A brief survey of U. S. Structural steel types, 1962

M. G. Lay
Welded Continuous Frames and Their Components

A BRIEF SURVEY OF U.S. STRUCTURAL STEEL TYPES

by

M. G. Lay

September 1962

Fritz Engineering Laboratory Report No. 297.2
Welded Continuous Frames and Their Components

A BRIEF SURVEY OF U.S. STRUCTURAL STEEL TYPES

by

M. G. Lay

This work has been carried out as part of an investigation sponsored jointly by the Welding Research Council and the Department of Navy with funds furnished by the following:

American Institute of Steel Construction
American Iron and Steel Institute
Institute of Research, Lehigh University
Column Research Council (Advisory)
Office of Naval Research (Contract No. 610(03))
Bureau of Ships
Bureau of Yards and Docks

Reproduction of this report in whole or part is permitted for any purpose of the United States Government.

Fritz Engineering Laboratory
Department of Civil Engineering
Lehigh University
Bethlehem, Pa.

Fritz Engineering Laboratory Report No. 297.
CONTENTS

1. Introduction 1
2. Listing 3
3. Notes 11
4. Appendix of ASTM Standards 13
5. Acknowledgements 16
1. **INTRODUCTION**

As part of a projected research study a survey was made of all U.S. producers of rolled structural shapes. Manufacturers were asked what range of steel types they used in producing these shapes. This report is a summary of the findings of the survey. Twelve replies were obtained and the latest AISI Directory lists the producers replying as manufacturing 94% of the U.S. output.

The steels produced by these companies are listed below. Where a company's products are covered by ASTM specifications it may use the specification number as its sole designation. Other companies prefer to retain their tradenames.

The following lists are intended to give only an indication of available steels, they are not comprehensive lists of steel properties. These properties may be obtained from the references quoted for each steel. Only steels suitable for structural use have been considered, steels produced only in plates and/or bars have been specifically excluded. Thickness limitations have only been noted where they are less than 1-3/4".

The following identifications are used for those companies producing tradename steels:
BSC....Bethlehem
GLS....Great Lakes Steel
INL....Inland
J&L....Jones & Laughlin
KSC....Kaiser Steel Corporation
PSC....Phoenix Steel Corporation
USS....United States
WSC....Weirton Steel Company

The groupings used are:

GROUP II, Named Steels Similar to Group I, page 4.
GROUP III, Medium Range Steel (40 - 90 ksi), page 6.
GROUP IV, High Range (above 90 ksi) Heat Treated Alloy Steel, page 10.

Data on the Group I steels can be obtained from the latest ASTM Book of Standards, (Part I) or from the BSC Booklet 569 which reprints the relevant specifications. These steels are also the six structural steels approved by the 1961 AISC Specification for the Design, Fabrication and Erection of Structural Steel for Buildings.
2. LISTING

GROUP I

THE ASTM RECOGNIZED STEELS

(1) ASTM A7

Originally issued for structures with riveted joints.
No chemical or thickness requirements. 33 ksi yp. (1936).

(2) ASTM A373

Carbon (0.28%) and manganese (0.46-0.94%) controlled
for weldability. 32 ksi yp. (1954).

(3) ASTM A36

Increased strength with weldability by controlling
carbon (0.28%). 36 ksi yp. (1960).

(4) ASTM A440

Higher strength for non-welded structures. Carbon
(0.28%) and manganese (1.60%). 50-42 ksi yp. (1959).

(5) ASTM A441

Higher strength for welded structures. Carbon (0.22%)
and manganese (1.25%). 50-42 ksi yp. (1960).

(6) ASTM A242

Original high strength structural steel. Carbon
(0.22%) and manganese (1.25%). Weldable in some
instances. 50-42 ksi yp. (1941).
NAMED STEELS SIMILAR TO GROUP I

(7) **BSC MAYARI-R**

Meets ASTM A242, with higher corrosion resistance and fully weldable.

(8) **USS COR-TEN**

(9) **J&L COR-TEN**

(10) **INL HI-STEEL**

(11) **GLS N-A-X HIGH TENSILE**

(12) **USS MAN-TEN (A440)**

(13) **INL HI-MAN (A440)**

Meets ASTM A440. Ref: as for (10).

(14) **USS TRI-TEN**

Meets ASTM 441. Ref: ADUCO 02471.
(15) **BSC-MEDIUM MANGANESE**

Meets ASTM A440.

(16) **BSC MANGANESE VANADIUM**

Meets ASTM A441.

(47) **PSC CLAYLOY**

Meets ASTM A441.

(48) **PSC PX50**

Meets ASTM A242.

Note: There are also steels in Group III which may be modified to fit ASTM classifications. These steels are (28) and (32).
GROUP III

MEDIUM RANGE STEEL (40-90 ksi)

(17) BSC V45
45 ksi yp. 65 ksi uts. 18% elongation. Weldable.
C 0.22% Mn 1.25% Vanadium steel. Ref: BSC Booklet 1855.

(18) BSC V50
50 ksi yp. 70 ksi uts. 19-18% elongation. Weldable
C 0.22% Mn 1.25% Vanadium steel. Ref: as for (17).

(19) BSC V55
55 ksi yp. 80 ksi uts. 17-14% elongation. Weldable
C 0.22% Mn 1.25% Vanadium steel. Ref: as for (17).

(20) BSC V60
60 ksi yp. 75 ksi uts. 16-15% elongation. Weldable.
C 0.22% Mn 1.25% Vanadium steel. Ref: as for (17). 3/4" thickness.

(21) BSC V65
65 ksi yp. 80 ksi uts. 15% elongation. Weldable.
C 0.22% Mn 1.25% Vanadium steel. Ref: as for (17). 3/8" thickness.

(22) USS MAN-TEN
50-40 ksi yp. 75-65 ksi uts. 20-22% elongation. Weld
with care. C 0.25%. Mn 1.10-1.16%. Ref: ADUCO 02042.

(23) USS EX-TEN
45 ksi yp. 60 ksi uts. 19% elongation. Weldable.
(24) **USS EX-70N 50**

50 ksi yp. 65 ksi uts. 18% elongation. Weldable.

Up to 3/8" thick. Columbium steel. Ref: as for (23).

(25) **J&L JLX-45-W**

45 ksi yp. 60 ksi uts. 24% elongation. Weldable.

Columbium steel. C 0.20%. Up to 5/16" thick.

Ref: AD-295-6-61.

(26) **J&L JLX-50-W**

50 ksi yp. 65 ksi uts. 22% elongation. Weldable.

Columbium steel. C 0.20%. Up to 5/16" thick.

Ref: as for (25).

(27) **J&L JLX-55-W**

55 ksi yp. 70 ksi uts. 20% elongation. Weldable.

Columbium steel. C 0.20%. Up to 5/16" thick.

Ref: as for (25).

(28) **J&L JLX-60-W**

60 ksi yp. 75 ksi uts. 18% elongation. Weldable.

Columbium steel. C 0.20%. Up to 5/16" thick.

Ref: as for (25).

(29) **J&L Ni-Cu-Ti**

50-47 ksi yp. 70-65 ksi uts. 22% elongation. Weldable.

C 0.15% Mn 1.00%. Up to 1-1/2" thick. Can be modified to meet ASTM A242. Ref: AD-296-6-61.
(30) **J&L JALTEN #1**

50 ksi yp. 70 ksi uts. 22% elongation. Weldable. C 0.22%. Mn 1.25%. V.07%.

(31) **J&L JALTEN # 3R**

50 ksi yp. 70 ksi uts. 22% elongation. Weld with care. C 0.25%. Mn 1.60%, (semi-killed).

(32) **J&L JALTEN # 3S**

50 ksi yp. 70 ksi uts. 22% elongation. Weld with care. C 0.25%, Mn 1.60% (Fully killed—more uniformity).

(33) **INL TRI-STEEL**

50-42 ksi yp. 70-63 ksi uts. 22-24% elongation. Weldable. C 0.22%. Mn 1.25%. Can be modified to meet ASTM A242, and A441. Ref: Project 10-61-13M.

(34) **INL HI-MAN**

50-40 ksi yp. 75-65 ksi uts. 18-19% elongation. Weld with care. C 0.25%. Mn 1.10-1.60%. Ref: as for (33).

(35) **INL INK-45**

45 ksi yp. 60 ksi uts. 18% elongation. Weldable. Columbium steel, up to 3/8" thick. C 0.20%.

Ref: 54-61-15M.

(36) **INL INK-50**

50 ksi yp. 65 ksi uts. 16% elongation. Weldable. Columbium steel, up to 3/8" thick. C 0.22%. Ref: as for (35).
(37) **INL INX-55**

55 ksi yp. 70 ksi uts. 14% elongation. Weldable Columbium steel. Up to 3/8" thick. C 0.24%.

Ref: as for (35).

(38) **INL INX-60**

60 ksi yp. 75 ksi uts. 12% elongation. Weldable. Columbium steel. Up to 3/8" thick. C 0.26%.

Ref: as for (35).

(39) **KSC**

45 ksi yp. Weldable.

(40) **KSC**

50 ksi yp. Weldable.

(41) **KSC**

60 ksi yp. Weldable.

(42) **KSC**

(43) **KSC**

70 ksi yp. Weldable. Up to 1/2" thick.

(44) **GLS GLX-W (from Weirton Steel)**

40-60 ksi yp. 70 ksi uts. Weldable. C 0.16%. Mn 0.66%.

Obtainable in shape only from WSC.
GROUP IV

HIGH RANGE (above 90 ksi) HEAT-TREATED ALLOY STEELS

(45) USS T-1

100-90 ksi yp. 115-105 ksi uts. 18-16% elongation.

Weldable with care. C 0.10-0.21%. Mn 0.60-1.00%.

Ref: ADUCO-01042 and 01101.

(46) USS T-1A

100 ksi yp. 115 ksi uts. 18-16% elongation. Weldable
with care. C 0.12-0.21%. Mn 0.70-1.00%. Up to 1" thick. Cheaper than T-1 but with same structural
properties. Ref: ADUCO-01114 and 01101.
3. **NOTES**

(1) Other steels than those listed above are available but are not listed for obvious reasons, for instance:

a. Low temperature steels such as ASTM 201 and the 9% nickel steels.

b. Corrosion resistant steels such as the copper steels.

c. Military steels such as HY-80. These steels are usually too expensive for structural use.

d. Stainless steels which are not generally available in structural shapes (see for instance USS ADUCO-3092).

e. Customer tailored steels such as an ASTM A440 steel in which corrosion resistance is not required allowing the copper percentage to be reduced.

(2) Proposed ASTM changes would eliminate A7 and A373 steel and replace these two steels and A36 by a single new A36 steel.

(3) Additional general references are:

2) BSC Folder 773.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Steel for bridges & steel for buildings</td>
<td>Structural Steel</td>
<td>Structural steel</td>
<td>High strength steel</td>
<td>High strength steel</td>
<td>High strength steel</td>
</tr>
<tr>
<td>Date of issue</td>
<td>1936</td>
<td>1954</td>
<td>1960</td>
<td>1959</td>
<td>1960</td>
<td>1941</td>
</tr>
<tr>
<td>Coverage</td>
<td>Bearing (All specifications, anchor bolts)</td>
<td>Anchor bolts</td>
<td>Riveted, bolted & welded</td>
<td>High strength riveted, bolted & welded</td>
<td>High strength riveted, bolted & welded</td>
<td>High strength riveted, bolted & welded</td>
</tr>
<tr>
<td>Comments</td>
<td>Nil</td>
<td>Nil</td>
<td>Riveted, bolted & welded</td>
<td>High strength high corrosion resistance</td>
<td>High strength high corrosion resistance</td>
<td>High strength high corrosion resistance</td>
</tr>
<tr>
<td>Thickness restrictions</td>
<td>Not specified</td>
<td>4"</td>
<td>4"</td>
<td>4"</td>
<td>4"</td>
<td>4"</td>
</tr>
<tr>
<td>Other materials</td>
<td>Other materials as for A7</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Delivery</td>
<td>As per ASTM A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td>Not specd.</td>
<td>Applicable</td>
<td>Applicable</td>
<td>Not suggested.</td>
<td>Applicable</td>
<td>Applicable but characteristics vary.</td>
</tr>
<tr>
<td>Carbon (max)</td>
<td>0.28% for shapes</td>
<td>0.28%</td>
<td>0.28%</td>
<td>0.28%</td>
<td>0.22%</td>
<td>0.22%</td>
</tr>
<tr>
<td>Manganese (max)</td>
<td>Not specd.</td>
<td>Specd. only for 13 shapes.</td>
<td>Not specd.</td>
<td>1.60%</td>
<td>1.25%</td>
<td>1.25%</td>
</tr>
<tr>
<td>Phosphorus (max)</td>
<td>0.04-0.11%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.04-0.06%</td>
<td>0.04%</td>
<td>Not specd.</td>
</tr>
<tr>
<td>Sulphur (max)</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Copper (max)</td>
<td>0.20% for copper steel</td>
<td>0.20% for copper steel</td>
<td>0.20% for copper steel</td>
<td>0.20%</td>
<td>0.20%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Silicon (max)</td>
<td>Not specd.</td>
<td></td>
<td></td>
<td>0.30%</td>
<td>0.30%</td>
<td>Not specd.</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Not specd.</td>
<td></td>
<td></td>
<td></td>
<td>0.02%</td>
<td>Not specd.</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Yield Point (ksi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 3/4"</td>
<td>33</td>
<td>32</td>
<td>36</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3/4 to 1-1/2"</td>
<td>33</td>
<td>32</td>
<td>36</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>1-1/2 to 4"</td>
<td>33</td>
<td>32</td>
<td>36</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Ultimate Stress (ksi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 3/4"</td>
<td>60-75</td>
<td>58-75</td>
<td>60-80</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>3/4 to 1-1/2"</td>
<td>60-75</td>
<td>58-75</td>
<td>60-75</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>1-1/2 to 4"</td>
<td>60-75</td>
<td>58-75</td>
<td>60-75</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Elongation 8" (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 3/4"</td>
<td>21</td>
<td>21</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>3/4 to 1-1/2"</td>
<td>21</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>1-1/2 to 4"</td>
<td>21</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Elongation 2" (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any thickness</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1-1/2 to 4"</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>
5. ACKNOWLEDGEMENTS

This study is part of a general investigation "Welded Continuous Frames and Their Components" currently being carried out at Fritz Engineering Laboratory of the Civil Engineering Department of Lehigh University under the general direction of Lynn S. Beedle. The investigation is sponsored jointly by the Welding Research Council, and the Department of the Navy, with funds furnished by the American Institute of Steel Construction, the American Iron and Steel Institute, Lehigh University Institute of Research, the Bureau of Ships, and the Bureau of Yards and Docks. The Column Research Council acts in an advisory capacity.

The author wishes to thank the various steel companies for their prompt cooperation and Miss V. Austin for her patience in typing this report.