a structure housing it.

In the past, the prime objective of earthquake resistant design was to maintain overall integrity and safety of the structure itself during and after an earthquake, without much concern for the response of "non-structural elements" or "equipment and machinery systems" attached to the structure. This design approach assumes that the non-structural elements will take care of themselves with negligible damage if the load carrying structural system or structural elements survive the earthquake shock and motion. However, more recent investigations and evaluations conducted in the aftermath of recent earthquakes clearly indicate the real extent and magnitude of damage suffered by the non-structural elements and equipment or machinery. For instance, in the 1971 San Fernando earthquake, electrical and mechanical equipment suffered damage which rendered it inoperable, even though many buildings containing such equipment suffered negligible structural damage.
Therefore, the damage incurred by the equipment or machinery and its consequent effect on the safety of the building's occupants and contents and the economic loss due to down production time, repair, and replacements cannot be neglected. Furthermore, damage to equipment or machinery which is part of the so-called "life-line" systems (i.e., power plants, communication facilities, hospitals) may result in unacceptable consequences for a modern society.

The literature available on structural connections for equipment or machinery is limited and is scattered among several disciplines and areas and, in some cases, among the design manuals and handbooks of manufacturers and consulting engineers. Therefore, the present authors approached the subject in a three-pronged way:

1. An in-depth literature survey
2. A direct industry survey through a "questionnaire" sent to the professionals in industry and in consulting engineering firms working in the subject area
3. Visits and discussions with the professionals in industry and consulting engineering firms.

Currently, the initial phase of the literature survey has been completed and is the subject of this report. The direct industry survey is at the finishing stage and the responses are being sorted out and evaluated. The results will be included in a forthcoming state-of-the-art report.
2. OBJECTIVES

The main objectives of the current investigation are:

(1) to review the state-of-the-art in earthquake resistant design of connections for equipment or machinery

(2) to consider and describe briefly the general principles and analytical models employed and upon which the current design practice is based

(3) to review the related codes, specifications, standards and guides

(4) to define the gaps and research needs for safer and more economical design of connections.

The emphasis here is to be on connections associated with the equipment or machinery in industrial installations. These installations are primarily fossil fuel power plants, petroleum refineries, chemical plants, and materials processing plants. The results would be applicable to other installations which involve at least some facilities similar to those listed in this report. Nuclear power plants, however, are beyond the scope of this report since they are the subject of many other investigations. However, pertinent literature on some nuclear plant equipment of a nature similar to equipment or machinery in other industrial installations will also be taken into account.

The purpose of this report is to present the initial part of the literature survey and study as a preliminary bibliography on the subject (see Sections 5 and 6 of this report). A critical review of the available literature and knowledge gathered from other sources will be presented in the form of a state-of-the-art report and also an intensive review of the
related codes, specifications and standards will be the subject matter of subsequent technical reports. A final bibliographic report which is to include further relevant references is planned.

3. MAIN PROBLEMS

Any item of equipment or machinery is usually joined to a main structural system by means of a system of connecting elements. In the current engineering and technical literature there is no common name or definition used for these connecting elements. For the sake of clarity and simplicity, the system of connecting elements will be defined here as the "connections" and will be considered as a part of an overall dynamic system. This overall dynamic system can be considered to be composed of the following physical components:

(1) Equipment or Machinery System
(2) Connections
(3) Connecting Sub-Structure
(4) Structural Member System

A typical configuration of these dynamic systems is given in Fig. 3.

The problem to be considered in the analysis of the equipment together with the rest of the structure for seismic effects is mainly the "interaction" of several elements in a dynamic environment. The most general problem is the three-dimensional problem of "Foundation-Structure-Equipment Interactions".* However, the problem stated this way poses analytical and computational difficulties and can only be handled successfully in rare and simple

*Here, the word foundation is meant to include not only the foundation of the structure itself but also the soil and its effects.
cases. Several sub-problems may be defined to simplify the main problem. To a large extent each of these subproblems must consider the interaction of equipment or machinery with:

(a) foundation or supports,
(b) structural elements,

or
(c) connections.

The subproblems may be divided further depending on the type of supports such as supporting platform, hanging platform, pedestal, or types of foundation.

In the formulation of the above problems, the types and combinations of the connections used and their configurations have to be taken into account in each individual case. Consequently, any particular design problem encountered in practice eventually has to be reduced into one or more of the above mentioned types on the basis of engineering judgement, 'experience', analytical and numerical difficulties involved, and the physical parameters to be studied.

The above classification of the subproblems is derived from a purely analytical point of view. These and other sub-problems will be considered in great detail in the subsequent state-of-the-art report.

Much of the information associated with the various aspects of seismic analysis and design of connections available in the open engineering and technical literature is scattered among many disciplines. A certain amount of the pertinent literature covers analysis and design in general, whereas other papers cover individual kinds of machinery and equipment. The treatment on connections within this literature may be incidental to the
main problem and is rarely reflected in the titles. Some of the more prominent sources of literature covered in this survey are the Seismological Society of America, the chemical and hydrocarbon process industries, the Nuclear Regulatory Commission, the Power and Structural Divisions of the ASCE, the Pressure Vessel and Piping Division of the ASME, various building code committees, and the various international committees on earthquake engineering.

Over 700 reference citations are included in Sections 5 and 6. Section 5 contains over 450 references on general analysis and design further subdivided into sections on various general aspects of analysis and design. Section 6 contains over 250 references on equipment and machinery broken into fourteen categories which appear in a wide variety of industrial installations. The major subdivisions of both reference lists are enumerated in the table of contents. Where a given reference gives substantial information on two or more of the selected subtopics, duplicate reference listings are provided in each of the subdivisions lists of Sections 5 and 6.
4. **SUMMARY AND OUTLOOK**

The bulk of literature available on the subject of seismic design of connections for equipment and machinery is unevenly distributed among several major categories. For example, an abundance of information exists on the seismic analysis and design of building structures. However, there is substantially less information available on the seismic response of buildings' contents and of structures other than building structures. These are areas for which more information would be extremely valuable in design practice.

Literature in the field of civil engineering with respect to structural connections is also abundant. However, only a very small percentage of it is associated with earthquake-resistant design; and literature with respect to the design of structural connections for equipment (industrial or otherwise) is almost non-existent in the civil engineering field.

Most of the information on the design of structural connections for industrial equipment, which is not plentiful by any means, exists in the literature of the chemical and hydrocarbon process industries. Unfortunately, any consideration given to seismic loading in the design procedures presented is purely incidental.

Regardless of this lack of information in some crucial areas, the bibliography presented herein will serve as a nucleus around which to organize an appraisal of the state of the art. Moreover, the bibliography will serve as a source of references for individuals confronted with design problems in this area.
5. REFERENCES ON GENERAL ANALYSIS AND DESIGN

5.1 Earthquake Damage

1. Ambraseys, M. M.
THE BUYIN-ZARA EARTHQUAKE OF SEPTEMBER 1962: A FIELD REPORT,
Bulletin of the Seismological Society of America, Vol. 53,
No. 4, July 1963.

2. American Iron and Steel Institute
THE AGADIR, MOROCCO EARTHQUAKE, FEBRUARY 29, 1960, AISI, New
York, 1962.

3. American Iron and Steel Institute

4. Ayres, J. M. and Sun, T. Y.
NONSTRUCTURAL DAMAGE, SAN FERNANDO, CALIFORNIA EARTHQUAKE OF
FEBRUARY 9, 1971, U.S. Department of Commerce, Washington,

5. Ayres, J. M., Sun, T. Y. and Brown, F. R.
NONSTRUCTURAL DAMAGE TO BUILDINGS, THE GREAT ALASKA EARTHQUAKE

6. Berg, G. V. and Hanson, R. D.
ENGINEERING LESSONS TAUGHT BY EARTHQUAKES, Proceedings of the
Fifth World Conference on Earthquake Engineering, Vol. 1,

7. Berg, G. V. and Husid, R. L.
STRUCTURAL EFFECTS OF THE PERU EARTHQUAKE, Bulletin of the

8. Berg, G. V. and Husid, R. L.
STRUCTURAL BEHAVIOR IN THE 1970 PERU EARTHQUAKE, Proceedings of
the Fifth World Conference on Earthquake Engineering, Vol. 1,

9. Blume, J. A.
A STRUCTURAL DYNAMIC ANALYSIS OF STEEL PLANT STRUCTURES SUBJECTED
TO THE MAY 1960 CHILEAN EARTHQUAKES, Bulletin of the Seismolo-

10. Blume, J. A. and Scholl, R. E.
DAMAGE PREDICTION FOR LOW-RISE BUILDINGS, Proceedings of the
Fifth World Conference on Earthquake Engineering, Vol. 2,

THE STUDY OF EARTHQUAKE QUESTIONS RELATED TO VETERANS ADMINIS-
TRATION HOSPITAL FACILITIES, Bulletin of the Seismological
12. Duke, C. M.

13. Galli, C. O. and Sanchez, J. R.

14. Hara, F.

15. Hazen, R.

16. Jennings, P. C. and Housner, G. W.

17. Konno, T. and Kimura, E.

18. Konno, T. and Kumura, E.

19. Lashico, R. M. and Monge, J.

20. Lew, H. S. Leyendecker, E. V. and Dikkers, R. D.

21. Madolski, M. E.

22. Schiff, A. J.
23. Schiff, A. J. and Yas, J. T. P.

24. Scholl, R. E.

25. Snyder, A. I.

26. State of California
EARTHQUAKES IN KERN COUNTY, CALIFORNIA, DURING 1952, Bulletin 171, Department of Natural Resources, Division of Mines, San Francisco, Ca., 1955.

27. Steinbrugge, K. V., Manning, J. H. and Degenkolb, H. J.

28. Structural Engineers Association of Northern California
1952 EARTHQUAKES IN KERN COUNTY, San Francisco, Ca., 1956.

29. Tanev, P.

30. U.S. Department of Commerce

31. Wall, J. R., Jr.

5.2 Seismic Analysis and Design

1. Applied Technology Council
 AN EVALUATION OF A RESPONSE SPECTRUM APPROACH TO SEISMIC DESIGN

2. Architectural Institute of Japan, Editor
 DESIGN ESSENTIALS IN EARTHQUAKE RESISTANT BUILDINGS, Architectu­
 ral Institute of Japan, Tokyo, 1970.

3. Arya, A. S., Prakash, S., Srivastava, L. S., Chandra, V. and
 Chandrasekaran, A. R., EARTHQUAKE ENGINEERING, Sarita Prakashan,
 India, 1974.

4. Berg, G. V. and DaDeppo, D. A.
 DYNAMIC ANALYSIS OF ELASTO-PLASTIC STRUCTURES, Journal of the
 Engineering Mechanics Division, ASCE, Vol. 86, No. EM2, April
 1960.

5. Bergstrom, R. N., Chu, S. L. and Small, R. J.
 SEISMIC ANALYSIS OF NUCLEAR POWER PLANT STRUCTURES, Journal of
 the Power Division, ASCE, Vol. 97, No. PO2, March 1971.

6. Biggs, J. M.

7. Biggs, J. M.
 SEISMIC ANALYSIS OF EQUIPMENT MOUNTED ON A MASSIVE STRUCTURE,
 Seminar on Seismic Design for Nuclear Power Plants, Massachu­
 setts Institute of Technology, Cambridge, Ma., March 1969.

8. Biggs, J. M.
 STRUCTURAL RESPONSE TO SEISMIC INPUT, Seminar on Seismic Design
 for Nuclear Power Plants, Massachusetts Institute of Technology,
 Cambridge, Ma., March 1969.

 DESIGN OF MULTISTORY REINFORCED CONCRETE BUILDINGS FOR EARTHQUAKE

10. Bogdanoff, J. L., Goldberg, J. E. and Bernard, M. C.
 RESPONSE OF A SIMPLE STRUCTURE TO A RANDOM EARTHQUAKE-TYPE
 DISTURBANCE, Bulletin of the Seismological Society of America,

11. Castellani, A.
 ON DESIGN CRITERIA FOR EQUIPMENT MOUNTED ON A MASSIVE STRUCTURE,
 Proceedings of the Fifth World Conference on Earthquake Engi­

12. Chen, C.
 THE DEFINITION OF STATICALLY INDEPENDENT TIME HISTORIES, Journal
 of the Structural Division, ASCE, Vol. 101, No. ST2, February
 1975.
13. Clough, R. W.

14. Clough, R. W. and Penzien, J.

15. Cornell, C. A.
DESIGN SEISMIC INPUTS, Seminar on Seismic Design for Nuclear Power Plants, Massachusetts Institute of Technology, Cambridge, Ma., March 1969.

17. deEstrada, M.

19. Directorate of Licensing, USAEC

20. Dorwick, E. J.

21. Esteva, L.
SEISMIC RISK AND SEISMIC DESIGN DECISIONS, Seminar on Seismic Design for Nuclear Power Plants, Massachusetts Institute of Technology, Cambridge, Ma., March 1969.

22. Fagel, L. W. and Liu, S. C.

23. Fallgren, R. B., Jennings, P. C., Smith, J. L. and Ostrom, D. K.
ASEISMIC DESIGN CRITERIA FOR ELECTRICAL FACILITIES, Journal of the Power Division Division, ASCE, Vol. 100, No. PO1, July 1974.

24. Fertis, D. G.
25. Fritz, R. J.
SEISMIC ANALYSIS OF POWER PLANT COMPONENTS BASED ON APPLICATIONAL
EXPERIENCE WITH DYNAMIC AND SHOCK ANALYSIS, Seismic Analysis

26. Goldberg, J. E., Bogdanoff, J. L. and Sharpe, D. R.
THE RESPONSE OF SIMPLE NONLINEAR SYSTEMS TO A RANDOM DISTRIBUTION

27. Goodno, B. J. and Gere, J. M.

29. Gupta, A. K. and Chu, S. L.

30. Gupta, S. P. and Arya, A. S.

31. Guzman, R. A. and Jennings, P. C.

32. Hadjian, A. H.

33. Hart, G. C. and Ibanez, P.

35. Housner, G. W.
36. Hausner, G. W.

37. Hausner, G. W.

38. Hausner, G. W.

39. Hausner, G. W., Martel, R. R. and Alford, J. L.

40. Howard, G. E., Ibanez, P. and Smith C. B.

41. Hurty, W. C. and Moshe, M. F.

42. Ibanez, P., Vasudevan, R. and Vineberg, E. J.

43. International Atomic Energy Agency

44. Iwan, W. D.

45. Jankov, Z. D. and Reeves, C. F.

46. Jeaneipierre, F. and Livolant, M.

47. Jordan, C. H.
SEISMIC RESTRAINT OF MECHANICAL AND ELECTRICAL EQUIPMENT IN BUILDINGS, prepared for the ASCE meeting in San Francisco, October 1977.
48. Kircher, C. A. and Vagliente, V. N.

49. Lange, D. F.
SEISMIC DESIGN CRITERIA FOR NUCLEAR POWER PLANTS (SEISMIC METHODS AND PROCEDURES), Seismic Analysis of Pressure Vessel and Piping Components, ASME, 1971.

50. Lee, J. P.

51. Levy, S. and Wilkinson, J. P. D.

52. Liu, S. C., Dougherty, M. R. and Neghabat, F.

53. Liu, S. C. and Fagel, L. W.

54. Liu, S. C., Fagel, L. W. and Dougherty, M. R.

55. Lomnitz, C. and Rosenbleuth, E., Editors

56. Lu, B. T. D., Fischer, J. A. and Peir, J.

57. Matthiesen, R. B., Howard, G. and Smith, C. B.

58. Merchant, H. C. and Hudson, D. E.
59. Merz, K. L.
EARTHQUAKE DYNAMIC ENVIRONMENT WITHIN BUILDINGS, Proceedings of
the International Symposium on Earthquake Structural Engineering,

60. Merz, K. L.
EQUIPMENT SYSTEMS IN THE SEISMIC ENVIRONMENT, Proceedings of the
Sixth World Conference on Earthquake Engineering, Vol. 12, New
Delhi, India, January 1977.

61. Montgomery, J. C. and Hall, W. J.
SEISMIC DESIGN OF LOW RISE BUILDINGS, Advances in Civil Engineer-

62. Nelson, F. C.
TECHNIQUES FOR THE DESIGN OF HIGHLY DAMPED STRUCTURES, Proceedings
of the Third International Conference on Structural Mechanics

63. Newmark, N. M.
SEISMIC RESPONSE OF REACTOR FACILITY COMPONENTS, Seismic Analysis

64. Newmark, N. M.
A METHOD OF COMPUTATION FOR STRUCTURAL DYNAMICS, Pressure

65. Newmark, N. M.
EARTHQUAKE RESPONSE ANALYSIS OF REACTOR STRUCTURES, Nuclear

66. Newmark, N. M.
A RESPONSE SPECTRUM APPROACH FOR INELASTIC SEISMIC DESIGN OF
NUCLEAR REACTOR FACILITIES, Proceedings of the Third Interna-
tional Conference on Structural Mechanics in Reactor Technology,

67. Newmark, N. M., Blume, J. and Kapur, K.
SEISMIC DESIGN SPECTRA FOR NUCLEAR POWER PLANTS, Journal of the

68. Newmark, N. M. and Hall, W. J.
SEISMIC DESIGN CRITERIA FOR NUCLEAR REACTOR FACILITIES, Pressure

69. Newmark, N. M. and Hall, W. J.
PROCEDURES AND CRITERIA FOR EARTHQUAKE RESISTANT DESIGN, Building
Practices for Disaster Mitigation, Building Science Series 45,

70. Newmark, N. M. and Rosenbleuth, E.
FUNDAMENTALS OF EARTHQUAKE ENGINEERING, Prentice-Hall, Inc.
71. Nikolaenko, N. A. and Burgman, I. N.
EARTHQUAKE RESISTANCE OF STRUCTURES WITH SUSPENDED MASSES,
Proceedings of the International Symposium on Earthquake

72. O'Hara, G. J. and Cunniff, P. F.
ELEMENTS OF NORMAL MODE THEORY, Pressure Vessels and Piping:

73. Parmelee, R. A.
BUILDING-FOUNDATION INTERACTION EFFECTS, Journal of the Engineering

74. Perelman, D. S., Parmelee, R. A. and Lee, S. L.
SEISMIC RESPONSE OF SINGLE STORY INTERACTION SYSTEMS, Journal of
the Structural Division, ASCE, Vol. 94, No. ST11, November 1968.

75. Peters, K. A., Schmitz, D. and Wagner, U.
DETERMINATION OF FLOOR RESPONSE SPECTRA ON THE BASIS OF THE RES-
PONSE SPECTRUM METHOD, Nuclear Engineering and Design, Vol. 44,

76. Pona, M. and Arnold, A. B.
SEISMIC DESIGN CRITERIA FOR HYDROELECTRIC PLANT, Journal of the

77. Rizzo, P. C., Shaw, D. E. and Snyder, M. D.
VERTICAL SEISMIC RESPONSE SPECTRA, Journal of the Power Division,
ASCE, Vol. 102, No. PO1, January 1976.

78. Roberts, C. W. and Shipway, G. D.
SEISMIC QUALIFICATION - PHILOSOPHY AND METHODS, Journal of the
Power Division, ASCE, Vol. 102, No. PO1, January 1976.

79. Rodriguez, M.
ASEISMIC DESIGN OF SIMPLE PLASTIC STEEL STRUCTURES FOUNDED ON
FIRM GROUND, Proceedings of the World Conference on Earthquake
Engineering, Berkeley, Ca., 1956.

80. Rosenblueth, E.
THE SIX COMPONENTS OF EARTHQUAKES, Journal of the Structural
Division, ASCE, Vol. 102, No. ST2, February 1976.

81. Sato, H., Suzuki, K., Komazaki, M. and Ohori, M.
ON A SIMPLE METHOD ESTIMATING THE APPENDED SYSTEM RESPONSE
SPECTRUM FROM A STATICALLY SIMULATED SPECTRUM, Proceedings of the
Sixth World Conference on Earthquake Engineering, Vol. 12,
New Delhi, India, January 1977.

82. Scanlon, R. H.
FLOOR RESPONSE SPECTRA FOR MULTI-DEGREE-OF-FREEDOM SYSTEMS BY
FOURIER TRANSFORM, Proceedings of the Third International
Conference on Structural Mechanics in Reactor Technology,
83. Scanlon, R. H. and Sachs, K.
EARTHQUAKE TIME HISTORIES AND RESPONSE SPECTRA, Journal of the

84. Scavuzzo, R. J.
EFFECT OF TORSIONAL EXCITATION ON EQUIPMENT SEISMIC LOADS,
Proceedings of the Third International Conference on Structural

85. Sharpe, R. L.
EARTHQUAKE ENGINEERING FOR NUCLEAR POWER PLANTS, Civil Engineering,

86. Sharpe, R. L.
SYSTEMS ASPECTS OF SEISMIC DESIGN FOR NUCLEAR POWER PLANTS,

87. Sharpe, R. L. and Kost, G.
Discussion of EARTHQUAKE FORCES IN EQUIPMENT IN NUCLEAR POWER

88. Sharpe, R. L., Cost, C. and Lord, J.
BEHAVIOR OF STRUCTURAL SYSTEMS UNDER DYNAMIC LOADS, Building

89. Shaw, D. E.
SEISMIC STRUCTURAL RESPONSE ANALYSIS FOR MULTIPLE SUPPORT
EXCITATION, Proceedings of the Third International Conference

90. Shibata, H.
ON RESPONSE ANALYSIS FOR STRUCTURAL DESIGN AND ITS RELIABILITY,
Proceedings of the Third International Conference on Structural

91. Shibata, H., Sato, H., Shigeta, T. and Shiga, T.
ASEISMIC DESIGN OF MACHINE STRUCTURE, Proceedings of the Third
World Conference on Earthquake Engineering, Vol. 2, New
Zealand, 1965.

ASEISMIC DESIGN OF PIPING, VESSELS AND EQUIPMENT IN NUCLEAR

93. Singh, A. K. and Ang, A. H. S.
STOCHASTIC PREDICTION OF MAXIMUM SEISMIC RESPONSE OF LIGHT
94. Smith, C. B.
VIBRATION TESTING AND SEISMIC ANALYSIS OF NUCLEAR POWER PLANTS,

95. Stoykovich, M.
CRITERIA FOR SEISMIC ANALYSIS OF NUCLEAR PLANT STRUCTURES AND
SUBSTRUCTURES, Nuclear Engineering and Design, Vol. 27, No. 1,
1974.

96. Stoykovich, M.
DEVELOPMENT AND USE OF SEISMIC INSTRUCTURE RESPONSE SPECTRA IN
NUCLEAR PLANTS, Proceedings of the Third International Con­ference on Structural Mechanics in Reactor Technology, Vol. 4,

97. Strangenberg, F.
NONLINEAR DYNAMIC ANALYSIS OF REINFORCED CONCRETE STRUCTURES,

98. Tanabashi, R.
STUDIES ON NONLINEAR VIBRATIONS OF STRUCTURES SUBJECTED TO
DESTRUCTIVE EARTHQUAKES, Proceedings of the World Conference
on Earthquake Engineering, Berkeley, Ca., 1956.

99. Timoshenko, S, Young, D. H. and Weaver, W., Jr.
VIBRATION PROBLEMS IN ENGINEERING, John Wiley and Sons, Inc.,
1974.

100. Tsai, N. C.
SPECTRUM-COMPATIBLE MOTIONS FOR DESIGN PURPOSES, Journal of the
Engineering Mechanics Division, ASCE, Vol. 98, No. EM2,
February 1972.

TORSIONAL SEISMIC RESPONSE OF SYMMETRICAL STRUCTURES, Journal of
the Power Division, ASCE, Vol. 103, No. PO1, July 1977.

102. Vanmarcke, E. H.
A SIMPLE PROCEDURE FOR PREDICTING AMPLIFIED RESPONSE SPECTRA
AND EQUIPMENT RESPONSE, Proceedings of the Sixth World Con­ference on Earthquake Engineering, Vol. 12, New Delhi, India,
January 1977.

103. Vanmarcke, E. H. and Chakravorty, M. K.
PROBABILISTIC SEISMIC ANALYSIS OF LIGHT EQUIPMENT WITHIN BUILD­INGS, Proceedings of the Fifth World Conference on Earthquake Engineering, Vol. 2, Rome, Italy, July 1973:

104. Veletsos, A. S., Newmark, N. M. and Chelapati, C. V.
DEFORMATION SPECTRA FOR ELASTIC AND ELASTOPLASTIC SYSTEMS
SUBJECTED TO GROUND SHOCK AND EARTHQUAKE MOTIONS, Proceedings
of the Third World Conference on Earthquake Engineering, Vol.
2, New Zealand, 1965.
105. Veletsos, A. S. and Vann, W. P.

106. Villasor, A. P., Jr.

107. Walker, G. R.

108. Wang, G. S.
ANALYSIS OF NUCLEAR REACTOR EQUIPMENT RESPONSE TO EARTHQUAKE FORCES, University of California, Los Angeles, 1970 (Ph.D. Thesis).

109. Werner, S. D.

110. Wiegal, R. L., Editor

111. Wilson, E. L.
EARTHQUAKE ANALYSIS OF REACTOR STRUCTURES, Seismic Analysis of Pressure Vessels and Piping Components, ASME, 1971.

112. Wong, J. P. and Aguirre-Ramirez, G.
5.3 Codes, Specifications and Guides

1. American Concrete Institute
 SPECIFICATION FOR THE DESIGN AND CONSTRUCTION OF REINFORCED CONCRETE
 CHIMNEYS, American Concrete Institute, ACI 307-69, Detroit, Mi., 1969.

2. American Concrete Institute
 BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE, American
 Concrete Institute, ACI-318-71, Detroit, Mi., 1971.

3. American Institute of Steel Construction
 SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF
 STRUCTURAL STEEL FOR BUILDINGS, American Institute of Steel

4. American Insurance Association

5. American National Standards Institute
 AMERICAN NATIONAL STANDARD FOR ELEVATORS, DUMBWAITERS, ESCALATORS
 AND MOVING WALKS, American Society of Mechanical Engineers,

6. American National Standards Institute
 BUILDING CODE REQUIREMENTS FOR MINIMUM DESIGN LOADS IN BUILDINGS
 AND OTHER STRUCTURES, American National Standards Institute,

7. American National Standards Institute
 SPECIFICATION FOR WELDED ALUMINUM-ALLOY FIELD-ERECTED STORAGE

8. American National Standards Institute
 SPECIFICATION FOR THE DESIGN, TESTING, AND UTILIZATION OF
 INDUSTRIAL STEEL STORAGE RACKS, American National Standards

9. American Petroleum Institute
 RECOMMENDED RULES FOR DESIGN AND CONSTRUCTION OF LARGE, WELDED,
 LOW-PRESSURE STORAGE TANKS, American Petroleum Institute,

10. American Petroleum Institute
 WELDED STEEL TANKS FOR OIL STORAGE, American Petroleum Institute,

11. American Society of Mechanical Engineers
 ASME BOILER AND PRESSURE VESSEL CODE, American Society of Mech­
12. American Water Works Association
 STANDARD FOR STEEL TANKS - STANDPIPES, RESERVOIRS, AND ELEVATED
 TANKS - FOR WATER STORAGE, American Water Works Association,

 Knapik, E. M., Marchand, H. L., Powers, H. C., Rinne, J. E.,
 Sedgwick, G. A. and Sjoberg, H. O., LATERAL FORCES OF EARTH­

14. Anonymous
 GUIDE TO ASME PRESSURE VESSEL CODE, Hydrocarbon Processing,
 Vol. 54, No. 12, December 1975.

15. Anonymous
 RECENT DEVELOPMENTS IN THE ASME PRESSURE VESSEL CODE, Hydrocarbon
 Processing, Vol. 54, No. 12, December 1975.

16. Association of Iron and Steel Engineers
 SPECIFICATION FOR THE DESIGN AND CONSTRUCTION OF MILL BUILDINGS,
 Association of Iron and Steel Engineers, AISE Standard No. 13,
 1969.

17. Ayers, J. and Sun, T.
 CRITERIA FOR BUILDING SERVICES AND FURNISHINGS, Building Prac­
 tices for Disaster Mitigation, Building Science Series 46,
 U.S. Department of Commerce.

18. Berg, G. V.
 HISTORICAL REVIEW OF EARTHQUAKES, DAMAGE, AND BUILDING CODES,
 Methods of Structural Analysis, Vol. I, American Society
 of Civil Engineers, New York, 1976.

 ELEMENTS OF A DYNAMIC INELASTIC DESIGN CODE, Proceedings of the
 Fifth World Conference on Earthquake Engineering, Vol. 2,

20. Blume, J. A. and Associates
 SUMMARY OF CURRENT SEISMIC DESIGN PRACTICE FOR NUCLEAR REACTOR
 FACILITIES, National Technical Information Service, TID-25021,
 1967.

21. Bockemohle, L. W.
 EARTHQUAKE BEHAVIOR OF COMMERCIAL-INDUSTRIAL BUILDINGS IN THE
 SAN FERNANDO VALLEY, Proceedings of the Fifth World Conference

23. Catlett, R. E.
 SPECIFICATIONS AND THE CORROSION ENGINEER, Chemical Engineering,
24. Celebi, M.
COMPARATIVE STUDY OF THE NEW TURKISH EARTHQUAKE RESISTANT DESIGN
CODE, Proceedings of the International Symposium on Earthquake

25. Degenkolb, H. J.
CODES AND ENGINEERING PRACTICES AS RELATED TO CURRENT RESEARCH
DEVELOPMENTS, Proceedings of the Fifth World Conference on

26. Departments of the Army, the Navy, and the Air Force
SEISMIC DESIGN FOR BUILDINGS, Technical Manual No. 5-809-10,

27. Directorate of Standards, USAEC
REACTOR SITE CRITERIA, Title 10, Atomic Energy, Code of Federal
Regulations, Part 100.

28. Directorate of Standards, USAEC
SEISMIC AND GEOLOGIC SITING FOR NUCLEAR POWER PLANTS, Title 10,
Atomic Energy, Appendix A to Part 100.

29. Directorate of Standards, USAEC
EARTHQUAKE INSTRUMENTATION FOR FUEL REPROCESSING PLANTS, Regula­
tory Guide 3.17.

30. Directorate of Standards, USAEC
INSTRUMENTATION FOR EARTHQUAKES, Regulatory Guide 1.12.

31. Directorate of Standards, USAEC

32. Directorate of Standards, USAEC
ADDITIONAL INFORMATION CONCERNING SEISMIC ANALYSIS OF CLASS 1
PIPING AND EQUIPMENT, H. B. Robinson Unit No. 2, Docket

33. Directorate of Standards, USAEC
SEISMIC DESIGN CLASSIFICATION, Regulatory Guide 1.29, Revision 1,

34. Directorate of Standards, USAEC
DESIGN LIMITS AND LOADING COMBINATIONS FOR SEISMIC CATEGORY I

35. Directorate of Standards, USAEC
DESIGN RESPONSE SPECTRA FOR SEISMIC DESIGN OF NUCLEAR POWER

36. Directorate of Standards, USAEC
DAMPING VALUES FOR SEISMIC DESIGN OF NUCLEAR POWER PLANTS,
37. Directorate of Standards, USAEC
 SEISMIC REQUIREMENTS FOR DESIGN OF NUCLEAR POWER PLANTS AND TEST FACILITIES, RDT Standard F9-2T, 1974.

38. Directorate of Standards, USAEC
 COMBINATION OF MODES AND SPATIAL COMPONENTS IN NUCLEAR POWER PLANTS, Regulatory Guide 1.92, December 1974.

39. Directorate of Standards, USAEC
 GENERAL SITE STABILITY CRITERIA FOR NUCLEAR POWER STATIONS, Regulatory Guide 4.7, Revision 1, November 1975.

40. Duzinkevich, S. U.
 ON THE PROBLEM OF UNIFICATION OF BASIC REQUIREMENTS FOR THE DESIGN OF EARTHQUAKE RESISTANT STRUCTURES, Proceedings of the Third World Conference on Earthquake Engineering, Vol. 2, New Zealand, 1965.

41. Eichmann, E.
 U.S. STRUCTURAL AND FOUNDATION STANDARDS, Hydrocarbon Processing, Vol. 50, No. 6, June 1971, p. 112.

42. Fenves, S. J.
 FORMAL REPRESENTATION OF DESIGN REQUIREMENTS, Methods of Structural Analysis, Vol. II, American Society of Civil Engineers, New York, 1976.

43. Fenves, S. J. and Wright, R. N.
 THE REPRESENTATION AND USE OF DESIGN SPECIFICATIONS (Hall et al., Editors), Proceedings of Symposium on Structural and Geotechnical Mechanics, Prentice-Hall, January 1977.

44. Flores, R.
 DESIGN PRINCIPLES OF EARTHQUAKE RESISTANT BLAST FURNACES, Proceedings of the Third World Conference on Earthquake Engineering, Vol. 2, New Zealand, 1965.

45. Goldberg, A.
 SEISMIC REQUIREMENTS FOR ARCHITECTURAL, ELECTRICAL, AND MECHANICAL SYSTEMS, ASCE National Convention, Denver, Co., November 3-7, 1975.

46. Goldberg, A. and Sharpe, R. L.
 PROVISIONS FOR SEISMIC DESIGN OF NON-STRUCTURAL BUILDING COMPONENTS AND SYSTEMS, Proceedings of the Sixth World Conference on Earthquake Engineering, Vol. 12, New Delhi, India, January 1977.

47. Gupta, S. P.

48. Hall, L.
 SPECIFYING SAFE STORAGE RACKS, Plant Engineering, Vol. 30, No. 9, April 29, 1976.
49. Hisada, T.

50. Institute of Electrical and Electronics Engineers

51. International Association for Earthquake Engineering
EARTHQUAKE RESISTANT REGULATIONS - A WORLD LIST, Building Research Institute, Tokyo, 1970.

52. International Conference of Building Officials
UNIFORM BUILDING CODE, Pasadena, Ca., 1976.

53. Kern, R.

54. Kulwiec, R.

55. Le Coff, J.

56. McGrath, R. V.

57. McGrath, R. V.

58. Mehta, D. S. and Meyers, B. L.

59. National Electrical Manufacturers Association

60. National Electrical Manufacturers Association
61. National Fire Protection Association
 NATIONAL ELECTRIC CODE 1975, National Fire Protection Association,
 Boston, 1974.

62. Newmark, N. M. and Hall, W.
 PROCEDURES AND CRITERIA FOR EARTHQUAKE RESISTANT DESIGN (Part II),
 Building Practices for Disaster Mitigation, Building Science
 Series 46, U.S. Department of Commerce.

63. Newmark, N. M. and Hall, W. J.
 A RATIONAL APPROACH TO SEISMIC DESIGN STANDARDS FOR STRUCTURES,
 Proceedings of the Fifth World Conference on Earthquake

64. Novoa, F. M.
 EARTHQUAKE ANALYSIS AND SPECIFICATION OF HIGH VOLTAGE ELECTRICAL
 EQUIPMENT, Proceedings of the Fifth World Conference on Earth­

65. Palmer, J. R.
 U.S. PRESSURE VESSEL CODES, Hydrocarbon Processing, Vol. 50,
 No. 6, June 1971.

66. Pickel, T. W., Jr.
 EVALUATION OF NUCLEAR SYSTEM REQUIREMENTS FOR ACCOMMODATING
 SEISMIC EFFECTS, Nuclear Engineering and Design, Vol. 20,

67. Pinkham, C.
 PROCEDURES AND CRITERIA FOR EARTHQUAKE RESISTANT DESIGN (Part I),
 Building Practices for Disaster Mitigation, Building Science
 Series 46, U.S. Department of Commerce.

68. St. Onge, G. H.
 U.S. ELECTRICAL STANDARDS, Hydrocarbon Processing, Vol. 50,
 No. 6, June 1971.

69. Seismology Committee of the Structural Engineers Association of
 California, RECOMMENDED LATERAL FORCE REQUIREMENTS AND COMMENTARY,
 1967.

70. Sharpe, R. L.
 SEISMIC DESIGN OF NON-STRUCTURAL ELEMENTS, Invited Discussion,
 Technical Committee No. 12: Architectural-Structural Inter­
 action, ASCE-IABSE Conference on Planning and Design of Tall
 Buildings, Lehigh University, August 1972.

71. Sharpe, R. L.
 CIVIL, MECHANICAL, AND ELECTRICAL ASPECTS OF SEISMIC DESIGN OF
 NUCLEAR POWER PLANTS, 1972 Joint Power Generation Conference,

72. Sharpe, R. L. and Gallagher, R. P.
 NEEDED: SEISMIC DESIGN OF MECHANICAL AND ELECTRICAL EQUIPMENT,
73. Sharpless, E. C.

74. Tissel, J. R.

75. Vackar, B. K.

76. Veterans Administration

77. Veterans Administration

78. Veterans Administration

79. Wheeler, W. T.

80. Wiggins, John H., Jr.
THE BALANCED RISK CONCEPT: NEW APPROACH TO EARTHQUAKE BUILDING CODES, Civil Engineering, August 1972.

81. Zsutty, T. C., Shak, H. C., Teran, J. F. and Padilla, L.
5.4 Soil-Structure Interaction

1. Agabein, M. E., Parmelee, R. A. and Lee, S. L.
A MODEL FOR THE STUDY OF SOIL-STRUCTURE INTERACTION, International
Association for Bridge and Structural Engineering, Final Report,
New York, September 1968.

2. Barkan, D. D.
DYNAMICS OF BASES AND FOUNDATIONS, translated from Russian,

3. Castellani, A.
FOUNDATION COMPLIANCE EFFECTS ON EARTHQUAKE RESPONSE SPECTRA,
Journal of the Soil Mechanics and Foundation Division, ASCE,

4. Chen, W. F.
ANALYSIS OF SOIL-STRUCTURE INTERACTION PROBLEMS, Proceedings of
the 14th Annual Meeting of the Society of Engineering Sciences,
Lehigh University, Bethlehem, Pa., November 1977.

SOIL-STRUCTURE INTERACTION PARAMETERS FROM FINITE ELEMENT ANALYSIS,

6. Crouse, C. B. and Jennings, P. C.
SOIL-STRUCTURE INTERACTION DURING THE SAN FERNANDO EARTHQUAKE,
Bulletin of the Seismological Society of America, Vol. 65,
No. 1, February 1975.

7. DeHerrera, N. M. A.
A STUDY OF THE LIMITATIONS OF FINITE ELEMENT MODELS AND LUMPED
PARAMETER MODELS IN THE ANALYSIS OF THE SOIL-STRUCTURE INTERACTION PROBLEM IN EARTHQUAKES, Proceedings of the Central

8. Finn, W. D. L.
SOIL-STRUCTURE INTERACTION DURING EARTHQUAKES, Proceedings of the
14th Annual Meeting of the Society of Engineering Sciences,
Lehigh University, Bethlehem, Pa., November 1977.

FOUNDATION SUPERSTRUCTURE INTERACTION UNDER EARTHQUAKE MOTION,
Proceedings of the Third World Conference on Earthquake Engineer-

10. Gutenberg, B.
THE EFFECTS OF GROUND ON EARTHQUAKE MOTION, Bulletin of the
EARTHQUAKE ANALYSIS OF NUCLEAR REACTOR BUILDINGS INCLUDING
FOUNDATION INTERACTION, Proceedings of the Third International
Conference on Structural Mechanics in Reactor Technology,

12. Hadjian, A. H.
SOIL-STRUCTURE INTERACTION - AN ENGINEERING EVALUATION, Nuclear

13. Hadjian, A. H.
RESEARCH NEEDS IN SOIL-STRUCTURE INTERACTION, Proceedings of the
14th Annual Meeting of the Society of Engineering Sciences,
Lehigh University, Bethlehem, Pa., November 1977.

A COMPARISON OF EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF
EMBEDMENT ON SEISMIC RESPONSE, Proceedings of the Third Inter­
national Conference on Structural Mechanics in Reactor Tech­

15. Hadjian, A. H., Luco, J. E. and Tsai, M. C.
SOIL-STRUCTURE INTERACTION: CONTINUUM OR FINITE ELEMENT,

SIMPLIFIED SOIL-STRUCTURE INTERACTION ANALYSIS WITH STRAIN
DEPENDENT SOIL PROPERTIES, Nuclear Engineering and Design,

17. Hall, J. R., Jr. and Kissenpfenning, J. F.
SPECIAL TOPICS ON SOIL-STRUCTURE INTERACTION, Nuclear Engineering

18. Herrera, I. and Rosenblueth, E.
RESPONSE SPECTRA ON STRATIFIED SOIL, Proceedings of the Third
World Conference on Earthquake Engineering, Vol. 1, New
Zealand, 1965.

19. Housner, G. W.
INTERACTION OF BUILDING AND GROUND DURING EARTHQUAKES, Bulletin

20. Isenberg, J. and Adham, S. A.
INTERACTION OF SOIL AND POWER PLANTS IN EARTHQUAKES, Journal of
the Power Division, ASCE, Vol. 98, No. PO2, October 1972.

21. Jennings, P. C. and Bielak, J.
DYNAMICS OF BUILDING-SOIL INTERACTION, Bulletin of the Seismo­
22. Lee, A. J. H.
CASE STUDY OF SOIL-STRUCTURE INTERACTION FOR NUCLEAR POWER PLANTS,
Proceedings of the Third International Conference on Structural
September 1975.

23. Lee, T. H. and Wesley, D. A.
SOIL-STRUCTURE INTERACTION OF NUCLEAR REACTOR STRUCTURES CONSID-
ERING THROUGH SOIL COUPLING BETWEEN ADJACENT STRUCTURES,

24. Liu, S. C. and Fagel, L. W.
EARTHQUAKE INTERACTION BY FAST FOURIER TRANSFORM, Journal of the
Engineering Mechanics Division, ASCE, Vol. 97, No. EM4,
October 1971.

25. Luco, J. E. and Hadjian, A. H.
TWO-DIMENSIONAL APPROXIMATIONS TO THE THREE-DIMENSIONAL SOIL-
STRUCTURE INTERACTION PROBLEM, Nuclear Engineering and Design,

26. Lycan, D. L. and Newmark, N. M.
EFFECT OF STRUCTURE AND FOUNDATION INTERACTIONS, Journal of the
Engineering Mechanics Division, ASCE, Vol. 87, No. EM5,
October 1961.

27. Lysmer, J. and Richart, F. E.
DYNAMIC RESPONSE OF FOOTINGS TO VERTICAL LOADING, Journal of
Soil Mechanics and Foundation Engineering, ASCE, Vol. 92,
No. SM1, January 1966.

28. Meek, J. W.
EFFECTS OF FOUNDATION TIPPING ON DYNAMIC RESPONSE, Journal of the

29. Merritt, R. G. and Housner, G. W.
EFFECT OF FOUNDATION COMPLIANCE ON EARTHQUAKE STRESSES IN
MULTISTORY BUILDINGS, Bulletin of the Seismological Society of
America, Vol. 44, No. 4, October 1954.

30. Moore, W. W. and Darragh, R. D.
SOME considerENERATIONS IN THE DESIGN OF FOUNDATIONS FOR EARTHQUAKES,
Proceedings of the World Conference on Earthquake Engineering,
Berkeley, Ca., June 1956.

31. Parmelee, J.
BUILDING INTERACTION EFFECTS, Journal of the Engineering Mech-
anics Division, ASCE, Vol. 93, No. EM2, April 1967.

SEISMIC RESPONSE OF MULTIPLE STORY STRUCTURES ON FLEXIBLE
FOUNDATION, Bulletin of the Seismological Society of America,
SEISMIC RESPONSE OF STRUCTURE-Foundation SYSTEMS, Journal of the
Engineering Mechanics Division, ASCE, Vol. 94, No. EM6,
December 1968.

34. Parmelee, R. A. and Wronkiewicz, J.
SEISMIC DESIGN OF SOIL-STRUCTURE INTERACTION SYSTEMS, Journal of
the Structural Division, ASCE, Vol. 97, No. ST10, October 1971.

35. Raftopoulos, D. D.
ON THE SOIL-STRUCTURE INTERACTION PROBLEM IN EARTHQUAKE MOTION,
Proceedings of the 14th Annual Meeting of the Society of
Engineering Sciences, Lehigh University, Bethlehem, Pa.,
November 1977.

36. Rainer, J. H.
STRUCTURE-GROUND INTERACTION IN EARTHQUAKES, Journal of the
Engineering Mechanics Division, ASCE, Vol. 97, No. EM5,
October 1971.

37. Richart, F. E.
FOUNDATION VIBRATIONS, Journal of the Soil Mechanics and Foundation
Division, ASCE, Vol. 92, No. SM1, January 1966.

38. Richart, F. E., Hall, J. R., Jr. and Woods, R. D.

39. Richart, F. E., Jr.
FOUNDATION VIBRATIONS, Foundation Engineering Handbook, H. F.

40. Roesset, J. M.
FUNDAMENTALS OF SOIL AMPLIFICATION, Seminar on Seismic Design for
Nuclear Power Plants, Massachusetts Institute of Technology,
Cambridge, Ma., March 1969.

41. Roesset, J. M., Whitman, R. V. and Darby, R.
MODAL ANALYSIS FOR STRUCTURES WITH FOUNDATION INTERACTION,
Journal of the Structural Division, ASCE, Vol. 99, No. ST3,

42. Sarrazin, M., Roesset, J. M. and Whitman, R. V.
DYNAMIC SOIL STRUCTURE INTERACTION, Journal of the Structural

43. Scavuzzo, R. J. and Raftopoulos, D. D.
A REVIEW OF SOIL-STRUCTURE INTERACTION EFFECTS IN THE SEISMIC
ANALYSIS OF NUCLEAR POWER PLANTS, Nuclear Engineering and
44. Scavuzzo, R. J., Raftopoulos, D. D. and Barley, J. L.
 LATERAL STRUCTURE-FOUNDATION INTERACTION OF STRUCTURES WITH BASE
 MASSES, Bulletin of the Seismological Society of America,

45. Seed, H. B. and Idriss, I. M.
 SOIL-STRUCTURE INTERACTION OF MASSIVE EMBEDDED STRUCTURES DURING
 EARTHQUAKES, Proceedings of the Fifth World Conference on

46. Seed, H. B. and Idriss, I. M.
 INFLUENCE OF SOIL CONDITIONS ON GROUND MOTIONS DURING EARTHQUAKES,
 Journal of the Soil Mechanics and Foundations Division, ASCE,
 Vol. 95, No. SM1, January 1969.

47. Singh, H.
 SOIL-STRUCTURE INTERACTION ANALYSIS FOR NUCLEAR POWER PLANTS,
 Proceedings of the 14th Annual Meeting of the Society of
 Engineering Sciences, Lehigh University, Bethlehem, Pa.,
 November 1977.

 STRUCTURE-SOIL-STRUCTURE INTERACTION OF NUCLEAR STRUCTURES,
 Proceedings of the Third International Conference on Structural
 Mechanics in Reactor Technology, Vol. 4, Part K, London,
 September 1975.

49. Tsai, N. C.
 SPECTRUM-COMPATIBLE MOTIONS FOR DESIGN PURPOSES, Journal of the
 Engineering Mechanics Division, ASCE, Vol. 99, No. EM2, April

50. Tsai, N. C.
 MODAL DAMPING FOR SOIL-STRUCTURE INTERACTION, Journal of the
 Engineering Mechanics Division, ASCE, Vol. 100, No. EM2, April
 1974.

51. Tsai, N. C., Niehoff, D., Swatta, M. and Hadjian, A. H.
 THE USE OF FREQUENCY-INDEPENDENT SOIL-STRUCTURE INTERACTION
 PARAMETERS, Nuclear Engineering and Design, Vol. 31, No. 2,
 1974.

52. Veletsos, A. S. and Wei, Y. T.
 LATERAL AND ROCKING VIBRATION OF FOOTINGS, Journal of Soil
 Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9,
 September 1971.

53. Whitman, R. V.
 EVALUATION OF SOIL PROPERTIES FOR SITE EVALUATION AND DYNAMIC
 ANALYSIS OF NUCLEAR POWER PLANTS, Seminar on Seismic Design
 for Nuclear Power Plants, Massachusetts Institute of Tech­
 nology, Cambridge, Ma., March 1969.
54. Whitman, R. V.
SOIL STRUCTURE INTERACTION, Seminar on Seismic Design for Nuclear
Power Plants, Massachusetts Institute of Technology, Cambridge, Ma., March 1969.

55. Whitman, R. V., Protonotarios, J. N. and Martin, R. T.
CASE STUDY OF DYNAMIC SOIL-STRUCTURE INTERACTION, Journal of the

56. Whitman, R. V. and Richart, F. E.
DESIGN PROCEDURES OF DYNAMICALLY LOADED FOUNDATIONS, Journal of
the Soil Mechanics and Foundation Division, ASCE, Vol. 93,
No. SM6, November 1967.
5.5 Damping Effects, Shock and Vibration Isolation in Structure and Machinery

1. Afimiwalh, K. A. and Mayne, R. W.

2. Agabein, M. E.

3. Anonymous

4. Barkan, D. D.

5. Barton, M. V., Editor

6. Beranek, L. L., Editor

7. Berg, G. V. and Thomaides, S. S.

8. Biggs, J. M.

9. Bishop, R. E. D. and Johnson, D. C.

10. Blume, J. A.

11. Blume, J. A.

12. Blume, J. A. and Associates, Engineers
13. Brock, J. E.

15. Burton, R.

16. Burton, R.

17. Caspe, M. S.
ISOLATING STRUCTURES FROM EARTHQUAKE GROUND MOTION, Consulting Engineer, April 1970.

18. Ciampi, V.

19. Cicci, F.

20. Clough, R. W. and Penzien, J.

21. Coppa, A. P.

22. Crandall, S. H.

23. Crede, C. E.

24. Crede, C. E., Editor

25. Crede, C. E., Editor

27. Crockett, J. H. A. and Hammond, R. E. R.
REDUCTION OF GROUND VIBRATIONS INTO STRUCTURES, Journal of the

DYNAMIC PRINCIPLES OF MACHINE FOUNDATIONS AND GROUND, Proceedings
of the Institute of Mechanical Engineers, London, Vol. 160,
No. 4, 1949, pp. 512-531.

29. Dahlquist, C. A.
FAMILY OF VISCOELASTIC MATERIALS FOR DIVERSE DAMPING APPLICATIONS,

30. Danisch, R. and Labes, M.
ASEISMIC DESIGN OF TURBINE HOUSES OF NUCLEAR POWER PLANTS,
Proceedings of the Third International Conference on Structural

31. Den Hartog, J. P.
RECENT DEVELOPMENTS IN DYNAMICS AND VIBRATION, Applied Mechanics

32. Derham, C. J., Learoyd, S. E. E. and Wooten, L. R.
BUILDING ON SPRINGS TO RESIST EARTHQUAKES, Proceedings, Fifth

33. Dowrick, D. J.
EARTHQUAKE RESISTANT DESIGN, John Wiley and Sons, Interscience

34. Eastwood, W.
VIBRATIONS IN FOUNDATIONS, The Structural Engineer, Vol. 31,
No. 3, pp. 82-98, 1953.

35. Ebner, A. M. and Billington, D. P.
STEADY STATE VIBRATION OF DAMPED TIMOSHENKO'S BEAMS, Journal of
the Structural Division, ASCE, Vol. 94, No. ST3, March 1968,
pp. 737-759.

36. Epstein, H. I., Johnson, G. R. and Cristiano, P.
Discussion of MODAL DAMPING FOR SOIL-STRUCTURE INTERACTION,
Journal of the Engineering Mechanics Division, ASCE, Vol. 100,
No. EM6, December 1974.

37. Fagerstrom, W. B.
DYNAMIC STIFFNESS AND DAMPING OF MACHINED INTERFACES AND THEIR
EFFECT ON THE DYNAMIC STIFFNESS OF A STRUCTURE, Ph.D. Thesis,
University of Wisconsin, 1972.

38. Fintel, M. and Khan, F. R.
SHOCK-ABSORBING SOFT STORY CONCEPT FOR MULTISTORY EARTHQUAKE
STRUCTURES, Proceedings, ACI Journal, Vol. 66, No. 5, May 1969,
pp. 381-390.
39. Foss, K. A.

40. Glazyrin, U. S.

41. Goldsmith, W.

42. Goodman, L. E.
A REVIEW OF PROGRESS IN ANALYSIS OF INTERFACIAL SLIP DAMPING, ASME Symposium on Structural Damping, 1959.

43. Grootenhuis, P.

44. Hall, J. R. and Kisseupfennig, J. F.

45. Harris, C. M. and Crede, C. E., Editors

46. Harris, C. M. and Crede, C. E., Editors

47. Hernalsteen, P. and Leblois, L. C.

48. Hillman, Biddison & Loevenguth, Consulting Engineers

49. Himelblau, H., Jr.

50. Hitchcock, H. C.

51. Hitchings, D. and Dance, S. H.
RESPONSE OF NUCLEAR STRUCTURAL SYSTEMS TO TRANSIENT AND RANDOM EXCITATION USING BOTH DETERMINISTIC AND PROBABILISTIC METHODS, Nuclear Engineering and Design, Vol. 29, 1974, pp. 311-337.
52. Hudson, D. E.

53. Hurty, W. C. and Rubinstein, M. F.

54. Idriss, I. M., Seed, H. E. and Serff, N.

55. Inglis, C. E.

56. Jacobsen, L. S.
FRICCTIONAL EFFECTS IN COMPOSITE STRUCTURES SUBJECTED TO EARTHQUAKE VIBRATIONS, Department of Mechanical Engineering Report, Stanford University, 1959.

57. Jacobsen, L. S.

58. Jacquot, R. G. and Foster, J. E.

59. Jennings, P. C.

60. Johns, D. J., Britton, J. and Stoppard, G.

VIBRATION REDUCTION IN TOWER STRUCTURES, Rapport Technique KH-5-74, Department de Genie Civil, Universite de Sherbrooke, Sherbrooke, Quebec, Canada, 1974.

62. Johnson, W.

63. Karnopp, B. H.
64. Katayama, T.

65. Katsuta, C. and Mashizu, N.

67. Kishore, N. N. and Ghosh, A.

68. Korniev, B. G. and Rezuikov, L. M.

69. Kukkola, T.

70. Kutta, T. et al.

71. Lazan, B. J.
ENERGY DISSIPATION MECHANISMS IN STRUCTURES, WITH PARTICULAR REFERENCE TO MATERIAL DAMPING, ASME Colloquium on Structural Damping, 1959.

72. Lazan, B. J.

73. Lewis, F. M

75. Lewis, E. M. and Waller, R. A.
76. Lorenz, H.
ELASTICITY AND DAMPING EFFECTS OF OSCILLATING BODIES ON SOIL,
Special Publication No. 156, ASTM, 1953.

77. MacDuff, J. N. and Curreri, J. R.

78. Mahalingam, S.
THE RESPONSE OF VIBRATING SYSTEMS WITH COULOMB AND LINEAR DAMPING
INSERTS, Journal of Sound and Vibration, Vol. 41, No. 3,
August 1975, pp. 311-320.

79. Mahmoodi, P.
STRUCTURAL DAMPERS, Journal of the Structural Division, ASCE,

80. Major, A.
VIBRATION ANALYSIS AND DESIGN OF FOUNDATIONS FOR TURBINES AND

81. Manopov, A. Z. and Pikulev, N. A.
OPTIMAL PARAMETERS OF VIBRATION DAMPER SYSTEM FOR HARMONIC
EXCITATION WITH UNSTABLE FREQUENCY, Struitel'nyaya Mekhanika i

82. Martz, J. W. and Leist, T.
APPLICATION OF MODEL TESTING TECHNIQUES TO SOLVE VIBRATION PROB­
LEMS IN MACHINERY SUPPORTING STRUCTURES, Paper No. 77-DE-16,

83. Mead, D. J.
THE PRACTICAL PROBLEMS OF ASSESSING DAMPING TREATMENTS, Journal

84. Mercer, C. A. and Rees, P. L.
AN OPTIMUM SHOCK ISOLATOR, Journal of Sound and Vibration,
Vol. 18, No. 4, October 1971, pp. 511-520.

85. Mizuno, N. and Tsushima, Y.
EXPERIMENTAL AND ANALYTICAL STUDIES FOR A BWR NUCLEAR REACTOR
BUILDING - EVALUATION OF SOIL-STRUCTURE INTERACTION BEHAVIOR,
Proceedings of the Third International Conference on Structural

86. Muto, K. et al.
MODAL ANALYSIS FOR EQUATION OF MOTION WITH VARIOUS DIFFERENT
DAMPINGS, Muto Institute of Structural Mechanics, 1970.

87. Myklestad, N. O.
THE CONCEPT OF COMPLEX DAMPING, Journal of Applied Mechanics,

88. Nelson, F. C.
THE USE OF VISCOELASTIC MATERIAL TO DAMP VIBRATION IN BUILDINGS
AND LARGE STRUCTURES, AISC Engineering Journal, April 1968,
pp. 72-76.
89. Nelson, F. C.
HUMAN AWARENESS OF TRANSIENT FLOOR VIBRATION AND REDUCTION OF THIS AWARENESS BY CONSTRAINED VISCOELASTIC DAMPING LAYERS,
Report to the American Institute of Steel Construction, Dyna­

90. Nelson, F. C.
TECHNIQUES FOR DESIGNING HIGHLY DAMPED STRUCTURES, Proceedings
of the Third International Conference on Structural Mechanics
in Reactor Technology, Vol. 4, Part K, Paper K7/10, London,

91. Nelson, F. C. and Grief, R.
DAMPING IN SHOCK AND VIBRATION COMPUTER PROGRAMS, Shock and
Vibration Information Center Monograph, Office of Naval Research,

92. Nelson, F. C. and Grief, R.
ON THE INCORPORATION OF DAMPING IN LARGE, GENERAL-PURPOSE COMPUTER
65-72.

93. Newcomb, W. K.
PRINCIPLES OF FOUNDATION DESIGN FOR ENGINES AND COMPRESSORS,

94. Newmark, N. M.
NOTES ON SHOCK ISOLATION CONCEPTS, Symposium of the British

95. Newmark, N. M.
NOTES ON SHOCK ISOLATION CONCEPTS IN VIBRATION IN CIVIL ENGHI-

96. Norzi, L.
ON THE DAMPING OF VIBRATIONS, Proceedings of the Eighth Congress

97. Ohchi, Y.
THE TREATMENT OF DAMPING COEFFICIENT ON THE DYNAMIC PROBLEM,
Proceedings of the Eighth Congress of IABSE, New York, Sept­
ember 1968, pp. 1181-1191.

98. O'Kelly, M. E. J.
NORMAL MODES IN DAMPED SYSTEMS, Dynamics Laboratory Report,
California Institute of Technology, Pasadena, Ca., 1961.

99. Pajuhehsh, J. and Hadjian, A. H.
DETERMINATION OF COMPOSITE DAMPING MATRICES, Proceedings of the
Fifth World Conference on Earthquake Engineering, Paper No.

100. Paulard, M., Trompette, P. and Lalanne, M.
RESPONSE OF THICK STRUCTURES DAMPED BY VISCOELASTIC MATERIAL
WITH APPLICATION TO LAYERED BEAMS AND PLATES, presented at the
101. Pikulev, N. A. and Erdelesvskii, A. N.
ON THE DESIGN OF A GROUP OF SHOCK ABSORBERS WITH CALCULATIONS,
Structural Mechanics and Structural Design, No. 5 (77), 1971,
pp. 5-9 (in Russian).

102. Plunkett, R.
VIBRATION DAMPING, Applied Mechanics Surveys, Sporhon Books,

103. Plunkett, R.
OPTIMUM DAMPING DISTRIBUTION FOR STRUCTURAL VIBRATION, U. S.
Naval Research Laboratory, Shock and Vibration Bulletin No.
62, 1972, pp. 57-64.

104. Polentz, L. M.

105. Probst, P. H. and Joyce, J. S.
THE DEVELOPMENT OF HELICAL-SPRING FOUNDATIONS FOR LARGE STEAM
TURBINE-GENERATORS, Proceedings of the American Power Confer­
ence, Chicago, Ill., April 19, 1972.

106. Raggett, J. D.
ESTIMATING DAMPING OF REAL STRUCTURES, ASCE National Conference,
1974.

107. Raggett, J. D.
ESTIMATING DAMPING OF REAL STRUCTURES, Journal of the Structural

108. Rainer, J. H.
DAMPING IN DYNAMIC STRUCTURE-Foundation INTERACTION, Canadian

DAMPING CAPACITY OF A MODEL STEEL STRUCTURE, Preprint of the
Fourth World Conference on Earthquake Engineering, January

110. Reed, F. E.
THE USE OF THE CENTRIFUGAL PENDULUM ABSORBER FOR THE REDUCTION
OF LINEAR VIBRATIONS, Transactions, Journal of Applied Mechanic­s,

111. Reed, W. H. and Duncan, R. L.
DAMPERS TO SUPPRESS WIND-INDUCED OSCILLATIONS OF TALL FLEXIBLE
STRUCTURES, Tenth Midwestern Mechanics Conference, Fort Collins,

112. Robinson, W. H. and Greenbank, L. R.
AN EXTENSION ENERGY ABSORBER SUITABLE FOR THE PROTECTION OF
STRUCTURES DURING AN EARTHQUAKE, Earthquake Engineering and
113. Roorda, J.

114. Rosenblueth, E.

115. Rosenblueth, E. and Herrera, I.

116. Ruzicka, J. E.
FORCED VIBRATIONS IN SYSTEMS WITH ELASTICALLY SUPPORTED DAMPERS, Masters Thesis, Massachusetts Institute of Technology, Cambridge, Ma., 1957.

118. Sato, H.

119. Seed, H. B. and Idriss, I. M.
SOIL MODULI AND DAMPING FACTORS FOR DYNAMIC RESPONSE ANALYSIS, Earthquake Engineering Research Center Report No. EERC 70-10, University of California at Berkeley, December 1970.

120. Sharpe, R. L., Kost, G. and Lord, J.

121. Shibata, H., Sato, H. and Shigeta, T.

122. Sisoev, V. F.

123. Skinner, R. I.

124. Skinner, R. I., Beck, J. L. and Bycroft, G. N.
125. Skinner, R. I., Kelly, J. M. and Heine, A. J.
ENERGY ABSORPTION DEVICES FOR EARTHQUAKE RESISTANT DESIGN,

126. Skinner, R. I., Kelly, J. M. and Heine, A. J.
HYSTERETIC DAMPERS FOR EARTHQUAKE-RESISTANT STRUCTURES, Interna­
tional Journal of Earthquake Engineering and Structural Dynamics,

127. Snowdon, J. C.
VIBRATION AND SHOCK IN DAMPED MECHANICAL SYSTEMS, John Wiley
and Sons, New York, 1968.

128. Swamy, R. N.
DAMPING MECHANISM IN CEMENTITIOUS SYSTEMS, Dynamic Waves in
Civil Engineering, Howells, D. A., Haigh, I. P. and Taylor, C.

129. Sykes, A. O.
THE EVALUATION OF MOUNTS ISOLATING NON-RIGID MACHINES FROM
NON-RIGID FOUNDATIONS, Applied Mechanics Division Conference,
ASME Shock and Vibration Instrumentation Papers, June 14-16,

130. Takemori, T., Sotomura, K. and Yamada, M.
NONLINEAR DYNAMIC RESPONSE OF REACTOR CONTAINMENT, Proceedings
of the Third International Conference on Structural Mechanics
September 1-5, 1975.

131. Thomson, W. T., Calkins, T. and Caravani, P.
NUMERICAL STUDY OF DAMPING, Earthquake Engineering and Struc­

132. Toriumi, I.
VIBRATION IN FOUNDATION OF MACHINES, Technology Report, Vol. 5,
No. 146, Osaka University, 1955.

133. Tsushima, T. and Jido, J.
ANALYSIS OF EQUATIONS OF MOTION WITH COMPLEX STIFFNESS MODE
SUPERPOSITION METHOD APPLIED TO SYSTEMS WITH MANY DEGREES OF
47-64.

134. Tsushima, Y. and Jido, J.
ASEISMIC DESIGN OF STRUCTURES WITH NUCLEAR REACTORS - METHOD OF
EARTHQUAKE RESPONSE ANALYSIS FOR COMPOSITE STRUCTURES EVALUATED
FOR DAMPING EFFICIENCIES BY MATERIAL AND STRUCTURE TYPE,
Proceedings of the First International Conference on Structural

135. Unger, E. E.
THE STATUS OF ENGINEERING KNOWLEDGE CONCERNING THE DAMPING IN
BUILD-UP ENGINEERING STRUCTURES, Journal of Sound and Vibration,
136. United States Nuclear Regulatory Commission
 DAMPING VALUES FOR SEISMIC DESIGN OF NUCLEAR POWER PLANTS,
 U.S. Nuclear Regulatory Commission, Regulatory Guide No. 1.61,

137. Waller, R. A.

138. Wang, W. M.
 FILTER DESIGN FOR VIBRATION ISOLATION BETWEEN MULTI
 STRUCTURES, Journal of Sound and Vibration, Vol. 16, No. 3,

139. Wilson, E. L. and Penzien, J.
 EVALUATION OF ORTHOGONAL DAMPING MATRICES, International
 Journal of Numerical Methods in Engineering, Vol. 4, 1972,
 pp. 5-10.

140. Wintrop, D. A. and Hitchcock, H. C.
 EARTHQUAKE DESIGN OF STRUCTURES WITH BRITTLE MEMBERS AND HEAVY
 ARTIFICIAL DAMPING BY THE METHOD OF DIRECT INTEGRATION,
 Bulletin of the New Zealand Society of Earthquake Engineering,

141. Young, D.
 THEORY OF DYNAMIC VIBRATION ABSORBERS FOR BEAMS, Proceedings
 of the First U.S. National Congress of Applied Mechanics,
5.6 Design Details

1. Anonymous
 SEISMIC DESIGN FOR BUILDINGS, Chapter 13, Departments of the
 Army, the Navy and the Air Force, TM 5-809-10/NAVFAC P-355/AFM

2. Anonymous
 GUIDELINES FOR SEISMIC RESTRAI NST OF MECHANICAL SYSTEMS, Sheet
 Metal and Air-Conditioning Contractors' National Association,

3. Ayes, J. M. and Sun, T. Y.
 EARTHQUAKE RESISTIVE DESIGN AND CONSTRUCTION FOR MECHANICAL
 SYSTEMS, LIGHT FIXTURES AND CEILINGS, Unpublished Report
 submitted to the Los Angeles Unified School District, July
 1972.

4. Ayres, J. M. and Sun, T. Y.
 CRITERIA FOR BUILDING SERVICES AND FURNISHINGS, National Bureau
 of Standards, Building Science Series No. 46, Building Prac­

5. Berry, O. R.
 ARCHITECTURAL SEISMIC DETAILING, State-of-the-Art Report No. 3,
 Technical Committee No. 12, Proceedings of the First Interna­
 tional Conference on Tall Buildings, Lehigh University,
 August 1972.

 EARTHQUAKE PROTECTION OF MECHANICAL SERVICES, New Zealand

7. Blodgett, O. W.
 DESIGN OF WELDM ENTS, J. F. Lincoln Arc Welding Foundation,
 Cleveland, Oh., 1963.

8. Brownell, L. E. and Young, E. H.

9. Crede, C. E. and Walsh, J. P.
 THE DESIGN OF VIBRATION-ISOLATING BASES FOR MACHINERY, Journal

10. Danisch, R. and Labes, M.
 ASEISMIC DESIGN OF TURBINE HOUSES OF NUCLEAR POWER PLANTS,
 Proceedings of the Third International Conference on Structural
 Mechanics in Reactor Technology, Paper No. K6/6, Vol. 4, Part K,

11. Gartner, A. I.
 NOMOGRAMS FOR THE SOLUTION OF ANCHOR BOLT PROBLEMS, Petroleum
12. Harris, C. M. and Crede, C. E., Editors

13. Hernalsteen, P. and Leblois, L. C.
THE USE OF ENERGY ABSORBERS TO PROTECT THE STRUCTURES AGAINST

15. Hillman, Biddison & Loevenguth, Consulting Engineers
GUIDELINES FOR SEISMIC RESTRAINTS OF MECHANICAL SYSTEMS, Sheet
Metal Industry Fund of Los Angeles, Sheet Metal & Air Condition-

SEISMIC RESTRAINT OF MECHANICAL AND ELECTRICAL EQUIPMENT IN

17. Jorgenson, S. M.

18. Kissenpfennig, J. F., Shaw, P. E. and Snyder, M. D.
SEISMIC ANALYSIS OF A NUCLEAR CONTAINMENT POLAR CRANE, Proceedings

19. Lewis, R. C. and Unho1tz, K.
A SIMPLIFIED METHOD FOR THE DESIGN OF VIBRATION-ISOLATING SUS-

20. Lorenz, H.

21. M. W. Kellogg Company

22. Major, A.
VIBRATION ANALYSIS AND DESIGN OF FOUNDATIONS FOR MACHINES AND

23. Newcomb, W. K.
PRINCIPLES OF FOUNDATION DESIGN FOR ENGINES AND COMPRESSORS,

24. Sharpe, R. L. and Gallagher, R. P.
NEEDED: SEISMIC DESIGN OF MECHANICAL AND ELECTRICAL EQUIPMENT,
25. Summer, W. B.
 OCTAGONAL FOUNDATIONS FOR STACKS AND TOWERS, Petroleum Refiner,

26. Toomath, S. W.
 ARCHITECTURAL DETAILS FOR EARTHQUAKE MOVEMENT, Bulletin of the
 New Zealand Society for Earthquake Engineering, Vol. 1, No. 1,
 1968.

27. Wolosewick, F. E.
 SUPPORTS FOR VERTICAL PRESSURE VESSELS, Part II, Petroleum Refiner,
 30, No. 10, 1951, p. 143; Part IV, Petroleum Refiner, Vol. 30,
 No. 12, 1951, p. 151.

28. Yanev, P. I. and Gonen, B.
 PROTECTION OF ESSENTIAL MECHANICAL EQUIPMENT IN SEISMIC AREAS,
 Fifth European Conference on Earthquake Engineering, Vol. 2,
5.7 Seismic Design Decision Analysis

SENSITIVITY ANALYSES OF A SEISMIC RESPONSE EVENT TREE MODEL OF A
NUCLEAR PLANT SAFETY SYSTEM, Proceedings of the Third Interna-
tional Conference on Structural Mechanics in Reactor Technology,

2. DeNeufville, R. and Marks, D.
SYSTEMS PLANNING AND DESIGN: CASE STUDIES IN MODELING, OPTIMiza-

3. Duke, C. M. and Moran, D. F.
GUIDELINES FOR EVALUATION OF LIFELINE EARTHQUAKE ENGINEERING,
Proceedings, U. S. National Conference on Earthquake Engineering,
Oakland, Ca., June 1975, pp. 367-376.

4. Institute of Electrical and Electronic Engineers
IEEE RECOMMENDED PRACTICES FOR SEISMIC QUALIFICATION OF CLASS
1E EQUIPMENT FOR NUCLEAR POWER GENERATING STATIONS, IEE
Standard 344-1975, United Engineering Center, New York,
January 1975.

5. Liu, S. C. and Neghebat, F.
A COST OPTIMIZATION MODEL FOR SEISMIC DESIGN OF STRUCTURES, Bell

6. Shibata, H.
THE WAY OF SETTING THE ASEISMIC DESIGN CODE OF OIL REFINERIES AND
PETRO CHEMICAL INDUSTRIES, Proceedings, Sixth World Conference

7. Siddall, J. N.
ANALYTICAL DECISION MAKING IN ENGINEERING DESIGN, Prentice-Hall,
1972.

8. Taleb-Agha, G.
SEISMIC RISK ANALYSIS OF NETWORK-SEISMIC DESIGN DECISION ANALYSIS,
Department of Civil Engineering Report No. R-T5-43, Massachusetts
Institute of Technology, Cambridge, Ma., 1975.

9. Vanmarcke, E. H. and Diaz-Padilla, J.
MARKOV DECISION MODELS IN SEISMIC DESIGN, Report R71-20, Depart-
ment of Civil Engineering, Massachusetts Institute of Technology,
Cambridge, Ma., December 1971.

10. Whitman, R. V.
DAMAGE PROBABILITY MATRICES FOR PROTOTYPE BUILDINGS, Department
of Civil Engineering Report No. R73-57, Massachusetts Institute of Technology,
Cambridge, Ma., 1973.

11. Whitman, R. V.
RISK-BASED SEISMIC DESIGN CRITERIA FOR LIFELINES, ASCE Annual
12. Whitman, R. V. et al.

14. Whitman, R. V. and Cornell, C. A.
6. REFERENCES ON EQUIPMENT OR MACHINERY

6.1 Turbine-Generators

2. Almuti, A. M.

3. Alplan, I.

4. Aneja, I. K.

5. Aneja, I. K.
SEISMIC RESPONSE OF FLOATING NUCLEAR POWER PLANT EQUIPMENT (TURBINE-GENERATOR ON STEEL FOUNDATION), Proceedings of the Sixth World Conference on Earthquake Engineering, Vol. 8, 1977, pp. 81-86.

6. Aneja, I. K.

7. Barkan, D. D.

8. Bendixen, I.

10. Bergstrasser, G.
11. Bergstrom, R. N., Chu, S. L. and Small, R. J.
SEISMIC ANALYSIS OF NUCLEAR POWER PLANT STRUCTURES, Journal of
the Power Division, ASCE, Vol. 97, No. P02, March 1971,
p. 367-394.

12. Biggs, J. M.
SEISMIC ANALYSIS OF EQUIPMENT MOUNTED ON A MASSIVE STRUCTURE,
Seminar on Seismic Design for Nuclear Power Plants, Massachusetts
Institute of Technology, Cambridge, Ma., March 1969.

SEISMIC ANALYSIS OF EQUIPMENT MOUNTED ON A MASSIVE STRUCTURE,
Seismic Design of Nuclear Power Plants (R. J. Hansen, Editor),

14. Bradley, W. A.
REALISTIC TOLERANCES FOR ROTORS, Machine Design, Vol. 44, November

15. Crockett, J. H. A. and Hammond, R. E. R.
NATURAL OSCILLATIONS OF GROUND AND INDUSTRIAL FOUNDATIONS,
Proceedings, Second International Conference on Soil Mechanics

THE DYNAMIC PRINCIPLES OF MACHINE FOUNDATIONS AND GROUND,
Proceedings, Institution of Mechanical Engineers, Vol. 160,

17. Croneberger, D. K. and Broome, K. R.
LOW-TUNED FOUNDATIONS FOR LARGE TURBINE-GENERATORS, Power

18. Crook, A. W. and Grantham, F.
APPROACH TO THE PREDICTION OF VIBRATIONS OF TURBINE GENERATORS

19. Danisch, R. and Labes, M.
ASEISMIC DESIGN OF TURBINE HOUSES OF NUCLEAR POWER PLANTS,
Proceedings, Third International Conference on Structural
Mechanics in Reactor Technology, Paper No. K6/6, London,
September 1-5, 1975; Nuclear Engineering and Design, Vol. 38, 1976,
p. 495-501.

20. Dietz, H.
STEEL PEDESTALS FOR LARGE STEAM TURBINE GENERATORS, MAN Corporation,
Gustavsburg, West Germany.

21. Dietz, H. and Lorenz, H.
STEEL PEDESTALS COMPARED WITH CONCRETE FOUNDATIONS FOR LARGE
STEAM TURBINE-GENERATORS, Proceedings, American Power Conference,
22. Downs, D. I.

23. Eastwood, W.

24. Fitzherbert, W. A. and Barnett, J. H.

25. Geiger, I.
UBER DIE DYNAMISCHEN DRAFTE BEI TURBINFUNDAMENTEN, Beton und Stahlbetonbau, No. 4, 1956, pp. 86-88.

26. General Electric Company
STEAM-TURBINE GENERATOR FOUNDATIONS, General Electric Company Report, GET-1749C.

27. General Electric Company

30. Guyan, R. J.

31. Hadjian, A. H.

32. Hadjian, A. H.

33. Hadjian, A. H.
34. Hadjian, A. H.
DESIGN OF PEDESTALS FOR MACHINE UNBALANCE, Paper presented at the
ASME-IEEE Joint Power Generation Conference, Boston, September
10-14, 1972.

35. Hadjian, A. H.
SLENDER COMPOSITE COLUMNS FOR CONCRETE TURBINE-GENERATOR PEDESTALS,
Proceedings, American Power Conference, April 21-23, 1975,
pp. 550-561.

36. Hadjian, A. H., Niehoff, D. and Guss, J.
SIMPLIFIED SOIL-STRUCTURE INTERACTION ANALYSIS WITH STRAIN-
DEPENDENT SOIL PROPERTIES, Nuclear Engineering and Design 31,

37. Hansen, R. J., Editor
SEISMIC DESIGN FOR NUCLEAR POWER PLANTS, MIT Press, Cambridge,
Ma., 1969.

38. Joyce, J. S., Abo1ins, A. and Lambrecht, D.
MAXIMUM CAPABILITY OF TWO- AND FOUR-POLE GENERATORS, Proceedings,

39. Klein, G.
VIBRATION INVESTIGATION FOR DIFFERENT TYPES OF TURBINE-GENERATOR
FOUNDATIONS, Proceedings, International Symposium on Wave
Propagation of Dynamic Properties on Earth Materials, Alburque-

40. Kollbrunner, C. F.
STAHLFUNDAMENTE FUR TURBOGRUPPEN, Verlag Leemann, Zurich, 1955.

41. Lee, A. J. H.
CASE STUDY OF SOIL-STRUCTURE INTERACTION FOR NUCLEAR POWER PLANTS,
Proceedings, Third International Conference on Structural
Mechanics and Reactor Technology, Paper No. K3/1, London,
September 105, 1975.

42. Lorenz, H.

43. Luco, J. E.
IMPEDANCE FUNCTIONS FOR A RIGID FOUNDATION ON A LAYERED MEDIUM,

44. Major, A.
VIBRATION ANALYSIS AND DESIGN OF FOUNDATIONS FOR MACHINES AND

45. Martz, J. W. and Lerst, T.
APPLICATION OF MODAL TESTING TECHNIQUES TO SOLVE VIBRATION
PROBLEMS IN MACHINERY SUPPORTING STRUCTURES, Paper presented
at the ASME Design Engineering Conference, No. 77-DE-16, May
9-12, 1977.
46. McFadden, D. P.
DIGITAL ELECTRO-HYDRAULIC CONTROL IMPROVES TURBINE-GENERATOR UNIT
PERFORMANCE, Westinghouse Engineering, Vol. 34, January 1974,
pp. 2-9.

47. Morton, P. G.
ON THE DYNAMICS OF LARGE TURBÓ-GENERATOR ROTORS, Proceedings,
Institute of Mechanical Engineers, Vol. 180, No. 12, 1965-66,
pp. 295-329.

48. Newcomb, W. K.
PRINCIPLES OF FOUNDATION DESIGN FOR ENGINES AND COMPRESSORS,

49. Novak, M.
THE VIBRATIONS OF MASSIVE FOUNDATIONS ON SOIL, Publications of

50. Patterson, B. D.
TURBINE GENERATOR PEDESTAL DESIGN, Proceedings, American Power

51. Pestel, E. and Leckie, F.
MATRIX METHODS IN ELASTOMECHANICS, McGraw-Hill Book Co.

52. Probst, P. H. and Joyce, J. S.
THE DEVELOPMENT OF HELICAL-SPRING FOUNDATION FOR LARGE STEAM
TURBINE-GENERATORS, Proceedings, American Power Conference,
Vol. 34, April 1, 1972, pp. 424-437.

53. Rascon, O. A.
ANALYSIS OF VIBRATIONS OF TURBOGENERATORS, Memorias, III Congreso
Nacional de Ingeniería Sísmica, Sociedad Mexicana de Ingenierío
Sísmica, Mexico City, Vol. 1, Paper No. 7, 1971, pp. 36 (in
Spanish).

54. Rausch, E.
MACHINENGRUNDUNGEN, Taschenbuch Hutte, Vol. III, W. Ernst und

55. Rausch, E.
MASCHINENFUNDAMENTE UND ANDERE DYNAMISCHE BAUAUFGABEN, Third

56. Richart, F. E., Hall, J. R. and Woods, R. D.

57. Rogers, P.
FOUNDATION FOR A LARGE TURBOGENERATOR, Journal of the American
Concrete Institute, Vol. 23, No. 3, November 1951.

58. Rogers, P.
Discussion on DESIGN CRITERIA FOR TURBINE-GENERATOR PEDESTALS,
Journal of the Power Division, ASCE, Vol. 97, No. PO1, January
1971, pp. 236.
59. Salley, J. R. and Peck, R. B.
TOLERABLE SETTLEMENTS OF STEAM TURBINE-GENERATORS, Journal of the

60. Seed, H. B. and Idriss, I. M.
SOIL MODULI AND DAMPING FACTORS FOR DYNAMIC RESPONSE ANALYSIS,
Earthquake Engineering Research Center Report No. EERC 70-10,
University of California, Berkeley, December 1970.

61. Siharan, A. and Roman, J.
DESIGN OF MACHINE FOUNDATION USING NATURAL FREQUENCY-AREA
RELATIONSHIP, Fifth Symposium on Earthquake Engineering,

62. Smith, D. M.

63. Tsai, N. C., Niehoff, D., Swatta, M. and Hadjian, A. H.
THE USE OF FREQUENCY-INDEPENDENT SOIL-STRUCTURE INTERACTION
PARAMETERS, Nuclear Engineering and Design, No. 31, 1974,
pp. 168-183.

64. Tschebotarioff, G. F.

65. Whitman, R. V.
ANALYSIS OF FOUNDATION VIBRATIONS, Proceedings, Symposium on
Vibration in Civil Engineering, organized by the International Association of Earthquake Engineering, 1965, pp. 157-159.

66. Whitman, R. V.
ANALYSIS OF DYNAMIC SOIL-STRUCTURE INTERACTION FOR NUCLEAR PLANTS,

67. Whitman, R. V. and Richart, F. E.

68. Wilson, E. L.

69. Wilson, R. R. and Brebbia, C. A.
DYNAMIC BEHAVIOR OF STEEL FOUNDATIONS FOR TURBO-ALTERNATORS,
Journal of Sound and Vibration, Vol. 18, No. 3, October 1971,
pp. 405-416.
70. Woodward-Gardner & Associates, Inc.
FOUNDATION DESIGN REPORT, Perry Nuclear Power Plant.

71. Wutsdorff, P.
6.2 Pumps, Fans, Compressors

1. Anderson, H. A.

2. Brooks, E.

3. Brooks, E.

4. Chambers, A. A. and Dube, F. R.

5. Church, A. H.
 CENTRIFUGAL PUMPS AND BLOWERS, John Wiley and Sons, Inc., 1944.

6. Compressed Air and Gas Institute

7. Cunningham, E. R.

8. deKovats, A. and Desmar, G.
 PUMPS, FANS AND COMPRESSORS, Blackie and Son, Ltd., Glasgow, 1950.

9. Glickman, M.

10. Glickman, M.

11. Hancock, W. P.

12. Harju, J. B.

13. Hendricks, J. F.
14. Hendricks, J. F.
 UNDERSTANDING CENTRIFUGAL AIR COMPRESSORS - PART II, Plant

 PUMPING OF LIQUIDS, Reinhold Publishing Corporation, New York,
 1966.

16. Holzhauer, R.
 AIR CONDITIONING AND REFRIGERATION COMPRESSORS, Plant Engineering,

17. Institution of Mechanical Engineers
 PUMPS FOR NUCLEAR POWER PLANTS, Mechanical Engineering Publica­

18. Jackson, C.
 HOW TO PREVENT TURBOMACHINERY THRUST FAILURES, Hydrocarbon
 Processing, Vol. 54, No. 6, June 1975.

19. Jorgensen, R., Editor

20. Kraemer, K.
 ARE COUPLINGS THE WEAK LINK IN ROTATING MACHINERY SYSTEMS,

22. Manning, W. R. D. and Labrow, S.
 HIGH PRESSURE ENGINEERING, CRC Press, Cleveland, Oh., 1971.

23. Margus, E.
 PUMP CONSTRUCTION MATERIALS, Plant Engineering, Vol. 30, No. 12,
 June 10, 1976.

24. Martz, J. W.
 HOW TO TROUBLESHOOT LARGE INDUSTRIAL FANS, Hydrocarbon Processing,
 Vol. 54, No. 6, June 1975.

25. Moore, J. C.
 ELECTRIC MOTOR DRIVERS FOR CENTRIFUGAL COMPRESSORS, Hydrocarbon
 Processing, Vol. 54, No. 5, May 1975.

 BETTER PUMP GROUTING, Hydrocarbon Processing, Vol. 53, No. 2,

27. Murray, M. G., Jr.
 BETTER PUMP BASEPLATES, Hydrocarbon Processing, Vol. 52, No. 9,
28. Perry, R. E.

29. Reynolds, J. A.

30. Rishel, J. B.
MATCHING PUMPS TO SYSTEM REQUIREMENTS, Plant Engineering, Vol. 29, No. 25, December 11, 1975.

31. Rupp, W. E.

32. Stepanoff, A. J.
TURBOBLOWERS, John Wiley and Sons, 1955.

33. Stephenson, R. L. and Nixon, H. E.

34. Stindt, W. H.

35. Thurlow, C., III

36. Todd, D. B.

37. Troutman, J. E.

38. Troutman, J. E.

40. Von Nimitz, W.
41. Wallis, R. A.

42. Wolfe, G.
6.3 Pressure Vessels

1. Buffington, M. A.
 HOW TO SELECT PACKAGE BOILERS, Chemical Engineering, Vol. 82, No. 23, October 27, 1975.

2. Harvey, J. F.

3. Harvey, J. F.

4. Issacs, M.

5. Megyesy, E. F.

6. Miller, U. R.

7. Mohajan, K. K.

8. Monroe, M. J. and Dasa, N.

9. Pechacek, P.

10. Rees, A. J. R.
6.4 Piping

1. Amin, M. et al.

2. Anonymous
Steam Piping Systems Connected to Turbines, General Electric Company Report No. GET-1911D.

3. Anonymous

4. Anonymous

5. Baccarini, L., Capretto, M., Casirati, M. and Castoldi, A.

6. Berkowitz, L.

7. Biscouti, N., Lazzeri, L. and Strona, P. P.

9. Chen, C.

10. Dini, D. and Lazzeri, L.
11. Dini, D. and Lazzeri, L.

12. Fritz, R. J.

13. Gilbert, N.

14. Henry, J. R.

15. Hesse, H. C. and Rushton, J. H.

17. Housner, G. W.

18. Hure, D. and Morysse, M.

19. Kukkola, T.

20. Leonard, J. W.

21. Leung, K. E.
22. Lockheed Aircraft Corporation and Holmes & Narver, Inc.
NUCLEAR REACTORS AND EARTHQUAKE, U.S. Atomic Energy Commission,

23. Long, R. H., Jr.
EXPERIMENTAL AND THEORETICAL STUDY OF TRANSVERSE VIBRATION OF A
TUBE CONTAINING FLOWING FLUID, Transactions, Journal of Applied

24. Miller, C. A., Costantino, C. J.
FACILITY DESIGN CONSTRAINTS FOR COMBINED SEISMIC AND THERMAL
LOADING, Proceedings, Third International Conference on Structural
Mechanics in Reactor Technology, Part K, Vol. 4, London,
September 1-5, 1975.

25. Mukherjee, S.
MATRIX OF TRANSMISSION IN STRUCTURAL DYNAMICS, Proceedings,
Third International Conference on Structural Mechanics and
September 1-5, 1975.

TECHNIQUES FOR THE DESIGN OF HIGHLY DAMPED STRUCTURES, Proceedings,
Third International Conference on Structural Mechanics in

27. Niordson, F. I. N.
VIBRATIONS OF CYLINDRICAL TUBE CONTAINING FLOWING FLUID,
Transactions, Royal Institute of Technology, No. 73, 1953.

28. Pickel, T. W.
EVALUATION OF NUCLEAR SYSTEM REQUIREMENTS FOR ACCOMMODATING

29. Rodabough, E. C. and Pickett, A. G.

30. Scavuzzo, R. J. and Lam, P. C.
EFFECT OF TORSIONAL EXCITATION ON EQUIPMENT SEISMIC LOADS,
Proceedings, Third International Conference on Structural
Mechanics in Reactor Technology, Part K, Vol. 4, London,
September 1-5, 1975.

31. Shah, H. H. and Chu, S. L.
SEISMIC ANALYSIS OF UNDERGROUND STRUCTURAL ELEMENTS, Transactions,
32. Shaw, D. E.

33. Shibata, H. et al.
RESPONSE ANALYSIS OF A PIPING SYSTEM IN THREE STORY BUILDING ON SHAKING TABLE, Bulletin of Earthquake Resistant Structure Center, No. 5, University of Tokyo, December 1971, pp. 1-15.

34. Shibata, H. et al.

35. Singh, A. K. and Ang, A. H. S.

36. Suzuki, K. and Sato, H.

37. Udoguchi, Y., Akino, K. and Shibata, H.

38. Villasor, A. P., Jr.

6.5 Low-Pressure Liquid Storage Tanks

1. Boyce, W. H.
 VIBRATION TESTS OF A SIMPLE WATER TOWER, Proceedings, The Fifth
 World Conference on Earthquake Engineering, Vol. 1, Rome,

2. Chandrasekaran, A. R. and Krishna, J.
 WATER TOWERS IN SEISMIC ZONES, Proceedings, The Third World
 Conference on Earthquake Engineering, Vol. 3, New Zealand,
 1965.

3. Chen, P. C. and Barber, R. B.
 SEISMIC DESIGN OF LIQUID STORAGE TANKS TO EARTHQUAKE, Proceedings,
 The International Symposium on Earthquake Structural Engineer­

4. Constantino, C. J. and Miller, C. A.
 SEISMIC ANALYSIS OF LIQUID SODIUM STORAGE TANKS, Proceedings,
 The Fifth World Conference on Earthquake Engineering, Vol. 1,

5. Dvorak, J. J. and McGrath, R. V.
 BIAXIAL STRESS CRITERIA FOR LARGE LOW-PRESSURE TANKS, Pressure

6. Epstein, H. I.
 SEISMIC DESIGN OF LIQUID STORAGE TANKS, Journal of the Structural
 Division, ASCE, Vol. 102, No. ST9, September 1976.

7. Could, P. L., Sen, S. K., Wang, R. S. C., Suryoutomo, H. and
 Lowry, R. D., COLUMN SUPPORTED CYLINDRICAL-CONICAL TANKS,
 Journal of the Structural Division, ASCE, Vol. 102, No. ST2,
 February 1976.

8. Hillinger, E.
 STEEL WATER TOWERS OF NOVEL DESIGN, Acier-Stahl-Steel, Vol. 38,
 No. 4, April 1973.

9. Housner, G. W.
 DYNAMIC PRESSURES ON ACCELERATED FLUID CONTAINERS, Bulletin of
 the Seismological Society of America, Vol. 47, No. 1, January
 1957.

10. Housner, G. W.
 THE DYNAMIC BEHAVIOR OF WATER TANKS, Bulletin of the Seismolo­

11. Jacobsen, L. S.
 IMPULSIVE HYDRODYNAMICS OF A FLUID INSIDE A CYLINDRICAL TANK AND
 OF FLUID SURROUNDING A CYLINDRICAL PIER, Bulletin of the

12. Mahajan, K. K.
 A METHOD FOR DESIGNING RECTANGULAR STORAGE TANKS, Chemical
13. Mansfield, C. S.
CONSTRUCTION OF PRECAST-PRESTRESSED CONCRETE STORAGE TANKS,
Journal of the American Water Works Association, Vol. 64,
No. 5, May 1972.

14. Olander, H. C.
DESIGN OF CYLINDRICAL CONCRETE WATER TANKS, Journal of the

15. Rinne, J. E.
OIL STORAGE TANKS, The Prince William Sound Earthquake, 1964,
and its Aftershocks, Vol. 2, Part A, U.S. Department of

16. Sakurai, A., Kurihara, C. and Iwatate, T.
ASEISMIC DESIGN EXAMPLES OF PRESTRESSED CONCRETE WATER TANK,
Proceedings, International Symposium on Earthquake Structural

17. Shaaban, S. H. and Nash, W. A.
RESPONSE OF AN EMPTY CYLINDRICAL GROUND SUPPORTED LIQUID STORAGE
TANK TO BASE EXCITATION, Proceedings, International Symposium on Earthquake Structural

18. Shepherd, R.
THE SEISMIC RESPONSE OF ELEVATED WATER TANKS SUPPORTED ON
CROSS-BRACED TOWERS, Proceedings, Fifth World Conference on

19. Veletsos, A. S.
SEISMIC EFFECTS IN FLEXIBLE LIQUID STORAGE TANKS, Proceedings,
Fifth World Conference on Earthquake Engineering, Vol. 1,

CONTINUOUSLY SUPPORTED CYLINDRICAL-CONICAL TANKS, Journal of the

21. Wilby, C. A.
STRUCTURAL ANALYSIS OF REINFORCED CONCRETE TANKS, Journal of the
6.6 Stacks, Towers, Chimneys

1. Fowler, T. J. and Williams, D. M.

2. Isada, N. M.
 Design and Analysis of Tall Tapered Reinforced Concrete Chimneys Subjected to Earthquake, Proceedings, World Conference on Earthquake Engineering, Berkeley, Ca., 1956.

3. Karasudhi, P., Tsai, Y. C. and Chau, K. P.

4. Leva, M.

5. Mahajan, K. K.

6. Maugh, L. C. and Rumman, W. S.
 Dynamic Design of Reinforced Concrete Chimneys, Journal of the American Concrete Institute, Vol. 64, September 1967.

7. Pinfold, G. M.

8. Rumman, W. S.

9. Rumman, W. S.

10. Rumman, W. S. and Maugh, L. C.
 Earthquake Forces Acting on Tall Concrete Chimneys, International Association of Bridge and Structural Engineering, Final Report, New York, September 1968.

12. Zar, M.
6.7 High Voltage Electrical Equipment

1. Agbabian, M. S. and Diemond, C. C.
 AN ASSESSMENT OF THE EARTHQUAKE RESISTANT DESIGN OF ELECTRICAL
 POWER TRANSMISSION FACILITIES, Proceedings, The Fifth World

2. Guha, S. K., Wedpathak, A. V. and Desai, P. J.
 ASEISMIC TESTS ON SOME ELECTRO-MECHANICAL SYSTEMS, Proceedings,
 Sixth World Conference on Earthquake Engineering, Vol. 12,
 New Delhi, January 1977.

3. Hindmarsh, J.

4. Hitchcock, H. C.
 ELECTRICAL EQUIPMENT AND EARTHQUAKES, New Zealand Engineering,

5. Ibanez, P., Spencer, R. B. and Smith, C. B.
 FORCED VIBRATION TESTS ON ELECTRICAL DISTRIBUTION EQUIPMENT,

 USE OF NONLINEAR ANALYSIS TO INTERPRET EARTHQUAKE RESPONSE OF
 PENDULAR SUPPORTED HIGH VOLTAGE ELECTRICAL EQUIPMENT, Proceed­
 ings, Fifth World Conference on Earthquake Engineering, Vol. 1,

7. Sisson, W.
 DETERMINING REQUIRED SIZE OF BUCK BOOST TRANSFORMERS, Plant

8. Syrmakezis, C. A.
 EARTHQUAKE RESISTANT DESIGN OF ELECTRICAL HIGH VOLTAGE TRANS­
 MISSION LINES, Fifth Symposium on Earthquake Engineering,

9. Wilhoite, G. M.
 DESIGN OF STEEL TRANSMISSION POLE STRUCTURES, Journal of the
6.8 Light Mechanical and Electrical Equipment

1. Amin, M., Hall, V. J., Newmark, N. M. and Kassawara, R. P.

2. Anonymous

3. Anonymous

4. Ayres, J. M., Sun, T. Y. and Brown, F.
 Non-Structural Damage Due to Alaska Earthquake (Mechanical Equipment), Building Systems Design, November-December 1971.

5. Biggs, J. M.

6. Charravorty, M. K. and Vanmarcke, E. H.

7. de Estrada, M.

8. Ferguson, W. H., Fischer, E. G. and Colajaco, A. P.

9. Jankov, Z. D. and Reeves, C. F.

11. Kapur, K. K. and Shao, L. C.
12. Kassawara, R. P.

13. Tsai, N. C. et al.
6.9 Furnaces and Incinerators

1. American Society of Mechanical Engineers

2. American Society of Mechanical Engineers

3. Corey, R. C., Editor

4. Flores, R.
 DESIGN PRINCIPLES OF EARTHQUAKE RESISTANT BLAST FURNACES,

5. Griswald, J.

6. Trinks, W. and Mawhinney, M. H.

7. Zegel, W. C.
6.10 Bins and Hoppers

1. Christensen, C. M., Editor
 STORAGE OF CEREAL GRAINS AND THEIR PRODUCTS, American Association

2. Johnson, J. R.
 STORAGE BINS FOR BULK SOLIDS, Plant Engineering, Vol. 30, No.
 14, July 8, 1976.

3. Ketchum, M. S.
 THE DESIGN OF WALLS, BINS AND GRAIN ELEVATORS, McGraw-Hill Book
6.11 Conveyor Systems

1. Annett, F. A.
 ELECTRIC ELEVATORS: THEIR DESIGN, CONSTRUCTION, OPERATION, AND

2. Apple, J. M.

3. Gupta, P. S. and Arya, A. S.
 DYNAMIC PROBLEMS OF INDUSTRIAL STRUCTURES IN INDIA AND THEIR
 SOLUTION, Proceedings, Central American Conference on Earthquake

4. Haynes, D. O.
 MATERIALS HANDLING EQUIPMENT, Chilton Company, 1957.

5. Hudson, W. G.
 CONVEYORS AND RELATED EQUIPMENT, John Wiley and Sons, 1954.

6. Kraus, M. N.
 PNEUMATIC CONVEYING OF BULK MATERIALS, The Ronald Press Co.,

7. Melchior, J.
 OVERHEAD MONORAIL CONVEYORS - Part I, Plant Engineering, Vol.

8. Melchior, J.
 OVERHEAD MONORAIL CONVEYORS - Part II, Plant Engineering, Vol.
 31, No. 12, June 9, 1977.

9. Schultz, G. A.
 CHAIN CONVEYORS AND ELEVATORS, Plant Engineering, Vol. 29, No.
 27, 1975.

10. Schultz, G. A.
 CHAIN CONVEYORS FOR UNIT AND PACKAGE HANDLING, Plant Engineering,

11. Schultz, G. A.
 OVERHEAD TROLLEY CONVEYORS, Plant Engineering, Vol. 30, No. 4,
 February 19, 1976.

12. Schultz, G. A.
 SELECTING CHAIN CONVEYORS AND ELEVATORS FOR BULK MATERIALS,

13. Schultz, G. A.
 SELECTING VIBRATING CONVEYORS, Plant Engineering, Vol. 30, No.
 17, August 19, 1976.

14. Schultz, G. A.
 PLANNING AND BUDGETING A PACKAGE CONVEYOR SYSTEM, Plant Engi-
15. Schultz, G. A.
 PLANNING AND BUDGETING A BULK CONVEYOR SYSTEM, Plant Engineering,

16. Schultz, G. A.
 HANDLING BULK MATERIALS WITH BELT CONVEYORS, Plant Engineering,
 Vol. 31, No. 9, April 28, 1977.

17. Strakosh, G. R.
 VERTICAL TRANSPORTATION: ELEVATORS AND ESCALATORS, John Wiley
 and Sons, Inc., 1967.

 OPTIMIZING PNEUMATIC CONVEYORS, Machine Design, Vol. 48, No. 12,
 May 20, 1976.

19. Wirth, S. V.
 SOLVING A CONVEYING PROBLEM, Plant Engineering, Vol. 31, No. 1,
6.12 Mixers and Separators

1. Ambler, C. M.

2. Casto, L. V.

3. Dahlstrom, D. A. and Cornell, C. F.

4. Danckwerts, P. V., Editor

5. Penny, W. R.

6. Sargent, G. D.
6.13 Precipitators and Dust Collectors

1. Cowie, D.
 UPGRADING MECHANICAL DUST COLLECTION SYSTEMS, Plant Engineering,

2. Engelbrecht, H. L.
 ELECTROSTATIC PRECIPITATOR INSPECTION AND MAINTENANCE, Plant

3. Kleissler, E. A. and Leist, W. L.
 SELECTING SECONDARY DUST-HANDLING SYSTEMS, Plant Engineering,

4. Lyons, M.
 CHOOSING A DUST COLLECTOR CLEANING SYSTEM, Plant Engineering,

5. Rose, H. E. and Wood, A. J.
 AN INTRODUCTION TO ELECTROSTATIC PRECIPITATION IN THEORY AND

6. Rymarz, T. M.
 UNDERSTANDING PULSE-JET DUST COLLECTORS, Plant Engineering,
 Vol. 31, No. 8, April 14, 1977.

7. Schneider, G. G., Horzella, T. I., Cooper, J. and Striegl, P. J.
 ELECTROSTATIC PRECIPITATORS: HOW THEY ARE USED IN THE C.P.I.,
 Chemical Engineering, Vol. 82, No. 17, August 18, 1975.
6.14 Cranes and Hoists

1. Broughton, H. A.

2. Crane Manufacturers Association of America
 SPECIFICATION FOR ELECTRIC OVERHEAD TRAVELING CRANES, Specification No. 70, Pittsburgh, Pa., 1971.

3. Kogan, J.

4. Maas, G.

5. Snyder, M. D., Shaw, D. E. and Krissenpffenning, J. F.
7. ACKNOWLEDGEMENTS

This bibliography was prepared at the Fritz Engineering Laboratory, Lehigh University, as part of a program on "Structural Connections in Industrial Installations Subject to Earthquake". Financial support was provided by the National Science Foundation.

The authors wish to express their thanks for the efforts of Mrs. Christine L. Roysdon and Miss Linda Khatri, reference librarians of the Mart Science and Engineering Library at Lehigh University. Thanks are also extended to Miss Shirley Matlock who typed the report.
Main Structural System
Non-Structural System (cladding, window syst. etc.)

Equipment or Machinery
Connections and Connecting Substructure
Structural Member
Equipment and Machinery

Soil - Foundation System

Fig. 1 Industrial Plant and its Physical Components
Fig. 2 Systems Representation of an Industrial Plant
Fig. 3 A Typical Configuration of an Equipment Dynamic System
LITERATURE ON EARTHQUAKE AND DYNAMIC RESPONSE, ANALYSIS, AND DESIGN APPROACHES OR CONNECTIONS BETWEEN EQUIPMENT OR MACHINERY AND STRUCTURES ARE COVERED IN THIS COMPREHENSIVE BIBLIOGRAPHIC SURVEY. THE EQUIPMENT OR MACHINERY INVOLVED INCLUDES A WIDE RANGE OF UNITS FOUND IN TYPICAL INDUSTRIAL INSTALLATIONS SUCH AS MATERIALS PROCESSING PLANTS, CHEMICAL PLANTS, PETROLEUM REFINERIES, AND FOSSIL FUEL POWER PLANTS. CONNECTIONS ARE TREATED IN THEIR ROLE AS A COMPONENT IN AN OVERALL DYNAMIC SYSTEM INCLUDING EQUIPMENT OR MACHINERY, CONNECTIONS, STRUCTURE, AND FOUNDATIONS.

OVER 700 REFERENCE CITATIONS ARE PRESENTED INCLUDING OVER 450 REFERENCES ON GENERAL ANALYSIS AND DESIGN AND OVER 250 REFERENCES ON EQUIPMENT AND MACHINERY.

FINDINGS OF THE SURVEY ARE THAT LITERATURE SPECIFICALLY TREATING THE CONNECTIONS OF CONCERN IS SCARCE, ESPECIALLY WITH REGARD TO EARTHQUAKE PROBLEMS.

KEY WORDS AND DOCUMENT ANALYSIS

BIBLIOGRAPHY; CONNECTIONS; DYNAMIC RESPONSE; EARTHQUAKE RESISTANT STRUCTURES; EARTHQUAKES; EQUIPMENT; INDUSTRIAL PLANTS; JOINTS; MACHINERY

19. Security Class (This Report) UNCLASSIFIED
20. Security Class (This Page) UNCLASSIFIED
21. No. of Pages 84
22. Price $M 35