Assessment and prediction of the behavior of dent-damaged and internally grout repaired tubular steel bracings using moment curvature-based integration methods

Chih-Ping Fan
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Recommended Citation
AUTHOR: Fan, Chih-Ping

TITLE: Assessment and Prediction of the Behavior of Dent-Damaged and Internally Grout Repaired Tubular Steel Bracings Using Moment...

DATE: May 29, 1994
Assessment and Prediction of the Behavior of Dent-Damaged
and Internally Grout Repaired Tubular Steel Bracings Using Moment
Curvature-Based Integration Methods

by

Chih-Ping Fan

A Thesis
Presented to the Graduate and Research Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in
Civil Engineering

Lehigh University

May, 1994
This thesis is accepted and approved in partial fulfillment of the requirements for the Master of Science

May 17, 1994
Date

Dr. James Ricles
Thesis Advisor

Dr. Le. W Lu
Chairperson of Department
Acknowledgements

I would like to express my sincere gratitude to Professor James Ricles for his continuous and generous guidance, as well as his valuable advice during this study. Special thanks are also due to Dr. Took Kowng Sooi and Mr. William M. Bruin for kindly providing the experimental data required in preparation of this thesis.

I am grateful to my parents for their encouragement and generous support through the course of this work. This work is dedicated to them.
TABLE OF CONTENTS

ABSTRACT ... 1

1. INTRODUCTION ... 3

1.1 Background .. 3

1.2 Previous Experimental Work ... 4

1.2.1 Dent-Damaged Members ... 4

1.2.2 Dent-Damaged, Internally Grout Repaired Members 5

1.3 Previous Analytical Studies .. 5

1.3.1 Dent-Damaged Members ... 6

1.3.2 Internally Grout Repaired Members .. 7

1.4 Objectives ... 8

1.5 Scope .. 8

2. MOMENT-THRUST-CURVATURE RELATIONSHIPS 10

2.1 General .. 10

2.2 Derivation of Exact Moment-Thrust-Curvature Relationships 10

2.3 Approximate Moment-Thrust-Curvature Relationships 17

2.4 Derivation of Moment-Thrust-Curvature Relationships for Internally

Grouted Sections .. 20

2.4.1 Material Property Idealization for Steel Tube ... 21
4.3.1.2 Modified AISC-LRFD and Simplified Approaches

4.3.2 Comparisons with the Experimental Results

4.3.2.1 Undamaged, Internally Grout Filled Specimens

4.3.2.2 Dent-Damaged, Internally Grout Repaired Specimen

4.4 Comparisons of Predicted Axial Compression-Shortening and Axial Compression-Lateral Deflection Response

4.5 Behavior of Internally Grout Filled Specimens

4.6 Biases of Moment Curvature Approach

4.6.1 Dent-Damaged, Unrepaired Members

4.6.2 Internally Grout Repaired Members

4.7 Effect of Dented Segment Length

4.7 Effect of Local Buckling Material Parameters

5. PARAMETRIC STUDY

5.1 General

5.2 Dent-Damaged, Unrepaired Members

5.2.1 Effect of Dent Depth

5.2.2 Effect of Member Diameter-to-Thickness Ratio

5.2.3 Effect of Out-Of-Straightness

5.3 Internally Grout Repaired Members
5.3.1 Effect of Dent Depth .. 59
5.3.2 Effect of Member Diameter-to-Thickness Ratio 59
5.3.3 Effect of Out-Of-Straightness 60
5.3.4 Effect of Steel Yield Stress 60
5.3.5 Effect of Grout Strength 61

5.4 Combined Effects for Dent-Damaged and Internally Grout Repaired Members .. 61

6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 65
6.1 Summary .. 65
6.2 Conclusions .. 66
6.3 Recommendations .. 66

REFERENCES .. 68

APPENDIX A : Approximate Moment Curvature Relationships 215
APPENDIX B : BS 5400 Approach for Internally Grout Filled Members 226
APPENDIX C : Input and Output Files for the Dent-Damaged, Unrepaired Members .. 231
APPENDIX D : Input and Output Files for the Dent-Damaged, Internally Grout Repaired Members 237
VITA ... 239
LIST OF TABLES:

Table 1(a) : Geometric and Material Properties of Gillum and Ricles’ Specimens (1992b)
Table 1(b) : Comparison between Experimental Results and Moment Curvature Predictions (Gillum and Ricles’s Specimens 1992b)
Table 2(a) : Geometric and Material Properties of Lehigh Tests (Ostapenko et al., 1993)
Table 2(b) : Comparison between Experimental Results and Moment Curvature Predictions (Lehigh Tests, Ostapenko et al., 1993)
Table 3(a) : Geometric and Material Properties of Landet and Lotsberg’s Specimens (1992)
Table 3(b) : Comparison between Experimental Results and Moment Curvature Predictions (Landet and Lotsberg’s Specimens, 1992)
Table 4(a) : Geometric and Material Properties of Smith et al. Specimens (1979)
Table 4(b) : Comparison between Experimental Results and Moment Curvature Predictions (Smith et al. Specimens, 1979)
Table 5(a) : Geometric and Material Properties of Taby’s Specimens (1986a, 1986b)
Table 5(b) : Comparison between Experimental Results and Moment Curvature Predictions (Taby’s Specimens, 1986a, 1986b)
Table 6(a) : Geometric and Material Properties of Undamaged, Internally Grout Filled Specimens (Wimpy, 1984)
Table 6(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Wimpy's Specimens (1984)

Table 7(a): Geometric and Material Properties of Gillum and Ricles' Internally Grout Repaired Specimens (1992b)

Table 7(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Gillum and Ricles' Specimens (1992b)

Table 8(a): Geometric and Material Properties of Parsanejad's Internally Grout Repaired Specimens (1987)

Table 8(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Parsanejad's Specimens (1987)

Table 9(a): Geometric and Material Properties of Boswell and D' Mello's Internally Grout Repaired Specimens (1988)

Table 9(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Boswell and D' Mello's Specimens (reported data, 1988)

Table 9(c): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Boswell and D' Mello's Specimens (modified grout modulus, 1988)

Table 10: Assessment of Various Analytical Methods for 12 Undamaged, Internally Grout Filled Specimens (Wimpy, 1986)

Table 11(a): Assessment of Various Analytical Methods for 27 Dent-Damaged, Internally Grout Repaired Specimens (excluding Boswell and Lotsberg's
Table 11(b): Assessment of Various Analytical Methods for 55 Dent-Damaged, Internally Grout Repaired Specimens (including Boswell and Lotsberg's 28 Specimens)

Table 12(a): Geometric and Material Properties of Bruin's Specimen (1994)

Table 12(b): Comparison between Experimental Results and Moment Curvature Integration Method, Internally Grout Repaired Bruin's Specimens (1994)
LIST OF FIGURES:

Figure 1 : Typical Offshore Structure

Figure 2-1 : Stress States of Perfect Section Subjected to Axial Load (a) Elastic State; (b) Yield in Compression Zone; (c) Yield in Tension and Compression Zones

Figure 2-2 : Interaction Curves for Tubular Sections

Figure 2-3 : Moment-Thrust-Curvature Relationships for a Tubular Section (without Local Buckling and Damage)

Figure 2-4 : Fully Plastic Section

Figure 2-5(a) : Empirical Moment Curvature Expressions for Undented Tubular Sections (Duan et al, 1993)

Figure 2-5(b) : Empirical Moment Curvature Expressions for Dent-Damaged Tubular Sections (Duan et al, 1993)

Figure 2-6(a) : Moment Curvature Relationships for Undented Tubular Sections without Local Buckling

Figure 2-6(b) : Moment Curvature Relationships for Undented Tubular Sections with Local Buckling

Figure 2-6(c) : Moment Curvature Relationships for Dent-Damaged Tubular Sections

Figure 2-7(a) : Comparison of Moment-Thrust-Curvature Relationships between Exact Theory and Empirical Expressions by Duan et al., 1993,
Figure 2-7(b): Comparison of Moment-Thrust-Strain Relationships between Exact Theory and Expressions by Duan et al., 1993, Undented Tubular

Figure 2-8: Discretization of Internally Grout Filled Tubular Cross-Section into Layers

Figure 2-9: Fiber Model Used to Generate the Moment Curvature Relationships

Figure 2-10: Stress-Strain Relationship of Steel

Figure 2-11: Stress-Strain Relationships of Concrete (a) Kent, and Park, 1971; (b) Chen, and Ausuta, 1976

Figure 2-12: Proposed Stress-Strain Relationships for the Confined Grout

Figure 2-13: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #1)

Figure 2-14: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #2)

Figure 2-15: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #3)

Figure 2-16: Moment-Thrust-Curvature Curves for Undamaged, Internally Grout Filled Tubular Section, No Local Buckling

Figure 2-17: Strain-Thrust-Curvature Curves for Undamaged, Internally Grout Filled Tubular Section, No Local Buckling

Figure 2-18: Moment-Thrust-Curvature Curves for Dent-Damaged, Internally Grout Repaired Tubular Section, No Local Buckling

Figure 2-19: Strain-Thrust-Curvature Curves for Dent-Damaged, Internally Grout
Repaired Tubular Section, No Local Buckling

Figure 3-1: Segments and Stations for Numerical Integration Analysis of Dented Tubular

Figure 3-2: Load Condition and Equilibrium Diagram

Figure 3-3: Geometric Centroid Change due to Dent Damage

Figure 3-4: Numerical Integration Method between Two Successive Stations

Figure 3-5: Linear Corrections to Deflections

Figure 3-6: Idealized Dent Geometry

Figure 3-7: Area Calculation of Each Layer

Figure 4-1: Histogram of Predicted-to-Measured Ultimate Strength Ratio for Unrepaired Specimen (n=28, mean=0.98, C.O.V.=0.096)

Figure 4-2: Axial Compression-Shortening Response for Specimen A1

[Ricles and Gillum, 1992b]

Figure 4-3: Axial Compression-Lateral Deflection Response for Specimen A1

[Ricles and Gillum, 1992b]

Figure 4-4: Axial Compression-Shortening Response for Specimen A2

[Ricles and Gillum, 1992b]

Figure 4-5: Axial Compression-Lateral Deflection Response for Specimen A2

[Ricles and Gillum, 1992b]

Figure 4-6: Axial Compression-Shortening Response for Specimen B1

[Ricles and Gillum, 1992b]

Figure 4-7: Axial Compression-Lateral Deflection Response for Specimen B1
Figure 4-8: Axial Compression-Shortening Response for Specimen C2

Figure 4-9: Axial Compression-Lateral Deflection Response for Specimen C2

Figure 4-10: Typical Relationships between Modular Ratio and Grout Strength (Data points were taken from 27 test results for Es=29000 ksi)

Figure 4-11: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Parsanejad’s Approach (n=27, mean=0.93, C.O.V.=0.14)

Figure 4-12: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Modified AISC-LRFD Approach (n=27, mean=0.92, C.O.V.=0.18)

Figure 4-13: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Simplified AISC-LRFD Approach (n=27, mean=0.80, C.O.V.=0.22)

Figure 4-14: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach (n=27, mean=0.96, C.O.V.=0.14)

Figure 4-15: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Parsanejad’s Approach with Boswell and D’Mello’s Reported Modular Ratio (n=55, mean=0.84, C.O.V.=0.19)

Figure 4-16: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Modified AISC-LRFD Approach with Boswell and D’Mello’s Reported Modular Ratio (n=55, mean=0.90, C.O.V.=0.16)

Figure 4-17: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using
Simplified AISC-LRFD Approach with Boswell and D’Mello’s Reported Modular Ratio (n=55, mean=0.80, C.O.V.=0.19)

Figure 4-18: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach with Boswell and D’ Mello’s Reported Modular Ratio (n=55, mean=0.86, C.O.V.=0.18)

Figure 4-19: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach with Modified Modular Ratio, Boswell and D’ Mello’s Data (n=55, mean=0.92, C.O.V.=0.14)

Figure 4-20(a): Axial Compression-Shortening Response for Specimen A3
[Ricles and Gillum, 1992b]

Figure 4-20(b): Axial Compression-Lateral Deflection Response for Specimen A3
[Ricles and Gillum, 1992b]

Figure 4-21(a): Axial Compression-Shortening Response for Specimen B3
[Ricles and Gillum, 1992b]

Figure 4-21(b): Axial Compression-Lateral Deflection Response for Specimen B3
[Ricles and Gillum, 1992b]

Figure 4-22(a): Axial Compression-Shortening Response for Specimen C3
[Ricles and Gillum, 1992b]

Figure 4-22(b): Axial Compression-Lateral Deflection Response for Specimen C3
[Ricles and Gillum, 1992b]

Figure 4-23(a): Axial Compression-Shortening Response for Specimen A7

Figure 4-23(b): Axial Compression-Lateral Deflection Response for Specimen A7
Figure 4-24(a) : Axial Compression-Shortening Response for Specimen B7
Figure 4-24(b) : Axial Compression-Lateral Deflection Response for Specimen B7
Figure 4-25(a) : Axial Compression-Shortening Response for Specimen A9
Figure 4-25(b) : Axial Compression-Lateral Deflection Response for Specimen A9

Figure 4-26 : Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #1 [Tebbett and Forsyth, 1984]
Figure 4-27 : Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #3 [Tebbett and Forsyth, 1984]
Figure 4-28 : Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #5 [Tebbett and Forsyth, 1984]
Figure 4-29 : Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen #A3 [Ricles and Gillum, 1992b]
Figure 4-30 : Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen #B3 [Ricles and Gillum, 1992b]
Figure 4-31 : Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen #C3 [Ricles and Gillum, 1992b]
Figure 4-32 : Comparisons of Stress-Strain Histories at Three Locations for Specimen #1, #2 and #3 [Tebbett and Forsyth, 1984]
Figure 4-33 : Comparisons of Stress-Strain Histories at Three Locations for Specimen #A3, #B3 and #C3 [Ricles and Gillum, 1992b]
Figure 4-34 : Variations of Predicted-to-Measured Ultimate Strength (Pu,mc/Pu,exp) Ratio with respect to Out-Of-Straightness-to-Length Ratio Using Moment
Curvature Approach (Unrepaired, Dented Specimens)

Figure 4-35: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Diameter-to-Thickness Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)

Figure 4-36: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Dent Depth-to-Diameter Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)

Figure 4-37: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Dent Depth-to-Thickness Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)

Figure 4-38: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Out-Of-Straightness-to-Length Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)

Figure 4-39: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Diameter-to-Thickness Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)

Figure 4-40: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Dent Depth-to-Diameter Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)

Figure 4-41: Variations of Predicted-to-Measured Ultimate Strength ($\frac{Pu_{mc}}{Pu_{exp}}$) Ratio with respect to Grout Strength Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Figure 4-42: Variations of Predicted-to-Measured Ultimate Strength (Pu,mc/Pu,exp) Ratio with respect to Modular Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)

Figure 4-43: Effects of the Model’s Dented Segment Length on the Residual Strength Prediction Using Moment Curvature Approach

Figure 4-44: Effects of Dented Segment Length on the Axial Compression-Shortening Response of Non-repaired Tubulars Using Moment Curvature Approach

Figure 4-45: Effect of γ Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach

Figure 4-46: Effect of n Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach

Figure 4-47: Effect of β Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach

Figure 5-1: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.0001L, Unrepaired Member)

Figure 5-2: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.0005L, Unrepaired Member)

Figure 5-3: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.001L, Unrepaired Member)

Figure 5-4: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.002L, Unrepaired Member)

Figure 5-5: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.003L, Unrepaired Member)
Straightness=0.005L, Unrepaired Member)

Figure 5-6: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.01L, Unrepaired Member)

Figure 5-7: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.02L, Unrepaired Member)

Figure 5-8: Effects of Dent Depth-to-Diameter Ratio on Residual Strength Using Finite Element Analysis (Out-Of-Straightness=0.0005L, Unrepaired Member) [Ricles et al., 1994]

Figure 5-9: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength (D/t=34, Unrepaired Member)

Figure 5-10: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength (D/t=46, Unrepaired Member)

Figure 5-11: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength (D/t=64, Unrepaired Member)

Figure 5-12: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength (Out-Of-Straightness=0.0001L, Internally Grout Repaired Member)

Figure 5-13: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength (Out-Of-Straightness=0.0005L, Internally Grout Repaired Member)

Figure 5-14: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength (Out-Of-Straightness=0.001L, Internally Grout Repaired Member)

Figure 5-15: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength (Out-Of-Straightness=0.002L, Internally Grout Repaired Member)
Figure 5-16: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength
(Out-Of-Straightness=0.005L, Internally Grout Repaired Member)

Figure 5-17: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength
(Out-Of-Straightness=0.01L, Internally Grout Repaired Member)

Figure 5-18: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength
(Out-Of-Straightness=0.02L, Internally Grout Repaired Member)

Figure 5-19: Effects of Out-Of-Straightness-to-Length Ratio on Repaired Strength
(D/t=34, Internally Grout Repaired Member)

Figure 5-20: Effects of Out-Of-Straightness-to-Length Ratio on Repaired Strength
(D/t=46, Internally Grout Repaired Member)

Figure 5-21: Effects of Out-Of-Straightness-to-Length Ratio on Repaired Strength
(D/t=64, Internally Grout Repaired Member)

Figure 5-22: Effects of Fy on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=34, KL/r=60, F'g=6.9 ksi, δ/L=0.0006)

Figure 5-23: Effects of Fy on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=64, KL/r=60, F'g=6.9 ksi, δ/L=0.0006)

Figure 5-24: Effects of Grout Strength F’g on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=34, KL/r=60, Fy=39.4 ksi, δ/L=0.0006, dd/D=0.1)

Figure 5-25: Effects of Grout Strength F’g on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=64, KL/r=60, Fy=39.4 ksi, δ/L=0.0006, dd/D=0.1)

Figure 5-26: Effects of Grout Strength F’g on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=64, KL/r=60, Fy=39.4 ksi, δ/L=0.0006, dd/D=0.2)
Figure 5-27: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.0001$

Figure 5-28: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.0005$

Figure 5-29: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.001$

Figure 5-30: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.002$

Figure 5-31: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.005$

Figure 5-32: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.01$

Figure 5-33: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.02$

Figure 5-34: Comparison of Residual Strength with Repaired Strength for KL/r=60 and D/t=34 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-35: Comparison of Residual Strength with Repaired Strength for KL/r=60 and D/t=46 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-36: Comparison of Residual Strength with Repaired Strength for KL/r=60 and D/t=64 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-37: Comparison of Repaired Strength with Undamaged Capacity for KL/r=60 and D/t=34 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-38: Comparison of Repaired Strength with Undamaged Capacity for KL/r=60 and D/t=46 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-39: Comparison of Repaired Strength with Undamaged Capacity for KL/r=60 and D/t=64 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-40: Limit State Equation for KL/r=60, D/t=34 (F'g=5 ksi and Fy=34.8 ksi)

Figure 5-41: Limit State Equation for KL/r=60, D/t=46

xxi
(F'g=5 ksi and Fy=34.8 ksi)

Figure 5-42: Limit State Equation for KL/r=60, D/t=64

(F'g=5 ksi and Fy=34.8 ksi)
ABSTRACT

Two computer programs were developed to predict the force-deformation behavior of dent-damaged and internally grout repaired tubular steel members, respectively, subjected to axial compression, end moment and lateral loading. Each program utilizes a numerical integration approach in combination with moment curvature expressions. The moment curvature expressions for the dent-damaged, unrepaired members are based on the regression analysis of experimental data, while the moment curvature relationships for the internally grout repaired members are derived from a fiber analysis of the cross section. The programs generate the axial load-shortening and axial load-lateral displacement relationships for members with one or more arbitrary located dents.

The programs were verified by comparing the predicted strength of 113 test specimens with their experimental results. Comparisons were also made between the moment curvature approach and other existing prediction methods (Parsanejad’s equation, the so-called modified AISC method and the simplified AISC method) for the internally grout repaired specimens. The moment curvature approach is shown to be more reliable and accurate than these other existing strength prediction methods.

An extensive parametric study was performed using the computer programs to investigate the influences of the geometric parameters of dent depth, member diameter-to-thickness ratio and out-of-straightness, in addition to material properties of steel yield
strength, grout strength and modular ratio on the dent-damaged and internally grout repaired member’s strength under compressive axial load. A set of design-oriented curves were developed from these results.

In addition, the domain with respect to dent depth and out-of-straightness, in which a repaired member will have a strength equal to or greater than its undamaged strength, has been evaluated. It was found that members with minimal out-of-straightness and a slenderness ratio of KL/r=60 can be successfully repaired by internal grouting when their dent depth-to-diameter (d/D) ratio is less than 0.34, 0.37 and 0.40, respectively, for member diameter-to-thickness (D/t) ratio of 34, 46 and 64. For a member with out-of-straightness, such as that suffered due to a collision causing denting and overall bending, the d/D ratio is smaller.
1. INTRODUCTION

1.1 Background

There are presently over 6000 fixed offshore platforms throughout the world. These structures have a typical construction consisting of a steel jacket made of tubulars welded together, see Fig 1. In the marine environment offshore structures such as these are highly susceptible to member damage resulting from the accidental impact with a vessel or a falling object, which affects the structural integrity of the platform. It has been reported that collision of vessels or dropped objects with offshore platforms accounts for over 29% of offshore accidents where 14% of these accidents result in severe damage or total loss of structure [Ellinas and Ualsgard, 1985]. Damage of the platform due to collision usually takes one of the following forms: (1) local denting of the tube wall without the overall bending of the member; (2) overall bending without denting of the tube wall; and (3) combined overall bending and denting. A large number of offshore platform structures are known to have suffered some form of damage. Because of the need to requalify and recertify platforms, it is critical that one can analytically assess the effects of damage from collisions on the ultimate load-carrying capacity of its members.

In the offshore field, grout has been historically used in the connections of fixed bottom structures by grouting the annulus between a platform's legs and piles. Design guidance can be found in the API RP-2A [1984, 1993] as well as other design manuals. Grout can also be used to improve strength of undamaged members as well as dent-
damaged members by internal grouting. While some closed form solutions based on a beam-column formulation have been developed [Parsanejad, 1987a], no guidance exist in offshore codes for assessing the strength feasibility of internally grout repaired tubular bracing.

The ability to reliably predict the strength of internally grout repaired dent-damaged members is essential, since their strength and effect on the behavior of the platform must be known in order to requalify the platform.

1.2 Previous Experimental Work

1.2.1 Dent-Damaged Members

The ultimate strength and behavior of dented tubular members has been previously studied both experimentally and analytically. Smith, Kirkwood and Swan (1979) performed small-scale axial compression tests with dent depths ranging from 0.011D to 0.0082D. Full-scale tests were later conducted by Smith, Somerville and Swan (1981). A series of small-scale tests had been undertaken by Taby (1986) to develop a database for member strength. Ricles, Gillum and Lamport (1987) conducted 6 large-scale experimental tests with member diameter-thickness ratios (D/t), respectively of 34, 46 and 64, end eccentricities ranging from 0.0D to 0.2D and dent depth equal to 0.1D. Landet and Lotsberg (1992) performed 35 small scale tests on dented tubes subjected to axial load, pure bending and combined loading with dent depths, respectively, of 0.0D, 0.1D and 0.2D, obtaining experimental moment-thrust-curvature relationships. All of the above
tests indicated that dent damage reduces the axial compression strength of the member, and that it is a function of dent depth. None of these tests considered combined local dent-damage and out-of-straightness from bending.

1.2.2 Dent-Damaged, Internally Grout Repaired Members

The results from tests on 8 undamaged internally grout filled specimens were published in 1984 and 1986 by Wimpy JIRRP. The test results indicated that the ultimate strength of specimens with internal grouting were 1.7 and 1.2 times as much as that without internal grouting for specimens with a D/t ratio of 72 and 32, respectively. Parsanejad (1987) performed 10 small-scale tests on internally grout repaired specimens with dent depths ranging from 0.0D to 0.15D. Boswell and D'Mello (1988) conducted both small-scale and a few large-scale internally grout repaired specimens with dent depths ranging from 0.0D to 0.16D. Ricles, Gillum and Lamport (1992) also conducted 3 large-scale tests involving internally grout repaired specimens with a dent depth equal to 0.1D and D/t equal to 34, 46, and 64. In addition, they also performed a grouted clamp repair involving a dent depth of 0.1D and D/t equal to 64. The tests showed that for members with small dent damage (dent depth=0.1D) that the internally grout repair successfully reinstated their strength to at least that of an equivalent undamaged member.

1.3 Previous Analytical Studies

There have been several analytical studies conducted on both dent-damaged and
internally grout repaired dent-damaged tubular members. These existing prediction approaches can be generally classified into three groups, namely: unity check, or beam-column equation; integration methods, and the finite element method. A unit check or beam-column equation is based on moment-axial load interaction and some assumptions. Numerical integration procedures involve the use of moment-curvature relationships or moment-rotation relationships. Finite element analysis usually involve accounting for nonlinear material and geometric effects by proper constitutive relationships and kinematics. It is the most expensive and difficult to use of all the methods.

1.3.1 Dent-Damaged Members

Smith et al. (1979), and Smith et al. (1981) used a elasto-plastic beam-column analysis to determine the residual strength of damaged non-repaired members. Ellinas (1983) developed a simple design-oriented close-form expression (i.e. beam-column equation) based on a member with a dented midspan section and first yield defined as the ultimate strength condition. Ricles et al. (1992b) modified the Ellinas' equation by taking the end eccentricity into account. Taby (1988) developed a semi-empirical model and incorporated it into the computer program DENTA-II to predict the load deformation behavior of dented tubular bracing subjected to combined axial loading and bending.

Padula, and Ostapenko (1991) proposed an analytical approach to consider the nonlinear behavior of a dent-damaged member by a regression model to predict the load-
axial shortening relationships for damaged, pin-ended tubular columns. Kim, and Ostapenko (1992) later proposed a step-by-step integration procedure to predict the residual strength, axial compression-shortening and axial compression-lateral deflection responses based on moment-thrust-rotation and moment-thrust-axial strain relationships (M-P-θ and M-P-ε). Recently, Duan et al. (1993) developed a computer program (BCDENT) to analyze the behavior and the ultimate strength of dented non-repaired members, using Newmark’s integration procedure in conjunction with M-P-Φ and M-P-ε empirical relationships. These empirical relationships were based on the results of numerous tests and analysis of non-repaired dented tubulars.

The nonlinear finite element method were successfully used to assess the residual strength of dent-damaged tubular members by MacIntyre and Birkmoe (1991), and Salman, Birkmoe, and Ricles, (1993).

1.3.2 Internally Grout Repaired Members

Parsanejad (1987) developed a simple explicit quadratic expression to estimate the ultimate strength of internally grout repaired tubular members. The analysis is based on the solution to a beam-column equilibrium condition with first yield collapse criteria.

Loh (1991) proposed a modified AISC-LRFD approach for assessing the strength of grout filled dented tubulars. The two modifications are the buckling curve and the interaction equation. A simplified approach was also presented (Loh, 1991). The
difference between these two approaches is that in the simplified approach neglects the
gROUT's contribution to the Euler buckling load. The simplified approach therefore has the
advantage of not requiring the knowledge of the value of the grout's elastic modulus of
the grout. The above 3 prediction methods will be discussed in detail in Section 4.3.1.

1.4 Objectives

While the problem of residual strength and grout repaired strength has been studied
previously, there is a need to develop and assess more robust methods of analysis which
are reliable, economical and enable one to account for out-of-straightness, transverse
loading, multiple dents and produce load-deflection curves for the member. To fulfill this
need, this study was pursued, having as its objective to develop and assess the use of M-
P-Φ based methods in predicting the general behavior of dent-damaged, nonrepaired and
internally grout repaired, dent-damaged tubular steel bracing.

1.5 Scope

Presented herein is a comprehensive study involving an investigation of the behavior
and the prediction of the ultimate strength of non-repaired dent-damaged and internally
grout repaired dent-damaged tubular members using a numerical integration procedure in
conjunction with M-P-Φ and M-P-ε relationships. Chapter 2 presents the M-P-Φ and M-
P-ε relationships for non-repaired dent-damaged and internally grout repaired dent-
damaged tubular members.
The general numerical integration algorithm for obtaining a member's force-deformation response using the M-P-Φ and M-P-ε relationships and the development of the computer programs is discussed in Chapter 3. The validation of the computer programs through a comparison of experimental test results with predictions by the programs is provided in Chapter 4.

Chapter 5 presents the results of a parametric study, performed using the computer programs to investigate member geometric and material parameters. A set of design-oriented charts and feasibility functions for internal grout repair based on this study are also presented for practical engineering purposes.
2. MOMENT-THRUST-CURVATURE RELATIONSHIPS

2.1 General

This chapter describes the moment-thrust-curvature (M-P-Φ) and moment-thrust-axial strain (M-P-ε) relationships. The derivation of exact M-P-Φ and M-P-ε relationships for undented, non-grout filled sections will be illustrated in Section 2.2; approximate M-P-Φ and M-P-ε expressions for both undamaged and dent-damaged non-grout filled sections in Section 2.3; and the derivation of exact M-P-Φ and M-P-ε relationships for internally grout repaired sections in Section 2.4.

2.2 Derivation of Exact Moment-Thrust-Curvature Relationships

An undamaged tubular section subjected to combined axial compression and bending moment can have one of the three following stress conditions, namely: (1) an elastic stress state throughout its cross-section; (2) yielding in the compression zone (primary plastic); (3) yielding in both the compression and tension zones (secondary plastic). These stress states are depicted in Fig. 2-1. The moment-axial force interaction surfaces corresponding to each of these stress conditions, in terms of normalized axial load \(p = \frac{P}{P_y} \) and moment \(m = \frac{M}{M_p} \) is shown in Fig. 2-2. The relationship for each of three stress conditions is: (Ellis, 1958)

(1) elastic state stress condition (Fig. 2-1(a))
\begin{equation}
 p = \varepsilon_0 \tag{2.1}
\end{equation}

\begin{equation}
 m = \frac{\pi \phi}{4} \tag{2.2}
\end{equation}

(2) yielding in the compression zone (Fig. 2-1(b))

\begin{equation}
 p = 1 - \frac{\phi}{\pi} \left[\left(\frac{\pi}{2} + \psi_1 \right) \sin \psi_1 + \cos \psi_1 \right] \tag{2.3}
\end{equation}

\begin{equation}
 m = \phi \left(\frac{\pi}{8} - \psi_1 + \frac{\sin \psi_1 \cos \psi_1}{4} \right) \tag{2.4}
\end{equation}

\begin{equation}
 \psi_1 = \sin^{-1} \left(\frac{1 - \varepsilon_0}{\phi} \right) \tag{2.5}
\end{equation}

where \(\psi_1 \) is shown in Fig. 2-1(b)

(3) yielding in both compression and tension zones (Fig. 2-1(c))

\begin{equation}
 p = \frac{2 \psi_2}{\pi} - \frac{\phi}{\pi} \left[(\psi_1 + \psi_2) \sin \psi_1 + (\cos \psi_1 - \cos \psi_2) \right] \tag{2.6}
\end{equation}

\begin{equation}
 m = \frac{\phi}{4} \left(\psi_1 + \psi_2 + \sin \psi_1 \cos \psi_1 + \sin \psi_2 \cos \psi_2 \right) \tag{2.7}
\end{equation}
where $\psi_1 \neq \psi_2$

$$\psi_1 = \sin^{-1}(\frac{1-\varepsilon_0}{\phi}) \quad (2.8)$$

$$\psi_2 = \sin^{-1}(\frac{1+\varepsilon_0}{\phi}) \quad (2.9)$$

and

ϕ is the cross section normalized curvature, where $\phi = \Phi/\Phi_y$

ψ_1, ψ_2 are shown in Fig. 2-1(c)

In the above equations the normalized axial load p, moment m, and strain ε_0 are defined as

$$p = \frac{P}{P_y} = \frac{P}{A\sigma_y} \quad (2.10)$$

$$m = \frac{M}{M_p} \quad (2.11)$$

$$\varepsilon_0 = \frac{\varepsilon_0}{\varepsilon_y} \quad (2.12)$$
where P, P_y, M, M_y, respectively, are the applied axial load, yield load, applied moment, yield moment; and A, σ_y, ε_0, ε_y, respectively, are equal to cross-sectional area, yield stress, axial strain at the cross-section's geometric centroid, and yield strain.

When a tubular section is subjected to a constant axial load with an incrementally increasing bending moment and develops no local buckling, the cross section will experience the elastic state, yielding in the compression zone, followed by yielding in both the tension and compression zones as the curvature in the member increases. Fig. 2-3 shows an idealized M-P-Φ curve with these stress conditions as the moment approaches its capacity m_{yx}. The corresponding boundaries to define these three stress states are given below for a tubular undented section of radius R:

(1) primary yielding (m_1, ϕ_1)

$$\Phi = \frac{\varepsilon_y - \varepsilon_0}{R}$$ \hspace{1cm} (2.13)

and normalizing Eq. (2.13) by introducing

$$\phi_1 = \frac{\Phi_1}{\Phi_y}$$ \hspace{1cm} (2.14a)

where Φ_y is the curvature corresponding to initial yielding in compression of the top fiber.
for a tubular without axial load:

\[\Phi_y = \frac{\varepsilon_y}{R} \] \hspace{1cm} (2-14b)

The result for \(\phi_1 \) is obtained by substituting Eq. (2.12) into Eq. (2.13) and normalizing where

\[\phi_1 = 1 - \varepsilon_c \] \hspace{1cm} (2.15)

The moment in the elastic region is equal to

\[m = \frac{4m}{\pi} \] \hspace{1cm} (2.16)

Where \(m = M/M_y \). By substituting Eq. (2.1) and Eq. (2.2) into Eq. (2.15) and Eq. (2.16), the values for \(m_1 \) and \(\phi_1 \) are obtained, where

\[m_1 = 1 - p \] \hspace{1cm} (2.17)

\[\phi_1 = 1 - p \] \hspace{1cm} (2.18)

(2) secondary yielding \((m2, \phi2)\)

Defining
\[
\Phi_2 = \frac{\varepsilon_y + \varepsilon_0}{R} \quad (2.19)
\]

and normalizing the axial strain at the geometric center

\[
\bar{\varepsilon}_0 = \frac{\varepsilon_0}{\varepsilon_y} = \Phi_2 - 1 \quad (2.20)
\]

and

\[
\sin \Psi_1 = \frac{2}{\Phi_2} - 1 \quad (2.21)
\]

From Eq. (2.3), Eq. (2.4) and Eq. (2.5), we can obtain

\[
D = \frac{\Phi_2}{2} + \frac{\Psi_1}{\pi} (\Phi_2 - 2) - \frac{\Phi_2^2}{\pi} \cos \Psi_1 \quad (2.22)
\]

\[
m_2 = \Phi_2 \left(\frac{1}{2} + \frac{\Psi_1}{\pi} + \frac{1}{\pi} \sin \Psi_1 \cos \Psi_1 \right) \quad (2.23)
\]

Moment-thrust-curvature relationship can be generated for a specified load \(p \) by going through a trial and error iteration algorithm to solve for \(\phi_2 \) and \(\Psi_1 \) from Eq. (2.21) and Eq. (2.22) and then substituting \(\Phi_2 \) into Eq. (2.23) to obtain \(m_2 \).
The fully plastic state is achieved when Φ approaches a value of infinity. The fully plastic moment, m_{pc} can be derived considering the stress state shown in Fig. 2-4 corresponding to the applied moment M_{pc} and axial load P. The result of integrating the stresses over the cross section leads to

$$M_{pc} = 4R^2 \sigma_y \sin \alpha$$ \hspace{1cm} (2.24)

and

$$P = 2Rt (\pi - 2\alpha) \sigma_y$$ \hspace{1cm} (2.25)

where α is defined in Fig. 2-4, and is equal to

$$\alpha = \frac{\pi}{2} (1 - p)$$ \hspace{1cm} (2.26)

For a thin wall tubular section the yield load P_y and moment M_y can be written in terms of the member’s radius R and thickness t, where

$$P_y = 2\pi Rt \sigma_y$$ \hspace{1cm} (2.27)

and
Combining Eq. (2.24) to Eq. (2.28), M_{pc} is obtained in terms of the axial load p

$$m_{pc} = \frac{M_{pc}}{M_y} = \frac{4}{\pi} \sin \left(\frac{\pi (1-p)}{2} \right)$$ \hspace{1cm} (2.29)

2.3 Approximate Moment-Thrust-Curvature Relationships

As described in Section 2.2, a trial and error iteration must be performed to obtain the exact moment-curvature relationship. The stability analysis of the steel tubular members would be greatly simplified if an M-P-Φ relationship can be found to avoid the iteration to accurately approximate the exact moment-thrust-curvature relationship. Using a curve fitting method Chen and Atsuta [1976] generated an empirical expression for the exact moment-thrust-curvature relationship that avoids iteration. The relationship involves dividing the M-Φ curve for a constant axial load into the same three regions corresponding to the three stress conditions discussed previously (see Fig. 2-1 and Fig. 2-2). The M-Φ expression for each stress condition corresponding to the normalized curvature Φ are:

(1) elastic region
where

\[a = \frac{m_1}{\Phi_1} \] \hfill (2.31)

(2) primary plastic region

\[m = b - \frac{c}{\sqrt{\Phi}} \] \hfill (2.32)

where

\[b = \frac{m_2 \sqrt{\Phi_1} - m_1 \sqrt{\Phi_1}}{\sqrt{\Phi_1} - \sqrt{\Phi}} \] \hfill (2.33)

and

\[c = \frac{m_2 - m_1}{1 - \frac{1}{\sqrt{\Phi_1}} - \frac{1}{\sqrt{\Phi_1}}} \] \hfill (2.34)

(3) secondary plastic region
The normalized moments m_1, m_2, and m_{pc}, as well as normalized curvature ϕ_1 and ϕ_2 of Eq. (2.30) through Eq. (2.36) are functions of normalized thrust p, which can be determined by either a regression analysis of experimental data or numerical computations for a specific cross section under a constant axial thrust p. The moment curvature relationship based on Eq. (2.30) through (2.36) is shown schematically in Fig. 2-5(a), where also the approximate moment curvature relationship for a constant axial load with local buckling effect is shown. Expressions for the variables and parameters for both the cases of with and without local buckling are given in Appendix A.

Duan et al. [1993] developed a set of closed-form M-P-\Phi and M-P-\epsilon expressions for dented tubular sections under combined multidirectional bending and axial compression as well, based on the regression analysis of data from 151 experimental tests. These M-P-\Phi and M-P-\epsilon expressions describe the effects of local buckling and distorted cross section (ovalization) during loading. It was found that the effects of local buckling on the behavior and strength of tubular bracings becomes more significant with an increase in diameter-to-thickness ratio, and a decrease in slenderness ratio. The applicable range
of D/t ratio in their expressions is between 20 and 130, which covers the typical range for most offshore tubulars of D/t = 30 to 90. The applicable range of dent depth-to-diameter ratio \((d_d/D)\) is 0 to 0.3. The accuracy of the expressions outside of the applicable ranges is questionable, and needs to be further verified in the future. The moment-thrust-curvature relationship for a dented tubular includes both an ascending branch and descending branch, as shown in Fig. 2-5(b). The corresponding parameters and equations are listed in Appendix A. The moment curvature relationships generated using Duan et al. expressions for a tubular with \(D/t=34\), \(KL/r=60\), and \(F_y=35.1\) ksi are shown in Fig. 2-6(a), (b) and (c). The comparison of M-P-\(\Phi\) and M-P-\(\varepsilon_0\) relationships between theory and empirical analysis for a non-dented tubular is shown in Fig. 2-7.

2.4 Derivation of Moment-Thrust-Curvature Relationships for Internally Grouted Sections

For internally grout filled sections, unlike unrepaired sections, the ovalization effect is not significant and can be neglected. With this simplification the moment-thrust-curvature relationships for grout filled tubulars can be more easily developed.

The approach used to develop the moment-thrust-curvature relationships (M-P-\(\Phi\) and \(\varepsilon\)-P-\(\Phi\) curves) is based on the so called "Fiber Model" or "Laminar Model". The fiber model idealizes the internally grout section, either undented or dented, by dividing it into
an appropriate number of discrete layers (see Fig. 2-8). To preserve the area of the steel tube in the dented section, which has the same radius of R, the width of the steel layer is extended in the dent saddle as shown in Fig. 2-8. The uniaxial stress-strain history of each of these layers are then used in the computations along with kinematic and equilibrium requirements to generate the M-P-Φ and ε-P-Φ relationships (see Fig. 2-9).

2.4.1 Material Property Idealization for Steel Tube

Fig. 2-10 shows 2 types of stress-strain relationships for the steel tubular. Type 1 stress-strain curve is an elastic-perfectly plastic stress-strain relationship. The type 2 stress-strain curve takes the local buckling effect into account with a descending branch in the compression region. An empirical expression for the descending branch of the steel stress-strain relationship was proposed by Sato and Suzuki (1992) as follows:

\[\sigma = \sigma_{cr} \left(\frac{\varepsilon}{\varepsilon_{cr}} \right)^n \]

(2-37)

where

\(\sigma_{cr} \): the critical stress when local buckling occurs \((\approx \alpha \sigma_y) \)

\(\varepsilon_{cr} \): the critical strain when local buckling occurs \((\approx \gamma \varepsilon_y) \)

\(n \): empirical parameter \((\approx -0.2) \)

\(\alpha \) and \(\gamma \): empirical parameters

\(\sigma_y \): yield stress
2.4.2 Material Property Idealization for Grout

Since the grout is surrounded by the steel tubular column in an internally grout-filled repaired member, the grout is likely to be at least partially confined until local buckling of the tube's wall occurs. The strength and ductility of well-confined grout is significantly greater than that of unconfined grout. Kent and Park (1971) proposed the compressive stress-strain relationships shown in Fig. 2-11 for unconfined and confined concrete. In the region between a strain ε of zero to ε_0 the compressive stress-strain (f_c-ε) relationship is represented by the following second order expression:

$$f_c = f'_c \left[\frac{2\varepsilon}{\varepsilon_0} - \left(\frac{\varepsilon}{\varepsilon_0} \right)^2 \right]$$ \hspace{1cm} (2.38)

and the elastic modulus of concrete is defined as:

$$E_c = \frac{2f'_c}{\varepsilon_0}$$ \hspace{1cm} (2.39)

where f'_c and ε_0 are the concrete maximum compressive stress and the corresponding strain.

Chen and Atsuta (1976) proposed the three types of stress-strain relationships for
concrete shown in Fig. 2-11(b). Type 1 defines an unconfined concrete material in which the maximum compressive stress of 0.85 f’c is reached, after which the stress decreases with strain beyond ε_0. Type 2 defines a concrete having an increase in ductility due to the confinement of the steel, but no increase in stress. Type 3 accounts for the triaxial state of stress in concrete due to the confinement of steel. The confinement of the grout is assumed to increase both its ductility and compressive strength. Grout inside a tube will not develop full confinement because of the Poisson effect causing the steel to radially expand outward more than the grout, as well as the local buckling in the tube. Consequently, the model for the grout’s compressive stress-strain relationship for the confined grout proposed in the study consists of Kent and Park’s parabola equation for the ascending curve with either a sustained strength (grout stress-strain curve Type 1), or a sustained strength followed by a decrease in stress at a rate of βE_g beyond the strain ε_{bu} (grout stress-strain curve Type 2). Fig. 2-12 shows the Type 1 and Type 2 stress-strain curves, where ε_{bu} corresponds to the local buckling of the steel tube adjacent to the grout. The quantities β and E_g respectively, represent an empirical factor and the grout’s initial modulus, where

$$E_g = \frac{2 f'c \cdot \varepsilon_0}{\varepsilon_{bu}} \quad (2-40)$$

The strain ε_{bu} is calculated by the following
\[\varepsilon_{bu} = \phi_{cr} (y_{N.A} - y_{grout}) \]

(2-41a)

where

\[\phi_{cr} = \frac{\varepsilon_{cr}}{y_{N.A.}} \]

(2-41b)

in which

\[y_{grout} = \text{distance from top of tube to grout top fiber} \]

\[y_{N.A.} = \text{distance from the top fiber to neutral axis} \]

\[\varepsilon_{cr} = \text{steel critical strain when local buckling occurs} \]

\[\phi_{cr} = \text{curvature associated with local buckling in steel} \]

For completely unconfined grout (e.g. a grout tube) \(\varepsilon_{bu} \) corresponds to \(\varepsilon_0 \)

The comparisons of the stress-strain curves between experimental data and the proposed grout equation are plotted in Fig. 2-13, Fig 2-14 and Fig 2-15. In the model, it is assumed that the grout has no strength in tension.

2.4.3 Assumptions of the Fiber Model Analysis

In the development of moment-thrust-curvature relationships for a grout filled tube the following assumptions were made:
(1) Plane sections remain plane during bending.

(2) Shear deformations and their effects are neglected.

(3) Poisson effects are neglected.

(4) The residual stress of the steel tube is neglected.

(5) The ovalization of the cross section is neglected.

2.4.4 Computational Procedures

Because of the nonlinear stress-strain relationships of the materials, an iterative computational procedure is employed to generate the $M-P$ and $\epsilon-P$ curves. The steps for generating the $M-P$ and $\epsilon-P$ curves for a specified axial compression load P_{spec} are outlined below:

Step 1: Assume an initial curvature (Φ).

Step 2: Specify a neutral axis position.

Step 3: Calculate the corresponding axial strain of each layer, (positive for compression, negative for tension), where for layer i

$$\epsilon_i = \Phi (y_{N.A} - y_i)$$

where

y_i = distance from top fiber tubular section to each layer i

$y_{N.A}$ = distance from top fiber tubular section to neutral axis

Step 4: Calculate the corresponding axial forces
\[P_{cal} = \int_A \sigma(y) \, dA = \sum_{i=1}^{N} \sigma_i \, dA_i \]

where \(\sigma_i \) corresponds to the strain \(\varepsilon_i \) for the layer \(i \) from its stress-strain curve; and \(dA_i \) is the area of layer \(i \).

Step 5 : Compare \(P_{cal} \) with \(P_{spec} \)

If the difference is greater than a specified tolerance (say : \(P_{spec} /1000 \))

then go to Step 2 (If it does not converge after a specified number of cycles then go to Step 1).

Step 6 : Calculate the contribution of each layer and sum the moments with respect to the centroid axis.

\[M = \int_A y \sigma(y) \, dA = \sum_{i=1}^{N} y_i \sigma_i \, dA_i \]

where \(y \) is referenced from the centroid of the undented section.

Step 7 : Calculate the axial strain at the centroid.

\[\varepsilon_{axial} = \phi(yn.A.-R+d_d-e_s) \]

where \(yn.A. \) is referenced from the centroid of the undented section, \(e_s \) is the distance between the centroids of the undented and dented sections, and \(d_d \) is equal to the dent depth. Note that for an undented section, \(d_d \) and \(e_s \) are both equal to zero. The effect of including the term \(e_s \) in the above equation was found to be minimal, and is excluded.
from the computer program.

Step 8: Record the values of P, Φ, M and ϵ.

Step 9: Increment the curvature by an amount of $\Delta \Phi : \Phi = \Phi + \Delta \Phi$,

and go to step 2

The above nine steps provide the M-P-Φ and ε-P-Φ relationships corresponding to a specified axial load P for a desired range of curvature. Fig. 2-16 and Fig. 2-17 show the M-P-Φ and ε-P-Φ curves for a undented, internally grout filled section for various axial loads calculated using the above procedure. The M-P-Φ and ε-P-Φ curves for a dented, internally grout filled section for various axial loads based on the above procedure are shown in Fig. 2-18 and Fig. 2-19. The moment curvature relationships obtained from the fiber analysis are represented by a set of data points instead of a continuous function. The moment curvature relationships between two data points is obtained through interpolation.
3.1 General

The M-P-\(\Phi \) and \(\epsilon \)-P-\(\Phi \) relationships presented in Sections 2.3 and 2.4 were implemented into the Fortran computer programs in order to predict the behavior and strength of dent-damaged and internally grout repaired tubular members. In the numerical integration procedure, the member is first divided into a specified number of segments. Through the numerical integration procedure of incremental load control the axial compression-shortening response as well as axial compression-lateral deflection response are then obtained. This chapter describes the computational details of the numerical integration procedure.

3.2 Numerical Integration Procedure

The integration procedure is based on the assumption that the behavior of a segment is described by curvatures and forces at the stations at its ends. The numerical integration procedures for the dent-dented and internally grout repaired members are basically the same. The only difference is that the moment curvature relationships for the non-damaged and nonrepaired, dent-damaged members used in the computer program are adopted from Sohal and Chen [1987,1988] and Duan et al. [1993], while the moment curvature relationships for the internally grout repaired members is derived through the fiber model as described in Chapter 2. The basic steps involved in the numerical integration procedure to obtain the member load-displacement response are as follows:
Step 1 : Divide the tubular into a specified number of n segments. (see Fig. 3-1)

Step 2 : Set $P = 0.0$

Step 3 : Assign an initial value of load P and a load increment ΔP

Step 4 : $P = P + \Delta P$

Step 5 : Assume the initial deflections at all stations (Y_{assume}).

Step 6 : Calculate the moments at all stations considering the second order effect ($P - \delta$) by using the following equations. For undented segments (see Fig. 3-2):

$$M_i = P(Y_{\text{assume}}_i) + M_L - \text{Reaction}_L(x_i) - \int_0^{x_i} (x_i - x) w(x) \, dx$$ \hspace{1cm} (3-1)

For dented, unrepaired segments (see Fig. 3-3):

$$M_i = P(Y_{\text{assume}}_i + \varepsilon) + M_L + \text{Reaction}_L(x_i) + \int_0^{x_i} (x_i - x) w(x) \, dx$$ \hspace{1cm} (3-2)

where

$$\varepsilon = \frac{D}{2\pi} (\sin \alpha - \alpha \cos \alpha)$$ \hspace{1cm} (3-3)

and

$$\alpha = \cos^{-1} \left(1 - \frac{2d}{D}\right)$$ \hspace{1cm} (3-4)

in which:
\(e_s = \) geometry centroid change due to the dent damage

\(D = \) outer diameter of the tubular member

\(d_d = \) dent depth

\(\alpha = \) angle shown in Fig. 3-3

For the internally grout repaired segments, both undamaged and damaged, use Eq. 3-1, since the moment curvature relationships for the internally grout repaired members are derived about the geometric centroid of an undamaged segment.

Step 7: For the calculated moment at each segment obtain the corresponding curvature from the moment curvature relationships.

Step 8: Compute the corresponding curvature \(\Phi_i \) for each segment, accounting for local buckling, by going through the following process:

For undamaged and nonrepaired, dent-damaged tubular members:

Compare \(M_i \) with \(M_{max} \) for undamaged segments, and \(M_i \) with \(M_{pud} \) for dent-damaged segments (see Fig. 2.5(a), (b), and Appendix A). If \(M_i \) is smaller than \(M_{max} \) for an undamaged segment, or \(M_i \) is smaller than \(M_{pud} \) for a dent-damaged segment, then the corresponding curvature is on the ascending branch of the \(M-P-\Phi \) relationship. If \(M_i \) is larger than \(M_{max} \) for an undamaged segment, or \(M_i \) is larger than \(M_{pud} \) for a dent-damaged segment, then the corresponding curvature should be on the descending branch. Once \(M_i \) exceeds \(M_{max} \) for an undamaged segment, or \(M_{pud} \) for a dent-damaged segment, the axial force \(P \) must start to unload. Record the controlling station number. For the remaining part of the computation the curvatures of all the stations except the controlling
station must always lie on the ascending branch. The curvature of the controlling station will always lie on the descending branch. The load increment ΔP should be given a negative specified value, and proceed to Step 4 in order to force M_i to become less than M_{max} or M_{pud}.

For internally grout repaired segments:

Compare M_i with M_{peak}, where M_{peak} is the flexural capacity for the section for the specified axial load. If M_i is smaller M_{peak}, then interpolate the curvature from the moment curvature relationships. If M_i is larger than M_{peak}, then the corresponding curvature is on the descending branch. Once M_i exceeds M_{peak}, the axial force P must start to unload. Record the controlling station number. For the remaining part of the computation the curvatures of all the stations except the controlling station must always lie on the ascending branch. The curvature of the controlling station will always lie on the descending branch. The load increment ΔP should be given a negative specified value, and proceed to Step 4 in order to force M_i to become less than M_{peak}.

Step 9: Calculate the deflection (Y_{cal}) for each station (see Fig. 3-4), where $\Theta_0 = Y_0 = 0$, and

\[\theta_i = \theta_{i-1} - \left(\frac{\Phi_{i-1} + \Phi_i}{2} \right) \Delta x_i \quad (3-5) \]

\[Y_{\text{cal}} = Y_{\text{cal}}_{i-1} + \theta_{i-1} \Delta x_i - \int_{i-1}^i x \phi (x) \, dx \quad (3-6) \]

Assuming a linear variation in curvature between station i and $i-1$, Eq. (3-6) can be
simplified as shown below

\[Y_{\text{cal}}_i = Y_{\text{cal}}_{i-1} + \theta_{i-1} \Delta x_i - (2 \Phi_{i-1} + \Phi_i) \frac{(\Delta x_i)^2}{6} \] \hspace{1cm} (3-7)

where:

\[\Delta x_i = \text{segment length} \]

Step 10: Apply a linear correction to satisfy the end condition, \(Y_n = 0 \) (see Fig. 3-5) to compute the newly calculated member displacement \(y_{ic} \) at each station, where at station \(i \):

\[Y_{ic} = Y_i - \left(\frac{i}{n} \right) Y_n \] \hspace{1cm} (3-8)

Step 11: Compare \(Y_{ic} \) with \(Y_{\text{assume}} \), for each station. If the difference between \(Y_{ic} \) and \(Y_{\text{assume}} \) is greater than the tolerance (say \(Y_{ic} / 1000 \)), then set \(Y_{\text{assume}} = Y_{ic} \) and go back to Step 6. Otherwise go to next Step 12.

Step 12: Compute the axial shortening response. (Details will be discussed in Section 3.3)

Step 13: Repeat Steps 4 through Step 12 until the axial load decreases, after reaching the capacity of the member, to a specified percentage of \(P_y \).

3.3 Axial Load-Shortening Relationships

The axial shortening \(\Delta \) of a beam-column results from two parts. The first is from the
axial shortening Δ_s due to the axial strain of the material, the other is the geometric
shortening Δ_g due to the lateral deflection.

$$\Delta = \Delta_s + \Delta_g$$ (3-9)

3.3.1 Axial Shortening due to Axial Strain

Duan et al. (1993) proposed a set of $M-P-\varepsilon_0$ curves for both undamaged and dent-
damaged segments. For the internally grout repaired segments, as noted in Step 7 in
Section 2.4.4, the $\varepsilon-P-\Phi$ relationships are derived about the centroid axis of an undamaged
section for the given load and moment. The axial shortening due to axial strain can be
obtained from following equations.

For the dent-damaged members:

$$\Delta_s = \sum_{i=1}^{i=n} (\Delta x_i) (\varepsilon_{0i})$$ (3-10)

For the internally grout repaired members:

$$\Delta_s = \sum_{i=1}^{i=n} (\Delta x_i) (\varepsilon_{0i})$$ (3-11)

where:

- $n = \text{total number of segments}$
- $\Delta x_i = \text{length of segment } i$
- $\varepsilon_{0i} = \text{axial strain of segment } i \text{ determined from } M-P-\varepsilon_0 \text{ curve}$
\[\varepsilon_i = \text{axial strain of segment } i \text{ interpolated from } \varepsilon-P-\Phi \text{ expressions}. \]

3.3.2 Axial Shortening due to Geometric Change

The axial shortening due to the geometric change is obtained from the calculated lateral deflections of all stations, where

\[
\Delta y = \sum_{i=2}^{i=n-1} \sqrt{(\Delta x_i)^2 - (Y_i - Y_{i-1})^2} - (\Delta x_i)^2
\]

where:

- \(Y_{i-1} \) = the deflection at the left end of segment \(i \), where \(y_1 = 0 \)
- \(Y_i \) = the deflection at the right end of segment \(i \), where \(y_{n+1} = 0 \)

3.4 Modelling Aspects and Guidance

The previous section illustrated the algorithm of the numerical integration procedure. This section will discuss the influence of some modelling techniques on the results of the computed behavior.

3.4.1 Dent-damaged and Internally Grout Repaired Members

(a). Increment of load steps: The numerical integration procedure in the computer program is using moment curvature relationships in combination with a load control algorithm. The program allows the user to discretize the history of loading to a finite number of increments. In order to minimize overshooting problems at peak load, a value
of $\Delta P = 0.005 \text{ Py}$ is recommended. However it really depends on the accuracy the user tries to achieve.

(b). **Length of dented segment** : The length of a dented segment is correlated with the dent depth, diameter and thickness of a tubular member. The longitudinal profile of the dent and the length of the dented segment recommended here are adopted from the relationships analytically derived by Wierzbicki and Suh (1986). The model of the dented segment is based on the assumption of a knife edge load imposing the dent (see Fig. 3-6). The dent length can be expressed as

$$l_d = D \sqrt{\frac{\pi d_d}{4t}}$$ \hspace{1cm} (3-13)$$

where:

D = outer diameter of the undented segment

t = thickness of the undented segment

d_d = dent depth

The length of dented segment was taken to be $L_d = 2.0 \, l_d$. This assumption was proven to be appropriate when comparisons of member response correlated well with the experimental results.

(c). **Number of segments** : Theoretically the larger the number of segments is, the more accurate the result will be. It should be emphasized that when the difference between the
length of a dented and undented segment becomes larger, there is a greater tendency not to achieve convergence during the iteration process. This situation is especially dominant when the iteration goes to the descending branch of the moment curvature relationships.

(d). Out-of-Straightness : The maximum value of out-of-straightness usually occurs at the dented section. It should be measured after, instead of before, the dent-damage occurs. The out-of-straightness of the dent-damaged member is modelled as a half-sine wave distribution along the member and has a maximum value at the dented section.

(e). Long dents : The longest dent-damaged tube was tested by Smith (1983). Its ultimate strength was found to be similar to a tubular having a knife-edge dent profile. Equation (3-13) assumes a knife edge denting device, hence for long dents one should be more cautious in assuring that the dented segment’s length is compatible with the actual length of the dent. The experimental data used for comparison of the analytical results is from specimens with knife-edge dent profiles.

(f). Convergence factor : The convergence in the computer programs is based on a tolerance that is specified by the user as a convergence factor. Convergence is achieved when the difference between the new and old value for displacement is within the reciprocal of the convergence factor times the new value for all stations, e.g.
for all i:

\[
\frac{y_{assu} - y_i}{y_{ic}} < \frac{1}{\text{Convergence Factor}}
\]

It is worth mentioning that setting a larger convergence tolerance does not result in a significant time saving because of the iteration procedure's convergence characteristics. In general, setting the convergence factor equal to a value of 1000 is recommended.

(g). Consideration of local buckling: For an undamaged member with a D/t ratio greater than 36 the local buckling affects not only the ultimate strength but also the moment curvature relationships. For damaged members, however, the effects of local buckling are not as pronounced as in undamaged members, especially for members with dent depth-to-diameter ratios greater than 0.05 [Smith et al., 1979]. This is because the ultimate strength of a dent-damaged member is controlled mainly by the plastification of its dent segment rather than local buckling. When the dent segment is not located at midspan, or the member is subjected to large end moment producing double curvature, the collapse can possibly be initiated by local buckling in the undented portion of the member. It is therefore recommended that local buckling always be considered in the analysis, as assumed by the computer programs. For the internally grout filled members, as mentioned previously local buckling was accounted for by the use of the stress-strain relationship of Eq. (2-37) for the steel tubular member, and the effects on the internal grout accounted for in its stress-strain curve (see Fig. 2.12 and Eq. (2-41)).
3.4.2 Internally Grout Repaired Members

(a). Section geometry idealization: The computer program is designed to let the user specify the numbers of layers in 3 groups (see Fig. 2-8), where the programs then will automatically generate the area of each layer. The method used in the program to generate the area of each layer is described below (see Fig 3-7).

For an undamaged section:

\[d_1 = \frac{t}{N_1} \] \hspace{1cm} (3-14)

\[d_2 = \frac{(D-2t)}{N_2} \] \hspace{1cm} (3-15)

\[d_3 = \frac{t}{N_3} \] \hspace{1cm} (3-16)

For the dent-damaged section:

\[d_1 = \frac{t}{N_1} \] \hspace{1cm} (3-17)

\[d_2 = \frac{(D-2t-d_3)}{N_2} \] \hspace{1cm} (3-18)
\[d_3 = \frac{t}{N_3} \]

(3-19)

where:

\(N_1, N_2, N_3 = \) number of specimen layers in groups 1, 2, and 3

\(d_1 = \) the depth of each layer in the group #1

\(d_2 = \) the depth of each layer in the group #2

\(d_3 = \) the depth of each layer in the group #3

\(D = \) the outer diameter of the tube

\(t = \) thickness of tubular

\(d_d = \) dent depth

The area of each layer \(i \) for both undamaged and dent-damaged sections is then obtained as follows. For the undamaged section:

Group 1

\[A_{sl_1} = 2d_1 \sqrt{\left(\frac{D}{2}\right)^2 - \left(\frac{D}{2} - id_1 + \frac{d_3}{2}\right)^2} \]

(3-20)

\[A_{gl_1} = 0.0 \]

(3-21)
Group 2

\[A_{2i} = 2d_2 \sqrt{\left(\frac{D}{2} \right)^2 - \left(\frac{D}{2} - N1d1 - id2 + \frac{d_2}{2} \right)^2} \] \hspace{1cm} (3-22)

\[A_{2i} = 2d_2 \sqrt{\left(\frac{D}{2} - t \right)^2 - \left(\frac{D}{2} - N1d1 - id2 + \frac{d_2}{2} \right)^2} \] \hspace{1cm} (3-23)

\[A_{3i} = 0.0 \] \hspace{1cm} (3-26)

For the dent-damaged section, including a correction factor \(\phi \) to preserve the steel cross-section area:

Group 1

\[A_{1i} = \phi \cdot 2d1 \sqrt{\left(\frac{D}{2} \right)^2 - \left(\frac{D}{2} - d - id1 + \frac{d_1}{2} \right)^2} \] \hspace{1cm} (3-27a)

40
\[\phi = n \frac{ D_t - \Sigma A_s 2_i - \Sigma A_s 3_i }{ \Sigma A_s 1_i } \] \hspace{1cm} (3-27b)

\[A_s 1_i = 0.0 \] \hspace{1cm} (3-28)

Group 2

\[A_s 2_i + A_s 2_i = 2d 2 \sqrt{ \frac{ (D_t)^2 - (D_t - d_d - N1d1-id2+ \frac{d2}{2})^2 }{2} } \] \hspace{1cm} (3-29)

\[A_s 2_i = 2d 2 \sqrt{ \frac{ (D_t - t)^2 - (D_t - d_d - N1d1-id2+ \frac{d2}{2})^2 }{2} } \] \hspace{1cm} (3-30)

\[A_s 2_i = (Eq. 2-29) - (Eq. 2-30) \] \hspace{1cm} (3-31)

Group 3

\[A_s 3_i = 2d 3 \sqrt{ \frac{ (D_t)^2 - (D_t - d_d - N1d1-N2d2-id3+ \frac{d3}{2})^2 }{2} } \] \hspace{1cm} (3-32)
where:

As$_1$ = the steel area of layer i in group #1

Ag$_1$ = the grout area of layer i in group #1

As$_2$ = the steel area of layer i in group #2

Ag$_2$ = the grout area of layer i in group #2

As$_3$ = the steel area of layer i in group #3

Ag$_3$ = the grout area of layer i in group #3

The accuracy of a given analysis is related to the number of layers used in the discretization of the cross-section. It is advisable to concentrate a sufficient number of layers near the ends (group #1 and group #3) in order to capture the spread of plasticity in the steel tube as well as local buckling.

(b). *Influence of steel model*: The stress-strain relationship model for the steel used in the analysis was shown previously in Fig. 2-10. Type 1 steel stress-strain curve is assumed to be elastic perfectly plastic. The use of this stress-strain curve is reasonable to predict the member's capacity, for in most cases the ultimate strength will be reached before local buckling occurs. However, in order to obtain both the ascending and descending branch of the load-deflection response curves the Type 2 steel stress-strain curve must to be used.
(c). **Influence of grout model** : The Type 1 stress-strain relationship for the grout is assumed to be a parabola up to the grout strength \((f'g) \), and sustaining a stress of \(f'g \) for continued strain. This assumption is based on complete interaction taking place between the steel and the grout and the triaxial state of stress increasing the grout’s ductility. In reality, the Type 2 grout stress-strain relationship is more appropriate for it accounts for the partial confinement and the effect of local buckling in the steel tubular.

(d). **Stress-Strain history** : The computer program was designed to allow the user to trace the stress-strain history in a maximum of 3 specified fibers (either steel or grout) during the integration process up to when the ultimate load is reached. The stress-strain history can be used to compare with the experimental behavior. The user specifies the desired fibers by their identification numbers.

3.5 **Analysis Examples**

A user’s guide and examples of input and output files for the dent-damaged, unrepaired members are listed in Appendix C. A user’s guide and examples of input and output files for internally grout repaired specimens are given in Appendix D.
4. CORRELATION STUDY

4.1 General

In this chapter the verification of the two computer programs for non-repaired, dented and grout repaired analysis is presented by comparing the predicted response with experimental behavior. A set of comparisons between the accuracy of several other existing prediction methods and the moment curvature approach for the internally grout repaired specimen are also presented.

4.2 Dent-Damaged Specimens

The results from 28 test specimens were used to verify the moment curvature computer program, and are summarized in Table 1(a) (Ricles and Gillum, 1992), Table 2(a) (Ostapenko et al., 1993), Table 3(a) (Landet and Lotsberg, 1992), Table 4(a) (Smith et al., 1979) and Table 5(a) (Taby, 1986a, 1986b). 28 specimens are included in these tables, namely: diameter-to-thickness (D/t) ratio from 25 to 90; a dent depth-to-diameter (dd/D) ratio from 0.0 (undamaged) to 0.2; a dent depth-to-thickness (dd/t) ratio from 0.0 to 9.5; and an out-of-straightness-to-length (δ/L) ratio from 0.0001 to 0.0112. The dent location of all specimens was at their midspan. The corresponding residual strength-to-yield load (Pu,mc/Pu,exp) ratios for each specimen are given in Table 1(b), Table 2(b), Table 3(b), Table 4(b), and Table 5(b). Included in these tables are a comparison with the predicted capacity Pu,mc using the moment curvature approach. The histogram of predicted-to-measured ultimate strength (Pu,mc/Pu,exp) ratio for the 28 specimens is
plotted in Fig. 4-1, which has a mean equal to 0.98 and coefficient of variation equal to 0.096.

Comparisons of axial compression-shortening and axial compression-lateral deflection responses for Specimen A1 [Ricles and Gillum, 1992b], having a dent depth ratio (d_d/D) of 0.1 and diameter-to-thickness ratio (D/t) of 34, are shown in Fig. 4-2 and Fig. 4-3. The solid line represents the prediction by the moment curvature numerical integration approach, while the triangular data points correspond to test results. Comparisons of axial-shortening and axial compression-lateral deflection response for Specimen A2 [Ricles and Gillum, 1992b] with d_d/D=0.1, D/t=34, and end eccentricity e equal to 0.2D are shown in Figs. 4-4 and 4-5. Figs. 4-6 and 4-7 show the comparisons of axial compression-shortening and axial compression-lateral deflection response for Specimen B1 [Ricles and Gillum, 1992b] having d_d/D=0.1 and D/t=46. Figs. 4-8 and 4-9 illustrate the comparisons of axial compression-shortening and axial compression-lateral response for Specimen C2 [Ricles and Gillum, 1992b] having d_d/D=0.1 and D/t=64. The moment curvature approach is shown to predict accurately the behavior of dent-damaged tubular members on the ascending branch. For the post-ultimate load range the experimental data has a higher strength than theoretical predictions. Due to the complexity of the post-ultimate range the predictions are considered to be reasonable. In all of these analysis the number of segments was 21, with a length of 2 l_d (see Eq. 3-13) for the dented segment. The sensitivity of the result to this will be discussed later.
4.3 Internally Grouted Specimens

4.3.1 Previous Prediction Methods

In this section the moment curvature integration approach along with several other existing prediction methods for estimating the repaired strength of dent-damaged tubular members with internally grout repair are compared with experimental data. These existing prediction methods include: API RP-2A [1984, 1986]; BS 5400 [1984]; Modified BS 5400 [Loh, 1991]; the AISC-LRFD [1986] approach; a modified AISC-LRFD approach [Loh, 1991]; a simplified AISC-LRFD approach [Loh, 1991]; and Parsanejad’s Equation [1987]. The API RP-2A and AISC-LRFD methods are those commonly used in practice, where the former neglects the contribution of the grout and the latter ignores dent damage and considers the grout to act as concrete. The BS 5400 and the modified BS 5400 approaches are described in Appendix B. The remaining methods are described below.

4.3.1.1 Parsanejad’s Approach

Parsanejad’s approach [1987] is based on the simplifying assumptions that: (1) Full interaction exists between the grout and the damaged tube; and (2) grout provides sufficient support to the tube wall in the damaged region to inhibit local buckling. The load-carrying capacity is based on using transformed section properties in a beam-column analysis in conjunction with the first yield collapse criteria. First yield collapse criteria assumes that the ultimate capacity of the member is reached when yielding first occurs in the saddle of the dent. The equation for estimating the ultimate strength of internally
grout repaired members is based on the equilibrium of the member in its deformed position corresponding to ultimate load, where

\[
\sigma_u \left(\frac{A'_{tr}}{A_{tr}} \right) + \frac{1}{Z_{tr}} \left(\sigma_u A'_{tr} \frac{e_t}{\sigma_u} \frac{1}{1 - \frac{\sigma_u}{\sigma_e}} \right) = \sigma_y
\]

(4-1)

where:

\[\sigma_y\] = yield stress of steel tubular

\[\sigma_u\] = ultimate axial stress

\[A_u\] = transformed cross sectional area at the dent

\[A_u^{*}\] = transformed cross sectional area of the undamaged section

\[Z_u\] = elastic section modulus of the transformed section at the dent with respect to the dented saddle

\[\sigma_e\] = Euler buckling strength

\[e_t\] = \(e\) (end eccentricity) + \(\delta\) (eccentricity caused by the overall bending damage) + \(e_e\) (distance between the centroids of dented and undented transformed cross section)

4.3.1.2 Modified AISC-LRFD and Simplified Approaches

If it is assumed that the full length of an internally grout filled member is a prismatic member with the cross section at the dent, then the equations recommended in AISC-LRFD [1986] can be used. The modified AISC-LRFD approach is the same as the simplified approach except that in the former 80 percent of the grout stiffness \((E_I)\) is
assumed to contribute to the composite member's Euler buckling load. These two approaches have been proposed by Loh, J. T (1991) and are outlined as below:

(a). Modified AISC-LRFD approach: The approach consists of a unity check equation for combined axial load and bending moment:

\[U.C. = \frac{P}{P_{cr}} + \left[\frac{C_{m}M}{(1 - \frac{P}{P_{E}})M_{u}} \right] \leq 1.0 \quad (4.2) \]

Where

the axial compression capacity is defined as

\[P_{cr} = F(\lambda)P_{u} \quad (4-3) \]

and the squash load as

\[P_{u} = F_{s}A_{s} + 0.67A_{g}f_{g} \quad (4-4) \]

The Euler buckling load for the composite section is determined from Eq. (4-5):

\[P_{E} = \frac{\pi^{2}}{(KL)^{2}} \left(E_{s}I_{s} + 0.8E_{g}I_{g} \right) \quad (4-5) \]

where

\[\lambda = \sqrt{\frac{P_{u}}{P_{E}}} \quad (4-6) \]
and, for $\lambda \leq \sqrt{2}$

$$F(\lambda) = 1 - \frac{1}{4\lambda^2}$$ \hspace{1cm} (4-7)

or for $\lambda > \sqrt{2}$

$$F(\lambda) = \frac{1}{\lambda^2}$$ \hspace{1cm} (4-8)

The bending moment capacity M_u is defined by

$$M_u = M_p (1 + 0.01m)$$ \hspace{1cm} (4-9)

where:

$$M_p = (D - t \cdot t) \cdot t F_y$$ \hspace{1cm} (4-10)

and

$$m = 5.5 \left[\left(\frac{0.6 F_y}{F_y} \right) \left(\frac{D}{t} \right) \right]^{0.66}$$ \hspace{1cm} (4-11)

(b). **Simplified Method** : The simplified method is basically the same as the modified AISC-LRFD approach, except Eq. (4-5) is replaced with the Eq. (4-12) in order to reflect
the fact that the Euler buckling load is based on only the stiffness \((E_s I_s) \) of the steel section.

\[P_e = \frac{n^2 E_s I_s}{(KL)^2} \quad (4-12) \]

4.3.2 Comparisons with the Experimental Results

Verification of the moment curvature numerical integration approach for grout-filled tubular response prediction was performed through a comparison with 12 undamaged, internal grouted tubes and 55 damaged internally grout repaired tests. The experimental data of the undamaged specimens corresponded to tests by Tebbett and Forsyth (1987) and Wimpy (1986). The repaired specimen experimental data corresponded to tests by Ricles and Gillum (1992b), Parsanejad (1986, 1987), and Boswell and D’Mello (1990). The material properties and member dimensions are listed in Table 6(a), 7(a), 8(a) and 9(a) for these specimens.

4.3.2.1 Undamaged, Internally Grout Filled Specimens

Table 6(b) shows the ultimate strength prediction results for the 12 undamaged specimens tested by Wimpy Lab. [1986] and Tebbett and Forsyth [1984] using 7 different approaches, namely: API RP-2A, BS 5400, modified BS 5400, AISC-LRFD, modified AISC-LRFD, simplified AISC-LRFD method, and moment curvature approach. The mean value and coefficient of variation of the predicted-to-measured ultimate strength ratio for these methods corresponding to the 12 tests are summarized in Table 10. It can be seen
that the moment curvature approach provides a reliable estimate of member strength, having for the predicted-to-experimental capacity ratio a mean value equal to 0.98 and coefficient of variation equal to 0.15. The others have a mean value ranging from 0.88 to 1.05, with the coefficient of variation ranging from 0.20 and 0.28. These coefficient of variations are larger than the 0.15 value from the moment curvature approach.

4.3.2.2 Dent-Damaged, Internally Grout Repaired Specimens

The test data for the 55 dent-damaged, internally grout specimens were compared with the strength prediction results of 4 different approaches, which included: Parsanejad’s equation; modified AISC-LRFD method; simplified AISC-LRFD method; and the moment curvature numerical integration approach. It is worth noting that all of the Boswell’s specimens had a reported modular ratio (Es/Eg) equal to 18.24. These modular ratios appear to be much larger than typical values for a grout strength which is in the range of 6 to 10.5 ksi. Typical values of modular ratios versus grout strength from grout material tests are plotted in Fig. 4-10, which confirms that a value of 18.24 is too large. Due to the questionable data reported for the modular ratio from Boswell and D’Mello’s tests, three stages of verification were conducted as follows:

Stage 1: 27 test results (include only first 9 of Boswell and D’ Mello’s tests in Table 9(a))

Stage 2: 55 test results (include all of Boswell and D’ Mello’s tests)

Stage 3: 55 test results (include all of Boswell and D’ Mello’s tests with a modified modular ratio value of 10.0 only in the moment curvature approach)
The predicted-to-measured ultimate strength ($P_{u,mc}/P_{u,exp}$) ratios of the stage 1 verifications including 27 tests are listed in Tables 7(b), 8(b), and first 9 specimens of Table 9(b). The histograms of the predicted-to-measured ratios of 27 tests in term of the 4 different approaches are plotted in Figs. 4-11 to 4-14. The comparisons of accuracy of these 4 prediction methods are listed in Table 11(a). The predicted-to-measured ultimate strength ratio of stage 2, as well as stage 3, verifications are listed in Tables 7(b), 8(b), 9(b) and 9(c). The corresponding histograms of predicted-to-measured ultimate strength ratio by the 4 prediction methods are plotted in Figs. 4-15 to 4-19, and the comparisons of accuracy of these prediction methods are listed in Table 11(b).

An examination of the results from the first stage of verifications indicates that the moment curvature approach is the overall best method of analysis, having for the predicted-to-measured strength ratio a mean equal to 0.96 and coefficient of variation of 0.14. The other approaches had a mean value of 0.93, 0.92, and 0.80, with corresponding coefficient of variations of 0.14, 0.18, and 0.22 as shown in Table 11(a). The second and third stage of verifications resulted in the moment curvature approach having a mean value of 0.86 and 0.92 and a coefficient of variation of 0.18 and 0.14 (see Table 11(b)). The mean value of 0.86 in the second stage seems to be low due to the 28 questionable data values of Boswell and D’ Mello. After the modifications in Stage 3, the mean value of 0.92 and the coefficient of variation of 0.14 for the moment curvature approach represented a closer lower bound solution. Other approaches with the modified modular ratio assumption have the mean values ranging from 0.80 to 0.90 and coefficient of
variations ranging from 0.16 to 0.19 as also shown in Table 11(b). Overall, the verifications indicate that the moment curvature approach is the most accurate and consistent among the prediction methods. The results also indicate the need for accurate material property data.

4.4 Comparisons of Predicted Axial Compression-Shortening and Axial Compression-Lateral Deflection Response with Experimental Results

Figs. 4-20 through 4-22 show the comparisons of axial compression-shortening and axial compression-lateral deflection responses generated from the moment curvature integration method (solid line) and experimental data (data symbol) for Ricles and Gillum's [1992b] Specimens A3, B3, and C3. The specimen properties are noted in these figures. Comparisons were also made with Ricles et al. [1994] Specimens A7, A9, and B7 and are shown in Figs. 4-23 through 4-25, where the specimen properties are also noted. Member properties and comparison of predicted strength with experimental results are shown in Table 12. It can been seen that the prediction of member behavior by the moment curvature approach agrees reasonably well with that of the test specimens.

4.5 Behavior of Internally Grout Filled Specimens

In order to further investigate the behavior (up to when the ultimate strength is reached) of selected internally grouted members, the strains at three different locations of the midspan segment at the top extreme fiber of the steel tube; the top extreme fiber of grout; and the bottom extreme fiber of steel, were investigated. For the undamaged,
internally grout filled members (Specimens 1, 3, and 5 of Tebbett and Forsyth [1984]),
the axial compression versus strain diagrams are shown in Figs. 4-26 through 4-28.
Furthermore the corresponding strains on the stress-strain diagrams at the peak loads are
shown in Fig. 4-32. For selected damaged, internally grout repaired members (Ricles and
Gillum's [1992b] Specimens A3, B3, and C3), the axial compression versus strain
diagrams are plotted in Figs. 4-29 through Fig. 4-31. The corresponding strains on the
stress-strain diagrams at the peak loads are shown in Fig 4-33.

As it can be shown in Fig. 4-32 for the relatively short member (Spec. #1, KL/r=29),
yielding occurred in the steel at the top and bottom fibers and the grout crushed when the
member ultimate strength was reached. For the relatively longer members (Spec. #3,
KL/r=58 and Spec. #5, KL/r=87), only the top fiber of the steel tube reached yielding
when the member ultimate strength was obtained, with the grout nearing its crushing
strain. This result is associated with the excessive deflection due to the second order
effect (P-δ) which caused an instability once the top steel fibers yielded. Fig. 4-33 shows
that for the repaired tubular with a constant KL/r of 60 that the smaller D/t ratio members
(Spec. #A3, D/t=35) had the steel yield at the top and bottom fibers and the grout crush,
whereas the relatively larger D/t ratio member (spec. #C3, D/t=64) had only the top and
bottom steel fibers reach yielding.

4.6 Biases of Moment Curvature Approach

4.6.1 Dent-Damaged, Unrepaired Members

The biases of the moment curvature approach with respect to the geometrical
parameters (δL, D/t, dD and dD/t) of unrepaired, dent-damaged tubulars was
investigated. By the observation of Figs. 4-34 through 4-37, it can be concluded that there is no perceptible variation in bias for predicted member strength with respect to δ/L, D/t, d_y/D and d_y/t for the moment curvature approach.

4.6.2 Internally Grout Repaired Members

The biases of the moment curvature approach with respect to the geometrical parameters (δ/L, D/t, and d_y/D) and material parameters (F'_g and modular ratio) were investigated for internally grout repaired tubulars. As illustrated in Figs. 4-38 through 4-42, there is no significant variation in prediction bias with respect to these parameters.

4.7 Effect of Dented Segment Length

For non-repaired members the dented segment length used in the model plays an important role in the post-ultimate load range during the numerical integration procedures as illustrated in Figs. 4-43 and 4-44. Fig. 4-43 shows the variation in a member's ultimate strength predicted by the moment curvature approach using different dented segment lengths. Only a negligible change of the ultimate strength occurs when the dented segment length varies from $0.5D$ to L_d. However, as seen in Fig. 4-44, the axial compression-shortening response in the post-ultimate range will be influenced by the model's dented segment length. This is due to the empirical nature of moment curvature expressions. For internally grout repaired members a similar effect was observed.
4.7 Effect of Local Buckling Material Parameters

The sensitivity of the material parameters Γ, n and β were explored, with selected results, plotted in Figs. 4-45 to 4-47. It is apparent in Fig. 4-45 that as Γ increased the ultimate load is unaffected while the post-ultimate load response has a slower descent. Based on the experimental data [Ricles and Gillum, 1992b, Ricles et al. 1994] it was found that Γ varied from a value of 2.0 (for $D/t=64$) to 6.0 (for $D/t=34$). For smaller values of the exponent n similar trends were found (see Fig. 4-46). The value of $n=-0.3$ was determined to fit experimental data analyzed by Sato and Suzuki [1992] for concrete filled tubulars, and also worked well for the moment curvature analysis of the grouted tubular presented herein. Figure 4-47 shows that a large variation in the value of β results in some difference in the response. Grout cube tests show β ranging from 290 ksi to 340 ksi (see Figs. 2-13 through 2-15). It was determined that the value for γ dominated the response, and that this response was not too sensitive to changes in β once the parametric value for γ was selected.
5. PARAMETRIC STUDY

5.1 General

Extensive parametric studies were performed to investigate the effects of various factors which may affect the residual and repaired strengths of tubular members. This parametric study involved using the moment curvature computer programs for the analysis of both dent-damaged and internally grout repaired members, and considered the variation of the following parameters: dent depth-to-diameter (d/D) ratio, member diameter-to-thickness (D/t) ratio, out-of-straightness-to-length (δ/L) ratio, steel yield stress Fy, and grout strength F'g. All the results presented are based on a member diameter of 8.625 inches and unless noted, the following material properties:

1. Yield stress (Fy) = 34.8 ksi
2. Young's modulus (Es) = 29071 ksi
3. Grout strength (F'g) = 5.0 ksi
4. Elastic modulus of grout (Eg) = 2907.1 ksi
5. KL/r = 60.

5.2 Dent-Damaged, Unrepaired Members

5.2.1 Effect of Dent Depth

The effects of dent depth on the residual strength of unrepaired members with different D/t (34, 46 and 64) ratios having δ/L=0.0001 are shown in Fig. 5-1. Similarly Figs. 5-2 through 5-7 show the effects of dent depth on the residual strength of unrepaired members.
with different D/t ratios and \(\delta/L = 0.0005, 0.001, 0.002, 0.005, 0.01 \) and 0.02. Fig 5-8 (based on nonlinear finite element analysis [Ricles et al. 1994]) also shows the effects of dent depth on the residual strength of D/t=34 and 64 members with the \(\delta/L = 0.0005 \). The finite element analysis results are shown to agree reasonably well with the moment curvature approach. By observing Fig. 5-1 through 5-8 the effects of dent depth on an unrepaired member's residual strength is shown to be significantly more critical for deeper dents. For \(\delta/L \) equal to 0.0001, a small \(d/D \) ratio of 0.1 has a 37% reduction of member strength for D/t ratio equal to 34, a 44% reduction of member strength for D/t equal to 46, and a 52% reduction of member strength for D/t ratio equal to 64.

5.2.2 Effect of Member Diameter-to-Thickness Ratio

The effects of D/t ratio of 34, 46 and 64 were investigated. The D/t ratios in this range are usually used in fixed offshore structures. It can be seen from Fig. 5-1 to Fig. 5-8 that the effects of D/t ratio on the Pu/Py ratio are proportional to the \(d/D \) ratio as well as \(\delta/L \) ratio, where members of higher D/t ratio with specified values for the \(d/D \) ratio and \(\delta/L \) ratio have a lower residual strength. When \(d/D \) and \(\delta/L \) become large the ultimate strength of the member is controlled by the excessive deflection due to the second order effects (P-δ) instead of the plastification of the section. It can also be seen in Fig. 5-1 that the Pu/Py ratios for members of D/t=34, 46, and 64 are all equal to 0.99 for \(d/D = 0 \) and \(\delta/L = 0.0001 \), which corresponds to a straight member without any dent damage.
5.2.3 Effect of Out-Of-Straightness

The residual strength as a function of the δ/L ratio are plotted in Figs. 5-9 through 5-11 for the six different d_f/D ratios and D/t ratios equal to 34, 46 and 64. As seen in these figures, the effects of out-of-straightness on reducing residual strength becomes larger for members with a smaller d_f/D ratio. This is attributed to the mode of failure becoming more dominated by overall buckling due to the $p-\delta$ effects when d_f/D is small.

5.3 Internally Grout Repaired Members

5.3.1 Effect of Dent Depth

The effects of dent depth on the ultimate strength of repaired members with different D/t (34, 46, and 64) ratios and $\delta/L=0.0001$ are shown in Fig. 5-12. Similarly, Figs. 5-13 through 5-18 show the effects of dent depth on the ultimate strength of repaired members with different D/t ratio and $\delta/L=0.0005, 0.001, 0.002, 0.005, 0.01$ and 0.02.

It can be seen that the ultimate strength of an internally grout repaired member deteriorates less compared to the dent-damaged, unrepaired member as the d_f/D ratio increases. This is because of the fact that the internal grout arrests the growth of the dent during the loading history, resulting in the member developing a greater resistance.

5.3.2 Effect of Member Diameter-to-Thickness Ratio

The three curves ($D/t=34, 46, 64$) plotted in Figs. 5-12 through 5-18 for the internally grout repaired members have an opposite ordering in terms of the D/t ratios for a
specified residual strength compared to Figs. 5-1 through 5-7 for unrepaired members. In other words, the internally grout repaired members with the highest D/t ratio have larger ultimate strength; whereas among the unrepaired members the highest D/t ratio have lower residual strength.

5.3.3 Effect of Out-Of-Straightness

The repaired strength as a function of the δ/L ratio are plotted in Figs. 5-19 to 5-21 for six different d/δ ratios and D/t ratios equal to 34, 46, and 64. As seen in these figures, the effects of out-of-straightness on repaired strength become larger for members with a smaller d/δ ratio. This is attributed to the influence the d/δ ratio has on the residual strength.

5.3.4 Effect of Steel Yield Stress

The effects of yield stress (Fy) in the range between 25 ksi and 80 ksi were investigated. The results are shown in Figs. 5-22 and 5-23 and based on the following material properties: in Fig 5-22 - D/t=34, KL/r=60, F'g=6.9 ksi, $\delta/L=0.0006$; and in Fig 5-23 - D/t=64, KL/r=60, F'g=6.9 ksi, $\delta/L=0.0006$

As seen in these figures the repaired strength is somewhat sensitive to Fy. For both D/t=34 and D/t=64, a member’s repaired strength will increase by approximately 5 to 8 % as the yield stress increases by 5 ksi.
5.3.5 Effect of Grout Strength

The effect of grout strength (F'g) in the range between 4 ksi and 12 ksi with the modular ratio between 4 and 12 was analyzed. The results are shown in the Figs. 5-24 through 5-26, and were based on the following material properties: Fig. 5-24 - Fy=39.4 ksi, KL/r=60, D/t=34, dJD=0.1, δ/L=0.0006; Fig. 5-25 - Fy=39.4 ksi, KL/r=60, D/t=64, dJD=0.1, δ/L=0.0006; and Fig. 5-26 - Fy=39.4 ksi, KL/r=60, D/t=64, dJD=0.2, δ/L=0.0006. There are five sets of data in each figure, where each represents a specific modular ratio. As was shown in the Fig. 4-10, the modular ratio will decrease when the grout strength increases. In selecting a typical grout strength and the corresponding modular ratio from Fig 4-10, and referring to Figs. 5-24 through 5-26, it is estimated that an increase in F'g of 2 ksi will result in an increase in the member’s repaired strength by approximately 10 to 15%.

This appreciable increase is attributed to the confined effect of a higher grout strength increasing the member’s capacity and the lower modular ratio resulting in a stiffer member that is less susceptible to P-δ effects.

5.4 Combined Effects for Dent-Damaged and Internally Grout Repaired Members

A set of seven figures have been plotted to evaluate the effectiveness of an internal grout repair. Figs. 5-27 through 5-33 are a combination of Figs. 5-1 through 5-7 and Figs. 5-12 through 5-18. The data from these figures was also plotted for each D/t ratio, with dent depth (dJD) and out-of-straightness (δ/L) as independent variables, in order to
generate surfaces for the member's repaired strength (see Figs. 5-34 through 5-36). It is apparent that the internal grout repair is significantly affected by out-of-straightness and dent depth, particularly their combined effect, with the repair being less effective as these quantities become larger. The internally grout repaired strength surfaces in these three figures were each compared with the strength of an undamaged member \((d_e=0)\) having the maximum API RP-2A out-of-straightness of \(\delta_p/L=0.001\), see Figs. 5-37 through 5-39.

Figs. 5-37, 5-38, and 5-39 are a useful design aid for repair strategy, for they provide information to enable one to determine which of the following three situations exists for a given damage scenario involving specified \(d_e/D\) and \(\delta/L\) ratios:

1. Dent-damage has a small influence on the ultimate capacity of the tubular bracing member. Internally grout repair is not necessary if the residual strength exceeds the required strength to resist the applied loads.

2. Dent-damage results in a significant loss in ultimate capacity of the tubular bracing. Internally grout repair can reinstate the ultimate capacity of the tubular bracing.

3. Dent-damage results in a significant loss in ultimate capacity of the tubular bracing. Internally grout repair cannot reinstate the ultimate capacity of the tubular bracing.

To qualitatively evaluate the effect of dent depth and out-of-straightness damage on the internally grout repair, the curve associated with the intersection of the internally grout repaired and undamaged surfaces for \(D/t=34, 46, \) and 64, respectively, were fitted, as shown in Figs. 5-40 to 5-42, using regression analysis.
The result was as follows:

for D/t=34

\[f \left(\frac{\delta}{L}, \frac{d_d}{D} \right) = -\left(\frac{\delta}{L} \right) + 0.0099 - 0.008 \left(\frac{d_d}{D} \right) - 0.00639 \left(\frac{d_d}{D} \right)^2 \] \hspace{1cm} (A)

for D/t=46

\[f \left(\frac{\delta}{L}, \frac{d_d}{D} \right) = -\left(\frac{\delta}{L} \right) + 0.00132 - 0.0128 \left(\frac{d_d}{D} \right) - 0.0634 \left(\frac{d_d}{D} \right)^2 \] \hspace{1cm} (B)

and for D/t=64

\[f \left(\frac{\delta}{L}, \frac{d_d}{D} \right) = -\left(\frac{\delta}{L} \right) + 0.0171 - 0.0225 \left(\frac{d_d}{D} \right) - 0.050 \left(\frac{d_d}{D} \right)^2 \] \hspace{1cm} (C)

where

\[\delta / L = \text{normalized out-of-straightness} \]

\[d_d / D = \text{normalized dent depth} \]

These equations can be used to evaluate the effectiveness of internally grout repair, for a given \(\delta/L, \, d_d/D \) and D/t.
If
\[f \left(\frac{\delta}{L}, \frac{d_g}{D} \right) < 0.0 \]
then the internally grout repair will not be fully effective in reinstating the member’s strength to its undamaged strength.

If
\[f \left(\frac{\delta}{L}, \frac{d_g}{D} \right) \geq 0.0 \]
then the internally grout repair will be fully effective in reinstating the member’s strength to its undamaged strength. Note that Figs. 5-40 through 5-42 indicate that dent depth-to-diameter \((d_g/D)\) ratios greater than 0.34, 0.37, and 0.41, respectively, for members with \(D/t=34, 46, \text{ and } 64\) will not have their damaged strength reinstated to their non-damaged strength by internal grouting with a grout strength of 5 ksi and steel yield stress of 34.8 ksi.
6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

In this thesis, computer programs for analyzing the behavior and ultimate strength of dent-damaged and internally grout repaired tubular steel members was developed. The theoretical background and derivations of the numerical procedures based on the moment curvature relationships that formed the basis for the analysis method programmed into the computer were described. A series of correlation studies were performed to verify the accuracy and reliability of the computer programs, including the results from 28 dent-damaged test specimens and 55 internally grout repaired dent-damaged test specimens and 12 internally grout filled undamaged test specimens. The ratio of predicted-to-experimental capacity using the moment curvature approach had a mean value of 0.98 and coefficient of variation of 0.096 for dent-damaged, unrepaired specimens and a mean value of 0.92 and coefficient of variation of 0.14 for the internally grout repaired specimens. The comparisons of axial compression-shortening and axial compression-lateral deflection responses with the test results were also illustrated. The comparisons show the predicted behavior to be in good agreement with the experimental results.

Comparisons for strength prediction by the moment curvature approach and other existing analytical methods were then made for the internally grout filled members. It was found that the predictions by the moment curvature approach have better and more consistent correlation with the experimental results than these other methods.
After the verification study, an extensive parametric study was performed by using the moment curvature computer programs to investigate the effects of $d/J/D$, D/t, δ/L for dent-damaged members and $d/J/D$, D/t, δ/L, F_g and F_y for internally grout repaired members on strength. The results were used to develop a set of design-oriented charts. From these charts the loss of ultimate strength due to dent-damage and the evaluation of the effectiveness of internal grout repair can be estimated precisely.

6.2 Conclusions

The numerical integration procedures based on moment curvature relationships can accurately predict the behavior and ultimate strength of both dent-damaged and internally grout repaired members, and are more reliable and consistent than other existing prediction approaches. Various parameters were found to affect the residual and internally grout repaired member strength. It was determined that the combined effects of dent depth and out-of-straightness due to overall bending from a collision can be significant on capacity and must be considered in member residual strength determination and grout repair assessment.

6.3 Recommendations

(1) The moment curvature expressions for the internally grout sections were generated as a set of data points. Future work should consider developing an approximation to this set of data points by a regression analysis to develop a continuous function. The use of this function would save a significant amount of computational effort during the
numerical integration process.

(2) The moment-curvature numerical integration computer programs were verified to have good agreement with a total of 113 tests. Further confirmation should be made for deeper dent depths, as the test data becomes available.

(3) The effects of lateral loading should be investigated for the members subjected to wave loading.
REFERENCES:

Table 1(a): Geometric and Material Properties of Gillum and Ricles' Specimens (1992)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Outer Diameter (in)</th>
<th>Thickness (in)</th>
<th>Length (in)</th>
<th>Yield Stress (ksi)</th>
<th>Dent Depth (in)</th>
<th>Deltap/L</th>
<th>Young's Modulus (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>8.626</td>
<td>0.247</td>
<td>178.8</td>
<td>34.8</td>
<td>0.868</td>
<td>0.0007</td>
<td>29071</td>
</tr>
<tr>
<td>A2</td>
<td>8.624</td>
<td>0.246</td>
<td>178.8</td>
<td>34.8</td>
<td>0.861</td>
<td>0.0006</td>
<td>29071</td>
</tr>
<tr>
<td>A5</td>
<td>8.636</td>
<td>0.248</td>
<td>178.8</td>
<td>50.9</td>
<td>0.000</td>
<td>0.0002</td>
<td>29071</td>
</tr>
<tr>
<td>B1</td>
<td>8.631</td>
<td>0.186</td>
<td>178.9</td>
<td>33.4</td>
<td>0.862</td>
<td>0.0009</td>
<td>30714</td>
</tr>
<tr>
<td>B2</td>
<td>8.636</td>
<td>0.186</td>
<td>178.9</td>
<td>33.4</td>
<td>0.861</td>
<td>0.0026</td>
<td>30714</td>
</tr>
<tr>
<td>B5</td>
<td>8.642</td>
<td>0.186</td>
<td>178.9</td>
<td>48.6</td>
<td>0.000</td>
<td>0.0001</td>
<td>30714</td>
</tr>
<tr>
<td>C1</td>
<td>8.642</td>
<td>0.134</td>
<td>180.1</td>
<td>39.4</td>
<td>0.861</td>
<td>0.0012</td>
<td>30800</td>
</tr>
<tr>
<td>C2</td>
<td>8.643</td>
<td>0.136</td>
<td>180.1</td>
<td>39.4</td>
<td>0.861</td>
<td>0.0007</td>
<td>30800</td>
</tr>
<tr>
<td>C5</td>
<td>8.643</td>
<td>0.136</td>
<td>180.1</td>
<td>40.2</td>
<td>0.000</td>
<td>0.0009</td>
<td>30800</td>
</tr>
</tbody>
</table>

Deltap = Out-Of-Straightness after Denting

Table 1(b): Comparison between Experimental Results and Moment Curvature Predictions (Gillum and Ricles' Specimens, 1992)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>D/A</th>
<th>dd/D</th>
<th>dd/t</th>
<th>Pu,exp/Py</th>
<th>Pu,mc/Py</th>
<th>Pu,mc/Pu,exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>34.92</td>
<td>0.10</td>
<td>3.51</td>
<td>0.611</td>
<td>0.605</td>
<td>0.99</td>
</tr>
<tr>
<td>A2</td>
<td>35.06</td>
<td>0.10</td>
<td>3.50</td>
<td>0.397</td>
<td>0.400</td>
<td>1.01</td>
</tr>
<tr>
<td>A5</td>
<td>34.82</td>
<td>0.00</td>
<td>0.00</td>
<td>0.459</td>
<td>0.450</td>
<td>0.98</td>
</tr>
<tr>
<td>B1</td>
<td>46.40</td>
<td>0.10</td>
<td>4.63</td>
<td>0.588</td>
<td>0.530</td>
<td>0.90</td>
</tr>
<tr>
<td>B2</td>
<td>46.43</td>
<td>0.10</td>
<td>4.63</td>
<td>0.311</td>
<td>0.340</td>
<td>1.09</td>
</tr>
<tr>
<td>B5</td>
<td>46.46</td>
<td>0.00</td>
<td>0.00</td>
<td>0.449</td>
<td>0.470</td>
<td>1.05</td>
</tr>
<tr>
<td>C1</td>
<td>64.49</td>
<td>0.10</td>
<td>6.43</td>
<td>0.437</td>
<td>0.435</td>
<td>1.00</td>
</tr>
<tr>
<td>C2</td>
<td>63.55</td>
<td>0.10</td>
<td>6.33</td>
<td>0.325</td>
<td>0.300</td>
<td>0.92</td>
</tr>
<tr>
<td>C5</td>
<td>63.55</td>
<td>0.00</td>
<td>0.00</td>
<td>0.428</td>
<td>0.475</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Table 2(a): Geometric and Material Properties of Lehigh Tests (Ostapenko et al., 1993)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Outer Diameter (in)</th>
<th>Thickness (in)</th>
<th>Length (in)</th>
<th>Yield Stress (ksi)</th>
<th>Dent Depth (in)</th>
<th>Deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF1</td>
<td>15.00</td>
<td>0.260</td>
<td>424.2</td>
<td>42.66</td>
<td>0.7500</td>
<td>0.00070</td>
</tr>
<tr>
<td>FF2</td>
<td>17.03</td>
<td>0.375</td>
<td>418.2</td>
<td>57.25</td>
<td>2.3842</td>
<td>0.00160</td>
</tr>
<tr>
<td>FF3</td>
<td>24.50</td>
<td>0.321</td>
<td>412.2</td>
<td>59.23</td>
<td>1.2250</td>
<td>0.00005</td>
</tr>
<tr>
<td>FS1</td>
<td>10.36</td>
<td>0.360</td>
<td>294.0</td>
<td>54.18</td>
<td>1.7612</td>
<td>0.00270</td>
</tr>
<tr>
<td>FS2</td>
<td>10.38</td>
<td>0.375</td>
<td>294.0</td>
<td>53.30</td>
<td>1.5570</td>
<td>0.00340</td>
</tr>
<tr>
<td>FS3</td>
<td>13.55</td>
<td>0.444</td>
<td>336.0</td>
<td>43.95</td>
<td>2.3035</td>
<td>0.00077</td>
</tr>
<tr>
<td>FS4</td>
<td>13.59</td>
<td>0.439</td>
<td>336.0</td>
<td>40.50</td>
<td>2.0385</td>
<td>0.00176</td>
</tr>
</tbody>
</table>

Deltap = Out-Of-Straightness after Denting

Table 2(b): Comparison between Experimental Results and Moment Curvature Predictions (Lehigh Tests, Ostapenko et al., 1993)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>D/t</th>
<th>dd/D</th>
<th>dd/t</th>
<th>Pu,exp/Pu</th>
<th>Pu,mc/Pu</th>
<th>Pu,mc/Pu,exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF1</td>
<td>57.69</td>
<td>0.05</td>
<td>2.88</td>
<td>0.638</td>
<td>0.62</td>
<td>0.97</td>
</tr>
<tr>
<td>FF2</td>
<td>45.41</td>
<td>0.14</td>
<td>6.36</td>
<td>0.46</td>
<td>0.385</td>
<td>0.84</td>
</tr>
<tr>
<td>FF3</td>
<td>76.32</td>
<td>0.05</td>
<td>3.82</td>
<td>0.658</td>
<td>0.65</td>
<td>0.99</td>
</tr>
<tr>
<td>FS1</td>
<td>26.78</td>
<td>0.17</td>
<td>4.89</td>
<td>0.31</td>
<td>0.365</td>
<td>1.18</td>
</tr>
<tr>
<td>FS2</td>
<td>27.68</td>
<td>0.15</td>
<td>4.15</td>
<td>0.381</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>FS3</td>
<td>30.52</td>
<td>0.17</td>
<td>5.19</td>
<td>0.552</td>
<td>0.455</td>
<td>0.82</td>
</tr>
<tr>
<td>FS4</td>
<td>30.96</td>
<td>0.15</td>
<td>4.64</td>
<td>0.458</td>
<td>0.47</td>
<td>1.03</td>
</tr>
</tbody>
</table>
Table 3(a) : Geometric and Material Properties of Landet and Lotsberg's Specimens (1992)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Outer Diameter (in)</th>
<th>Thickness (in)</th>
<th>Length (in)</th>
<th>Yield Stress (ksi)</th>
<th>Dent Depth (in)</th>
<th>Deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-32</td>
<td>5.51</td>
<td>0.178</td>
<td>105.39</td>
<td>50.76</td>
<td>0.551</td>
<td>0.0042</td>
</tr>
<tr>
<td>D1-33</td>
<td>5.51</td>
<td>0.178</td>
<td>105.39</td>
<td>49.31</td>
<td>1.102</td>
<td>0.0112</td>
</tr>
<tr>
<td>D1-35</td>
<td>5.51</td>
<td>0.119</td>
<td>105.39</td>
<td>53.37</td>
<td>0.551</td>
<td>0.0041</td>
</tr>
<tr>
<td>D1-36</td>
<td>5.51</td>
<td>0.119</td>
<td>105.39</td>
<td>58.02</td>
<td>1.102</td>
<td>0.0090</td>
</tr>
</tbody>
</table>

Deltap = Out-Of-Straightness after Denting

Table 3(b) : Comparison between Experimental Results and Moment Curvature Predictions (Landet and Lotsberg's Specimens, 1992)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>D/t</th>
<th>dd/D</th>
<th>dd/t</th>
<th>Pu,exp/Py</th>
<th>Pu,mc/Py</th>
<th>Pu,mc/Pu,exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-32</td>
<td>31.04</td>
<td>0.10</td>
<td>3.10</td>
<td>0.551</td>
<td>0.555</td>
<td>1.01</td>
</tr>
<tr>
<td>D1-33</td>
<td>30.91</td>
<td>0.20</td>
<td>6.18</td>
<td>0.382</td>
<td>0.315</td>
<td>0.82</td>
</tr>
<tr>
<td>D1-35</td>
<td>46.20</td>
<td>0.10</td>
<td>4.62</td>
<td>0.524</td>
<td>0.490</td>
<td>0.94</td>
</tr>
<tr>
<td>D1-36</td>
<td>46.36</td>
<td>0.20</td>
<td>9.27</td>
<td>0.287</td>
<td>0.255</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Table 4(a): Geometric and Material Properties of Smith et al Specimens (1979)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Outer Diameter (in)</th>
<th>Thickness (in)</th>
<th>Length (in)</th>
<th>Yield Stress (ksi)</th>
<th>Dent Depth (in)</th>
<th>Deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>15.59</td>
<td>0.39</td>
<td>305.28</td>
<td>42.50</td>
<td>1.99</td>
<td>0.0018</td>
</tr>
<tr>
<td>F2s</td>
<td>2.56</td>
<td>0.06</td>
<td>52.17</td>
<td>39.74</td>
<td>0.33</td>
<td>0.0050</td>
</tr>
</tbody>
</table>

Deltap = Out-Of-Straightness after Denting

Table 4(b): Comparison between Experimental Results and Moment Curvature Predictions (Smith et al. Specimens, 1979)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>D/t</th>
<th>dd/D</th>
<th>dd/t</th>
<th>Pu,exp/Py</th>
<th>Pu,mc/Py</th>
<th>Pu,mc/Pu,exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>40.00</td>
<td>0.13</td>
<td>5.10</td>
<td>0.560</td>
<td>0.540</td>
<td>0.96</td>
</tr>
<tr>
<td>F2s</td>
<td>40.94</td>
<td>0.13</td>
<td>5.22</td>
<td>0.480</td>
<td>0.475</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table 5(a) : Geometric and Material Properties of Taby's Specimens (1986a, 1986b)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Outer Diameter (in)</th>
<th>Thickness (in)</th>
<th>Length (in)</th>
<th>Yield Stress (ksi)</th>
<th>Dent Depth (in)</th>
<th>DeltaP/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>2.42</td>
<td>0.083</td>
<td>84.6</td>
<td>32.8</td>
<td>0.114</td>
<td>0.0055</td>
</tr>
<tr>
<td>B3</td>
<td>3.06</td>
<td>0.067</td>
<td>84.6</td>
<td>28.8</td>
<td>0.248</td>
<td>0.005</td>
</tr>
<tr>
<td>B4</td>
<td>3.06</td>
<td>0.067</td>
<td>84.6</td>
<td>28.8</td>
<td>0.034</td>
<td>0.005</td>
</tr>
<tr>
<td>C3</td>
<td>3.94</td>
<td>0.067</td>
<td>84.6</td>
<td>33.9</td>
<td>0.134</td>
<td>0.004</td>
</tr>
<tr>
<td>C4</td>
<td>3.94</td>
<td>0.067</td>
<td>84.6</td>
<td>36.6</td>
<td>0.063</td>
<td>0.005</td>
</tr>
<tr>
<td>D3</td>
<td>3.5</td>
<td>0.041</td>
<td>84.6</td>
<td>68.2</td>
<td>0.130</td>
<td>0.003</td>
</tr>
</tbody>
</table>

DeltaP = Out-Of-Straightness after Denting

Table 5(b) : Comparisons between Experimental Results and Moment Curvature Predictions (Taby's Specimens, 1986a, 1986b)

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>D/t</th>
<th>dd/D</th>
<th>dd/t</th>
<th>Pu,exp/Py</th>
<th>Pu,mc/Py</th>
<th>Pu,mc/Pu,exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>29.16</td>
<td>0.047</td>
<td>1.37</td>
<td>0.48</td>
<td>0.4</td>
<td>0.83</td>
</tr>
<tr>
<td>B3</td>
<td>45.67</td>
<td>0.081</td>
<td>3.70</td>
<td>0.52</td>
<td>0.45</td>
<td>0.87</td>
</tr>
<tr>
<td>B4</td>
<td>45.67</td>
<td>0.011</td>
<td>0.50</td>
<td>0.61</td>
<td>0.56</td>
<td>0.92</td>
</tr>
<tr>
<td>C3</td>
<td>58.81</td>
<td>0.034</td>
<td>2.00</td>
<td>0.76</td>
<td>0.78</td>
<td>1.03</td>
</tr>
<tr>
<td>C4</td>
<td>58.81</td>
<td>0.016</td>
<td>0.94</td>
<td>0.84</td>
<td>0.86</td>
<td>1.02</td>
</tr>
<tr>
<td>D3</td>
<td>85.37</td>
<td>0.037</td>
<td>3.16</td>
<td>0.53</td>
<td>0.6</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Table 6(a) : Geometric and Material Properties of Undamaged, Internally Grout Filled Specimens (Wimpy, 1986)

<table>
<thead>
<tr>
<th>Spec #</th>
<th>Douter (in)</th>
<th>t (in)</th>
<th>L (in)</th>
<th>Fy (ksi)</th>
<th>Es (ksi)</th>
<th>F'g (ksi)</th>
<th>Eg (ksi)</th>
<th>Ecc (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.504</td>
<td>0.118</td>
<td>85</td>
<td>60.6</td>
<td>29000</td>
<td>10.15</td>
<td>4570</td>
<td>2.098</td>
</tr>
<tr>
<td>2</td>
<td>8.504</td>
<td>0.118</td>
<td>85</td>
<td>60.6</td>
<td>29000</td>
<td>8.09</td>
<td>3640</td>
<td>10.484</td>
</tr>
<tr>
<td>3</td>
<td>6.626</td>
<td>0.177</td>
<td>132.3</td>
<td>58.6</td>
<td>29000</td>
<td>8.45</td>
<td>3800</td>
<td>1.614</td>
</tr>
<tr>
<td>4</td>
<td>6.626</td>
<td>0.177</td>
<td>132.3</td>
<td>58.6</td>
<td>29000</td>
<td>8.16</td>
<td>3670</td>
<td>16.122</td>
</tr>
<tr>
<td>5</td>
<td>6.094</td>
<td>0.374</td>
<td>175.6</td>
<td>70.9</td>
<td>29000</td>
<td>9.29</td>
<td>4180</td>
<td>1.429</td>
</tr>
<tr>
<td>6</td>
<td>6.094</td>
<td>0.374</td>
<td>175.6</td>
<td>70.9</td>
<td>29000</td>
<td>9.1</td>
<td>4100</td>
<td>14.303</td>
</tr>
<tr>
<td>7</td>
<td>6.016</td>
<td>0.188</td>
<td>240</td>
<td>36.5</td>
<td>29000</td>
<td>12.2</td>
<td>5490</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>6.016</td>
<td>0.188</td>
<td>240</td>
<td>37.4</td>
<td>29000</td>
<td>11.5</td>
<td>5180</td>
<td>0</td>
</tr>
<tr>
<td>a1</td>
<td>1.754</td>
<td>0.055</td>
<td>49.4</td>
<td>84.5</td>
<td>29000</td>
<td>4.63</td>
<td>2390</td>
<td>0</td>
</tr>
<tr>
<td>c1</td>
<td>2.752</td>
<td>0.055</td>
<td>73.2</td>
<td>73.1</td>
<td>29000</td>
<td>4.63</td>
<td>2390</td>
<td>0</td>
</tr>
<tr>
<td>c3</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>72.9</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0.034</td>
</tr>
<tr>
<td>p1</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>72.9</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
</tr>
</tbody>
</table>

Douter = outer diameter
\(t \) = thickness
\(L \) = length
\(F_y \) = steel yield stress
\(E_s \) = Young's modulus
\(F_g \) = grout strength
\(E_g \) = elastic modulus of grout
\(E_c \) = end eccentricity
Table 6(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Wimpy's Specimens (1986)

<table>
<thead>
<tr>
<th>Spec #</th>
<th>Eo</th>
<th>d</th>
<th>D</th>
<th>Pu,exp</th>
<th>Pu,1</th>
<th>Pu,2</th>
<th>Pu,3</th>
<th>Pu,4</th>
<th>Pu,5</th>
<th>Pu,6</th>
<th>Pu,7</th>
<th>Pu,8</th>
<th>Pu,9</th>
<th>Pu,10</th>
<th>Pu,11</th>
<th>Pu,12</th>
<th>Pu,13</th>
<th>Pu,14</th>
<th>Pu,15</th>
<th>Pu,16</th>
<th>Pu,17</th>
<th>Pu,18</th>
<th>Pu,19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.346</td>
<td>0</td>
<td>72.07</td>
<td>303.5</td>
<td>0.32</td>
<td>0.94</td>
<td>0.89</td>
<td>0.61</td>
<td>0.58</td>
<td>0.53</td>
<td>302.50</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.967</td>
<td>0</td>
<td>72.07</td>
<td>75.1</td>
<td>0.49</td>
<td>0.84</td>
<td>0.82</td>
<td>0.69</td>
<td>0.65</td>
<td>0.64</td>
<td>58.49</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.632</td>
<td>0</td>
<td>37.44</td>
<td>149.5</td>
<td>0.61</td>
<td>1.01</td>
<td>1.00</td>
<td>0.84</td>
<td>0.83</td>
<td>0.74</td>
<td>147.25</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.902</td>
<td>0</td>
<td>37.44</td>
<td>32.4</td>
<td>0.67</td>
<td>0.84</td>
<td>0.84</td>
<td>0.82</td>
<td>0.79</td>
<td>0.76</td>
<td>25.13</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.938</td>
<td>0</td>
<td>16.29</td>
<td>130.9</td>
<td>1.03</td>
<td>1.45</td>
<td>1.45</td>
<td>1.15</td>
<td>1.16</td>
<td>1.05</td>
<td>167.69</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.073</td>
<td>0</td>
<td>16.29</td>
<td>40.5</td>
<td>1.04</td>
<td>1.28</td>
<td>1.28</td>
<td>1.20</td>
<td>1.14</td>
<td>1.09</td>
<td>42.50</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>5.282</td>
<td>0</td>
<td>32</td>
<td>180.3</td>
<td>0.60</td>
<td>1.30</td>
<td>1.30</td>
<td>1.20</td>
<td>1.37</td>
<td>1.12</td>
<td>204.10</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>5.988</td>
<td>0</td>
<td>32</td>
<td>157.8</td>
<td>0.66</td>
<td>1.28</td>
<td>1.28</td>
<td>1.20</td>
<td>1.39</td>
<td>1.09</td>
<td>180.61</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>12.13</td>
<td>0</td>
<td>31.89</td>
<td>16.04</td>
<td>0.78</td>
<td>0.87</td>
<td>0.87</td>
<td>0.83</td>
<td>0.94</td>
<td>0.78</td>
<td>14.29</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>a2</td>
<td>12.13</td>
<td>0</td>
<td>50.04</td>
<td>28.9</td>
<td>0.65</td>
<td>0.93</td>
<td>0.93</td>
<td>0.81</td>
<td>0.88</td>
<td>0.92</td>
<td>26.75</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>18.24</td>
<td>0</td>
<td>28.87</td>
<td>96.33</td>
<td>0.62</td>
<td>0.81</td>
<td>0.81</td>
<td>0.75</td>
<td>0.88</td>
<td>0.82</td>
<td>70.78</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>18.24</td>
<td>0</td>
<td>28.87</td>
<td>69.69</td>
<td>0.76</td>
<td>1.01</td>
<td>1.01</td>
<td>0.93</td>
<td>1.09</td>
<td>1.01</td>
<td>70.78</td>
<td>1.02</td>
<td></td>
</tr>
</tbody>
</table>

Pu,exp = Experimental Results
Pu,1 = API RP 2A Equation for Steel Members
Pu,2 = BS 5400
Pu,3 = Modified BS 5400
Pu,4 = AISC-LRFD Approach
Pu,5 = Modified AISC-LRFD
Pu,6 = Simplified Method
Pu,7 = Moment Curvature Approach (Proposed)
Table 7(a): Geometric and Material Properties of Gillum and Ricles' Internally Grout Repaired Specimens (1992)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>D_outer</th>
<th>t</th>
<th>L</th>
<th>dd</th>
<th>Fy (ksi)</th>
<th>Eel (ksi)</th>
<th>F'g (ksi)</th>
<th>Eg (ksi)</th>
<th>Ecc</th>
<th>deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>8.625</td>
<td>0.247</td>
<td>178.8</td>
<td>0.857</td>
<td>34.8</td>
<td>29071</td>
<td>4.375</td>
<td>2907</td>
<td>1.725</td>
<td>0.0006</td>
</tr>
<tr>
<td>B3</td>
<td>8.634</td>
<td>0.187</td>
<td>178.9</td>
<td>0.863</td>
<td>33.4</td>
<td>30714</td>
<td>3.885</td>
<td>2559</td>
<td>1.7268</td>
<td>0.0011</td>
</tr>
<tr>
<td>C3</td>
<td>8.643</td>
<td>0.135</td>
<td>180.1</td>
<td>0.86</td>
<td>39.4</td>
<td>30800</td>
<td>6.894</td>
<td>2566</td>
<td>1.7286</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

- D_{outer} = outer diameter
- t = thickness
- L = length
- dd = dent depth
- F_y = steel yield stress
- E_s = Young's modulus
- $F'g$ = grout strength
- E_g = elastic modulus of grout
- Ecc = end eccentricity
- $deltap$ = out-of-straightness after denting

Table 7(b): Comparison between Experimental Results and Various Analytical Methods, Internally Grout Repaired Gillum and Ricles' Specimens (1992)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>E_g</th>
<th>D</th>
<th>t</th>
<th>Pu,exp</th>
<th>Pu,1</th>
<th>Pu,1</th>
<th>Pu,2</th>
<th>Pu,2</th>
<th>Pu,3</th>
<th>Pu,3</th>
<th>Pu,4</th>
<th>Pu,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>10</td>
<td>0.1</td>
<td>35.1</td>
<td>191.00</td>
<td>228.054</td>
<td>1.19</td>
<td>170.800</td>
<td>0.75</td>
<td>160.500</td>
<td>0.70</td>
<td>175.700</td>
<td>0.92</td>
</tr>
<tr>
<td>B3</td>
<td>12</td>
<td>0.1</td>
<td>46.5</td>
<td>117.00</td>
<td>126.828</td>
<td>1.08</td>
<td>139.800</td>
<td>1.10</td>
<td>129.130</td>
<td>1.02</td>
<td>128.010</td>
<td>1.09</td>
</tr>
<tr>
<td>C3</td>
<td>12</td>
<td>0.1</td>
<td>63.9</td>
<td>122.00</td>
<td>123.220</td>
<td>1.01</td>
<td>141.200</td>
<td>1.15</td>
<td>119.689</td>
<td>0.97</td>
<td>130.440</td>
<td>1.06</td>
</tr>
</tbody>
</table>

- Pu,exp = experimental results
- $Pu,1$ = Parsanejad's Equation
- $Pu,2$ = Modified AISC-LRFD Approach
- $Pu,3$ = Simplified Method
- $Pu,4$ = Moment Curvature Approach

80
Table 8(a) : Geometric and Material Properties of Parsanejad's Internally Grout Repaired Specimens (1987a, 1987b)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>D outer (m)</th>
<th>t (m)</th>
<th>L (m)</th>
<th>dd (m)</th>
<th>Fy (kg)</th>
<th>Eccentric</th>
<th>Fg (kg)</th>
<th>Eg (kg)</th>
<th>Ecc (m)</th>
<th>deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.754</td>
<td>0.055</td>
<td>49.4</td>
<td>0.000</td>
<td>84.5</td>
<td>28800</td>
<td>4.63</td>
<td>2390</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>A2</td>
<td>1.754</td>
<td>0.054</td>
<td>49.4</td>
<td>0.127</td>
<td>85.1</td>
<td>28600</td>
<td>4.63</td>
<td>2390</td>
<td>0.0117</td>
<td>0.0000</td>
</tr>
<tr>
<td>B1</td>
<td>1.756</td>
<td>0.055</td>
<td>49.4</td>
<td>0.246</td>
<td>81.7</td>
<td>28600</td>
<td>4.63</td>
<td>2390</td>
<td>0.0238</td>
<td>-0.0003</td>
</tr>
<tr>
<td>B2</td>
<td>1.756</td>
<td>0.055</td>
<td>49.4</td>
<td>0.223</td>
<td>83.6</td>
<td>28500</td>
<td>4.63</td>
<td>2390</td>
<td>0.0885</td>
<td>0.0045</td>
</tr>
<tr>
<td>C1</td>
<td>2.752</td>
<td>0.055</td>
<td>73.2</td>
<td>0.000</td>
<td>73.1</td>
<td>28600</td>
<td>4.63</td>
<td>2390</td>
<td>0.0337</td>
<td>0.0002</td>
</tr>
<tr>
<td>C2</td>
<td>2.751</td>
<td>0.056</td>
<td>73.2</td>
<td>0.207</td>
<td>77.6</td>
<td>28500</td>
<td>4.63</td>
<td>2390</td>
<td>0.0372</td>
<td>-0.0001</td>
</tr>
<tr>
<td>D1</td>
<td>2.751</td>
<td>0.055</td>
<td>73.2</td>
<td>0.398</td>
<td>71.5</td>
<td>28800</td>
<td>4.63</td>
<td>2390</td>
<td>0.0388</td>
<td>0.0004</td>
</tr>
<tr>
<td>D2</td>
<td>2.75</td>
<td>0.055</td>
<td>73.2</td>
<td>0.411</td>
<td>75.1</td>
<td>29000</td>
<td>4.63</td>
<td>2390</td>
<td>0.0809</td>
<td>0.0042</td>
</tr>
<tr>
<td>E1</td>
<td>1.751</td>
<td>0.058</td>
<td>49.4</td>
<td>0.192</td>
<td>53.4</td>
<td>27800</td>
<td>4.26</td>
<td>2270</td>
<td>0.0191</td>
<td>0.0052</td>
</tr>
<tr>
<td>F2</td>
<td>1.751</td>
<td>0.058</td>
<td>49.4</td>
<td>0.270</td>
<td>50.9</td>
<td>26500</td>
<td>4.26</td>
<td>2270</td>
<td>0.0085</td>
<td>0.0002</td>
</tr>
<tr>
<td>F1</td>
<td>1.749</td>
<td>0.028</td>
<td>52.6</td>
<td>0.248</td>
<td>26.0</td>
<td>29000</td>
<td>2.28</td>
<td>2160</td>
<td>0.0040</td>
<td>0.0017</td>
</tr>
<tr>
<td>G1</td>
<td>2.753</td>
<td>0.055</td>
<td>75</td>
<td>0.193</td>
<td>31.8</td>
<td>29000</td>
<td>2.28</td>
<td>2160</td>
<td>0.0030</td>
<td>0.0001</td>
</tr>
<tr>
<td>G2</td>
<td>2.75</td>
<td>0.055</td>
<td>75</td>
<td>0.396</td>
<td>33.6</td>
<td>29000</td>
<td>2.28</td>
<td>2160</td>
<td>0.0080</td>
<td>0.0006</td>
</tr>
<tr>
<td>G3</td>
<td>2.75</td>
<td>0.055</td>
<td>75</td>
<td>0.346</td>
<td>33.5</td>
<td>29000</td>
<td>2.28</td>
<td>2160</td>
<td>0.0100</td>
<td>0.0043</td>
</tr>
<tr>
<td>H1</td>
<td>3.496</td>
<td>0.061</td>
<td>75</td>
<td>0.500</td>
<td>32.4</td>
<td>29000</td>
<td>2.28</td>
<td>2160</td>
<td>0.0090</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

- D outer = outer diameter
- t = thickness
- L = length
- dd = dent depth
- Fy = steel yield stress
- Es = Young's modulus
- Fg = grout strength
- Eg = elastic modulus of grout
- Ecc = end eccentricity
- deltap = out-of-straightness after denting
Table 8(b): Comparison between Experimental Results and Various Analytical Methods, Parsanejad's Internally Grout Repaired Specimens (1987a, 1987b)

<table>
<thead>
<tr>
<th>Spec #</th>
<th>E</th>
<th>d</th>
<th>D</th>
<th>Pu,exp</th>
<th>Pu,1</th>
<th>Pu,2</th>
<th>Pu,3</th>
<th>Pu,4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eg</td>
<td>D</td>
<td>t</td>
<td>(kips)</td>
<td>(kips)</td>
<td>(kips)</td>
<td>(kips)</td>
<td>(kips)</td>
</tr>
<tr>
<td>A1</td>
<td>12.1</td>
<td>0</td>
<td>31.9</td>
<td>14.00</td>
<td>13,725</td>
<td>0.98</td>
<td>13,208</td>
<td>0.94</td>
</tr>
<tr>
<td>A2</td>
<td>12.0</td>
<td>0.072</td>
<td>32.5</td>
<td>15.58</td>
<td>13,431</td>
<td>0.86</td>
<td>12,268</td>
<td>0.79</td>
</tr>
<tr>
<td>B1</td>
<td>12.0</td>
<td>0.14</td>
<td>31.9</td>
<td>13.84</td>
<td>11,533</td>
<td>0.83</td>
<td>10,406</td>
<td>0.75</td>
</tr>
<tr>
<td>B2</td>
<td>11.9</td>
<td>0.12</td>
<td>31.9</td>
<td>10.65</td>
<td>8,950</td>
<td>0.84</td>
<td>7,553</td>
<td>0.71</td>
</tr>
<tr>
<td>C1</td>
<td>12.0</td>
<td>0</td>
<td>50</td>
<td>28.90</td>
<td>30,421</td>
<td>1.05</td>
<td>25,575</td>
<td>0.88</td>
</tr>
<tr>
<td>C2</td>
<td>11.9</td>
<td>0.075</td>
<td>49.1</td>
<td>27.87</td>
<td>27,594</td>
<td>0.99</td>
<td>23,821</td>
<td>0.85</td>
</tr>
<tr>
<td>D1</td>
<td>12.1</td>
<td>0.145</td>
<td>50</td>
<td>23.31</td>
<td>21,385</td>
<td>0.92</td>
<td>20,095</td>
<td>0.66</td>
</tr>
<tr>
<td>D2</td>
<td>12.1</td>
<td>0.149</td>
<td>50</td>
<td>19.71</td>
<td>16,991</td>
<td>0.86</td>
<td>14,387</td>
<td>0.73</td>
</tr>
<tr>
<td>E1</td>
<td>12.2</td>
<td>0.11</td>
<td>30.2</td>
<td>8.78</td>
<td>7,982</td>
<td>0.91</td>
<td>7,378</td>
<td>0.84</td>
</tr>
<tr>
<td>E2</td>
<td>11.7</td>
<td>0.154</td>
<td>30.2</td>
<td>12.12</td>
<td>10,100</td>
<td>0.83</td>
<td>10,632</td>
<td>0.88</td>
</tr>
<tr>
<td>F1</td>
<td>13.4</td>
<td>0.142</td>
<td>62.5</td>
<td>5.44</td>
<td>3,831</td>
<td>0.70</td>
<td>4,090</td>
<td>0.75</td>
</tr>
<tr>
<td>G1</td>
<td>13.4</td>
<td>0.07</td>
<td>50.1</td>
<td>20.50</td>
<td>20,918</td>
<td>1.02</td>
<td>17,672</td>
<td>0.86</td>
</tr>
<tr>
<td>G2</td>
<td>13.4</td>
<td>0.14</td>
<td>50</td>
<td>19.48</td>
<td>15,460</td>
<td>0.79</td>
<td>16,508</td>
<td>0.85</td>
</tr>
<tr>
<td>G3</td>
<td>13.4</td>
<td>0.126</td>
<td>50</td>
<td>14.19</td>
<td>11,537</td>
<td>0.81</td>
<td>10,750</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Pu,exp = experimental results
Pu,1 = Parsanejad's Equation
Pu,2 = Modified AISC-LRFFD Approach
Pu,3 = Simplified Method
Pu,4 = Moment Curvature Approach
Table 9(a): Geometric and Material Properties of Boswell and D' Mello's Internally Grout Repaired Specimens (1988)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>D_outer(mm)</th>
<th>t(mm)</th>
<th>L(mm)</th>
<th>d(mm)</th>
<th>F_y(MPa)</th>
<th>E_s</th>
<th>F_g(MPa)</th>
<th>E_g(MPa)</th>
<th>Ecc</th>
<th>dellap</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.750</td>
<td>0.050</td>
<td>35.4</td>
<td>0.179</td>
<td>75.2</td>
<td>29000</td>
<td>6.23</td>
<td>1590</td>
<td>0</td>
<td>0.00131</td>
</tr>
<tr>
<td>A2</td>
<td>1.750</td>
<td>0.049</td>
<td>35.4</td>
<td>0.181</td>
<td>75.2</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00103</td>
</tr>
<tr>
<td>A3</td>
<td>1.750</td>
<td>0.048</td>
<td>35.4</td>
<td>0.221</td>
<td>75.2</td>
<td>29000</td>
<td>6.23</td>
<td>1590</td>
<td>0</td>
<td>0.00198</td>
</tr>
<tr>
<td>A4</td>
<td>1.750</td>
<td>0.048</td>
<td>35.4</td>
<td>0.242</td>
<td>75.2</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00203</td>
</tr>
<tr>
<td>A5</td>
<td>1.750</td>
<td>0.048</td>
<td>35.4</td>
<td>0.181</td>
<td>75.2</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00178</td>
</tr>
<tr>
<td>B1</td>
<td>1.750</td>
<td>0.063</td>
<td>35.4</td>
<td>0.155</td>
<td>75.0</td>
<td>29000</td>
<td>6.23</td>
<td>1590</td>
<td>0</td>
<td>0.00142</td>
</tr>
<tr>
<td>B2</td>
<td>1.750</td>
<td>0.063</td>
<td>35.4</td>
<td>0.155</td>
<td>75.0</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.0012</td>
</tr>
<tr>
<td>B3</td>
<td>1.750</td>
<td>0.063</td>
<td>35.4</td>
<td>0.232</td>
<td>75.0</td>
<td>29000</td>
<td>6.23</td>
<td>1590</td>
<td>0</td>
<td>0.00248</td>
</tr>
<tr>
<td>B4</td>
<td>1.750</td>
<td>0.062</td>
<td>35.4</td>
<td>0.251</td>
<td>75.0</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00211</td>
</tr>
<tr>
<td>C1</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>0.131</td>
<td>72.9</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00035</td>
</tr>
<tr>
<td>C2</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>0.131</td>
<td>72.9</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00018</td>
</tr>
<tr>
<td>C3</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>0.126</td>
<td>67.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.0012</td>
</tr>
<tr>
<td>D1</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>0.468</td>
<td>73.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00301</td>
</tr>
<tr>
<td>D2</td>
<td>3.002</td>
<td>0.104</td>
<td>61.4</td>
<td>0.472</td>
<td>73.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00279</td>
</tr>
<tr>
<td>F1</td>
<td>3.002</td>
<td>0.126</td>
<td>71.3</td>
<td>0.292</td>
<td>67.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.0012</td>
</tr>
<tr>
<td>F2</td>
<td>3.002</td>
<td>0.126</td>
<td>71.3</td>
<td>0.269</td>
<td>87.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00124</td>
</tr>
<tr>
<td>G1</td>
<td>3.002</td>
<td>0.130</td>
<td>61.0</td>
<td>0.28</td>
<td>70.5</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00071</td>
</tr>
<tr>
<td>G2</td>
<td>3.002</td>
<td>0.130</td>
<td>61.0</td>
<td>0.288</td>
<td>70.5</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00113</td>
</tr>
<tr>
<td>H1</td>
<td>3.002</td>
<td>0.128</td>
<td>50.8</td>
<td>0.266</td>
<td>66.4</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00105</td>
</tr>
<tr>
<td>H2</td>
<td>3.002</td>
<td>0.126</td>
<td>50.8</td>
<td>0.267</td>
<td>68.4</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00312</td>
</tr>
<tr>
<td>J1</td>
<td>3.002</td>
<td>0.063</td>
<td>72.8</td>
<td>0.307</td>
<td>74.0</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00177</td>
</tr>
<tr>
<td>J2</td>
<td>3.002</td>
<td>0.063</td>
<td>72.8</td>
<td>0.299</td>
<td>74.0</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00149</td>
</tr>
<tr>
<td>K1</td>
<td>3.002</td>
<td>0.063</td>
<td>62.2</td>
<td>0.288</td>
<td>72.4</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00076</td>
</tr>
<tr>
<td>K2</td>
<td>3.002</td>
<td>0.063</td>
<td>62.2</td>
<td>0.297</td>
<td>72.4</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00106</td>
</tr>
<tr>
<td>L1</td>
<td>3.002</td>
<td>0.063</td>
<td>52.0</td>
<td>0.301</td>
<td>72.7</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00085</td>
</tr>
<tr>
<td>L2</td>
<td>3.002</td>
<td>0.063</td>
<td>52.0</td>
<td>0.297</td>
<td>72.7</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00086</td>
</tr>
<tr>
<td>M1</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00214</td>
</tr>
<tr>
<td>M2</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00096</td>
</tr>
<tr>
<td>N1</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00176</td>
</tr>
<tr>
<td>N2</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.0013</td>
</tr>
<tr>
<td>Q1</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00092</td>
</tr>
<tr>
<td>Q2</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00027</td>
</tr>
<tr>
<td>P1</td>
<td>3.002</td>
<td>0.063</td>
<td>51.2</td>
<td>0.309</td>
<td>68.6</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00139</td>
</tr>
<tr>
<td>Q3</td>
<td>8.642</td>
<td>0.319</td>
<td>193.3</td>
<td>1.138</td>
<td>46.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00114</td>
</tr>
<tr>
<td>Q4</td>
<td>8.642</td>
<td>0.321</td>
<td>193.3</td>
<td>0.818</td>
<td>46.3</td>
<td>29000</td>
<td>10.73</td>
<td>1590</td>
<td>0</td>
<td>0.00114</td>
</tr>
</tbody>
</table>

D_outer = outer diameter
$ t $ = thickness
$ L $ = length
$ d $ = dent depth
$ F_y $ = steel yield stress
$ E_s $ = Young's modulus
$ F_g $ = grout strength
$ E_g $ = elastic modulus of grout
$ Ecc $ = end eccentricity
$ dellap $ = out-of-straightness after denting
Table 9(b): Comparison between Experimental Results and Various Analytical Methods, Boswell and D‘Mello’s Internally Grout Repaired Specimens (reported data, 1988)

<table>
<thead>
<tr>
<th>Spec.</th>
<th>Pa</th>
<th>Pb</th>
<th>Pd</th>
<th>P1 exp</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Exp</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>88.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
<td>12.70</td>
</tr>
<tr>
<td></td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
<td>18.98</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
<td>17.64</td>
</tr>
<tr>
<td></td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
<td>18.06</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Pu-exp = experimental results
Pu1 = Pasanen’s Equation
Pu2 = Modified AISC-URFFD Approach
Pu3 = Simplified Method
Pu4 = Moment Curvature Approach
Table 9(c): Comparison between Experimental Results and Various Analytical Methods, Boswell and D’ Mello’s Internally Grout Repaired Specimens (modified grout modulus)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>K_u</th>
<th>K_d</th>
<th>D</th>
<th>P_{Exp}</th>
<th>P_{Pu}</th>
<th>P_{Pu1}</th>
<th>P_{Pu2}</th>
<th>P_{Pu3}</th>
<th>P_{Pu4}</th>
<th>P_{Pu5}</th>
<th>P_{Pu6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10.2</td>
<td>0.102</td>
<td>36</td>
<td>12.70</td>
<td>15.26</td>
<td>17.64</td>
<td>1.36</td>
<td>18.06</td>
<td>1.27</td>
<td>18.70</td>
<td>1.31</td>
</tr>
<tr>
<td>B2</td>
<td>10.4</td>
<td>0.104</td>
<td>36.8</td>
<td>18.15</td>
<td>15.23</td>
<td>20.16</td>
<td>1.06</td>
<td>17.90</td>
<td>0.93</td>
<td>17.08</td>
<td>0.89</td>
</tr>
<tr>
<td>C3</td>
<td>10.6</td>
<td>0.106</td>
<td>36.8</td>
<td>14.37</td>
<td>14.09</td>
<td>14.97</td>
<td>1.04</td>
<td>13.69</td>
<td>0.96</td>
<td>15.28</td>
<td>1.05</td>
</tr>
<tr>
<td>D4</td>
<td>10.8</td>
<td>0.108</td>
<td>36</td>
<td>18.19</td>
<td>13.51</td>
<td>15.27</td>
<td>0.84</td>
<td>13.61</td>
<td>0.84</td>
<td>15.46</td>
<td>0.96</td>
</tr>
<tr>
<td>E5</td>
<td>11.0</td>
<td>0.110</td>
<td>36.8</td>
<td>21.70</td>
<td>15.28</td>
<td>18.95</td>
<td>0.78</td>
<td>15.07</td>
<td>0.96</td>
<td>16.01</td>
<td>0.74</td>
</tr>
<tr>
<td>F6</td>
<td>11.2</td>
<td>0.112</td>
<td>28</td>
<td>18.71</td>
<td>18.52</td>
<td>20.12</td>
<td>1.08</td>
<td>18.90</td>
<td>1.01</td>
<td>19.45</td>
<td>1.04</td>
</tr>
<tr>
<td>G7</td>
<td>11.4</td>
<td>0.114</td>
<td>28</td>
<td>20.59</td>
<td>18.80</td>
<td>22.38</td>
<td>1.09</td>
<td>20.59</td>
<td>1.00</td>
<td>20.29</td>
<td>0.98</td>
</tr>
<tr>
<td>H8</td>
<td>11.6</td>
<td>0.116</td>
<td>27.8</td>
<td>14.79</td>
<td>15.06</td>
<td>17.06</td>
<td>1.15</td>
<td>15.90</td>
<td>1.05</td>
<td>16.02</td>
<td>1.22</td>
</tr>
<tr>
<td>I9</td>
<td>11.8</td>
<td>0.118</td>
<td>27.1</td>
<td>15.94</td>
<td>15.94</td>
<td>17.91</td>
<td>1.12</td>
<td>16.80</td>
<td>1.04</td>
<td>18.19</td>
<td>1.14</td>
</tr>
<tr>
<td>J10</td>
<td>12.0</td>
<td>0.120</td>
<td>26.9</td>
<td>16.33</td>
<td>15.48</td>
<td>18.60</td>
<td>1.00</td>
<td>16.80</td>
<td>0.96</td>
<td>16.01</td>
<td>0.74</td>
</tr>
<tr>
<td>K11</td>
<td>12.2</td>
<td>0.122</td>
<td>26</td>
<td>50.43</td>
<td>41.00</td>
<td>45.90</td>
<td>0.79</td>
<td>42.12</td>
<td>0.73</td>
<td>55.77</td>
<td>0.97</td>
</tr>
<tr>
<td>L12</td>
<td>12.4</td>
<td>0.124</td>
<td>25.5</td>
<td>85.85</td>
<td>71.96</td>
<td>90.17</td>
<td>1.06</td>
<td>87.41</td>
<td>1.02</td>
<td>80.21</td>
<td>0.94</td>
</tr>
<tr>
<td>M13</td>
<td>12.6</td>
<td>0.126</td>
<td>25.0</td>
<td>86.16</td>
<td>70.58</td>
<td>88.11</td>
<td>1.00</td>
<td>82.80</td>
<td>0.96</td>
<td>80.21</td>
<td>0.93</td>
</tr>
<tr>
<td>N14</td>
<td>12.8</td>
<td>0.128</td>
<td>24.7</td>
<td>44.29</td>
<td>30.75</td>
<td>36.30</td>
<td>0.82</td>
<td>29.72</td>
<td>0.67</td>
<td>36.48</td>
<td>0.88</td>
</tr>
<tr>
<td>O15</td>
<td>13.0</td>
<td>0.130</td>
<td>47.7</td>
<td>42.72</td>
<td>29.26</td>
<td>29.26</td>
<td>0.66</td>
<td>24.55</td>
<td>0.57</td>
<td>36.54</td>
<td>0.95</td>
</tr>
<tr>
<td>P16</td>
<td>13.2</td>
<td>0.132</td>
<td>48.0</td>
<td>53.84</td>
<td>35.38</td>
<td>41.10</td>
<td>0.74</td>
<td>34.51</td>
<td>0.64</td>
<td>46.13</td>
<td>0.96</td>
</tr>
<tr>
<td>Q17</td>
<td>13.4</td>
<td>0.134</td>
<td>48.0</td>
<td>51.48</td>
<td>39.00</td>
<td>48.57</td>
<td>0.94</td>
<td>40.80</td>
<td>0.79</td>
<td>46.32</td>
<td>0.95</td>
</tr>
<tr>
<td>R18</td>
<td>13.6</td>
<td>0.136</td>
<td>48.0</td>
<td>56.13</td>
<td>44.00</td>
<td>54.50</td>
<td>0.99</td>
<td>52.33</td>
<td>0.68</td>
<td>57.40</td>
<td>0.97</td>
</tr>
<tr>
<td>S19</td>
<td>13.8</td>
<td>0.138</td>
<td>48.0</td>
<td>58.58</td>
<td>45.63</td>
<td>60.18</td>
<td>1.01</td>
<td>54.16</td>
<td>0.91</td>
<td>57.40</td>
<td>0.97</td>
</tr>
<tr>
<td>T20</td>
<td>14.0</td>
<td>0.140</td>
<td>48.0</td>
<td>56.23</td>
<td>45.54</td>
<td>58.53</td>
<td>0.97</td>
<td>50.20</td>
<td>0.86</td>
<td>55.83</td>
<td>0.96</td>
</tr>
<tr>
<td>U21</td>
<td>14.2</td>
<td>0.142</td>
<td>48.0</td>
<td>45.73</td>
<td>52.13</td>
<td>56.13</td>
<td>0.63</td>
<td>50.14</td>
<td>0.56</td>
<td>57.58</td>
<td>0.65</td>
</tr>
<tr>
<td>V22</td>
<td>14.4</td>
<td>0.144</td>
<td>29</td>
<td>63.40</td>
<td>52.02</td>
<td>56.81</td>
<td>0.63</td>
<td>51.97</td>
<td>0.82</td>
<td>61.43</td>
<td>0.97</td>
</tr>
<tr>
<td>W23</td>
<td>14.6</td>
<td>0.146</td>
<td>29</td>
<td>71.27</td>
<td>52.40</td>
<td>61.44</td>
<td>0.86</td>
<td>56.12</td>
<td>0.79</td>
<td>63.09</td>
<td>0.99</td>
</tr>
<tr>
<td>X24</td>
<td>14.8</td>
<td>0.148</td>
<td>28.2</td>
<td>79.36</td>
<td>57.51</td>
<td>67.83</td>
<td>0.85</td>
<td>64.00</td>
<td>0.61</td>
<td>69.78</td>
<td>0.88</td>
</tr>
<tr>
<td>Y25</td>
<td>15.0</td>
<td>0.150</td>
<td>28.2</td>
<td>78.44</td>
<td>62.24</td>
<td>61.32</td>
<td>1.06</td>
<td>70.00</td>
<td>1.02</td>
<td>72.10</td>
<td>0.96</td>
</tr>
<tr>
<td>Z26</td>
<td>15.2</td>
<td>0.152</td>
<td>26.9</td>
<td>84.59</td>
<td>58.22</td>
<td>75.75</td>
<td>1.09</td>
<td>70.36</td>
<td>1.01</td>
<td>70.78</td>
<td>1.02</td>
</tr>
<tr>
<td>A27</td>
<td>15.4</td>
<td>0.154</td>
<td>27.4</td>
<td>44.18</td>
<td>289.01</td>
<td>361.19</td>
<td>0.86</td>
<td>363.74</td>
<td>0.80</td>
<td>369.00</td>
<td>0.83</td>
</tr>
<tr>
<td>B28</td>
<td>15.6</td>
<td>0.156</td>
<td>27.1</td>
<td>478.16</td>
<td>287.52</td>
<td>361.19</td>
<td>0.86</td>
<td>363.74</td>
<td>0.80</td>
<td>369.00</td>
<td>0.83</td>
</tr>
<tr>
<td>C29</td>
<td>15.8</td>
<td>0.158</td>
<td>30.6</td>
<td>326.97</td>
<td>304.02</td>
<td>411.84</td>
<td>0.94</td>
<td>364.75</td>
<td>0.92</td>
<td>360.56</td>
<td>0.91</td>
</tr>
<tr>
<td>D30</td>
<td>16.0</td>
<td>0.160</td>
<td>26.9</td>
<td>544.22</td>
<td>322.94</td>
<td>453.52</td>
<td>0.83</td>
<td>425.17</td>
<td>0.78</td>
<td>394.34</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Pu_{Exp} = experimental results
- Pu_1 = Parametric’s Equation
- Pu_2 = Modified AISC-LEFDD Approach
- Pu_3 = Simplified Method
- Pu_4 = Moment Curvature Approach
Table 10: Assessment of Various Analytical Methods for 12 Undamaged, Internally Grout Filled Specimens (Wimpy, 1986)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pu,prediction/Pu,exp</th>
<th>mean</th>
<th>S.D.</th>
<th>C.O.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>API RP 2A Equation for Steel Members</td>
<td></td>
<td>0.69</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td>BS 5400</td>
<td></td>
<td>1.05</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>Modified BS 5400</td>
<td></td>
<td>1.04</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>AISC-LRFD Approach</td>
<td></td>
<td>0.92</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>Modified AISC-LRFD Approach</td>
<td></td>
<td>0.98</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Simplified Method</td>
<td></td>
<td>0.88</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>Moment Curvature Approach</td>
<td></td>
<td>0.98</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Table 11(a) : Assessment of Various Analytical Methods for 27 Dent-Damaged, Internally Grout Repaired Specimens (excluding Boswell and D’ Mello’s latter 28 Specimens)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pu,\text{prediction}/Pu,\text{exp}</th>
<th>mean</th>
<th>S.D.</th>
<th>C.O.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsanejad’s Equation</td>
<td></td>
<td>0.93</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>Modified AISC-LRFD</td>
<td></td>
<td>0.92</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Simplified Method</td>
<td></td>
<td>0.80</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>Moment Curvature - Stage 1</td>
<td></td>
<td>0.96</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 11(b) : Assessment of Various Analytical Methods for 55 Dent-Damaged, Internally Grout Repaired Specimens (including all of Boswell and D’ Mello’s Specimens)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pu,\text{prediction}/Pu,\text{exp}</th>
<th>mean</th>
<th>S.D.</th>
<th>C.O.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsanejad’s Equation</td>
<td></td>
<td>0.84</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Modified AISC-LRFD</td>
<td></td>
<td>0.90</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Simplified Method</td>
<td></td>
<td>0.80</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>Moment Curvature - Stage 2</td>
<td></td>
<td>0.86</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>Moment Curvature - Stage 3</td>
<td></td>
<td>0.92</td>
<td>0.13</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Table 12(a) : Geometric and Material Properties of Bruin’s Specimens (1994)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>D_outer</th>
<th>t</th>
<th>L</th>
<th>dd</th>
<th>Fy</th>
<th>Es</th>
<th>F'g</th>
<th>Eg</th>
<th>Ecc</th>
<th>deltap/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>8.6445</td>
<td>0.25</td>
<td>180.1</td>
<td>1.304</td>
<td>35</td>
<td>29000</td>
<td>4.5</td>
<td>2416.7</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>A9</td>
<td>8.6328</td>
<td>0.2533</td>
<td>180.1</td>
<td>2.563</td>
<td>36</td>
<td>29000</td>
<td>4.5</td>
<td>2416.7</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>B7</td>
<td>8.625</td>
<td>0.1895</td>
<td>180.1</td>
<td>1.285</td>
<td>38</td>
<td>29000</td>
<td>4.5</td>
<td>2416.7</td>
<td>0</td>
<td>0.002</td>
</tr>
</tbody>
</table>

- D_{outer} = outer diameter
- t = thickness
- L = length
- dd = dent depth
- F_y = steel yield stress
- E_s = Young’s modulus
- $F'g$ = grout strength
- E_g = elastic modulus of grout
- Ecc = end eccentricity
- $deltap$ = out-of-straightness after denting

Table 12(b) : Comparison between Experimental Results and Moment Curvature Integration Method, Bruin’s Internally Grout Repaired Specimens (1994)

<table>
<thead>
<tr>
<th>Spec. #</th>
<th>Es/Eg</th>
<th>dd/D</th>
<th>D/t</th>
<th>$P_u,\text{exp}(\text{kips})$</th>
<th>$P_u,\text{mc}(\text{kips})$</th>
<th>$P_u,\text{mc}/P_u,\text{exp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>12</td>
<td>0.15</td>
<td>34</td>
<td>243</td>
<td>250.0</td>
<td>0.97</td>
</tr>
<tr>
<td>A9</td>
<td>12</td>
<td>0.3</td>
<td>34</td>
<td>138</td>
<td>130.2</td>
<td>1.06</td>
</tr>
<tr>
<td>B7</td>
<td>12</td>
<td>0.15</td>
<td>46</td>
<td>211</td>
<td>226.0</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Figure 1: Typical Offshore Structure
Figure 2-1: Stress States of a Tubular Section Subjected to Axial Load:

(a) Elastic State; (b) Yielding in Compression Zone; (c) Yielding in Tension and Compression Zones.
Figure 2-2: Interaction Curves for Tubular Sections
Figure 2-3: Moment-Thrust-Curvature Relationships for a Tubular Section
(without Local Buckling and Damage)
Figure 2-4: Fully Plastic Section
Figure 2-5(a): Empirical Moment Curvature Relationships for Undented Tubular Sections (Duan et al., 1993)
Figure 2-5(b) : Empirical Moment Curvature Relationships for Dent-Damaged Tubular Sections (Duan et al, 1993)
Figure 2-6(a) : Moment Curvature Relationships for Undented Tubular Sections without Local Buckling
Figure 2-6(b) : Moment Curvature Relationships for Undented Tubular Sections with Local Buckling
Figure 2-6(c) : Moment Curvature Relationships for Dent-Damaged Tubular Sections
Figure 2-7(a): Comparison of Moment-Thrust-Curvature Relationships between Exact Theory and Empirical Expressions by Duan et al., 1993, Undented Tubular
Figure 2-7(b): Comparison of Moment-Thrust-Strain Relationships between Exact Theory and Empirical Expressions by Duan et al., 1993, Undented Tubular
Figure 2-8: Discretization of Internally Grout Filled Tubular Cross-Section into Layers
Figure 2-9: Fiber Model Used to Generate the Moment Curvature Relationships
Compression

\[\sigma = \sigma_y \left(\frac{\varepsilon}{\varepsilon_y} \right)^n \]

\[n = -0.2 \]

(local buckling effect)

\[\varepsilon_{cr} = \gamma \varepsilon_y \]

Type 1

Type 2

Slope = \(E_s \)

\(\sigma_y \), \(\varepsilon_y \), \(\varepsilon_{cr} \)

Tension

Figure 2-10: Stress-Strain Relationship of Steel
Figure 2-11: Stress-Strain Relationships of Concrete (a). Kent, and Park, 1971; (b). Chen, and Ausuta, 1976
Kent and Park's Equation on the Ascending Branch

\[
\varepsilon_0 = 2f_g / E_g
\]

\[
\varepsilon_u = \phi, y_{gyr}
\]

\[
\phi, = \varepsilon_{cr} / y_{NA}
\]

Figure 2-12: Proposed Stress-Strain Relationships for the Confined Grout
Figure 2-13: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #1)

Grout Mix #1 (by weight)
- water/cement = 0.60
- water/silica = 3.0
Figure 2-14: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #2)
Figure 2-15: Comparison of Stress-Strain Curves between Experimental Result and Proposed Model (Mix #3)

Grout Mix #3 (by weight)
water/cement = 0.70
water/silica = 3.5

Type 1

Type 2, \(\beta = 290 \) ksi
Figure 2-16: Moment-Thrust-Curvature Curves for Undamaged, Internally Grout Filled Tubular Section, No Local Buckling

KL/r = 60
D/t = 34
Fy = 34.8 ksi
F'g = 4.375 ksi
t = 0.247 in
ε₀ = 0.0036
Figure 2-17: Strain-Thrust-Curvature Curves for Undamaged, Internally Grout Filled Tubular Section, No Local Buckling
Figure 2-18: Moment-Thrust-Curvature Curves for Dent-Damaged, Internally Grout Filled Tubular Section, No Local Buckling
Figure 2-19: Strain-Thrust-Curvature Curves for Dent-Damaged, Internally Grout Filled Tubular Section, No Local Buckling
Figure 3-1: Segments and Stations for Numerical Integration Analysis of Dented Tubular
distrbuted load \(w(x) \)

Equilibrium Free Body Diagram:

\[M_{L} = M(\text{due to the end moments}) + M(\text{due to the P-δ effects}) + M(\text{transverse loading}) \]

Figure 3-2: Load Condition and Equilibrium Diagram
Figure 3-3: Geometric Centroid Change due to Dent Damage
Figure 3-4: Numerical Integration Method between Two Successive Stations

\[Y_i = Y_{i-1} - \theta_{i-1} \Delta x - \int x \Phi(x) \, dx \]
Figure 3-5: Linear Correction to Deflections

\[y_{\infty} = y_i - (\frac{i}{n}) y_a \]
Figure 3-6: Idealized Dent Geometry

L_d (dent segment length): L_d is taken to be $2.0 \ l_d$, which is considered as a sufficient limit to preclude cross-sectional distortion at its ends.

where:

$$l_d = D \sqrt{0.25 \ \pi \ d_d / t}$$
Figure 3-7: Area Calculation of Each Layer
Figure 4-1: Histogram of Predicted-to-Measured Ultimate Strength Ratio for Unrepaired Specimens (n=28, mean=0.98, C.O.V.=0.096)
Figure 4-2: Axial Compression-Shortening Response for Specimen A1

[Ricles and Gillum, 1992]
Figure 4-3: Axial Compression-Lateral Deflection Response for Specimen A1

[Ricles and Gillum, 1992]
Figure 4-4: Axial Compression-Shortening Response for Specimen A2

[Ricles and Gillum, 1992]
Figure 4-5: Axial Compression-Lateral Deflection Response for Specimen A2

[Ricles and Gillum, 1992]
Approach

Experiment Data

KL/r=60
D/t=46, t=0.186 in
Fy=33.4 ksi
e=end eccentricity=0.0D
dd=dent depth=0.1D

Figure 4-6: Axial Compression-Shortening Response for Specimen B1

[Ricles and Gillum, 1992]
Figure 4-7: Axial Compression-Lateral Deflection Response for Specimen B1

[Ricles and Gillum, 1992]
Figure 4-8: Axial Compression-Shortening Response for Specimen C2

[Ricles and Gillum, 1992]
Figure 4-9: Axial Compression-Lateral Deflection Response for Specimen C2

[Ricles and Gillum, 1992]
Figure 4-10: Typical Relationships between Modular Ratio and Grout Strength

(Data points were taken from 27 test results for $E_s=29000$ ksi)
Figure 4-11: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Parsanejad's Approach (n=27, mean=0.93, C.O.V.=0.14)
Figure 4-12: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Modified AISC-LRFD Approach (n=27, mean=0.92, C.O.V.=0.18)
Figure 4-13: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Simplified AISC-LRFD Approach (n=27, mean=0.80, CO.V.=0.22)
Figure 4-14: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach ($n=27$, mean=0.96, C.O.V.=0.14)
Figure 4-15: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Parsanejad's Approach with Boswell and D'Mello's Reported Modular Ratio

(n=55, mean=0.84, C.O.V. = 0.19)
Figure 4-16: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Modified AISC-LRFD Approach with Boswell and D'Mello's Reported Modular Ratio

(n=55, mean=0.90, C.O.V.=0.16)
Figure 4-17: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Simplified AISC-LRFD Approach with Boswell and D' Mello's Reported Modular Ratio (n=55, mean=0.80, C.O.V.=0.19)
Figure 4-18: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach with Boswell and D' Mello's Reported Modular Ratio (n=55, mean=0.86, C.O.V.=0.18)
Figure 4-19: Histogram of Predicted-to-Measured Ultimate Strength Ratio Using Moment Curvature Approach with Modified Modular Ratio, Boswell and D'Mello's Data
Figure 4-20(a) : Axial Compression-Shortening Response for Specimen A3

[Ricles and Gillum, 1992]
Figure 4-20(b) : Axial Compression-Lateral Deflection Response for Specimen A3

[Ricles and Gillum, 1992]
Experimental Moment Curvature

$KL/r = 60$
$D/t = 46$, $t = 0.187$ in
$F_y = 33.6$ ksi
$F_g = 3.8$ ksi
$e = \text{end eccentricity} = 0.2D$
$dd = \text{dent depth} = 0.1D$
$\gamma = 2$, $\beta = 0.01$, $n = -0.3$

Figure 4-21(a): Axial Compression-Shortening Response for Specimen B3

[Ricles and Gillum, 1992]
Figure 4-21(b): Axial Compression-Lateral Deflection Response for Specimen B3

[Ricles and Gillum, 1992]
Figure 4-22(a): Axial Compression-Shortening Response for Specimen C3

[Ricles and Gillum, 1992]
Figure 4-22(b): Axial Compression-Lateral Deflection Response for Specimen C3

[Ricles and Gillum, 1992]
Figure 4-23(a): Axial Compression-Shortening Response for Specimen A7
Figure 4-23(b) : Axial Compression-Lateral Deflection Response for Specimen A7
Figure 4-24(a): Axial Compression-Shortening Response for Specimen B7
Figure 4-24(b) : Axial Compression-Lateral Deflection Response for Specimen B7
Figure 4-25(a): Axial Compression-Shortening Response for Specimen A9
Figure 4-25(b) : Axial Compression-Lateral Deflection Response for Specimen A9
<table>
<thead>
<tr>
<th>Specimen #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
</tr>
<tr>
<td>KL/t</td>
</tr>
<tr>
<td>D/t</td>
</tr>
</tbody>
</table>

Position 1 = Top Extreme Fiber of Steel
Position 2 = Top Extreme Fiber of Grout
Position 3 = Bottom Extreme Fiber of Steel

Figure 4-26: Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #1 [Tebbett and Forsyth, 1984]
Specimen #3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
<td>0.00445</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
<td>0.00202</td>
</tr>
<tr>
<td>KL/r</td>
<td>58.01</td>
</tr>
<tr>
<td>D/t</td>
<td>37.44</td>
</tr>
</tbody>
</table>

Figure 4-27: Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #3 [Tebbett and Forsyth, 1984]
<table>
<thead>
<tr>
<th>Specimen #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
</tr>
<tr>
<td>KL/t</td>
</tr>
<tr>
<td>D/t</td>
</tr>
</tbody>
</table>

Figure 4-28: Fiber Strains at 3 Locations for Undamaged, Internally Grout Filled Specimen #5 [Tebbett and Forsyth, 1984]
<table>
<thead>
<tr>
<th>Specimen A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
</tr>
<tr>
<td>KL/r</td>
</tr>
<tr>
<td>D/t</td>
</tr>
</tbody>
</table>

Figure 4-29: Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen A3 [Ricles and Gillum, 1992]
<table>
<thead>
<tr>
<th>Specimen B3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
<td>0.00303</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
<td>0.00115</td>
</tr>
<tr>
<td>KL/r</td>
<td>60</td>
</tr>
<tr>
<td>D/t</td>
<td>46</td>
</tr>
</tbody>
</table>

Figure 4-30: Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen B3 [Ricles and Gillum, 1992]
Specimen C3

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Compressive Grout Strain</td>
<td>0.00540</td>
</tr>
<tr>
<td>Max Tensile Steel Strain</td>
<td>0.00136</td>
</tr>
<tr>
<td>KL/r</td>
<td>60</td>
</tr>
<tr>
<td>D/t</td>
<td>64</td>
</tr>
</tbody>
</table>

Figure 4-31: Fiber Strains at 3 Locations for Dent-Damaged, Internally Grout Repaired Specimen C3 [Ricles and Gillum, 1992]
Figure 4-32: Comparisons of Stress-Strain Histories at Three Locations for Specimen #1, #2, and #3 [Tebbett and Forsyth, 1984]
Figure 4-33: Comparisons of Stress-Strain Histories at Three Locations for Specimen A3, B3, and C3 [Ricles and Gillum, 1992]
Figure 4-34: Variations of Predicted-to-Measured Ultimate Strength ($\frac{P_{u,mc}}{P_{u,exp}}$) Ratio with Respect to Out-Of-Straightness-to-Length Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)
Figure 4-35: Variations of Predicted-to-Measured Ultimate Strength ($\frac{P_{u,mc}}{P_{u,exp}}$) Ratio with Respect to Diameter-to-Thickness Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)
Figure 4-36: Variations of Predicted-to-Measured Ultimate Strength (Pu,mc/Pu,exp) Ratio with Respect to Dent Depth-to-Diameter Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)
Figure 4-37: Variations of Predicted-to-Measured Ultimate Strength (Pu,mc/Pu,exp) Ratio with Respect to Dent Depth-to-Thickness Ratio Using Moment Curvature Approach (Unrepaired, Dented Specimens)
Figure 4-38: Variations of Predicted-to-Measured Ultimate Strength ($P_{u,mc}/P_{u,exp}$) Ratio with Respect to Out-Of-Straightness-to-Length Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Figure 4-39: Variations of Predicted-to-Measured Ultimate Strength ($P_{u,mc}/P_{u,exp}$) Ratio with Respect to Diameter-to-Thickness Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Figure 4-40: Variations of Predicted-to-Measured Ultimate Strength ($P_{u,mc}/P_{u,exp}$) Ratio with Respect to Dent Depth-to-Diameter Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Figure 4-41: Variations of Predicted-to-Measured Ultimate Strength ($P_u,mc/P_u,exp$) Ratio with Respect to Grout Strength Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Figure 4-42: Variations of Predicted-to-Measured Ultimate Strength (Pu_{mc}/Pu_{exp}) Ratio with Respect to Modular Ratio Using Moment Curvature Approach (Internally Grout Repaired Specimens)
Table: Dented Segment Length and Residual Strength Prediction

<table>
<thead>
<tr>
<th>Dented Segment Length</th>
<th>Ld = (2D)(0.25P/\piDD/T)</th>
<th>2D</th>
<th>D</th>
<th>0.5D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in)</td>
<td>26.6</td>
<td>17.248</td>
<td>6.624</td>
<td>4.312</td>
</tr>
<tr>
<td>Pu,exp/Py=0.887</td>
<td>Pu,mc/Py=0.400</td>
<td>Pu,mc/Py=0.405</td>
<td>Pu,mc/Py=0.410</td>
<td>Pu,mc/Py=0.415</td>
</tr>
</tbody>
</table>

Figure 4-43: Effects of the Model's Dented Segment Length on the Residual Strength Prediction Using Moment Curvature Approach

KL/r=60
D/t=34, t=0.246 in
Fy=34.8 ksi
e=end eccentricity=0.2D
dd=dent depth=0.1D

168
Figure 4-44: Effects of Dented Segment Length on the Axial Compression-Shortening Response of Non-Repaired Tubulars Using Moment Curvature Approach
Figure 4-45: Effect of γ Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach
Figure 4-46: Effect of n Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach
Figure 4-47: Effect of β Factor on the Axial Compression-Shortening Response of Internally Grout Repaired Tubulars Using Moment Curvature Approach
<table>
<thead>
<tr>
<th>Initial Out-Of-Straightness/L</th>
<th>Dent Depth (1/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (Fy, ksi)</td>
<td>D/t=34</td>
<td>0.99</td>
<td>0.63</td>
<td>0.50</td>
<td>0.40</td>
<td>0.28</td>
<td>0.20</td>
</tr>
<tr>
<td>Young's Modulus (Es, ksi)</td>
<td>D/t=46</td>
<td>0.99</td>
<td>0.56</td>
<td>0.42</td>
<td>0.34</td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>KU/r</td>
<td>D/t=64</td>
<td>0.99</td>
<td>0.48</td>
<td>0.35</td>
<td>0.26</td>
<td>0.15</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Figure 5-1: Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.0001L, Unrepaired Member)
Initial Out-Of-Straightness/L = 0.0005

<table>
<thead>
<tr>
<th></th>
<th>Fy (ksi)</th>
<th>E (ksi)</th>
<th>KL/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (Fy, ksi)</td>
<td>34.8</td>
<td>29071</td>
<td>60</td>
</tr>
<tr>
<td>Young's Modulus (E, ksi)</td>
<td>29071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL/r</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dent Depth (1/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/t=34</td>
<td>0.93</td>
<td>0.61</td>
<td>0.49</td>
<td>0.40</td>
<td>0.28</td>
<td>0.20</td>
</tr>
<tr>
<td>D/t=46</td>
<td>0.93</td>
<td>0.55</td>
<td>0.42</td>
<td>0.33</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>D/t=64</td>
<td>0.83</td>
<td>0.47</td>
<td>0.34</td>
<td>0.26</td>
<td>0.15</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Figure 5-2 : Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.0005L, Unrepaired Member)
Table 5-1: Material Properties for Initial Out-of-Straightness L = 0.001

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (F_y, ksi)</td>
<td>34.8</td>
</tr>
<tr>
<td>Young's Modulus (E, ksi)</td>
<td>29071</td>
</tr>
<tr>
<td>KL/r</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dent Depth (1/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/t = 34</td>
<td>0.88</td>
<td>0.60</td>
<td>0.48</td>
<td>0.39</td>
<td>0.27</td>
<td>0.20</td>
</tr>
<tr>
<td>D/t = 46</td>
<td>0.88</td>
<td>0.54</td>
<td>0.41</td>
<td>0.32</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>D/t = 64</td>
<td>0.88</td>
<td>0.45</td>
<td>0.33</td>
<td>0.25</td>
<td>0.15</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Figure 5-3: Effects of Dent Depth-to-Diameter Ratio on Residual Strength (Out-Of-Straightness=0.001L, Unrepaired Member)
Figure 5-4: Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.002L, Unrepaired Member)
Figure 5-5: Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.005L, Unrepaired Member)
<table>
<thead>
<tr>
<th>Initial Out-Of-Straightness/L</th>
<th>E, ksi</th>
<th>KL/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.8</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dent Depth (1/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/t=34</td>
<td>0.55</td>
<td>0.41</td>
<td>0.34</td>
<td>0.28</td>
<td>0.21</td>
<td>0.15</td>
</tr>
<tr>
<td>D/t=46</td>
<td>0.52</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>D/t=64</td>
<td>0.52</td>
<td>0.32</td>
<td>0.24</td>
<td>0.19</td>
<td>0.12</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Figure 5-6: Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.01L, Unrepaired Member)
<table>
<thead>
<tr>
<th>Initial Out-Of-Straightness/L</th>
<th>Yield Stress (Fy, ksi)</th>
<th>Young's Modulus (Es, ksi)</th>
<th>KL/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0.02</td>
<td>34.8</td>
<td>29071</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dent Depth (1/D)</th>
<th>D/t=34</th>
<th>D/t=46</th>
<th>D/t=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>0.10</td>
<td>0.31</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>0.15</td>
<td>0.26</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>0.20</td>
<td>0.22</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>0.30</td>
<td>0.16</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>0.40</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Figure 5-7: Effects of Dent Depth-to-Diameter Ratio on Residual Strength

(Out-Of-Straightness=0.02L, Unrepaired Member)
Figure 5-8: Effects of Dent Depth-to-Diameter Ratio on Residual Strength Using Finite Element Analysis

(Out-Of-Straightness=0.0005L, Unrepaired Member) [Ricles et al., 1994]
Figure 5-9: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength

(D/t=34, Unrepaired Member)
Figure 5-10 : Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength

(D/t=46, Unrepaired Member)
Table 5-11: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength

(D/t=64, Unrepaired Member)

Figure 5-11: Effects of Out-Of-Straightness-to-Length Ratio on Residual Strength

(D/t=64, Unrepaired Member)
Initial Out-Of-Straightness L = 0.0001

<table>
<thead>
<tr>
<th></th>
<th>Dent Depth (D/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (Fy, ksi)</td>
<td>D/t = 34</td>
<td>1.38</td>
<td>1.33</td>
<td>1.28</td>
<td>1.20</td>
<td>0.96</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>D/t = 46</td>
<td>1.59</td>
<td>1.56</td>
<td>1.50</td>
<td>1.37</td>
<td>1.09</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>D/t = 64</td>
<td>1.96</td>
<td>1.89</td>
<td>1.81</td>
<td>1.65</td>
<td>1.30</td>
<td>0.90</td>
</tr>
<tr>
<td>Young's Modulus (Es, ksi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grout Strength (F'g, ksi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic Modulus of Grout (Eg, ksi)</td>
<td>2907.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU/r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-12 : Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness = 0.0001L, Internally Grout Repaired Member)

184
Figure 5-13 : Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness=0.0005L, Internally Grout Repaired Member)
<table>
<thead>
<tr>
<th>Initial Out-Of-Straightness/L</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Stress (F_y ksi)</td>
<td>34.8</td>
</tr>
<tr>
<td>Young's Modulus (E_s ksi)</td>
<td>29071</td>
</tr>
<tr>
<td>Grout Strength (F'g ksi)</td>
<td>5</td>
</tr>
<tr>
<td>Elastic Modulus of Grout (E_g ksi)</td>
<td>2907.1</td>
</tr>
<tr>
<td>KL/r</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dent Depth (I/D)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/I=34</td>
<td>1.30</td>
<td>1.25</td>
<td>1.20</td>
<td>1.12</td>
<td>0.91</td>
<td>0.65</td>
</tr>
<tr>
<td>D/I=46</td>
<td>1.53</td>
<td>1.47</td>
<td>1.40</td>
<td>1.28</td>
<td>1.03</td>
<td>0.72</td>
</tr>
<tr>
<td>D/I=64</td>
<td>1.85</td>
<td>1.77</td>
<td>1.69</td>
<td>1.57</td>
<td>1.22</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Figure 5-14: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness=0.001L, Internally Grout Repaired Member)
Figure 5-15: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness=0.002L, Internally Grout Repaired Member)
Figure 5-16: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness=0.005L, Internally Grout Repaired Member)
Figure 3-17: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

(Out-Of-Straightness=0.01L, Internally Grout Repaired Member)
Table 5-2: Summary of Elastic Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Out-Of-Straightness/L</td>
<td>0.02</td>
</tr>
<tr>
<td>Yield Stress (Fy, ksi)</td>
<td>34.8</td>
</tr>
<tr>
<td>Young's Modulus (Es, ksi)</td>
<td>29071</td>
</tr>
<tr>
<td>Grout Strength (Eg, ksi)</td>
<td>5</td>
</tr>
<tr>
<td>Elastic Modulus of Grout (Eg, ksi)</td>
<td>2907.1</td>
</tr>
<tr>
<td>K/Lt</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 5-3: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength

<table>
<thead>
<tr>
<th>Dent Depth (D/d)</th>
<th>0.00</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/d = 34</td>
<td>0.60</td>
<td>0.55</td>
<td>0.52</td>
<td>0.47</td>
<td>0.37</td>
<td>0.26</td>
</tr>
<tr>
<td>D/d = 46</td>
<td>0.66</td>
<td>0.62</td>
<td>0.56</td>
<td>0.51</td>
<td>0.41</td>
<td>0.28</td>
</tr>
<tr>
<td>D/d = 64</td>
<td>0.75</td>
<td>0.71</td>
<td>0.63</td>
<td>0.55</td>
<td>0.43</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Figure 5-18: Effects of Dent Depth-to-Diameter Ratio on Repaired Strength
(Out-Of-Straightness=0.02L, Internally Grout Repaired Member)

190
Figure 5-19: Effects of Out-Of-straightness-to-Length Ratio on Repaired Strength

(D/t=34, Internally Grout Repaired Member)
Figure 5-20: Effects of Out-Of-straightness-to-Length Ratio on Repaired Strength

(D/t=46, Internally Grout Repaired Member)
Figure 5-21: Effects of Out-Of-straightness-to-Length Ratio on Repaired Strength

(D/t=64, Internally Grout Repaired Member)
Figure 5-22 : Effects of Fy on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=34, KL/r=60, F'g=6.9 ksi, δ/L=0.0006)
Figure 5-23: Effects of Fy on the Ultimate Strength of Internally Grout Repaired Specimen (D/t=64, KL/r=60, F'g=6.9 ksi, δ/L=0.0006)
Figure 3-24: Effects of Grout Strength $F'g$ on the Ultimate Strength of Internally Grout Repaired Specimen ($D/r=34$, $KL/r=60$, $F_y=39.4$ ksi, $\delta/L=0.0006$, $dd/D=0.1$)
Figure 5-25: Effects of Grout Strength F'_g on the Ultimate Strength of Internally Grout Repaired Specimen ($D/t=64$, $KL/r=60$, $F_y=39.4$ ksi, $δ/L=0.0006$, $dd/D=0.1$)
Figure 5-26: Effects of Grout Strength F'_g on the Ultimate Strength of Internally Grout Repaired Specimen ($D/t=64$, $KL/r=60$, $F_y=39.4$ ksi, $\delta/L=0.0006$, $dd/D=0.2$)
Figure 5-27: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.0001$
Figure 5-28: Evaluation of the Effectiveness of the Internal Grout Repair, \(\delta/L = 0.0005 \)
Figure 5-29: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.001$
Figure 5-30: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.002$
Figure 5-31: Evaluation of the Effectiveness of the Internal Grout Repair, \(\delta/L=0.005 \)
Figure 5-32: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.01$
Figure 5-33: Evaluation of the Effectiveness of the Internal Grout Repair, $\delta/L=0.02$
Figure 5-34: Comparison of Residual Strength with Repaired Strength for KL/r=60 and D/t=34 (F'g=5.0 ksi and Fy=34.8 ksi)
Figure 5-35: Comparison of Residual Strength with Repaired Strength for $KL/t=60$ and $D/t=46$ ($F'g=5.0$ ksi and $Fy=34.8$ ksi)
Figure 5-36: Comparison of Residual Strength with Repaired Strength for KL/r=60 and D/τ=64 (F'g=5.0 ksi and Fy=34.8 ksi)
Figure 5-37: Comparison of Residual Strength with Undamaged Capacity for KL/r=60 and D/t=34 (F'g=5.0 ksi and Fy=34.8 ksi)
Figure 5-38: Comparison of Residual Strength with Undamaged Capacity for KL/r=60 and D/t=46 (F'g=5.0 ksi and Fy=34.8 ksi)
Figure 5-39: Comparison of Residual Strength with Undamaged Capacity for $KL/r=60$ and $D/t=64$ ($F'g=5.0$ ksi and $Fy=34.8$ ksi)
\[f\left(\frac{\delta}{L}, \frac{dd}{D}\right) = -\left(\frac{\delta}{L}\right) + 0.0099 - 0.008 \left(\frac{dd}{D}\right) - 0.0639 \left(\frac{dd}{D}\right)^2 \]

Figure 5-40: Limit State Equation for KL/r=60 and D/t=34

(F'g=5.0 ksi and Fy=34.8 ksi)
\[f\left(\frac{\delta}{L}, \frac{dd}{D} \right) = -\left(\frac{\delta}{L} \right) + 0.0132 - 0.0128 \left(\frac{dd}{D} \right) - 0.0634 \left(\frac{dd}{D} \right)^2 \]

Figure 5-41: Limit State Equation for KL/r=60 and D/t=46

(F'g=5.0 ksi and Fy=34.8 ksi)
$$f\left(\frac{\delta}{L}, \frac{dd}{D}\right) = -(\frac{\delta}{L}) + 0.0171 - 0.0225\left(\frac{dd}{D}\right) - 0.0501\left(\frac{dd}{D}\right)^2$$

Figure 5-42: Limit State Equation for KL/r=60 and D/t=64

(F'g=5.0 ksi and Fy=34.8 ksi)
1. Approximate Moment Curvature Expressions for Undented Tubular Sections without Local Buckling

\[\frac{p}{P_y} = \frac{m}{M_y}, \phi = \frac{\Phi}{\Phi_y} \]

for \(\phi \leq \phi_1 \),

\[m = a\phi \]

for \(\phi_1 < \phi \leq \phi_2 \),

\[m = b - \frac{c}{\sqrt{\phi}} \]

for \(\phi_2 < \phi \),

\[m = m_p - \frac{f}{\Phi^2} \]

where:

\[a = \frac{m_1}{\Phi^2} \]

215
\[b = \frac{m_2 \sqrt{\Phi_2} - m_1 \sqrt{\Phi_1}}{\sqrt{\Phi_2} - \sqrt{\Phi_1}} \]

\[c = \frac{m_2 - m_1}{\frac{1}{\sqrt{\Phi_2}} - \frac{1}{\sqrt{\Phi_1}}} \]

\[f = (m_{pc} - m_2) \phi_2 \]

and

\[m_1 = f_1 (R) (1-p) \]

\[\phi_1 = f_1 (R) (1-p) \]

\[m_2 = f_1 (R) (1-p^2) \]

\[\phi_2 = f_2 (R) (1+p^2) \]

\[m_{pc} = 1.273 (1-p^{1.75}) \]

\[f_1 (R) = 1.0 \]

\[f_1 (R) = 0.9 \]

\[f_2 (R) = 1.0 \]

\[f_2 (R) = 0.9+0.2p \]

without residual stress

with residual stress

without residual stress

with residual stress
2. Moment Curvature Expressions for Undented Tubular Sections with Local Buckling

\[m = (m_{\text{max}} + m_{\text{min}}) e^{\frac{(\phi_2 - \phi_1) (\Sigma F)_{\text{max}}}{m_{\text{max}} - m_{\text{min}}}} + m_{\text{t,min}} \]

where: for \(\phi_1 < \phi_{lb} \leq \phi_2 \)

\[m_{\text{t,max}} = b - \frac{c}{\sqrt{\phi_{lb}}} \]

for \(\phi_2 < \phi_{lb} \)

\[m_{\text{t,max}} = m_{pc} - \frac{f}{\phi_{lb}} \]

for \(0 \leq p \leq 0.4 \) and \(36 \leq D/t \leq 72 \) (\(d_i = 0.01 \) D/t)

\[m_{\text{t,min}} = \frac{1}{0.75 - 0.5 d_i + 4 d_i^2} \left(\frac{1}{0.75 - 0.5 d_i + 4 d_i^2} + (15.86 + 12.89 d_i) p + (104 - 710.8 d_i + 1036 d_i) p^2 \right) \]

\[\phi_{lb} = \frac{1}{(-0.292 + 1.06 d_i - 0.336 d_i^2) + p(0.068 + 0.061 d_i - 1.759 d_i^2)} \]
\[(EI)_{\text{max}} = -0.094 - 0.129p + 0.367d_z + 0.77pd_z\]

for \(0 \leq p \leq 0.4\) and \(72 \leq D/t \leq 96\)

\[m_{\text{mir}} = \frac{1}{0.53 - 0.208d_z + 25.14p - 129.04p^2}\]

\[\phi_{ib} = 2.0 - 1.25p - 0.625d_z\]

\[(EI)_{\text{max}} = 0.17 - 0.43p\]

for \(0.4 \leq p \leq 1.0\) and \(36 \leq D/t \leq 72\)

\[m_{\text{mir}} = (0.67 - 0.343d_z - 0.772d_z)(1 - p)\]

\[\phi_{ib} = \frac{1}{-0.644 + 2.567d_z - 0.486d_z^2 + 2.263 - 12.03d_z - 7.71d_z^2} + \frac{p - 0.4}{2.263 - 12.03d_z - 7.71d_z^2}\]

\[(EI)_{\text{max}} = -0.146 - 0.675p\]
for $0.4 \leq p \leq 1.0$ and $72 \leq D/t \leq 96$

$$m_{nir.} = 0.05 (1 - p)$$

$$\phi_{ib} = 1.7 - 0.5p - 0.625d_c$$

$$(EI)_{\text{max}} = 0.34$$
3. Moment Curvature Expressions for Dented Tubular Sections

for $\phi \leq \phi_1$

$$m = a \phi$$

for $\phi_1 < \phi \leq \phi_{pud}$

$$m = b - \frac{c}{\sqrt{\phi}}$$

for $\phi_{pud} < \phi$

$$m = m_{pud} \left[1 - S_d \left(\frac{\phi}{\phi_{pud}} - 1 \right) \right]$$

where:

$$a = \frac{m}{\phi}$$

$$b = \frac{m_{pud} \sqrt{\phi_{pud}} - m_{pud} \sqrt{\phi}}{\sqrt{\phi_{pud}} - \sqrt{\phi_1}}$$
\[c = \frac{m_{pd}}{\sqrt{\phi_1}} - \frac{m_c}{\sqrt{\phi_{pd}}} \]

and

\[m_1 = 0.8 f_1 (R) m_{pd} \]

\[\phi_1 = f_1 (R) (1-p) (1- d_d \sin \beta / D) \]

\[f_1 (R) = 1.0 \quad \text{without residual stress} \]

\[f_1 (R) = 0.9 \quad \text{with residual stress} \]

\[\phi_{pd} = (1+2\beta/\pi) (\phi_0) \]

\[\phi_0 = 2.8 - 0.1 d_d/t - 2.5 p \geq 1.0 \]

\[S_d = 0.1 + 0.4 p + 0.6 \sin \beta + 0.8 p \sin \beta \quad \text{for } \beta \leq \pi/2 \]
4. Moment Capacity of Dented Tubular Sections - m_{pu_d}

\[m_{pu_d} = \frac{M_{pu_d}}{M_y} \]

the design interaction equation:

\[M_{pu_d} = M_{ud} \left[1 - \left(\frac{P}{P_{ud}} \right)^\alpha \right] \]

\[\alpha = 0.75 - 0.7 \left(\frac{d_d}{t} \right) (1 - 2 \frac{P}{P_{ud}}) \geq 1.0 \]

where:

\[P_{ud} = P_u e^{-0.39 \frac{d_d}{t}} \]

for $D/t \leq 100$

\[P_u = P_y \]

for $D/t > 100$

\[P_u = P_y \left[1.95 - 0.3 (D/t)^{0.25} \right] \]

222
and

\[M_{ud} = M_u \theta \]

for \(0 < F_y D / t \leq 2500.451 \), where \(F_y \) is in ksi

\[M_u = M_p \]

for \(2500.451 < F_y D / t \leq 6500.592 \), where \(F_y \) is in ksi

\[M_u = M_p (1.13 - 1.54 \frac{F_y D}{E t}) \]

for \(6500.592 < F_y D / t \leq 20000.705 \), where \(F_y \) is in ksi

\[M_u = M_p (0.96 - 0.77 \frac{F_y D}{E t}) \]
5. Moment-Thrust-Strain Relationships for both Undented and Dented Tubular Sections

for $p \leq p_1$, $M/M_p < 0.75$

$$\varepsilon = p$$

for $p \leq p_1$, $M/M_p \geq 0.75$

$$\varepsilon = p - k_p p^2$$

for $p_1 < p \leq p_2$

$$\varepsilon = \frac{c^2}{(b-p)^2}$$

for $p_2 < p$

$$\varepsilon = \sqrt{\frac{f}{P_0 - p}}$$

where:

$$b = \frac{P_2\sqrt{\varepsilon_2} - P_1\sqrt{\varepsilon_1}}{\sqrt{\varepsilon_2} - \sqrt{\varepsilon_1}}$$
\[e = \frac{P_2 - P_1}{1 - \frac{1}{\sqrt{\epsilon_2}} - \frac{1}{\sqrt{\epsilon_2}}} \]

and

for \(\frac{M}{M_p} < 0.75 \)

\[p_1 = (1 - \frac{M}{M_p})^{1.2} \]
\[p_2 = (1 - 0.9 \cdot \frac{M}{M_p})^{0.8} \]
\[\epsilon_1 = (1 - \frac{M}{M_p})^{1.2} \]
\[\epsilon_2 = 1 + (\frac{M}{M_p})^2 \]

for \(\frac{M}{M_p} \geq 0.75 \)

\[p_1 = (1 - \frac{M}{M_p})^{0.9} \]
\[p_2 = 1.3 - 1.18 \cdot \frac{M}{M_p} \]
\[\epsilon_1 = 1.2 - \frac{M}{M_p} \]
\[\epsilon_2 = 1.0 \]
\[p_0 = (1 - \frac{M}{M_p})^{0.57} \]
1. Geometric and Material Properties:

Steel Tube:

- \(D \) = outside diameter
- \(t \) = tube wall thickness
- \(F_y \) = yield stress
- \(E_s \) = elastic modulus
- \(K_L \) = effective length
- \(A_s \) = cross-section area
- \(I_s \) = moment of inertia

Internal Grout:

- \(f_g \) = grout strength
- \(E_g \) = elastic modulus
- \(A_g \) = cross-section area
- \(I_g \) = moment of inertia
2. Axial Compression Capacity

\[P_{cr} = K_1 P_u \]

where

\[K_1 = \frac{1}{2} \left[1 + \frac{1+n}{\lambda^2} \right] - \sqrt{\frac{1}{4} \left[1 + \frac{1+n}{\lambda^2} \right]^2 - \frac{1}{\lambda^2}} \]

\[P_u = \text{Squash Capacity} \]

\[P_u = C_2 F_y A_s + 0.67 A_g [f' + C_1 \frac{t}{D} F_y] \]

\(C_1 \) and \(C_2 \) are the coefficients accounting for the confinement and triaxial effects.

\[C_1 = 0.0, \text{for} \frac{KL}{D} \geq 25 \]

\[C_1 = 9.47 - 0.726 \left(\frac{KL}{D} \right) + \frac{1}{72} \left(\frac{KL}{D} \right)^2, \text{for} \frac{KL}{D} < 25 \]
\(C_2 = 1, \text{ for } \frac{KL}{D} \geq 25 \)

\(C_2 = 0.75 + 0.01 \left(\frac{KL}{D} \right), \text{ for } \frac{KL}{D} < 25 \)

\(P_E = \text{ Euler Load} \)

\[P_E = \frac{\pi^2}{(KL)^2} \left[E_s I_s + E_g I_g \right] \]

\(\lambda = \text{ Slenderness Ratio} \)

\[\lambda = \sqrt{\frac{P_u}{P_E}} \]

\(\eta = \text{ Member Imperfection Factor} \)

\[\eta = 0.002 \pi (\lambda - 0.2) \sqrt{1.1 \frac{E_s}{F_y} \pm 0.0} \]
3. Moment Capacity:

\[M_u = M_p (1 + 0.01m) \]

where

\[M_p = (D-t)^2 t F_y \]

and

\[m = 5.5 \left[\left(\frac{0.6 f'G}{F_y} \right) \left(\frac{D}{t} \right) \right]^{0.66} \]

4. Combined Axial Load and Moment:

\[U.C. = \frac{P}{P_{cr}} + (1 - \frac{K_2}{K_1} - \frac{4K_3}{K_1}) \left(\frac{M}{M_u} \right) + \left(\frac{4K_2}{K_1} \right) \left(\frac{M}{M_u} \right)^2 \leq 1.0 \]

where

\[K_2 = (K_{20}) \frac{[115 - 30(2\beta - 1)(1.8 - \alpha_c) - 100\lambda]}{50(2.1 - \beta)} \geq 0.0 \]

\[K_2 \geq K_{20} \]
\[K_{20} = 0.9 \alpha_c^2 + 0.2 \leq 0.75 \]

and

\[K_3 = K_{30} + \frac{\lambda [(0.5\beta + 0.4)(\alpha_c^2 - 0.5) + 0.15]}{1 + \lambda^3} \]

\[K_{30} = 0.04 - \frac{\alpha_c}{15} \leq 0.0 \]

\[\alpha_c = \frac{0.67 A_g (f_g' + C_1 \frac{t}{D} F_y)}{P_u} \]

\[\beta = \text{ratio of smaller to larger end moments} \]

5. Modified BS 5400 Approach: (neglecting the confinement and triaxial stress effects)

\[C_1 = 0.0 \]

\[C_2 = 1.0 \]
APPENDIX C

1. Input File for the Dent-Damaged, Unrepaired Members

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TOTAL NUMBER OF SEGMENTS, N<=100</td>
<td>21</td>
</tr>
<tr>
<td>3. DENT DEPTH, (in)</td>
<td>0.868</td>
</tr>
<tr>
<td>4. DENT DIRECTIONAL ANGLE, (radian)</td>
<td>0.</td>
</tr>
<tr>
<td>5. DENT LOCATION, (# of segment)</td>
<td>11</td>
</tr>
<tr>
<td>7. TUBE LENGTH, (in)</td>
<td>178.8</td>
</tr>
<tr>
<td>8. ELASTIC MODULUS OF STEEL TUBE, Es (ksi)</td>
<td>29071</td>
</tr>
<tr>
<td>9. OUTER DIAMETER OF THE TUBE, D (in)</td>
<td>8.626</td>
</tr>
<tr>
<td>10. THICKNESS OF THE TUBE, t (in)</td>
<td>0.247</td>
</tr>
<tr>
<td>11. STEEL YIELD STRENGTH, Fy (ksi)</td>
<td>34.8</td>
</tr>
<tr>
<td>12. THE RATIO OF END ECCENTRICITY LEFT TO RIGHT (NEGATIVE - SINGLE CURVATURE, POSITIVE - DOUBLE CURVATURE)</td>
<td>-1.</td>
</tr>
<tr>
<td>13. LEFT END ECCENTRICITY</td>
<td>0.0</td>
</tr>
<tr>
<td>14. INITIAL OUT-OF-STRAIGHTNESS AT THE MIDSPAN NORMALIZED BY L</td>
<td>0.0006</td>
</tr>
<tr>
<td>15. INPUT THE CONVERGENCE FACTOR</td>
<td>1000.</td>
</tr>
<tr>
<td>16. CONSIDER LOCAL BUCKLING EFFECT ? (INPUT Y or N)</td>
<td>Y</td>
</tr>
<tr>
<td>17. CONSIDER RESIDUAL STRESS EFFECT ? (INPUT Y or N)</td>
<td>Y</td>
</tr>
</tbody>
</table>
2. Output File for the Dent-Damaged, Unrepaired Members

<table>
<thead>
<tr>
<th>P</th>
<th>AXIAL SHORTENING</th>
<th>LATERAL DEFLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Py</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>0.0050</td>
<td>0.0000005444407</td>
<td>0.000000000018</td>
</tr>
<tr>
<td>0.0100</td>
<td>0.000010888850</td>
<td>0.000000000073</td>
</tr>
<tr>
<td>0.0150</td>
<td>0.000016333329</td>
<td>0.000000000164</td>
</tr>
<tr>
<td>0.0200</td>
<td>0.000021777845</td>
<td>0.000000000291</td>
</tr>
<tr>
<td>0.0250</td>
<td>0.000027222396</td>
<td>0.000000000453</td>
</tr>
<tr>
<td>0.0300</td>
<td>0.000032666982</td>
<td>0.000000000652</td>
</tr>
<tr>
<td>0.0350</td>
<td>0.000038111605</td>
<td>0.000000000887</td>
</tr>
<tr>
<td>0.0400</td>
<td>0.000043556266</td>
<td>0.000000001158</td>
</tr>
<tr>
<td>0.0450</td>
<td>0.000049000963</td>
<td>0.000000001465</td>
</tr>
<tr>
<td>0.0500</td>
<td>0.000054445697</td>
<td>0.000000001808</td>
</tr>
<tr>
<td>0.0550</td>
<td>0.000059890467</td>
<td>0.000000002188</td>
</tr>
<tr>
<td>0.0600</td>
<td>0.000065335274</td>
<td>0.000000002604</td>
</tr>
<tr>
<td>0.0650</td>
<td>0.000070780118</td>
<td>0.000000003058</td>
</tr>
<tr>
<td>0.0700</td>
<td>0.000076224999</td>
<td>0.000000003549</td>
</tr>
<tr>
<td>0.0750</td>
<td>0.000081669918</td>
<td>0.000000004078</td>
</tr>
<tr>
<td>0.0800</td>
<td>0.000087114871</td>
<td>0.000000004644</td>
</tr>
<tr>
<td>0.0850</td>
<td>0.000092559862</td>
<td>0.000000005250</td>
</tr>
<tr>
<td>0.0900</td>
<td>0.000098004891</td>
<td>0.000000005894</td>
</tr>
<tr>
<td>0.0950</td>
<td>0.000103449961</td>
<td>0.000000006577</td>
</tr>
<tr>
<td>0.1000</td>
<td>0.000108895070</td>
<td>0.000000007301</td>
</tr>
<tr>
<td>0.1050</td>
<td>0.000114340219</td>
<td>0.000000008065</td>
</tr>
<tr>
<td>0.1100</td>
<td>0.000119785410</td>
<td>0.000000008869</td>
</tr>
<tr>
<td>0.1150</td>
<td>0.000125230642</td>
<td>0.000000009716</td>
</tr>
<tr>
<td>0.1200</td>
<td>0.000130675916</td>
<td>0.000000010604</td>
</tr>
<tr>
<td>0.1250</td>
<td>0.000136121233</td>
<td>0.000000011536</td>
</tr>
<tr>
<td>0.1300</td>
<td>0.000141566594</td>
<td>0.000000012511</td>
</tr>
<tr>
<td>0.1350</td>
<td>0.000147011999</td>
<td>0.000000013530</td>
</tr>
<tr>
<td>0.1400</td>
<td>0.000152457449</td>
<td>0.000000014594</td>
</tr>
<tr>
<td>0.1450</td>
<td>0.000157902954</td>
<td>0.000000015705</td>
</tr>
<tr>
<td>0.1500</td>
<td>0.000163348506</td>
<td>0.000000016862</td>
</tr>
<tr>
<td>0.1550</td>
<td>0.000168794106</td>
<td>0.000000018067</td>
</tr>
<tr>
<td>0.1600</td>
<td>0.000174239755</td>
<td>0.000000019321</td>
</tr>
<tr>
<td>0.1650</td>
<td>0.000179685454</td>
<td>0.000000020625</td>
</tr>
<tr>
<td>0.1700</td>
<td>0.000185131203</td>
<td>0.000000021980</td>
</tr>
<tr>
<td>0.1750</td>
<td>0.000190577005</td>
<td>0.000000023386</td>
</tr>
<tr>
<td>0.1800</td>
<td>0.000196022859</td>
<td>0.000000024846</td>
</tr>
<tr>
<td>0.1850</td>
<td>0.000201468768</td>
<td>0.000000026360</td>
</tr>
<tr>
<td>0.1900</td>
<td>0.000206914734</td>
<td>0.000000027931</td>
</tr>
<tr>
<td>0.1950</td>
<td>0.000212360755</td>
<td>0.000000029557</td>
</tr>
<tr>
<td>0.2000</td>
<td>0.000217806835</td>
<td>0.000000031242</td>
</tr>
<tr>
<td>0.2050</td>
<td>0.000223252975</td>
<td>0.000000032987</td>
</tr>
<tr>
<td>0.2100</td>
<td>0.000228699178</td>
<td>0.000000034795</td>
</tr>
<tr>
<td>0.2150</td>
<td>0.000234145441</td>
<td>0.000000036664</td>
</tr>
<tr>
<td>0.2200</td>
<td>0.000239591771</td>
<td>0.000000038599</td>
</tr>
<tr>
<td>0.2250</td>
<td>0.000245038169</td>
<td>0.000000040602</td>
</tr>
<tr>
<td>0.2300</td>
<td>0.000250484635</td>
<td>0.000000042672</td>
</tr>
<tr>
<td>0.2350</td>
<td>0.000255931170</td>
<td>0.000000044814</td>
</tr>
<tr>
<td>0.2400</td>
<td>0.000261377776</td>
<td>0.000000047025</td>
</tr>
<tr>
<td>0.2450</td>
<td>0.000266824460</td>
<td>0.000000049313</td>
</tr>
<tr>
<td>0.2500</td>
<td>0.000272271220</td>
<td>0.000000051679</td>
</tr>
<tr>
<td>0.2550</td>
<td>0.000277718060</td>
<td>0.000000054124</td>
</tr>
<tr>
<td>0.2600</td>
<td>0.000283164983</td>
<td>0.000000056652</td>
</tr>
<tr>
<td>0.2650</td>
<td>0.000288611990</td>
<td>0.000000059264</td>
</tr>
<tr>
<td>0.2700</td>
<td>0.000294059086</td>
<td>0.000000061965</td>
</tr>
<tr>
<td>0.2750</td>
<td>0.000299506272</td>
<td>0.000000064756</td>
</tr>
<tr>
<td>0.2800</td>
<td>0.000304953552</td>
<td>0.000000067641</td>
</tr>
<tr>
<td>0.2850</td>
<td>0.000310401092</td>
<td>0.000000070623</td>
</tr>
<tr>
<td>0.2900</td>
<td>0.000315848388</td>
<td>0.000000073706</td>
</tr>
<tr>
<td>0.2950</td>
<td>0.000321295952</td>
<td>0.000000076894</td>
</tr>
<tr>
<td>0.3000</td>
<td>0.000326743625</td>
<td>0.000000080190</td>
</tr>
<tr>
<td>0.3050</td>
<td>0.000332191410</td>
<td>0.000000083598</td>
</tr>
<tr>
<td>0.3100</td>
<td>0.000337639312</td>
<td>0.000000087123</td>
</tr>
<tr>
<td>0.3150</td>
<td>0.000343087335</td>
<td>0.000000090770</td>
</tr>
<tr>
<td>0.3200</td>
<td>0.000348535484</td>
<td>0.000000094543</td>
</tr>
<tr>
<td>0.3250</td>
<td>0.000353983766</td>
<td>0.000000098448</td>
</tr>
<tr>
<td>0.3300</td>
<td>0.000359432195</td>
<td>0.000000102501</td>
</tr>
<tr>
<td>0.3350</td>
<td>0.000364880760</td>
<td>0.000000106689</td>
</tr>
<tr>
<td>0.3400</td>
<td>0.000370329469</td>
<td>0.000000111021</td>
</tr>
<tr>
<td>0.3450</td>
<td>0.000375778321</td>
<td>0.000000115497</td>
</tr>
<tr>
<td>0.3500</td>
<td>0.000381227368</td>
<td>0.000000120167</td>
</tr>
<tr>
<td>0.3550</td>
<td>0.000386667658</td>
<td>0.000000124991</td>
</tr>
<tr>
<td>0.3600</td>
<td>0.000392125923</td>
<td>0.000000129970</td>
</tr>
<tr>
<td>0.3650</td>
<td>0.000397575486</td>
<td>0.000000135156</td>
</tr>
<tr>
<td>0.3700</td>
<td>0.000403025270</td>
<td>0.000000140564</td>
</tr>
<tr>
<td>0.3750</td>
<td>0.000408475235</td>
<td>0.000000146152</td>
</tr>
<tr>
<td>0.3800</td>
<td>0.000413925384</td>
<td>0.000000151925</td>
</tr>
<tr>
<td>0.3850</td>
<td>0.000419375788</td>
<td>0.000000157952</td>
</tr>
<tr>
<td>0.3900</td>
<td>0.000424826430</td>
<td>0.000000164218</td>
</tr>
<tr>
<td>0.3950</td>
<td>0.000430277363</td>
<td>0.000000170774</td>
</tr>
<tr>
<td>0.4000</td>
<td>0.000435728480</td>
<td>0.000000177514</td>
</tr>
<tr>
<td>0.4050</td>
<td>0.000441179915</td>
<td>0.000000184573</td>
</tr>
<tr>
<td>0.4100</td>
<td>0.000446631644</td>
<td>0.000000191925</td>
</tr>
<tr>
<td>0.4150</td>
<td>0.000452083684</td>
<td>0.000000199589</td>
</tr>
<tr>
<td>0.4200</td>
<td>0.000457536054</td>
<td>0.000000207582</td>
</tr>
<tr>
<td>0.4250</td>
<td>0.000462988772</td>
<td>0.000000215924</td>
</tr>
<tr>
<td>Value 0.4300</td>
<td>Value 0.4350</td>
<td>Value 0.4400</td>
</tr>
<tr>
<td>0.5130</td>
<td>0.000740440810</td>
<td>0.0000059892460</td>
</tr>
<tr>
<td>0.5100</td>
<td>0.000742412035</td>
<td>0.0000061863680</td>
</tr>
<tr>
<td>0.4980</td>
<td>0.000750743979</td>
<td>0.0000070195630</td>
</tr>
<tr>
<td>0.4950</td>
<td>0.000752929840</td>
<td>0.0000072381490</td>
</tr>
<tr>
<td>0.4920</td>
<td>0.000755161188</td>
<td>0.0000074612840</td>
</tr>
<tr>
<td>0.4770</td>
<td>0.000767062363</td>
<td>0.0000086514020</td>
</tr>
<tr>
<td>0.4740</td>
<td>0.000769584009</td>
<td>0.0000089035660</td>
</tr>
<tr>
<td>0.4710</td>
<td>0.000772157527</td>
<td>0.0000091609180</td>
</tr>
<tr>
<td>0.4680</td>
<td>0.000774783945</td>
<td>0.0000094235600</td>
</tr>
<tr>
<td>0.4650</td>
<td>0.000777464292</td>
<td>0.0000096915940</td>
</tr>
<tr>
<td>0.4530</td>
<td>0.000788746165</td>
<td>0.0000108197800</td>
</tr>
<tr>
<td>0.4410</td>
<td>0.000801034312</td>
<td>0.0000120486000</td>
</tr>
<tr>
<td>0.4320</td>
<td>0.000810888235</td>
<td>0.0000130339900</td>
</tr>
<tr>
<td>0.4290</td>
<td>0.000814260782</td>
<td>0.0000133712400</td>
</tr>
<tr>
<td>0.4260</td>
<td>0.000817799960</td>
<td>0.0000137251600</td>
</tr>
<tr>
<td>0.4230</td>
<td>0.000821316993</td>
<td>0.0000140768700</td>
</tr>
<tr>
<td>0.4170</td>
<td>0.000828713976</td>
<td>0.0000148165600</td>
</tr>
<tr>
<td>0.4140</td>
<td>0.000832502449</td>
<td>0.0000151954100</td>
</tr>
<tr>
<td>0.4110</td>
<td>0.000836328867</td>
<td>0.0000155780500</td>
</tr>
<tr>
<td>0.3990</td>
<td>0.000852673722</td>
<td>0.0000172125400</td>
</tr>
<tr>
<td>0.3900</td>
<td>0.000865784461</td>
<td>0.0000185236100</td>
</tr>
<tr>
<td>0.3780</td>
<td>0.000884791450</td>
<td>0.0000204243100</td>
</tr>
<tr>
<td>0.3750</td>
<td>0.000897649760</td>
<td>0.0000209216600</td>
</tr>
<tr>
<td>0.3720</td>
<td>0.000904845674</td>
<td>0.0000214297300</td>
</tr>
<tr>
<td>0.3690</td>
<td>0.000909036260</td>
<td>0.0000219487900</td>
</tr>
<tr>
<td>0.3660</td>
<td>0.000905339453</td>
<td>0.0000224791100</td>
</tr>
<tr>
<td>0.3630</td>
<td>0.000910758138</td>
<td>0.0000230209800</td>
</tr>
<tr>
<td>0.3600</td>
<td>0.000916295213</td>
<td>0.0000235746900</td>
</tr>
<tr>
<td>0.3570</td>
<td>0.000921953730</td>
<td>0.0000241405400</td>
</tr>
<tr>
<td>0.3540</td>
<td>0.000927736845</td>
<td>0.0000247188500</td>
</tr>
<tr>
<td>0.3510</td>
<td>0.000933647750</td>
<td>0.0000253099400</td>
</tr>
<tr>
<td>0.3480</td>
<td>0.000939689829</td>
<td>0.0000259141500</td>
</tr>
<tr>
<td>0.3450</td>
<td>0.000945866489</td>
<td>0.0000265318100</td>
</tr>
<tr>
<td>0.3420</td>
<td>0.000952181343</td>
<td>0.0000271633000</td>
</tr>
<tr>
<td>0.3390</td>
<td>0.000958638030</td>
<td>0.0000278089700</td>
</tr>
<tr>
<td>0.3360</td>
<td>0.000965240389</td>
<td>0.0000284692000</td>
</tr>
<tr>
<td>0.3330</td>
<td>0.000971992383</td>
<td>0.0000291444000</td>
</tr>
<tr>
<td>0.3300</td>
<td>0.000978898038</td>
<td>0.0000298349700</td>
</tr>
<tr>
<td>0.3270</td>
<td>0.000985961626</td>
<td>0.0000305413300</td>
</tr>
<tr>
<td>0.3240</td>
<td>0.000993187450</td>
<td>0.0000312639100</td>
</tr>
<tr>
<td>0.2850</td>
<td>0.001104101657</td>
<td>0.0000423553300</td>
</tr>
<tr>
<td>0.2700</td>
<td>0.001157033413</td>
<td>0.0000476485100</td>
</tr>
<tr>
<td>0.2430</td>
<td>0.001270871770</td>
<td>0.0000590323400</td>
</tr>
<tr>
<td>0.2400</td>
<td>0.001285262844</td>
<td>0.0000604714500</td>
</tr>
<tr>
<td>0.2370</td>
<td>0.001300340115</td>
<td>0.0000619791700</td>
</tr>
<tr>
<td>0.2340</td>
<td>0.001315522995</td>
<td>0.0000634974600</td>
</tr>
<tr>
<td>0.2310</td>
<td>0.001331134330</td>
<td>0.0000650586000</td>
</tr>
</tbody>
</table>
APPENDIX D

1. Input File for the Dent-Damaged, Internally Grout Repaired Members

(1) LENGTH OF THE TUBE, L (in)
178.8
(2) OUTER DIAMETER OF THE TUBE, D (in)
8.625
(3) THICKNESS OF THE TUBE, \(t \) (in)
0.247
(4) DENT DEPTH, \(dd \) (in)
0.857
(5) YIELD STRENGTH OF STEEL, \(F_y \) (ksi)
34.8
(6) ELASTIC MODULUS OF THE STEEL TUBE, \(E_s \) (ksi)
29071
(7) GROUT STRENGTH, \(F_g \) (ksi)
4.375
(8) ELASTIC MODULUS OF THE INTERNAL GROUT, \(E_g \) (ksi)
2416.667
(9) TOTAL NUMBER OF SEGMENTS, \(N \)
21
(10) DENT LOCATION, (# of the segment)
11
(11) DIVIDED LAYERS USED IN THE DENTED SECTION
10, 60, 10
(12) DIVIDED LAYERS USED IN THE UNDENTED SECTION
10, 60, 10
(13) LEFT END ECCENTRICITY, (in)
1.725
(14) THE RATIO OF LEFT END ECCENTRICITY TO RIGHT
(NEGATIVE - SINGLE CURVATURE, POSITIVE - DOUBLE CURVATURE)
-1.
(15) CONVERGENCE FACTOR
1000.
(16) NUMBER OF UPPER LIMIT CYCLE FOR THE CONVERGENCE
200
(17) OUT-OF-StraIGHTNESS AT MIDSPAN NORMALIZED BY L
0.01
(18) INPUT THE \(n \), BETa AND GAMMA FACTORS
-0.2, 0.01, 2.5
(19) STRAIN HISTORY : INPUT 3 FIBER NUMBERS
1, 11, 60
2. Output File for the Dent-Damaged, Internally Grout Repaired Members

<table>
<thead>
<tr>
<th>P (kips)</th>
<th>AXIAL SHORTENING (in)</th>
<th>LATERAL DEFLECTION (in)</th>
<th>STRAIN HISTORY (in/in)</th>
<th>FIBER 1 (in/in)</th>
<th>FIBER 11 (in/in)</th>
<th>FIBER 80 (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.67</td>
<td>0.00323</td>
<td>0.0197</td>
<td>0.000033</td>
<td>0.000030</td>
<td>-0.000061</td>
<td></td>
</tr>
<tr>
<td>11.34</td>
<td>0.00650</td>
<td>0.0400</td>
<td>0.000048</td>
<td>0.000045</td>
<td>-0.000046</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>0.00983</td>
<td>0.0610</td>
<td>0.000100</td>
<td>0.000096</td>
<td>-0.000036</td>
<td></td>
</tr>
<tr>
<td>22.67</td>
<td>0.01309</td>
<td>0.0826</td>
<td>0.000156</td>
<td>0.000150</td>
<td>-0.000033</td>
<td></td>
</tr>
<tr>
<td>28.34</td>
<td>0.01649</td>
<td>0.1044</td>
<td>0.000199</td>
<td>0.000191</td>
<td>-0.000040</td>
<td></td>
</tr>
<tr>
<td>34.01</td>
<td>0.01983</td>
<td>0.1261</td>
<td>0.000210</td>
<td>0.000201</td>
<td>-0.000074</td>
<td></td>
</tr>
<tr>
<td>39.67</td>
<td>0.02312</td>
<td>0.1491</td>
<td>0.000266</td>
<td>0.000255</td>
<td>-0.000073</td>
<td></td>
</tr>
<tr>
<td>45.34</td>
<td>0.02673</td>
<td>0.1725</td>
<td>0.000326</td>
<td>0.000313</td>
<td>-0.000070</td>
<td></td>
</tr>
<tr>
<td>51.01</td>
<td>0.03009</td>
<td>0.1962</td>
<td>0.000369</td>
<td>0.000355</td>
<td>-0.000082</td>
<td></td>
</tr>
<tr>
<td>56.68</td>
<td>0.03375</td>
<td>0.2204</td>
<td>0.000413</td>
<td>0.000397</td>
<td>-0.000094</td>
<td></td>
</tr>
<tr>
<td>62.34</td>
<td>0.03709</td>
<td>0.2454</td>
<td>0.000457</td>
<td>0.000439</td>
<td>-0.000107</td>
<td></td>
</tr>
<tr>
<td>68.01</td>
<td>0.04055</td>
<td>0.2707</td>
<td>0.000503</td>
<td>0.000483</td>
<td>-0.000120</td>
<td></td>
</tr>
<tr>
<td>73.68</td>
<td>0.04434</td>
<td>0.2967</td>
<td>0.000550</td>
<td>0.000528</td>
<td>-0.000134</td>
<td></td>
</tr>
<tr>
<td>79.35</td>
<td>0.04815</td>
<td>0.3233</td>
<td>0.000598</td>
<td>0.000575</td>
<td>-0.000147</td>
<td></td>
</tr>
<tr>
<td>85.01</td>
<td>0.05149</td>
<td>0.3505</td>
<td>0.000645</td>
<td>0.000619</td>
<td>-0.000166</td>
<td></td>
</tr>
<tr>
<td>90.68</td>
<td>0.05551</td>
<td>0.3784</td>
<td>0.000695</td>
<td>0.000667</td>
<td>-0.000182</td>
<td></td>
</tr>
<tr>
<td>96.35</td>
<td>0.05923</td>
<td>0.4070</td>
<td>0.000744</td>
<td>0.000714</td>
<td>-0.000200</td>
<td></td>
</tr>
<tr>
<td>102.02</td>
<td>0.06270</td>
<td>0.4363</td>
<td>0.000796</td>
<td>0.000764</td>
<td>-0.000219</td>
<td></td>
</tr>
<tr>
<td>107.69</td>
<td>0.06656</td>
<td>0.4663</td>
<td>0.000851</td>
<td>0.000816</td>
<td>-0.000239</td>
<td></td>
</tr>
<tr>
<td>113.35</td>
<td>0.07061</td>
<td>0.4970</td>
<td>0.000901</td>
<td>0.000865</td>
<td>-0.000260</td>
<td></td>
</tr>
<tr>
<td>119.02</td>
<td>0.07429</td>
<td>0.5290</td>
<td>0.000955</td>
<td>0.000916</td>
<td>-0.000283</td>
<td></td>
</tr>
<tr>
<td>124.69</td>
<td>0.07862</td>
<td>0.5614</td>
<td>0.001015</td>
<td>0.000973</td>
<td>-0.000305</td>
<td></td>
</tr>
<tr>
<td>130.36</td>
<td>0.08264</td>
<td>0.5947</td>
<td>0.001067</td>
<td>0.001022</td>
<td>-0.000334</td>
<td></td>
</tr>
<tr>
<td>136.02</td>
<td>0.08640</td>
<td>0.6294</td>
<td>0.001125</td>
<td>0.001078</td>
<td>-0.000359</td>
<td></td>
</tr>
<tr>
<td>141.69</td>
<td>0.09080</td>
<td>0.6711</td>
<td>0.001189</td>
<td>0.001139</td>
<td>-0.000384</td>
<td></td>
</tr>
<tr>
<td>147.36</td>
<td>0.09601</td>
<td>0.7203</td>
<td>0.001270</td>
<td>0.001216</td>
<td>-0.000431</td>
<td></td>
</tr>
<tr>
<td>153.03</td>
<td>0.10211</td>
<td>0.7884</td>
<td>0.001397</td>
<td>0.001337</td>
<td>-0.000490</td>
<td></td>
</tr>
<tr>
<td>158.69</td>
<td>0.11055</td>
<td>0.8935</td>
<td>0.001556</td>
<td>0.001488</td>
<td>-0.000574</td>
<td></td>
</tr>
<tr>
<td>164.36</td>
<td>0.12365</td>
<td>1.0591</td>
<td>0.001784</td>
<td>0.001705</td>
<td>-0.000701</td>
<td></td>
</tr>
<tr>
<td>170.03</td>
<td>0.14829</td>
<td>1.3584</td>
<td>0.002103</td>
<td>0.002009</td>
<td>-0.000865</td>
<td></td>
</tr>
<tr>
<td>175.71</td>
<td>0.15323</td>
<td>1.4039</td>
<td>0.002644</td>
<td>0.002523</td>
<td>-0.001147</td>
<td></td>
</tr>
<tr>
<td>85.01</td>
<td>0.57931</td>
<td>4.7122</td>
<td>0.007691</td>
<td>0.007569</td>
<td>0.010619</td>
<td></td>
</tr>
<tr>
<td>73.68</td>
<td>0.80638</td>
<td>5.2399</td>
<td>0.008371</td>
<td>0.008217</td>
<td>0.011759</td>
<td></td>
</tr>
<tr>
<td>39.67</td>
<td>1.49476</td>
<td>10.4685</td>
<td>0.017076</td>
<td>0.016623</td>
<td>0.024739</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>2.08302</td>
<td>10.7492</td>
<td>0.011800</td>
<td>0.01192</td>
<td>0.020313</td>
<td></td>
</tr>
</tbody>
</table>
VITA

The author was born on February 5, 1968, the second child of Mr. Tze-Hua Fan and Mrs. Chu-Ying Lin in the city of Taipei, Republic of China.

He completed his Bachelor of Science in Civil Engineering at National Chiao-Tung University in 1990. From 1990 to 1992 he entered the Army for the 2 years’ military service.

In the fall of 1992 he came to Lehigh University to pursue a degree of Master of Science in Civil Engineering.