
Lehigh University Lehigh University

Lehigh Preserve Lehigh Preserve

Theses and Dissertations

8-1-2019

Autonomous Decision-Making Schemes for Real-World Autonomous Decision-Making Schemes for Real-World

Applications in Supply Chains and Online Systems Applications in Supply Chains and Online Systems

Mohammadreza Nazari
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

 Part of the Industrial Technology Commons

Recommended Citation Recommended Citation
Nazari, Mohammadreza, "Autonomous Decision-Making Schemes for Real-World Applications in Supply
Chains and Online Systems" (2019). Theses and Dissertations. 5727.
https://preserve.lehigh.edu/etd/5727

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please
contact preserve@lehigh.edu.

https://preserve.lehigh.edu/
https://preserve.lehigh.edu/etd
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=preserve.lehigh.edu%2Fetd%2F5727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5727?utm_source=preserve.lehigh.edu%2Fetd%2F5727&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Autonomous Decision-Making Schemes

for Real-World Applications in Supply Chains and Online

Systems

by

Mohammadreza Nazari

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

August 2019

c© Copyright by Mohammadreza Nazari 2019

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Date

Dissertation Advisor

Committee Members:

Lawrence V. Snyder, Committee Chair

Martin Takáč, Committee Co-Chair

Alexander L. Stolyar

Katya Scheinberg

Mustafa Kabul

iii

Acknowledgements

I owe a debt of gratitude to a great number of people for helping me reach the culmination

of this work. This dissertation is the result of the teachings of many great professors, the

discussions and suggestions from incredibly intelligent and patient mentors and the encour-

agement and unconditional love from my friends and family.

First and foremost, I would like to sincerely acknowledge my advisors. I would like to

express my gratitude to my advisor Professor Snyder for his endless support. With his

patience, motivation, and immense knowledge, he always encouraged me to believe in my

path and the value of my accomplishments. His excellent guidance aided me throughout

my research and writing of this dissertation. I would like to thank my co-advisor, Professor

Takáč for his outstanding help in all steps of my research. I cannot thank you enough for all

your advice, encouragement, and numerous hours in discussions, which helped me develop

my research ideas and get a deeper knowledge of my field. It has been very heart-warming

to know there is someone to help, whenever you get into a struggle. I could not have envi-

sioned having better advisors and mentors for my Ph.D. education.

I am also genuinely grateful to my committee members for all your invaluable feedback and

helpful discussions. Professor Stolyar, thank you for all the kindness and patience in en-

lightening me on the first glance of research and building a profound background. Professor

Scheinberg, thank you for all you did throughout my Ph.D. Your continual support and

thought-provoking course shaped my academic path by solidifying my interest in Machine

Learning. Dr. Kabul, thank you for providing me an opportunity to join your team as

an intern and have access to the research facilities to incorporate my ideas in a real-world

scale.

iv

Outside of my dissertation committee, I was also greatly influenced and supported by other

faculty members of Lehigh University. Professor Curtis, thank you for your insightful

courses and all your support in whatever ways you could. Professor Storer and Wilson,

I had the honor to be your teaching assistants and learn a lot from you. And, thank you

Professor Napier and Yukich for your excellent courses.

I would like to thank my family for all their love and encouragement. For my parents who

raised me with a desire of learning and my in-laws who encouraged me in all my pursuits.

And most of all for my loving, supportive, encouraging, and patient wife Bita whose faithful

support during all stages of my Ph.D. was unbelievable and admirable. Thank you a lot.

v

Contents

Acknowledgements iv

List of Tables x

List of Figures xi

Abstract 1

1 Introduction 3

2 Reward Maximization in Dynamic Matching Systems 7

2.1 Introduction . 7

2.2 Basic Notation . 10

2.3 Optimal Control of the Matching System 11

2.3.1 Definition of the Physical Matching System 11

2.3.2 Model Flexibility . 13

2.3.3 Virtual Matching System . 14

2.3.4 Control of the Physical Matching System via the Virtual System . . 15

2.3.5 Asymptotically Optimal Matching Algorithm for the Virtual System 18

2.3.6 Discussion of Algorithm 1 . 20

2.4 A General Network Model and EGPD Algorithm 21

2.4.1 The Model . 22

2.4.2 System Rate Region . 23

2.4.3 Underlying Optimization Problem 24

vi

2.4.4 Extended Greedy Primal-Dual Algorithm 25

2.4.5 Asymptotic Regime and Fluid Limit 26

2.4.6 Global Attraction Result . 28

2.4.7 Mapping of the Virtual Matching System into EGPD Framework . . 32

2.5 Simulations . 34

2.6 Heuristics for the Objective Including both Matching Rewards and Holding

Costs . 37

2.6.1 General Discussion . 37

2.6.2 Simulation: Average Profit in a Bipartite Matching System 39

2.7 Conclusions . 40

3 Online RL: Applications in Customer Journey 43

3.1 Introduction . 43

3.2 Background . 47

3.2.1 Markov Decision Processes . 47

3.2.2 Reinforcement Learning . 47

3.2.3 Deep Reinforcement Learning . 49

3.2.4 Related Works . 50

3.3 Problem Statement . 50

3.4 Proposed Framework . 52

3.4.1 Model of Environment . 52

3.4.2 Offline Algorithm . 54

3.4.3 Online Algorithm . 55

3.5 Experiment: Customer Journey Optimization 57

3.5.1 Experiment Setup . 58

3.5.2 Results . 60

3.6 Other Applications: Predictive Maintenance 63

3.7 Discussion and Conclusion . 65

4 Reinforcement Learning for Solving VRP 67

4.1 Introduction . 67

vii

4.2 Background . 70

4.3 The Model . 71

4.3.1 Limitations of Pointer Networks . 73

4.3.2 The Proposed Neural Network Model 74

4.3.3 Attention Mechanism . 75

4.3.4 Training Methods . 77

4.4 Computational Experiments . 79

4.4.1 Our Policy Model versus Pointer Network for TSP 80

4.4.2 Capacitated VRP . 81

4.4.3 Flexibility to VRPs with Split Deliveries 87

4.4.4 Summary of Comparison with Baselines 88

4.4.5 Sample VRP Solutions . 89

4.4.6 Attention Mechanism Visualization 92

4.4.7 Extension to Other VRPs . 94

4.5 Discussion and Conclusion . 96

Appendices 97

4.A Capacitated VRP Baselines . 97

4.A.1 Clarke-Wright Savings Heuristic . 97

4.A.2 Sweep Heuristic . 98

4.A.3 Google’s OR-Tools . 99

4.A.4 Optimal Solution . 100

5 Corrective Reinforcement Learning 101

5.1 Introduction . 101

5.2 Problem Definition . 103

5.2.1 Distance Measure . 105

5.2.2 Optimization Problems . 106

5.2.3 Lagrangian Relaxation of (OPT-R) 107

5.3 Primal–Dual Policy Gradient Algorithm . 108

5.3.1 PDPG Algorithm . 108

viii

5.4 Practical PDPG Algorithm . 110

5.5 Experiments . 112

5.5.1 Square-Wave Teacher . 113

5.5.2 Wall Leaping . 118

5.6 Related Work . 119

5.7 Concluding Remarks . 120

Appendices 122

5.A Convergence of PDPG Algorithm . 122

5.A.1 Computing the Gradients . 122

5.A.2 Convergence Analysis of PDPG for (OPT-R) 123

5.A.3 Proof of Corollary 5.3.4 . 132

5.A.4 Equivalent Results for (OPT-F) . 132

5.B Practical PDPG Algorithm . 133

5.B.1 Step-wise KL-divergence Measure . 133

5.B.2 Practical PDPG Algorithm . 136

5.C Experiments Setup . 139

Bibliography 140

Biography 151

ix

List of Tables

2.1 Matching rates: Optimal vs. EGPD . 35

2.2 Probabilities (rates) of different arrival pairs 39

2.3 Matching rewards . 40

4.1 Average tour length for TSP and training time for one epoch 81

4.2 Average total tour length . 90

4.3 Sample VRP10 solutions . 92

4.4 Sample VRP10 solutions with split delivery 93

4.5 Satisfied demand under different strategies. 96

x

List of Figures

2.1 An example of the matching model . 8

2.2 An example of the physical and virtual matching systems 16

2.3 Queue trajectories of the virtual and physical systems under EGPD algorithm 35

2.4 Average matching reward under the EGPD algorithm 35

2.5 Average matching reward for different values of β 36

2.6 Adaptation to the changes in arrival rates 37

2.7 Illustration of the matching system . 39

2.8 EGPD algorithm performance . 41

3.1 Communication of the learner agent with different instances of the environment 44

3.2 The implementation framework . 46

3.3 Neural networks for environment model . 53

3.4 Comparison of the DQN algorithm with other policies 61

3.5 A comparison of algorithms in live noisy environment 62

3.6 Reaction of the online algorithm to different noises 64

3.7 Adaptation of DCTD in live environment 65

4.1 Limitation of the Pointer Network . 74

4.2 Our proposed model . 75

4.3 Comparison with Pointer Network for VRP 81

4.4 Optimality gap and winning proportion of RL compared to different algorithms 84

4.5 Ratio of solution time to the number of customer nodes 86

4.6 Trained for VRP100 and tested for VRP90-VRP110 87

xi

4.7 “Optimality” gap and winning proportion of RL in split-delivery case . . . 89

4.8 Illustration of sample decoded solutions for VRP20 and VRP50 91

4.9 Illustration of attention mechanism . 93

5.1 Two different teachers with suggested actions and optimal path. 113

5.2 Student learning from the deterministic teacher 115

5.3 Student learning from the less confident teacher 116

5.4 The effect of δ on Lagrange multipliers . 116

5.5 Student learning from the determined teacher using the reverse KL constraint 117

5.6 Student learning from the less confident teacher using the reverse KL constraint118

5.7 Student learning from determined teacher using the Hellinger constraint . . 118

5.8 Wall-leaping teacher and student environments as well as their policies . . . 119

5.B.1Illustration of GridWorld for evaluating the effectiveness of KL approximations136

5.B.2Comparison of step-wise and trajectory-wise KL approximations 136

xii

Abstract

Designing hand-engineered solutions for decision-making in complex environments is a chal-

lenging task. This dissertation investigates the possibility of having autonomous decision-

makers in several real-world problems, e.g., in dynamic matching, marketing, and trans-

portation. Achieving high-quality performance in these systems is strongly tied to the ac-

tions that a controller performs in different situations. This problem is further complicated

by the fact that every single action might have long-term consequences, so ignoring them

might cause unpredicted outcomes. My primary focus is to approach these problems with

long-term objectives in mind, instead of only focusing on myopic ones. By borrowing tech-

niques from optimal control and reinforcement learning, I design modeling infrastructures

for each specific problem. Currently, the mainstream of reinforcement learning research

uses games and robotics simulators for verification of the performance of an algorithm. In

contrast, my main endeavor in this dissertation is to bridge the gap between the developed

methods and their real-world applications, which are studied less often. For instance, for

dynamic matching, I propose a simple matching rule with optimality guarantees; for cus-

tomer journey, I use reinforcement learning to design an online algorithm based on temporal

difference learning; and, for transportation, I showed that it is possible to train a solver

with the capability of solving a wide variety of vehicle routing problems using reinforcement

learning. Finally, I conclude this dissertation by introducing a new paradigm, which I call

“corrective reinforcement learning.” This paradigm addressed one major challenge in apply-

ing policies found by RL, that is, they might significantly differ from real systems. I propose

a mechanism that resolves this issue by finding improved controllers which are close to the

status quo. I believe that the models proposed in this dissertation will contribute to the

1

discovery of methods that can outperform current systems, which are primarily controlled

by humans.

2

Chapter 1

Introduction

We begin this dissertation in Chapter 2 with a general dynamic matching problem and

design a simple decision scheme that solves the long-term objective. We consider a match-

ing system with random arrivals of items of different types. The items wait in queues—one

per each item type—until they are “matched.” Each matching requires certain quantities of

items of different types; after a matching is activated, the associated items leave the system.

There exists a finite set of possible matchings, each producing a certain amount of “reward.”

This model has a broad range of important applications, including assemble-to-order sys-

tems, Internet advertising, matching web portals, etc. We propose an optimal matching

scheme in the sense that it asymptotically maximizes the long-term average matching re-

ward, while keeping the queues stable. The scheme makes matching decisions in a specially

constructed virtual system, which in turn control decisions in the physical system. The key

feature of the virtual system is that, unlike the physical one, it allows the queues to become

negative. The matchings in the virtual system are controlled by an extended version of the

greedy primal-dual (GPD) algorithm, which we prove to be asymptotically optimal—this

in turn implies the asymptotic optimality of the entire scheme. The scheme is real-time: at

any time it uses simple rules based on the current state of the virtual and physical queues.

It is very robust in that it does not require any knowledge of the item arrival rates, and

automatically adapts to changing rates. The extended GPD algorithm and its asymptotic

optimality apply to a quite general queueing network framework, not limited to matching

problems, and therefore is of independent interest. This work is now published in Queueing

3

Systems [64].

We may find simple control policies with theoretical guarantees for problems like the

matching problem of Chapter 2, but once the state space or the action space to represent

the problems becomes large, these methodologies become intractable. One approach for

resolving these limitations is to use Reinforcement Learning (RL), which is concerned with

learning policies to maximize the cumulative reward. In the rest of this dissertation, we uti-

lize the recent stream of developments in combining deep learning with RL, which is usually

referred to as Deep Reinforcement Learning (DRL), for designing complicated policies.

Currently, the main research focus areas in AI are in specific test-beds: playing games,

controlling toy robots, text translation, visual recognition, and many others. In contrast, my

main goal is to bridge the gap between the developed methods and real-world applications,

which is studied less often. In the next chapters, we specifically focus on RL and demonstrate

how it can provide modeling infrastructures capable of finding effective policies.

In Chapter 3, we study the applicability of RL to a marketing problem in which a firm

initiates different communications to its customers through marketing channels. Since we

consider long-term interactions with customer, we refer to our specific marketing problem as

customer journey optimization. We formulate the customer journey optimization problem

within an RL framework, in which we try to maximize the lifetime value of customers

instead of only considering myopic objectives. Using RL for the customer journey problem

is still in its early stages, and most of the literature pursues an offline approach that lacks

the adaptability to volatile customer behaviors. A major issue of using offline algorithms

in real-world applications is that it is not possible to propagate interaction trajectories

through time in order to learn a policy. In Chapter 3, we propose Deep Concurrent TD

(DCTD), an extension of Concurrent TD [78] with neural networks, as the online algorithm

that learns to maximize the long-term reward while keeping track of the customer reactions

and adapting to their behavioral alterations. The strength of the DCTD algorithm is that

it learns satisfactory policies only by observing the experiences of other customers, without

knowing the environment dynamics. The basic idea is to learn a policy by exploration

in a subset of the customers and then apply the successful ones to others. We develop a

method from historical data to the online learner algorithm in which, before running a live

4

policy, we train a reasonable one using an offline algorithm, e.g., DQN [61], as a warm-

start policy. Experimentally, we show how DQN’s performance degrades in exposure to

varying customer behaviors; however, DCTD automatically adapts the policy according to

non-stationary behaviors of the customers without knowing any a priori information about

the changes. This framework can be employed in various domains, ranging from business

applications to manufacturing as long as we have access to many concurrent environments.

In Chapter 4, we present an end-to-end framework for solving the Vehicle Routing Prob-

lem (VRP) using reinforcement learning. The VRP is a difficult combinatorial optimization

problem with many exact and heuristic algorithms, but finding satisfactory results is still

a hard task. In the simplest form, a single vehicle is responsible for delivering items to

customers in the shortest set of routes. Motivated by the recent work by Bello et al. [8], we

develop a framework for VRP with the capability of solving a wide variety of combinatorial

optimization problems using RL. In this framework, we consider a parameterized stochastic

policy, and by applying a policy gradient algorithm to optimize its parameters, the trained

model produces the solution as a sequence of consecutive actions in real time, without the

need to re-train for every new problem instance. One can consider the trained policy as a

black-box (or meta-algorithm) heuristic with the capability of generating close-to-optimal

tours in a reasonable amount of time. According to the findings of this chapter, our RL

algorithm is competitive with state-of-the-art VRP heuristics both in solution quality and

runtime, and this is progress toward solving the VRP with RL for real applications. More-

over, we show that our proposed framework can be applied to other variants of the VRP

such as split-delivery VRP and stochastic VRP.

Although reinforcement learning can provide reliable solutions in many settings, prac-

titioners are often wary of the discrepancies between the RL solution and their status quo

procedures. Therefore, they may be reluctant to adapt to the novel way of executing tasks

proposed by RL. On the other hand, many real-world problems require relatively small

adjustments from the status quo policies to achieve improved performance. Therefore,

in Chapter 5, we propose a student-teacher RL mechanism in which the RL (the “stu-

dent”) learns to maximize its reward, subject to a constraint that bounds the difference

between the RL policy and the “teacher” policy. The teacher can be another RL policy

5

(e.g., trained under a slightly different setting), the status quo policy, or any other exoge-

nous policy. We formulate this problem using a stochastic optimization model and solve

it using a primal-dual policy gradient algorithm. We prove that the policy is asymptoti-

cally optimal. However, a naive implementation suffers from high variance and convergence

to a stochastic optimal policy. With a few practical adjustments to address these issues,

our numerical experiments confirm the effectiveness of our proposed method in multiple

GridWorld scenarios.

6

Chapter 2

Reward Maximization in General

Dynamic Matching Systems

2.1 Introduction

We consider a dynamic matching system with random arrivals. Items of different types

arrive in the system according to a stochastic process and wait in their dedicated queues

to be “matched.” Each matching requires certain quantities of items of different types;

after a matching is activated, the associated items leave the system. There exists a finite

number of possible matchings, each producing a certain amount of “reward.” The objective

is to maximize long-term average rewards, subject to the constraint that the queues of

currently unmatched items remain stochastically stable. In this chapter, we propose a

dynamic matching scheme and prove its asymptotic optimality. (In fact, the policy works

for a more general objective, being a concave function of the long-term rates at which

different matchings are used.)

Figure 2.1 shows an example of a matching system with 4 item types. The items arrive

as a random process, as individual items or in batches. The average arrival rate of type i

items is αi. There exist 3 possible matchings; e.g., 〈1, 2〉 is a matching which matches one

item of type 1 with one item of type 2. 〈2, 3, 4〉 is another matching which matches one

item of types 2, 3 and 4. (In general, unlike in this example, a matching may require more

7

than one item of any given type.) A matching can only be applied if all contributing items

are present in the system; and if it is applied, the contributing items instantaneously leave

the system.

Figure 2.1 An example of the matching model.

The analysis of static matching has a large literature (see, e.g., [56]). The dynamic

model, which we focus on, has attracted a lot of attention recently, due to a large vari-

ety of new (or relatively new) important applications. One example is assemble-to-order

systems (see e.g., [71] and references therein), where randomly arriving product orders are

“matched” with sets of parts required for the product assembly. Another application is In-

ternet advertising [59], where the problem is to find appropriate matchings between the ad

slots and the advertisers. Web portals as places for business and personal interactions are

important applications; the problem in these portals (such as dating websites, employment

portals, online games) is to match people with similar interests [13]. Matching problems

also arise in systems with random arrivals of customers and servers; for example, in taxi

allocation, where matched “items” are passengers and taxis [44]. Further applications also

can be found in [14, 17].

Different control objectives may be of interest for matching systems. Gurvich and Ward

[39] study the problem of minimizing finite-horizon cumulative holding costs for a model

very close to ours. Plambeck and Ward [71], in the context of assemble-to-order systems,

consider a model where item arrival rates can be controlled via a pricing mechanism; the

objective includes queueing holding costs in addition to rewards/costs associated with order

fulfillments, parts salvaging and/or expediting. Paper [71], in particular, proposes and

studies a discrete-review policy; it involves solving an optimization problem at each review

8

point.

A special case of the matching system, which received considerable attention, is where

customers and servers randomly arrive to the system and each server can be matched

with one customer from a certain subset. This model, also known as the (stochastic)

bipartite matching system, was initially studied by [17]. The majority of the previous

research for this model was focused on finding the stationary distribution [4, 3] and stability

issues [13, 15, 58]. Bušić et al. [15] established necessary and sufficient conditions for

stabilizability of such systems, and have shown that the well known MaxWeight algorithm

achieves maximum stability region. The problem of minimizing the long-term average

holding cost for the bipartite matching system is studied by [14]. They have shown that

with known arrival rates (and some other conditions on the problem structure), a threshold-

type policy is asymptotically optimal in the (appropriately defined) heavy traffic regime.

In this chapter, we show that the reward-maximizing optimal control of the matching

model can be obtained by putting it into a typical queueing network framework. Our scheme

uses a specially constructed virtual system, whose state, along with the state of the physical

system, determines control decisions via a simple rule. In the virtual system any matching

can be applied at any time and the queues are allowed to be negative. The matchings in the

virtual system are controlled by (an extended version of) the Greedy Primal-Dual (GPD)

algorithm [82], which maximizes a queueing network utility subject to stability of the queues.

Negative queues in the virtual system can be interpreted as shortages of physical items of

the corresponding types. The GPD algorithm in [82] does not allow negative queues, so

it is insufficient for the control of our virtual system. The main theoretical contribution of

this chapter is that we introduce and study an extended version of GPD, labeled EGPD,

which does allow negative queues, and prove its asymptotic optimality under non-restrictive

conditions that we specify. The approach of using a virtual system to control the original

one has been used before, e.g., in [84], but the virtual system employed in this chapter is

substantially different, primarily because it allows negative queues.

Our proposed scheme is very robust in that it does not require a priori knowledge of item

arrival rates, and automatically adjusts if/when the arrival rates change. It also covers a

wide range of applications and control objectives. For example, in the context of assemble-

9

to-order systems, the objective can include rewards/costs associated with order fulfillments,

parts salvaging and/or expediting.

Although our scheme is designed (and proved asymptotically optimal) for the reward

maximization objective, which does not include holding costs, we will discuss heuristic

approaches to how the scheme can be used to achieve good performance in terms of a more

general objective (including holding costs).

The chapter is organized as follows. Section 2.2 contains notation used throughout

the chapter. In Section 2.3 we formally introduce the matching model and the reward

maximization problem; here we also formally define the corresponding virtual system and

the overall control scheme, in which the matching algorithm for the virtual system is a key

part. In Section 2.4, we introduce the Extended Greedy Primal-Dual (EGPD) algorithm

for a general network model, with queues that may be negative, and prove asymptotic

optimality of EGPD; here we also show that the virtual system algorithm (in Section 2.3)

is a special case of EGPD and thus is asymptotically optimal. (A reader interested mostly

in applications of our proposed scheme may skip Section 2.4, at least at first reading.)

We evaluate the performance of our scheme via simulations in Section 2.5. Finally, in

Section 2.6, we discuss heuristics in which a more general objective, including holding costs,

can be addressed by tuning EGPD parameters. Some conclusions are given in Section 2.7.

2.2 Basic Notation

We denote by R, R+ and R− the set of real, real non-negative and real non-positive numbers,

respectively. RN , RN+ and RN− are the corresponding N -dimensional vector spaces. A vector

x ∈ RN is often written as x = (xn, n ∈ N), where N = {1, 2, · · · , N}. For two vectors

x, y ∈ RN , x · y =
∑N

n=1 xnyn is the scalar (dot) product; vector inequality x ≤ y is

understood component-wise. The standard Euclidean norm of x is denoted by ‖x‖ =
√
x · x.

The distance between point x and set V ⊆ RN is denoted by ρ(x, V) = infy∈V ‖x− y‖.

For a vector function f : R+ → RN and a set V ⊆ RN , the convergence f(t)→ V means

that ρ(f(t), V)→ 0 as t→∞.

For differentiable functions f : R → R and g : RN → R, we use f ′(t) (or (d/dt)f(t)) to

10

denote the derivative with respect to t and ∇g(x) = ((∂/∂xn)g(x), n ∈ N) is the gradient

of g at x ∈ RN .

For a set V and a real-valued function g(v), v ∈ V ,

arg max
v∈V

g(v)

denotes the subset of vectors v ∈ V that maximize g(v).

For ξ, η ∈ R and γ ∈ R+, we denote: ξ ∧ η = min {ξ, η}, ξ ∨ η = max {ξ, η}; ξ+ = ξ ∨ 0,

ξ− = (−ξ) ∨ 0; [ξ]+γ = ξ if γ > 0 and [ξ]+γ = max{ξ, 0} if γ = 0.

Abbreviation a.e. means almost everywhere with respect to Lebesgue measure.

2.3 Optimal Control of the Matching System

The outline of this section is as follows. First, we formally define the physical matching

system in Section 2.3.1 and discuss the flexibility of this model to include a large variety

of practical systems in Section 2.3.2. In Section 2.3.3 we introduce a virtual system, cor-

responding to the physical one. In Section 2.3.4 we define a control scheme, such that a

certain algorithm runs on the virtual system, and control decisions for the physical sys-

tem depend on those in the virtual one. We propose a specific algorithm for the virtual

system in Section 2.3.5; this algorithm is asymptotically optimal in the sense that, under

certain non-restrictive conditions, when the algorithm parameter (β) goes to zero, our entire

physical/virtual control scheme maximizes average matching reward in the physical system.

(The asymptotic optimality will be proved later, in Section 2.4.) We discuss features of the

virtual system algorithm, and the conditions for its asymptotic optimality in Section 2.3.6.

2.3.1 Definition of the Physical Matching System

Consider a matching system with I item types forming set I = {1, · · · , I}. The items

arrive in batches, consisting of items of the same or different types. To simplify exposition,

assume that batches arrive according to a Poisson process, with each batch type chosen

upon arrival, independently, according to some fixed distribution. There is a finite number

11

of possible batch types. The average rate at which type i items arrive into the system is

αi > 0.

There is a finite set J = {1, · · · , J} of possible matchings. Let µ(j) = (µi(j), i ∈ I),

where µi(j) ≥ 0 is the required number of type i items to form matching j ∈ J . Without

loss of generality, we can and do assume that the “empty” matching, with all µi = 0, is an

element of J ; the empty matching is denoted 〈∅〉. If a matching requires either zero or one

item of each type, it is denoted by the subset of the required item types; say, 〈1, 2〉 denotes

the matching requiring one item of type 1, one item of type 2, and zero of all other types.

Without loss of generality, we can and do assume that the matching decisions are made

only at the times of batch arrivals into the system. Essentially without loss of generality,

we also assume that at those times at most m ≥ 1 matchings can be done. To simplify

exposition, we further assume that m = 1—it will be clear from our analysis that all results

and (with very minor adjustments) proofs hold for arbitrary fixed m. Therefore, from now

on we consider the system as operating in discrete (slotted) time t = 0, 1, 2, . . ., with i.i.d.

batches arriving at those times, and exactly one (possibly empty) matching activated at

each t.

Further, without loss of generality, we adopt the convention that the items that arrive

at time t are only available for matching at time t + 1. (If items arriving at time t are

immediately available for matching, the convention still holds if we simply pretend that

they arrived at time t− 1, after the matching decision at time t− 1 was made.)

Type i ∈ I items waiting to be matched form a first-come,first-served (FCFS) queue; its

length is denoted Q̂i. At any time t, any one matching j ∈ J can be activated subject to

the constraint that all the required items must be available in the system. With activation

of matching j ∈ J ,

(i) certain (real-valued) reward wj is generated;

(ii) number µi(j) of items is removed from the queues of the corresponding types i.

Let Xj be the long-term average reward generated by matching j, under a given control

policy. We are interested in finding a dynamic matching policy, which maximizes a con-

tinuously differentiable concave utility function G(X1, · · · , XJ) subject to the constraint

12

that all queue lengths Q̂i(·) remain stochastically stable. Informally speaking, stochastic

stability means that as time goes to infinity the queues do not “run away” to infinity, i.e.,

remain O(1). Formally, by stochastic stability we will understand positive recurrence of

the underlying Markov process, describing the system evolution. (For example, if the pro-

cess is a countable-state-space irreducible Markov chain, positive recurrence is equivalent

to the existence of unique stationary probability distribution and to ergodicity.) Therefore,

stochastic stability ensures that all arriving items are matched, without the backlogs and

waiting times of unmatched items building up to infinity over time.

Remark 2.3.1. Stability and long-term averages. We will give a specific definition

of long-term average rewards Xj later. When the process is Markov and positive recurrent,

then Xj can be thought of as the steady-state average reward uj due to type j matchings—we

will elaborate on the relation between Xj and uj later.

Remark 2.3.2. More general µi(j). Our model and the results hold—as is—in the case

in which the values of µi(j) can be real numbers of any sign. A negative µi(j) means that

matching j adds |µi(j)| items to Q̂i, and by convention any negative number of items of

any type is always available for matching completion. We assume in this chapter that µi(j)

are non-negative integers to keep the exposition intuitive.

2.3.2 Model Flexibility

The matching model defined in Section 2.3.1 is flexible enough to include a variety of systems

and their features. Let us consider assemble-to-order systems as an example. In such

systems, orders for multiple products arrive as a random process. Each product requires

a certain number of components of each type to be assembled. Components also arrive

into the system as a random process. A product can only be assembled when all necessary

parts are available; in which case it brings a certain reward (profit). This is a matching

system where the components and product-orders of different types are “items”, a completed

product is a matching comprising one corresponding product-order and the required number

of parts. Salvaging and/or disposing of the components is easily accommodated; namely,

salvaging/disposing of one component, labeled as a type i item, can be treated as a matching

13

〈i〉, with a reward that might be negative (as well as non-negative). Similarly with orders:

discarding an order for a product, which is labeled as item type `, is a matching 〈`〉 with

the corresponding (most likely, negative) reward. Expediting component delivery can be

included as well. Suppose matching 〈1, 2, 3, 9〉 corresponds to product 9 assembled from

(one unit of) parts 1, 2, 3, with a reward of 20. However, the system has an option of

expediting component 2, and receive it immediately, at a cost of 15. Then, assembling

product 9 from already available components 1 and 3, and expedited component 2, can be

modeled as a matching 〈1, 3, 9〉 with reward 20 − 15 = 5. (Another, more natural, way to

model expediting of item 2 is to treat it as a “matching,” requiring −1 type-2 items, with

a reward of −15. See Remark 2.3.2 above.)

This discussion illustrates the flexibility of our model as long as the objective is to max-

imize average rewards associated with actions, such as matching, salvaging, expediting, etc.

The model does not explicitly include holding costs. In Section 2.6 we propose and discuss

heuristic extensions of our scheme which do implicitly take holding costs into account.

2.3.3 Virtual Matching System

We will propose a matching control scheme in Section 2.3.4, which in parallel to the physical

system “runs” a virtual system, which determines the matching decisions for the physical

one. The virtual matching system is defined as follows.

The virtual system has the same item types, set of matchings and arrival flows as the

physical system. It is only different in that any matching can be activated at any time and

the queues of the virtual system can be negative, as well as positive. The matchings in the

virtual system are activated based on its own state, regardless of the state of physical system.

The activated matchings in the virtual system become actual matchings in the physical

system either immediately, or later in time, depending on the availability of physical items.

The virtual matchings, until they become actual ones, are called incomplete matchings.

Incomplete matchings wait in a queue, which lists the incomplete matchings (their identities

j) in the order of arrival; we denote the length of this queue by Q̂0. An incomplete matching

becomes an actual one and leaves this queue when it is “completed” by all required physical

items. (The queue of incomplete matchings, as we will see shortly, serves as the “interface”

14

between the virtual and physical systems. In our figures and plots it is shown as part of

the physical system.)

2.3.4 Control of the Physical Matching System via the Virtual System

Denote by Q(t) = (Qi(t), i ∈ I) and Q̂(t) = (Qi(t), i ∈ I) the vectors of queue lengths in

the virtual and physical systems, respectively, at time t. In this chapter, we always assume

that the system is initialized in a state such that all physical and virtual queues are zero,

Qi(0) = Q̂i(0) = 0, ∀i ∈ I, and there are no incomplete matchings, Q̂0(0) = 0. This means

that the only feasible system states are those reachable from this “zero-state.”

At time t the following occurs sequentially:

(i) A new matching is chosen in the virtual system based on Q(t). (We will give a specific

rule in Section 2.3.5.) If it is a non-empty matching j, then the virtual queues are

updated as Q := Q − µ(j), and a new type-j incomplete matching is created and

placed at the end of the (incomplete matchings) queue; so that Q̂0 := Q̂0 + 1.

(ii) The incomplete matchings queue is scanned in FCFS order, to find the first incomplete

matching j′, which can be completed, i.e., such that Q̂(t) ≥ µ(j′). If such a matching

j′ is found, it is completed, i.e., it is removed from the incomplete matchings’ queue

(so that Q̂0 := Q̂0 − 1), a physical matching j′ is created, and the corresponding

number of physical items leaves the system, Q̂ := Q̂− µ(j′).

(iii) Both Q and Q̂ are increased as: Q := Q+λ(t), Q̂ := Q̂+λ(t); here λ(t) = (λi(t), i ∈ I)

is the random vector of arrivals of different types at t.

According to steps (i)-(iii) above, if matching j ∈ J is chosen in the virtual system at

time t, the virtual queues change as follows:

Q(t+ 1) = Q(t) + λ(t)− µ(j). (2.1)

The evolution of the physical queues, if matching j′ ∈ J is completed, is:

Q̂(t+ 1) = Q̂(t) + λ(t)− µ(j′)

15

Recall that we only consider feasible states of the queues—those reachable from the

state where all virtual and physical queues are zero. Then we can make the following

observations for the control scheme described above. For illustration, we will use Figure 2.2

showing a physical matching system with two item types and one possible matching and its

corresponding virtual system. The system state shown in Figure 2.2 is such that: (a) in the

physical system there are two type-1 items and no type-2 items; (b) the queue lengths in the

virtual system are Q1(t) = 1, Q2(t) = −1; (c) there is one incomplete matching 〈1, 2〉, which

is incomplete because, while there is a type-1 item in the physical system (to complete it),

there is no available (physical) type-2 item. (Note that at this point we did not specify

yet the matching rule(s) for the virtual system—this will be done in Section 2.3.5. So, the

state in Figure 2.2 only illustrates the relation between virtual and physical systems, not a

specific matching rule.)

Figure 2.2 An example of the physical and virtual matching systems.

In a general system, if Qi(t) < 0, then Q−i (t) = |Qi(t)| is the current shortage of type-

i items for completing all incomplete matchings. (In Figure 2.2, Q2 = −1 indicates the

shortage of one type-2 item for completion of the incomplete matching 〈1, 2〉.) If Qi(t) ≥ 0,

then Q+
i (t) = Qi(t) is the current surplus of type-i items, beyond what is needed for

completing all incomplete matchings. (In Figure 2.2, Q1 = 1 indicates that there is one type-

1 item in addition to one type-1 item which can be used for completion of the incomplete

matching 〈1, 2〉.)

In addition to the notations Q(t) and Q̂(t), let us denote by Q̂0(t) the state (list) of all

incomplete matchings at time t.

16

The following simple proposition gives a total queue length bound (2.2) for the physical

system in terms of the virtual one. This bound does not require any additional assumptions.

Statements (ii) and (iii) of the proposition involve the notion of stochastic stability, which

means positive recurrence of a Markov process. To keep the exposition simple, assume that

the process (Q(t), t ≥ 0), describing the evolution of the virtual system, and the process

[(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥ 0)] describing the evolution of the entire system,

are countable-state-space Markov chains. (This is the case, for example, under the virtual

system matching algorithm that we propose below in Section 2.3.5, and under linear utility

function G.)

Proposition 2.3.3. (i) At any t ≥ 0, the following relation between physical and virtual

queues holds:

Q̂0(t) ≤
∑
i

Q−i (t),
∑
i

Q̂i(t) ≤
∑
i

Q+
i (t) + µ∗

∑
i

Q−i (t) ≤ µ∗
∑
i

|Qi(t)|, (2.2)

where µ∗
.
= maxj

∑
i µi(j).

(ii) Stochastic stability of (Q(t), t ≥ 0) implies that of [(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥

0)].

(iii) If (Q(t), t ≥ 0) is stochastically stable, then the steady-state average rates at which

different matchings are activated are the same in the physical and virtual systems.

Proof. (i) Clearly, for all i ∈ I at all times, Qi(t) ≤ Q̂i(t). Note that the total short-

age of items of all types for the completion of all incomplete matchings is
∑

iQ
−
i (t); this

means, in particular, that the total number of incomplete matchings is upper bounded as

Q̂0(t) ≤
∑

iQ
−
i (t). The total number of physical items in the system,

∑
i Q̂i(t), can be par-

titioned into those that are ready to be used for completion of incomplete matchings and

the “surplus” items; the number of the former is upper bounded by µ∗Q̂0(t); the number

of the latter is equal to
∑

iQ
+
i (t). This implies the second part of (2.2).

(ii) Follows from (i).

(iii) Follows from (ii).

Remark 2.3.4. If m ≥ 1 matchings can be done after each arrival, the sequence of steps

17

(i)-(iii) above is repeated m times.

2.3.5 Asymptotically Optimal Matching Algorithm for the Virtual Sys-

tem

We now specify the algorithm to be used for the control of the virtual system. This al-

gorithm will be proved to be asymptotically optimal for the virtual system, and then (by

Proposition 2.3.3) for the physical system as well—see Remark 2.3.6 below.

Algorithm 1 Matching Algorithm for the Virtual System.

Let a (small) parameter β > 0 be fixed. At each time t = 1, 2, · · · , activate matching

j(t) ∈ arg max
j∈J

[
(∂G(X(t))/∂Xj) wj +

∑
i∈I

βQi(t) µi(j)

]
, (2.3)

where running average values Xj(t) (of the rewards obtained by activation of different

matchings j) are updated as follows:

Xj(t)(t+ 1) = (1− β)Xj(t)(t) + β wj(t), (2.4)

Xj(t+ 1) = (1− β)Xj(t), j 6= j(t), (2.5)

and Qi(t) is updated according to rule (2.1) for all i ∈ I.

Note that if the function G is linear, say G(X) =
∑

j Xj , then the partial derivatives in

(2.3) are constant, and rule (2.3) becomes simply

j(t) ∈ arg max
j∈J

[
wj +

∑
i∈I

βQi(t) µi(j)

]
. (2.6)

Moreover, in this case the algorithm does not need to keep track of the averages Xj(t). As

a result, both processes (Q(t), t ≥ 0) and [(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥ 0)] are

countable-state-space Markov chains.

Consider the following assumption on the model structure. It is stated informally—

its precise meaning will be given (in a more general context) later in Assumption 2.4.2

(Section 2.4). Also, in Section 2.3.6 we explain why this assumption is non-restrictive.

18

Assumption 2.3.5. For any subset Ī ⊆ I, there exists a matching activation strategy

under which the long-term average drift of queues i ∈ Ī is strictly positive and the long-

term average drift of queues i 6∈ Ī is strictly negative.

When parameter β is small, then the running average Xj(t) is (one notion of) a long-

term average rate at which rewards due to matching j are generated. (See Section 2.4.4.) We

will prove in Section 2.4 (as a corollary of Theorem 2.4.4) that, under Assumption 2.3.5, Al-

gorithm 1 is asymptotically optimal in the following sense. (It is described here informally—

the formal result is Theorem 2.4.4, for the more general model in Section 2.4.) Let V be the

set of those long-term rate vectors X that are achievable (by some control strategy) subject

to the stability of the queues, and let V ∗ be its optimal subset, V ∗ = arg maxX∈V G(X).

Then, when β is small, X(t)→ V ∗ as t→∞.

Suppose now that the system process is Markovian under Algorithm 1 (as is the case

when the function G is linear). Then Assumption 2.3.5 ensures process stability (for exam-

ple, by the argument described in Section 4.9 in [82]). In this case the steady-state average

rewards (due to different matchings) u = (u1, . . . , uJ) are well defined. If the process is in

the stationary regime, then obviously EX(t) = u. Furthermore, the asymptotic optimality

of Algorithm 1, in the sense described above, can be used to show that, as β → 0, the vector

u converges to the optimal set V ∗ (see Section 4.9 in [82]).

Remark 2.3.6. If Algorithm 1 is asymptotically optimal for the virtual system, then under

our scheme it is also asymptotically optimal for the physical system. Indeed, the physical

and virtual systems have the same set V of achievable long-term rate vectors X (subject

to the stability of the queues). This is because any X achievable in the virtual system

is achievable in the physical system as well (by our scheme, for which we have Proposi-

tion 2.3.3), and vice versa because obviously any control of the physical system can be

applied to the virtual system. Therefore, under our scheme, if the virtual system produces

(in the asymptotic limit) the optimal long-term rates X ∈ V ∗, the same optimal rates are

produced (by Proposition 2.3.3) in the physical system.

19

2.3.6 Discussion of Algorithm 1

Basic intuition

The key feature of the virtual system is that it has an option of creating matchings “in

advance,” before all required physical items have arrived. These “advance” matchings are

the ones we called incomplete. Virtual queues keep track of the items’ availability: recall

that if Qi < 0, |Qi| is the shortage of type i items, and if Qi ≥ 0, it is the surplus of type i

items.

The intuition behind Algorithm 1 is the same as for the GPD algorithm in [82] (and

other related works—see, e.g., [83] and references therein), but our model is more general

in that the queues may have any sign. For simplicity of discussion, suppose the objective

function is linear, G(X) =
∑

j Xj , in which case equation (2.3) in Algorithm 1 reduces to

(2.6). The rule “tries” to choose a matching j which brings large reward wj , but at the

same time it “encourages” the drift of the queues towards 0. Indeed, recall that activation of

any matching can only decrease the virtual queues. This means that the rule “encourages”

the use of matchings that decrease positive Qi’s as much as possible and decrease negative

Qi’s as little as possible; in other words, the rule encourages matchings requiring items of

which there is a large surplus, and discourages matchings requiring items of which there

is already a large shortage—this guarantees stability of the queues. When parameter β

is small, the virtual queues “stabilize around correct levels”—positive or negative—which

allows rule (2.6) to make “correct” decisions maximizing the average rewards.

Assumption 2.3.5 is non-restrictive

We now describe two common cases in which Assumption 2.3.5 holds. These two cases

cover a very large number of applications.

Case 1. Assumption 2.3.5 holds automatically in the special case in which, for each

item type i, there exists at least one matching requiring only type i items (namely, with

µi ≥ 1 and µ` = 0 for ` 6= i). In this case it suffices to pick any parameter m (the number

of matchings per batch arrival) which is greater than µ∗
.
= maxj

∑
i µi(j). This special

case is very common for the following reason, which we illustrate using the simple model

20

in Figure 2.2. If matching 〈1, 2〉 is the only one possible (besides the empty matching), the

system is unbalanced when the arrival rates are unequal, α1 6= α2, and cannot be stable. (If

items arrive one-by-one, this particular system obviously cannot be stable even if α1 = α2.

More generally, any system with one-by-one arrivals cannot be stable if its “matching graph”

is bipartite, see [58].) This shows that many practical systems typically need the option of

using “single” matchings 〈i〉 anyway (salvaging or discarding individual items), to ensure

stability, and then Assumption 2.3.5 holds.

Case 2. This case is more subtle. Suppose a system can potentially be made stable

without requiring single-type matchings. For example, consider the system in Figure 2.2

in which the arrivals occur only in pairs (1, 2). Suppose also that up to two matchings

can be done upon each arrival (m = 2). On the face of it, Assumption 2.3.5 does not

hold for this system. Indeed, the linear relation Q1(t) = Q2(t) holds at all times and,

therefore, it is impossible for Q1 and Q2 to have different average drifts, which is required

under Assumption 2.3.5. However, consider the orthogonal change of coordinates, Q̃1 =

Q1 + Q2, Q̃2 = Q1 − Q2, with λ(·) and µ(·) transformed accordingly. Then, Q̃2(t) ≡ 0,

and the system can be considered as having only one queue Q̃1. For the latter system,

Assumption 2.3.5 does hold. Note that the algorithm itself does not need to perform any

change of coordinates—it remains as is. This situation is generic: if there is an inherent

linear dependence between the queues, Assumption 2.3.5 often holds for the system after an

appropriate orthogonal change of coordinates. This is, in fact, the case for many bipartite

matching systems (with items arriving in pairs), including the one we consider later in

Section 2.6.2.

To summarize the discussion in this subsection, Assumption 2.3.5 is essentially the

assumption that the system can be made stable, plus a very common condition that the

queues “can be moved in any direction” within the subspace of feasible queue states.

2.4 A General Network Model and EGPD Algorithm

In this section we introduce the Extended Greedy Primal-Dual (EGPD) algorithm for a

general network model, which includes the matching system as a special case. This algorithm

21

is a generalization of the GPD algorithm of [82] in the sense that queues at some network

nodes, we call them free nodes, are allowed to have any sign; as they evolve, these queues

are “free” to change from positive to negative and vice versa. The model in [82] is such

that queues at all nodes are constrained to be non-negative—in our model we call such

nodes constrained. First, we will formally define the model and the underlying optimization

problem in Sections 2.4.1-2.4.3. The optimization problem determines the best possible

(under any control algorithm) long-term drifts of the queues, which maximize the network

“utility” subject to the condition that queue-drifts are zero at free nodes and are non-

positive at constrained nodes; the optimal solutions to this problem give the maximum

possible network utility that can be achieved by any network control strategy subject to

stability of the queues. We define the EGPD algorithm in Section 2.4.4. In Section 2.4.5,

we show that, as the algorithm parameter β goes to 0, the “fluid scaled” version of the

process converges to a random process with sample paths being what we define as EGPD-

trajectories. In Section 2.4.6 we prove asymptotic optimality of the EGPD-algorithm, in the

sense that EGPD-trajectories converge to the optimal set of the underlying optimization

problem while keeping all queues uniformly bounded; in other words, the EGPD-algorithm

maximizes the system utility subject to stability. Finally, in Section 2.4.7 we show that

Algorithm 1 (Section 2.3.5) for the virtual system of Section 2.3.3 is a special case of

EGPD.

2.4.1 The Model

Consider a network consisting of a finite set of nodes N = {1, 2, · · · , N}, N ≥ 1. The nodes

are of two different types: N1 constrained nodes form the set N c = {1, 2, · · · , N1} and

N2 = N −N1 free nodes form N f = {N1 + 1, N1 + 2, · · · , N}. Either N c or N f is allowed

to be an empty set. There is a queue associated with each node, where we denote by Qn(t)

the queue length of node n ∈ N at time t and we will denote Q(t) = (Qn(t), n ∈ N). The

queue length of node n ∈ N c is always non-negative, but node n ∈ N f can have queue

length of any sign.

The system operates in discrete time t = 1, 2, · · · . (By convention, we identify an integer

time t with unit time interval [t,t+1), which is usually referred to as time slot t.) A finite

22

number of controls is available, where we denote by K the set of controls. Upon activation

of control k ∈ K at time t, the following occurs sequentially:

(i) A certain (non-random) real amount (“number”) µn(k) ≥ 0 of items is removed from

queue n and leaves the network. Queues in constrained nodes cannot go below zero;

so if Qn(t) ≤ µn(k), the entire content of queue n is removed.

(ii) A random (bounded) real amount (“number”) λn(k, t) ≥ 0 of items enters each node

n ∈ N , where λ(k, t) = (λn(k, t), n ∈ N) are i.i.d. in time, with generic random

variable denoted λ(k) = (λn(k), n ∈ N).

According to steps (i) and (ii), the queue update rules for constrained and free nodes, given

control k is chosen at time t, are as follows:

Qn(t+ 1) = [Qn(t)− µn(k)] ∨ 0 + λn(k, t), n ∈ N c (2.7)

Qn(t+ 1) = Qn(t)− µn(k) + λn(k, t), n ∈ N f . (2.8)

2.4.2 System Rate Region

For each k ∈ K and time t, consider the random vector b(k, t) = (bn(k, t), n ∈ N) equal in

distribution to λ(k)−µ(k). Clearly, b(k, t) is equal to the random vector of queue increments

Q(t+ 1)−Q(t) provided that control k is chosen at time t and assuming Qn(t) ≥ µn(k) for

all n ∈ N c. We call components of b(k, t) the nominal increments of queues upon control

k at time t. Let k(t) denote the control chosen at time t by a given control policy.

Informally speaking, the finite-dimensional convex compact rate region V ⊂ RN is

defined as the set of all possible long-term average values of b(k(t), t), which can be induced

by different control policies. A formal definition of the rate region is as follows.

For each k ∈ K, denote by b(k) = Eb(k, t) the drift of queue lengths upon control k (at

any time t when control k is activated). For a fixed probability distribution φ = (φk, k ∈ K)

(with φk ≥ 0 and
∑

k∈K φk = 1) consider the vector

v(φ) =
∑
k∈K

φkb(k). (2.9)

23

If we interpret φk as the long-term average fraction of time slots when control k is chosen

from the set of controls K, then v(φ) corresponds to the vector of long-term average drifts

of Q(t), assuming that the queues in the constrained nodes never hit zero. Then the system

rate region V is defined as the set of all possible vectors v(φ) corresponding to all possible

φ.

2.4.3 Underlying Optimization Problem

Consider an open convex set Ṽ ⊆ RN such that Ṽ ⊇ V . Consider a concave continuously

differentiable utility function H : Ṽ → R and the following optimization problem:

max
v∈V

H(v) (2.10)

s.t. vn ∈ R−, ∀ n ∈ N c

vn = 0, ∀ n ∈ N f .

Assumption 2.4.1. Optimization problem (2.10) is feasible, i.e.

{v ∈ V : vn ∈ R−, ∀n ∈ N c and vn = 0,∀n ∈ N f} 6= ∅. (2.11)

If Assumption 2.4.1 holds, we denote by V ∗ ⊆ V the set of optimal solutions of (2.10).

The dual to optimization problem (2.10) is

min
(yn∈R+,n∈N c),(yn∈R,n∈N f)

(
max
v∈V

(H(v)− y · v)

)
, (2.12)

and we denote by Q∗ the closed convex set of optimal solutions q∗ ∈ RN1
+ ×RN2 of problem

(2.12). For any v∗ ∈ V ∗ and any q∗ ∈ Q∗, the compementary slackness condition holds:

q∗ · v∗ = 0. (2.13)

In Section 2.4.4, we will introduce an algorithm that is asymptotically optimal under

the following assumption, which is stronger than Assumption 2.4.1.

24

Assumption 2.4.2. For any subset N̄ f ⊆ N f , there exists v ∈ V such that vn > 0 for

n ∈ N̄ f and vn < 0 for n 6∈ N̄ f .

Assumption 2.4.2 means that there always exists a control policy which provides, simulta-

neously, a strictly negative average drift to all the constrained node queues and non-zero

average drifts toward zero for all free node queues.

Note that under Assumption 2.4.2, the set Q∗ is compact. Indeed, the optimal value of

problem (2.10) is equal to

H(v∗) = max
v∈V

(H(v)− q∗ · v) (2.14)

for any v∗ ∈ V ∗ and any q∗ ∈ Q∗. The set Q∗ must be bounded, because otherwise, from

Assumption 2.4.2, there would exist v ∈ V such that vn < 0 for all nodes with qn ≥ 0, and

vn > 0 for all nodes with qn < 0. Then we can arbitrarily increase the right hand side of

(2.14) by choosing q∗ ∈ Q∗ with large |q∗n|.

The problem that we are going to address is as follows. Let X denote a long-term

average value of b(k(t), t) under a given dynamic control policy, that is, a policy of choos-

ing k(t) depending on the system state. We are interested in finding a dynamic control

policy such that when optimization problem (2.10) is feasible, and moreover, the stronger

Assumption 2.4.2 holds, the corresponding X is close to V ∗, while the system queues remain

stochastically stable.

2.4.4 Extended Greedy Primal-Dual Algorithm

Consider the control policy in algorithm 2.

25

Algorithm 2 EGPD algorithm for the general network model

At time t = 1, 2, · · · , choose a control

k(t) ∈ arg max
k∈K

[∇H(X(t))− βQ(t)] · b(k), (2.15)

where β > 0 is a small parameter. Here X(t) is the running average of b(k(t), t), updated

as follows:

X(t+ 1) = (1− β)X(t) + β b(k(t), t) (2.16)

and Q(t) is updated according to (2.7) and (2.8).

The initial condition is X(0) ∈ Ṽ . Note that this initial condition and update rule (2.16)

imply that X(t) ∈ Ṽ for all t ≥ 0. Hence the system evolution is well-defined for all t ≥ 0,

since the gradient and argmax in (2.15) are well-defined.

Also note that, if 0 < β < 1, then for t ≥ 1

X(t) =
t−1∑
τ=0

β(1− β)t−1−τ b(k(τ), τ) + (1− β)tX(0).

Therefore, when t is large, X(t) is essentially the geometric average of values of b(k(τ), τ)

up to time t− 1. When t is large and β > 0 is small, X(t) is (one notion of) the long-term

average of values of b(k(τ), τ) up to time t− 1.

2.4.5 Asymptotic Regime and Fluid Limit

We define the EGPD-trajectory as a pair of absolutely continuous functions (x, q)= ((x(t), t ≥

0), (q(t), t ≥ 0)), each taking values in RN and satisfying the following conditions:

(i) For all t ≥ 0,

x(t) ∈ Ṽ (2.17)

and for almost all t ≥ 0,

x′(t) = v(t)− x(t), (2.18)

26

KL-divergence of ≈ 0.89. However, this is not what we are looking for since it is extremely

different from the teacher. Instead, we use the PDPG algorithm to constrain the policy

deviation with δ = 0.3. Using this parameter, the student learns to follow the purple path,

with a KL-divergence of ≈ 0.23.

(a) Teacher’s environment. The
optimal path found by the RL is
demonstrated

(b) Student’s environment. She can
leap the red walls at a penalty. The
paths found by RL (in green) and
by PDPG (in purple) are illustrated

Figure 5.8 Wall-leaping teacher and student environments as well as their policies.

5.6 Related Work

Learning from a teacher is a well-studied problem in the literature on supervised learning

[32] and imitation learning [75, 91]. However, we are not aware of any work using a teacher to

control specific behaviors of a student. The typical use case of a student–teacher framework

in RL is in “policy compression,” where the objective is to train a student from a collection

of well-trained RL policies. Policy distillation [73] and actor–mimic [68] are two methods

that distill the trained RL agents, in a supervised learning fashion, into a unified policy

of the student. In contrast, we follow a completely distinct objective, where a student

is continually interacting with an environment and it only uses the teacher’s signals as a

guideline for shaping her policy.

Closest to ours, Schmitt et al. [76] propose “kickstarting RL,” a method that uses

the teacher’s information for better training. Incorporating the idea of population-based

training, they design a hand-crafted decreasing schedule of Lagrange multipliers, {λk} → 0.

119

Nevertheless, the justification for such a schedule is not clearly visible. However, noticing

that their problem is a special case of ours with δ =∞, our findings confirm the credibility

of their approach, i.e., our findings indicate that λ∗ = limk→∞ λ
k
min = 0 according to strong

duality. This observation also conforms with the experimental findings of [76], and our

theoretical results indicate that when there is no obligation on being similar to the teacher,

the student is better off eventually operating independently. Similarly, their method only

uses the teacher for faster learning.

Imposing certain constraints on the behavior of a policy is also a common problem in

the context of “safe RL” [2, 22, 51]. Typically, these problems look for policies that avoid

hazardous states either during training or execution. Our problem is different in that we

follow another type of constraint, yet similar methods might be applied. Using a domain-

specific programming language instead of neural networks can be an alternative method

to add interpretability [95], but it lacks the numerous advantages inherent in end-to-end

and differentiable learning. In an alternative direction, it is also possible to manipulate the

policy shape by introducing auxiliary tasks or reward shaping [41]. Despite the simplicity of

the latter approach, it has a very limited capability. For example, it is unclear how reward

shaping can suggest directions similar to our square-wave teacher. In summary, we believe

that our end-to-end method, by implicitly adding interpretable components, can partially

alleviate the concerns related to the RL policies.

5.7 Concluding Remarks

In this paper, we introduce a new paradigm called corrective RL, which allows a “student”

agent to learn to optimize its own policy while also staying sufficiently close to the policy of

a “teacher.” Our approach is motivated by the fact that practitioners may be reluctant to

adopt the policies proposed by RL algorithms if they differ too much from the status quo.

Even if the RL policy produces an impressive expected return, this may not be satisfactory

evidence to switch the operation of a billion-dollar company to a policy found by an RL.

We believe that corrective RL provides a straightforward remedy by constraining how far

the new policy can deviate from the old one or another desired, target policy. Doing so will

120

help reduce the stresses of adopting a novel policy.

We believe that, with further extensions, corrective RL has the potential to address

some of RL’s interpretability challenges. Using more advanced optimization algorithms,

studying different distance measures, considering continuous-action problems, and having

multiple teachers represent fruitful avenues for future research.

121

Appendix

5.A Convergence of PDPG Algorithm

In this Appendix, we first derive the gradients necessary for the PDPG algorithm. Subse-

quently, we provide convergence proofs for PDPG Algorithm.

5.A.1 Computing the Gradients

The Lagrangian function in the optimization problem (5.4) can be re-written as

L(θ, λ) =
∑
τ∈T

Pθ(τ)J(τ) + λ
∑
τ∈T

Pθ(τ) log
Pθ(τ)

Pφ(τ)
− λδ

=
∑
τ∈T

Pθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)

)
− λδ. (5.15)

Recall that T is the set of all trajectories under all admissible policies. By taking the

gradient of L(θ, λ) with respect to θ, we have:

∇θL(θ, λ) =
∑
τ∈T
∇θPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)

)
+ Pθ(τ) (λ∇θ logPθ(τ))

=
∑
τ∈T

Pθ(τ)∇θ logPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)
+ λ

)
= ET

[
∇θ logPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)
+ λ

)]
, (5.16)

122

and the term ∇θ logPθ(τ) can be simplified as

∇θ logPθ(τ) = ∇θ

(
logP0(x0) +

H−1∑
t=0

logP (xt+1|xt, at) +
H−1∑
t=0

log πS(at|xt; θ)

)

=
H−1∑
t=0

∇θ log πS(at|xt; θ)

=

H−1∑
t=0

∇θπS(at|xt; θ)
πS(at|xt; θ)

. (5.17)

The gradient of L(θ, λ) with respect to λ is

∇λL(θ, λ) =
∑
τ∈T

Pθ(τ) log
Pθ(τ)

Pφ(τ)
− δ = DKL(Pθ(τ) ‖ Pφ(τ))− δ. (5.18)

By using a set of sample trajectories {τj , j = 1, . . . , N} generated under the student

policy, one can approximate the gradients (5.16) and (5.18) as

∇θL(θ, λ) ≈ 1

N

N∑
j=1

[
∇θ logPθ(τj)

(
J(τj) + λ log

Pθ(τj)
Pφ(τj)

+ λ

)]
,

∇λL(θ, λ) ≈ D̂KL(θ ‖ φ)− δ =
1

N

N∑
j=1

log
Pθ(τ)

Pφ(τ)
− δ,

which are the update rules that will be used later on, in (5.7) and (5.8).

5.A.2 Convergence Analysis of PDPG for (OPT-R)

Before starting the proof of Theorem 5.3.3, noting the definition of∇θL(θ, λ) and∇λL(θ, λ),

one can make the following observations:

Lemma 5.A.1. Under Assumption 5.3.1, the following holds:

i) ∇θ logPθ(τ) is Lipschitz continuous in θ, which further implies that

‖∇θ logPθ(τ)‖2 ≤ κ1(τ)
(
1 + ‖θ‖2

)
(5.19)

for some κ1(τ) <∞.

123

ii) ∇θL(θ, λ) is Lipschitz continuous in θ, which further implies that

‖∇θL(θ, λ)‖2 ≤ κ2

(
1 + ‖θ‖2

)
(5.20)

for some constant κ2 <∞.

iii) ∇λL(θ, λ) is Lipschitz continuous in λ.

Proof. Recall from (5.17) that ∇θ logPθ(τ) =
∑H−1

t=0 ∇θπS(at|xt; θ)/πS(at|xt; θ) whenever

we have

πS(at|xt; θ) > ψ for all t and for some ψ > 0. Assumption 5.3.1 indicates that ∇θπS(at|xt; θ)

is L -Lispchitz continuous in θ. Then using the fact the sum of the product of (bounded) Lip-

schitz functions is Lipschitz itself, one can conclude the Lipschitz continuity of ∇θ logPθ(τ),

and we denote by L1 its finite Lipschitz constant. Also, noting that H < ∞ w.p. 1, then

∇θ logPθ(τ) <∞ w.p. 1. The Lipschitz continuity implies that for any fixed θ0 ∈ Θ,

‖∇θ logPθ(τ)‖ ≤ ‖∇θ logPθ(τ)|θ=θ0‖+ L1‖θ − θ0‖ ≤ K1(τ)(1 + ‖θ‖). (5.21)

The first inequality follows from the linear growth condition of Lipschitz functions and the

last one holds for a suitable value of K1(τ) := max{L1, ‖∇θ logPθ(τ)|θ=θ0‖+L1‖θ0‖} <∞.

Taking the square of both sides of (5.21) yields (5.19) with κ1(τ) := 2(K1(τ))2 <∞.

Since Pθ(τ) and logPθ(τ) are continuously differentiable in θ whenever Pθ(τ) > 0, the

Lipschitz continuity of ∇θL(θ, λ) can be investigated, from its definition (5.16), as the sums

of products of (bounded) Lipschitz functions. From the definition (5.16), and recalling

Assumption 5.2.1 and the compactness of Θ, one can verify the validity of (5.20) with

κ2 = Eτ
[
κ1(τ)

(
Cmax
1− γ

+ λmax max
θ∈Θ

log
Pθ(τ)

Pφ(τ)

)]
<∞. (5.22)

Finally, iii) immediately follows from the fact that ∇λL(θ, λ) is a constant function of λ.

We use the standard procedure for proving the convergence of the PDPG algorithm.

The proof steps are common for stochastic approximation methods and we refer the reader

to [11, 21] and references therein for more details. We summarize the scheme of the proof

124

in the following steps:

1. Tracking o.d.e.: Under Assumption 5.3.2, one can view the PDPG as a two-time-

scale stochastic approximation method. Then, using the results of Section 6 of [12],

we show that the sequence of (θk, λk) converges almost surely to a stationary point

(θ∗, λ∗) of the corresponding continuous-time dynamical system.

2. Lyapunov Stability: By using Lyapunov analysis, we show that the continuous-time

system is locally asymptotically stable at a first-order stationary point.

3. Saddle Point Analysis: Since we have used the Lagrangian as the Lyapunov func-

tion, it implies the system is stable in the stationary point of the Lagrangian, which is,

in fact, a local saddle point. Finally, we show that with an appropriate initial policy,

the policy converges to a local optimal solution θ∗ for the OPT-R.

First, let us denote by ΨΞ [f(ξ)] the right directional derivative of ΓΞ(ξ) in the direction

of f(ξ), defined as

ΨΞ [f(ξ)] := lim
α↓0

ΓΞ [ξ + αf(ξ)]− ΓΞ [ξ]

α

for any compact set Ξ and ξ ∈ Ξ.

Since θ converges on a faster time-scale than λ by Assumption 5.3.2, one can write the

θ-update rule (5.7) with a relation that is invariant to λ:

θk+1 = ΓΘ

θk − α1(k)

 1

N

N∑
j=1

∇θ logPθ(τkj)

∣∣∣∣∣∣
θ=θk

(
J(τkj) + λ log

Pθ(τkj)

Pφ(τkj)
+ λ

) .
Consider the continuous-time dynamics of θ ∈ Θ defined as

θ̇ = ΨΘ [−∇θL(θ, λ)] , (5.23)

where by using the right directional derivative ΨΘ [−∇θL(θ, λ)] in the gradient descent

algorithm for θ, the gradient will point in the descent direction of L(θ, λ) along the boundary

of Θ (denoted by ∂Θ) whenever the θ-update hits the boundary. We refer the interested

125

reader to Section 5.4 of [12] for discussions about the existence of the limit in (5.23).

Since λ converges in the slowest time-scale, the λ-update rule (5.8) can be re-written

for a converged value θ∗(λ) as

λk+1 = ΓΛ

λk + α2(k)

 1

N

N∑
j=1

log
Pθ∗(λ)(τ

k
j)

Pφ(τkj)
− δ

 .
Consider the continuous-time dynamics corresponding to λ, i.e.

λ̇ = ΨΛ [∇λL(θ, λ)] , (5.24)

where by using ΨΛ [∇λL(θ, λ)] in the gradient ascent algorithm, the gradient will point in

the ascent direction along the boundary of Λ (denoted by ∂Λ) whenever the λ-update hits

the boundary.

We prove Theorem 5.3.3 next.

Proof. Convergence of the θ-update: First, we need to show that the assumptions of

Lemma 1 in Chapter 6 of [12] hold for the θ-update and an arbitrary value of λ. Let us

justify these assumptions: (i) the Lipschitz continuity follows from Lemma 5.A.1, and (ii)

the step-size rules follow from Assumption 5.3.2. (iii) For an arbitrary value λ, one can

write the θ-update as a stochastic approximation, i.e.,

θk+1 = ΓΘ

[
θk + α1(k)

(
−∇θL(θ, λ)|θ=θk +Mθk+1

)]
, (5.25)

where

Mθk+1 = ∇θL(θ, λ)|θ=θk −
1

N

N∑
j=1

∇θ logPθ(τkj)
∣∣∣
θ=θk

(
J(τkj) + λk log

Pθ(τkj)

Pφ(τkj)
+ λk

)
.

(5.26)

For Mθk+1 to be a Martingale difference error term, we need to show that its expectation

with respect to the filtration Fkθ = σ(θm,Mθm ,m ≤ k) is zero and that it is square integrable

with E
[
‖Mθk+1‖2|Fkθ

]
≤ κk(1 +‖θk‖2) for some κk. Since the trajectories T k are generated

126

from the probability mass function Pθk(·), it immediately follows that E
[
Mθk+1 |Fkθ

]
= 0.

Also, we have:

‖Mθk+1‖2

≤ 2‖∇θL(θ, λ)|θ=θk‖2 +
2

N2

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2
∥∥∥∥∥∥
N∑
j=1

∇θ logPθ(τkj)
∣∣
θ=θk

∥∥∥∥∥∥
2

≤ 2κk2

(
1 + ‖θk‖2

)
+

2N

N2

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2
 N∑
j=1

κk1(τkj)
(

1 + ‖θk‖2
)

≤ κk
(

1 + ‖θk‖2
)
,

where

Dk
max = max

1≤j≤N
log

Pθ(τkj)

Pφ(τkj)
, and

κk = 2κk2 +
2N

N
max

1≤j≤N
κk1(τkj)

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2

<∞.

The first and second inequality uses the relation ‖
∑N

i=1 ai‖2 ≤ 2N−1(
∑N

i=1 ‖a‖2). Also, the

second one uses the results of Lemma 5.A.1. Finally, the boundedness of κk follows from

Assumption 5.2.1 and having κk1 < ∞, κk2(τkj) < ∞ w.p. 1. Finally, (iv) supk ‖θk‖ < ∞

almost surely, because all θk are within the compact set Θ. Hence, by Theorem 2 of Chapter

2 in [12], the sequence {θk} converges almost surely to a (possibly sample path dependent)

internally chain transitive invariant set of o.d.e. (5.23).

For a given λ, define the Lyapunov function

Lλ(θ) = L(θ, λ)− L(θ∗, λ), (5.27)

where θ∗ ∈ Θ is a local minimum point. For the sake of simplifying the proof, let us consider

that θ∗ is an isolated local minimum point, i.e., there exists r such that for all θ ∈ Br(θ∗),

Lλ(θ) > Lλ(θ∗). This means that the Lyapunov function Lλ(θ) is locally positive definite,

i.e., Lλ(θ∗) = 0 and Lλ(θ) > 0 for Br \ {θ∗}.

If we establish the negative semi-definiteness of dLλ(θ)/dt ≤ 0, then we can use the

127

Lyapunov stability theorems to show the convergence of the dynamical system. Consider

the time derivative of the corresponding continuous-time system for θ, i.e.,

dLλ(θ)

dt
=
dL(θ, λ)

dt
= (∇θL(θ, λ))TΨΘ(−∇θL(θ, λ)). (5.28)

Consider two cases:

i) For a fixed θ0 ∈ Θ, there exists α0 > 0 such that the update θ0−α∇θL(θ, λ)|θ=θ0 ∈ Θ

for all α ∈ (0, α0]. In this case, ΨΘ(−∇θL(θ, λ)) = −∇θL(θ, λ), which further implies

that

dL(θ0, λ)

dt
= −‖∇θL(θ, λ)|θ=θ0‖2 ≤ 0,

and this quantity is non-zero as long as ‖ΨΘ(−∇θL(θ, λ))‖ 6= 0.

ii) For fixed θ0 ∈ Θ and any α0 > 0, there exists α ∈ (0, α0] such that θα := θ0 −

α∇θL(θ, λ)|θ=θ0 6∈ Θ. The projection ΓΘ(θα) = arg minθ∈Θ
1
2‖θ − θα‖

2 maps θα to a

point in ∂Θ. This projection is single-valued because of the compactness and convexity

of Θ, and we denote the projected point by θ̄α ∈ Θ. Consider α ↓ 0, then

(∇θL(θ, λ))TΨΘ(−∇θL(θ, λ)) = lim
α↓0

(θ − θα)T (θ̄α − θ)
η

= lim
α↓0

−‖θ̄α − θ|2

η2
+

(θ̄α − θα)T (θ̄α − θ)
η2

≤ 0,

where the last inequality follows from the Projection Theorem (see Proposition 1.1.9

of [10]). Again, one can verify that the time-derivative quantity is non-zero as long as

‖ΨΘ(−∇θL(θ, λ))‖ 6= 0.

In summary, dLλ(θ)/dt ≤ 0 and this quantity is nonzero as long as ‖ΨΘ(−∇θL(θ, λ))‖ 6=

0. Then by LaSalle’s Local Invariant Set Theorem (see, e.g., Theorem 3.4 of [80]), we

conclude that the dynamical system tends to the largest positive invariant set within Mθ :=

{θ : ‖ΨΘ(−∇θL(θ, λ))‖ = 0}. Notice that θ∗ ∈Mθ. Let l > 0 be equal to

min{Lλ(θ) : ‖ΨΘ(−∇θL(θ, λ))‖ = 0, θ ∈ Br(θ∗) \ θ∗}.

128

Then every trajectory starting from the attraction region {θ ∈ Br(θ∗)|Lλ(θ) < l} will tend

to the local minimum θ∗. Since we chose θ∗ to be arbitrary, this holds for all local minima.

Hence, using Corollary 4 of Chapter 2 in [12], we conclude that if the initial policy θ0 is

within the attraction region of a local minimum point θ∗, then it will converge to it almost

surely.

Remark 5.A.2. The case in which θ∗ is not isolated can be handled similarly, with the

minor difference that the convergence happens to a set of optimal points instead of to a

single point.

Convergence of the λ-update: We need to show that the assumptions of Theorem

2 in Chapter 6 of [12] hold for the two-time-scale stochastic approximation theory. Let us

verify the validity of these assumptions: (i) ∇λL(θ, λ) is a Lipschitz function in λ from

Lemma 5.A.1, and (ii) step-size rules follow from Assumption 5.3.2. (iii) Since λ converges

in a slower time-scale, we have ‖θk,i−θ∗(λk)‖ → 0 almost surely as i→∞, which, according

to the Lipschitz continuity of ∇λL(θ, λ), implies that

‖∇λL(θ, λ)|θ=θk,i,λ=λk −∇λL(θ, λ)|θ=θ∗(λk),λ=λk‖ → 0 as i→∞. (5.29)

Hence the λ-update can be written as

λk+1 = ΓΛ

[
λk + α2(k)

(
∇λL(θ, λ)|θ=θ∗(λk),λ=λk +Mλk+1

)]
,

where

Mλk+1 = −∇λL(θ, λ)|θ=θ∗(λk),λ=λk +
(1

N

N∑
j=1

log
Pθ∗(λk)(τ

k
j)

Pφ(τkj)
− δ
)
. (5.30)

From (5.30), we can verify that E
[
Mλk+1 |Fkλ

]
= 0, where Fkλ = σ(λm,Mλm ,m ≤ k) is a

filtration of λ generated by different independent trajectories. Also, we have:

‖Mλk+1‖2 ≤ 2‖∇λL(θ, λ)|λ=λk‖2 +
2N

N

(
max

1≤j≤N

∣∣∣∣∣log
Pθ∗(λk)(τ

k
j)

Pθ(τkj)
− δ

∣∣∣∣∣
)2

<∞.

129

Hence, Mλk+1 is a Martingale difference error. Also, (v) sup{λk} < ∞. Recall that from

the convergence analysis of the θ-update for a λk, we know that θ∗(λk) is an asymptotically

stable point. Then by Theorem 2 of Chapter 6 in [12], we can conclude that (θk, λk)

converges almost surely to (θ∗(λ∗), λ∗), where λ∗ belongs to an internally chain transitive

invariant set of (5.24).

Define the Lyapunov function:

L(λ) = −L(θ∗(λ), λ) + L(θ∗(λ∗), λ∗),

where λ∗ is a local maximum point, i.e., there exists r such that for any λ ∈ Br(λ∗),

the Lyapunov function L(λ) is positive definite. We can follow similar lines of arguments

as we did for the θ-update to show that dL(λ)
dt ≤ 0 and this quantity is non-zero as long

as ΨΛ(−∇λL(θ∗(λ), λ)) 6= 0. Then by using the results of LaSalle’s Local Invariant Set

Theorem, we can establish the convergence of the dynamical system to the largest invariant

set within

Mλ := {λ : ΨΛ(−∇λL(θ∗(λ), λ)) = 0}.

This means that λ∗ ∈Mλ is a stationary point. Let

l = min{L(λ) : ΨΛ(−∇λL(θ∗(λ), λ)) = 0, λ ∈ Br(λ∗) \ λ∗}.

Then, every trajectory starting with λ0 in {λ ∈ Br(λ∗) : L(λ) < l} will tend to λ∗ w.p. 1.

Saddle Point Analysis: By denoting θ∗ = θ∗(λ∗), we want to show that (θ∗, λ∗) is, in

fact, a saddle point of the Lagrangian L(θ, λ). Recall that, as we proved in the convergence

the of θ-update, θ∗ is a local minimum of L(θ, λ) within a sufficiently small ball around

itself, i.e., there exists r > 0 such that

L(θ∗, λ∗) ≤ L(θ, λ∗), ∀θ ∈ Θ ∩ Br(θ∗). (5.31)

130

It is easy to verify that θ∗ is a feasible solution of (OPT-R) whenever λ∗ ∈ [0, λmax), i.e.

DKL(θ∗ ‖ φ) ≤ δ. (5.32)

To show this, assume for a contradiction that DKL(θ∗ ‖ φ)− δ > 0. Then,

ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗] = lim
α↓0

ΓΛ [λ∗ + α∇λL(θ, λ)|θ=θ∗,λ=λ∗]− ΓΛ [λ∗]

α

= lim
α↓0

ΓΛ [λ∗ + α (DKL(θ∗ ‖ φ)− δ)]− ΓΛ [λ∗]

α

= DKL(θ∗ ‖ φ)− δ > 0,

which contradicts the fact that ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗] = 0. Notice that the feasibility

cannot be verified when λ∗ = λmax, because ΨΛ

[
∇λL(θ, λ)|θ=θ∗(λmax),λ=λmax

]
= 0 when

DKL(θ∗ ‖ φ) > δ. In this case, we increase λmax (e.g., we set λmax ← 2λmax in our

algorithm) if such a behavior happens until it converges to an interior point of [0, λmax].

In addition, the complementary slackness condition

λ∗(DKL(θ∗ ‖ φ)− δ) = 0 (5.33)

holds. To show this, we only need to verify that DKL(θ∗ ‖ φ) < δ yields λ∗ = 0. For a

contradiction, suppose that λ∗ ∈ (0, λmax). Then, we have

ΨΛ

[
∇λL(θ, λ)|θ=θ∗(λ∗),λ=λ∗

]
= DKL(θ∗ ‖ φ)− δ < 0,

which contradicts the fact that ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗] = 0, meaning that λ∗ = 0 in this

case. Hence, we have:

L(θ∗, λ∗) = Vθ∗(x0) + λ∗ (DKL(θ∗ ‖ φ)− δ)

= Vθ∗(x0)

≥ Vθ∗(x0) + λ (DKL(θ∗ ‖ φ)− δ) = L(θ∗, λ). (5.34)

From (5.31) and (5.34), we observe that (θ∗, λ∗) is a saddle point of L(θ, λ), so according

131

to the saddle point theorem, θ∗ is a local minimum of (OPT-R). Recall that the result of

Theorem 5.3.3 depends on the initial values for θ0 and λ0, so the convergence to a local

minimum is sample path depenedant.

5.A.3 Proof of Corollary 5.3.4

Proof. From the convergence analysis of the θ-update, we know that {θk} converges almost

surely to the largest invariant set within Mθ, and similarly, {λk} converges almost surely

to the largest invariant set within Mλ. We also know from (5.32) that θ∗ is a feasible point

of (OPT-R). When λ∗ = 0, then L(θ∗, λ∗) = Vθ∗(x0). Also, for λ∗ > 0, the complementary

slackness condition (5.33) implies DKL(θ∗ ‖ φ) = δ. Hence ∇θDKL(θ ‖ φ)|θ=θ∗ = 0, which

in turn, means that

∇θL(θ, λ∗)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ + λ∗∇θDKL(θ ‖ φ)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ . (5.35)

Hence, for a θ∗ located in the interior of Θ, we have ∇θL(θ, λ∗)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ = 0,

so it is a first-order stationary point of (OPT-R). However, if θ∗ ∈ ∂Θ, it is possible to

have ‖∇θL(θ, λ∗)|θ=θ∗‖ 6= 0.

Remark 5.A.3. In practice, we choose the projection set Θ large enough so that the latter

case (convergence to boundary) will not happen. For example, assuring that the weights

of a neural network do not diverge is a sufficient criterion to use instead of the projection

operator ΓΘ.

5.A.4 Equivalent Results for (OPT-F)

A similar PDPG algorithm to the one proposed in Algorithm 8 can solve (OPT-F), only

requiring a slight modification of rules (5.7) and (5.8) as

θk+1 = ΓΘ

[
θk − α1(k)

(1

N

N∑
j=1

∇θ logPθ(τkj)
∣∣
θ=θk

(
J(τkj) + λk IS(τkj) log

Pφ(τkj)

Pθ(τkj)
− λk

))]

λk+1 = ΓΛ

[
λk + α2(k)

(1

N

N∑
j=1

IS(τkj) log
Pφ(τkj)

Pθ(τkj)
− δ
)]
,

132

where IS(τkj) = Pφ(τkj)/Pθ(τkj) is the importance sampling weight added to account for the

bias introduced by sampling under the student’s policy. To ensure a well-defined (OPT-F),

we need the following assumption:

Assumption 5.A.4. Well-defined (OPT-F): for any state–action pair (x, a) ∈ X × A

with πS(x, a) = 0, we have πT (x, a) = 0.

This assumption ensures a similar criterion to that of Assumption 5.2.1, but notice that

in this case, the student might take any action, regardless of the teacher’s policy. Exactly

the same steps can be taken, virtually verbatim, to prove the following convergence property

of the PDPG algorithm for (OPT-F).

Theorem 5.A.5. Under Assumptions 5.3.1, 5.3.2, and 5.A.4, the sequence of policy up-

dates (starting from θ0 sufficiently close to a local optimum point θ∗) and Lagrange mul-

tipliers converges almost surely to a saddle point of the Lagrangian, i.e., (θ(k), λ(k))
a.s.−→

(θ∗, λ∗). Then, θ∗ is the local optimal solution of (OPT-F).

5.B Practical PDPG Algorithm

A naive implementation of Algorithm 8 would result in a high-variance training procedure.

In this section, we discuss several techniques for variance reduction, resulting in a more

stable algorithm compared to the one proposed in Algorithm 8.

5.B.1 Step-wise KL-divergence Measure

In the policy distillation literature, some studies use a trajectory-wise KL-divergence (KL-F)

as the distance metric [88], but the step-wise KL-divergence between the distribution is also

common [30], which is defined as:

Dstep
KL (φ ‖ θ) = Ex∼dπT

[
DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)]
, (5.36)

133

where

DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)
=
∑
a∈A

πT (a|x;φ) log
πT (a|x;φ)

πS(a|x; θ)
. (5.37)

In the next proposition, we explore the relations between these two methods.

Proposition 5.B.1. The following relation holds between the trajectory-wise and step-wise

KL-divergence metrics:

DKL(φ ‖ θ) ≤ E[H] Dstep
KL (φ ‖ θ) (5.38)

Proof. According to the definition of trajectory-wise KL-divergence, we have:

DKL(Pφ(τ)||Pθ(τ)) =
∑
τ

Pφ(τ) log
Pφ(τ)

Pθ(τ)

=
∑
τ

Pφ(τ) log
µ(x0)

∏H−1
t=0 πT (at|xt;φ)P (xt+1|xt, at)

µ(x0)
∏H−1
t=0 πS(at|xt; θ)P (xt+1|xt, at)

=
∑
τ

Pφ(τ)
H−1∑
t=0

log
πT (at|xt;φ)

πS(at|xt; θ)

=
∑

x∈X ,a∈A

∑
τ

Pφ(τ)
H−1∑
t=0

It(τ ;x, a) log
πT (a|x;φ)

πS(a|x; θ)

≤
∑

x∈X ,a∈A
E[H]dπT (x)πT (a|x;φ) log

πT (a|x;φ)

πS(a|x; θ)

= E[H]
∑
x∈X

dπT (x)
∑
a∈A

πT (a|x;φ) log
πT (a|x;φ)

πS(a|x; θ)

= E[H] Ex∼dπT
[
DKL(πT (·|x;φ)||πS(·|x; θ))

]
Here, It(τ ;x, a) is the indicator of whether (xt = x, at = a) occurs along trajectory τ . Also,

dπT (x) is the distribution of being in state x under policy πT , defined as

dπT (x) =

Hmax∑
t=0

dt,πT (x)/Hmax,

and dt,πT (x) is the probability of being in x at time t under policy πT .

134

According to this proposition, the step-wise KL distances can be used to provide an

upper bound on the trajectory-wise one. In other words, if the step-wise KL multiplied by

the expected horizon length is less than δ, then it is also correct for the trajectory-wise one.

The only remaining issue is that computing the expectation in (5.36) is not straightfor-

ward, since we only have access to the sample trajectories of the student during training.

Using student samples to approximate the KL-divergence introduces some bias. One can

alleviate this bias by incorporating importance sampling (IS) weights as

Dstep
KL (φ ‖ θ) = Ex∼dπS

[
dπT (x)

dπS (x)
DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)]
; (5.39)

however, computing the stationary distributions is still a challenging task, even in simple

MDPs with finite state space. One can follow the instructions of [55] for computing the

correction values, but they add extra complications and are not the focus of this work.

Even though we can more easily compute an (unbiased) estimate of reverse KL-divergence,

we will utilize a biased estimation of the forward KL-divergence in most of our numerical

analysis because of its “mean-seeking” property. Defining this biased forward KL-divergence

is common in the literature, e.g., in [76].

Next, we illustrate with an example the low variance of the step-wise approximators

compared to the trajectory-wise one.

Example: KL Approximation Accuracy using Full Information We design a

simple 2 × 2 GridWorld example, as illustrated in Figure 5.B.1, to visualize the effect of

approximating KL-divergence using Monte Carlo sampling. There is one agent in the top-

left corner of the grid and it should reach the goal state located in the bottom-left one. We

kept the problem as simple as possible since we wanted to generate all possible trajectories

for computing the exact KL-divergence. The length of the horizon for this game is 4, so

the total number of possible trajectories is 44 = 256. One may notice that some of these

trajectories might fully overlap, but that is fine for the purpose of this experiment. In this

experiment, we have used a linear function approximator (i.e., a neural network with no

hidden layer) and a medium-sized neural network.

We train a teacher that produces the actions right, left, up, and down with probabilities

135

Figure 5.B.1 Illustration of the 2 × 2 GridWorld used for evaluating the effectiveness of
KL approximations.

0.7, 0.0, 0.1, and 0.2, respectively. Once the trained network is available, we initialize the

student’s policy variables with those of the teacher plus a random number. Figure 5.B.2

shows the convergence behavior of the KL approximations to the exact value as we increase

the Monte Carlo samples. The horizontal axis shows the number of sampled trajectories.

As we observe, step-wise KL can provide a very good approximation of KL, even with a

single trajectory sample, but the trajectory-wise approximation exhibits unstable behavior

which is due to the intrinsic high variance of the estimator.

0 20 40 60 80 100
Sample size

0.09

0.10

0.11

0.12

0.13

0.14

KL
-d

iv
er

ge
nc

e

exact KL
step-wise KL approximation
trajectory-wise KL approximation

(a) Linear policy approximation

0 20 40 60 80 100
Sample size

0.74

0.76

0.78

0.80

0.82

0.84

KL
-d

iv
er

ge
nc

e

exact KL
step-wise KL approximation
trajectory-wise KL approximation

(b) Neural network function approximator
with variables

Figure 5.B.2 Comparison of step-wise and trajectory-wise KL approximations, and their
convergence to the exact KLs for two different policy approximators.

5.B.2 Practical PDPG Algorithm

According to the discussion of Section 5.4, we present the details of the practical PDPG

algorithm in this section. We consider a setting in which the pre-trained teacher is readily

available. The teacher articulates the status quo of solving the task. It can be a pre-trained

RL agent itself, manually designed procedures, or a model of the teacher that has been

trained using supervised learning from historical experiences. For example, the square-

136

wave experiment uses handcrafted tabular policies, while in the wall leaping experiment,

the teacher’s policy—modeled with a neural network—is the outcome of an actor–critic

algorithm. As long as we have cheap access to the teacher throughout the algorithm for

numerous queries and get the corresponding probabilities for any given state and action

pair, it is sufficient for our purposes.

Our approach is described in Algorithm 9. In every training iteration, we sample mul-

tiple trajectories under the student’s policy, denoted by T k, which will be further utilized

in approximating the policy gradient, KL approximations, and entropy. For more sample

efficiency of the algorithm, we extract multiple sub-trajectories from each τkj , and consider

each sub-trajectory as an independent Monte Carlo sample. This is a common modification

in policy gradient algorithms and can provide a satisfactory approximation from a single

trajectory experience. Then the teacher provides an approximate probability for all actions

at all visited states xkj,t. Once we know the probability of both student and teacher, we can

compute the approximate step-wise KL-divergence from steps 8 and 9. Step 10 computes

the entropy of student’s current policy at each iteration.

Now, we have all approximations for computing update directions. In step 11, we use all

previously computed sub-trajectory log-probabilities and their cumulative sampled reward

along with the KL and entropy approximation to compute the loss. In this step, we also

use a critic to provide a value of being at the initial point of each sub-trajectory V (xkj,t),

which will provide a baseline for variance reduction. Note that we didn’t include the critic

steps in our main algorithm since it follows a standard actor–critic design. Step 12 updates

the policy parameters using the approximate gradient of loss with respect to θ at point θk.

To be precise, the approximate gradient is employed in a first-order optimizer, e.g., ADAM

[45], to update the θ values in the descent direction of the loss. Finally, the Lagrange

multipliers λ and ζ are updated based on the amount of constraint violation at steps 13

and 14. We also periodically check to see whether λk has converged to λmax, in which case

we increase its quantity similar to Algorithm 8. Notice that since we have considered an

equality constraint for entropy, its Lagrange multipliers can be positive or negative. To this

end, we consider ζ ∈ [ζmin, ζmax] and if it converges to the boundary, we will increase the

interval length.

137

Algorithm 9 Practical Primal-Dual Policy Gradient (PDPG) Algorithm for (OPT-F)

1: input: teacher’s policy with weights φ
2: initialize: student’s policy with θ0, possibly equal φ; initialize step size schedules α1(·), α2(·) and α3(·)
3: while TRUE do
4: for k = 0, 1, · · · do
5: following policy θk, generate a set of N trajectories T k = {τkj , j = 1, 2, · · · , N}, each starting from

an initial state x0 ∼ P0(·)
6: extract all trajectories τkj,t, which is a sub-trajectory of τkj from xkj,t onwards; also com-

pute their corresponding accumulated reward J(τkj,t) and log-probability log P̃θ(τkj,t) :=∑Hk
j −1

t=0 log πS(akj,t|xkj,t, θ). Let T̄ k be the set of all sub-trajectories for all visited states xkj,t
7: query the teacher and compute πT (·|xkj,t, θk)
8: compute KL-divergence for all visited states xkj,t, i.e.,

Dstep
KL

(
πT (·|xkj,t;φ) ‖ πS(·|xkj,t; θk)

)
=
∑
a∈A

πT (a|xkj,t;φ) log
πT (a|xkj,t;φ)

πS(a|xkj,t; θk)
, ∀j, t (5.40)

9: (KL approximation) compute the approximate KL-divergence as

D̂step
KL (φ ‖ θk) =

1

N

N∑
j=1

1

Hk
j − 1

Hk
j −1∑
t=0

clipρ
(
Dstep
KL

(
πT (·|xkj,t;φ) ‖ πS(·|xkj,t; θk)

))
(5.41)

10: (entropy approximation) compute the approximate entropy

en̂t(θk) = − 1

N

N∑
j=1

1

Hk
j − 1

Hk
j −1∑
t=0

∑
a∈A

πS(a|xkj,t; θk) log πS(a|xkj,t; θk) (5.42)

11: (compute loss) compute the loss according to

Loss(θk, λk, ζk) =
1

|T̄ k|
∑

τkj,t∈T̄
k

log P̃(τkj,t)(J(τkj,t)− V (xkj,t))+

λk(D̂step
KL (φ ‖ θk)− δ) + ζk(en̂t(θk)− δent) (5.43)

12: (θ-update) update θk according to

θk+1 = ΓΘ

[
θk − α1(k)

(1

N

N∑
j=1

∇θLoss(θ, λk, ζk)
∣∣
θ=θk

)]
(5.44)

13: (λ-update) update λk according to

λk+1 = ΓΛ

[
λk + α2(k)

(
D̂step
KL (φ ‖ θk)− δ

)]
(5.45)

14: (ζ-update) update ζk with rule

λk+1 = ΓZ
[
λk + α3(k)

(
en̂t(θk)− δent

)]
(5.46)

15: end for
16: update λmax similar to Algorithm 8
17: if ζk converges to ζmax then
18: ζmax ← ζmax + constant
19: else if ζk converges to ζmin then
20: ζmin ← ζmin − constant
21: else
22: return θ, λ and ζ; break
23: end if
24: end while

138

5.C Experiments Setup

In all of our experiments, the first step was to identify the teacher. In the square-wave

experiment, we manually designed all teacher probabilities at every state. We also modeled

situations in which the teacher is less “determined” and follows a more complicated decision-

making scheme, such as in our wall leaping experiment, in which the teacher is the policy

of an agent trained using the actor–critic algorithm.

Although we could have initialized the student’s policy randomly, we chose to initialize

it with a pre-trained neural network. In all experiments, we train the neural network for

the unconstrained problem and using the actor–critic algorithm. Similarly, the student’s

critic is initialized from the previously trained critic. Notice that the student’s initial policy

does not need to be the same as the teacher’s policy. For example, the initial student policy

in the square-wave experiment always takes the horizontal path, which is totally different

from that of the teacher. Nevertheless, starting from a policy close to the teacher would

expedite the learning process since there is a high probability of finding an improved policy

in the proximity of the teacher.

However, starting from a previously trained network can bring some difficulties. For

example, having a deterministic initial policy would lead to a limited amount of exploration.

To mitigate this issue, we use a temperature hyper-parameter when sampling from our

softmax, similar to [8]. In this method, we normalize the output of the neural network—

called logits—with temperature and then compute the sampling probabilities as π(·|s; θ) =

softmax(logits / temperature). Using a temperature greater than 1 smoothes out the

sampling probability distribution, so there will be a higher chance of visiting less-explored

states.

In all of our experiments, we used a neural network with two hidden layers, each with

64 neurons. We used the ADAM optimizer [45] with step size 1e−3 to update the student’s

policy and critic. The temperature is 5; λ and ζ start from 1. The learning rate for λ and

ζ starts from 1e−3 and decays to 1e−3 during training. The right hand sides of all entropy

constraints are set to 0.02. We also have a plan to open-source our PyTorch code soon.

139

Bibliography

[1] Naoki Abe, Naval Verma, Chid Apte, and Robert Schroko. Cross channel optimized

marketing by reinforcement learning. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 767–772.

ACM, 2004.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy op-

timization. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 22–31. JMLR. org, 2017.

[3] Ivo Adan and Gideon Weiss. Exact fcfs matching rates for two infinite multitype

sequences. Operations research, 60(2):475–489, 2012.

[4] Ivo Adan, Ana Bušić, Jean Mairesse, and Gideon Weiss. Reversibility and further

properties of fcfs infinite bipartite matching. Mathematics of Operations Research, 43

(2):598–621, 2017.

[5] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The trav-

eling salesman problem: a computational study. Princeton university press, 2006.

[6] Claudia Archetti and Maria Grazia Speranza. The split delivery vehicle routing prob-

lem: a survey. In The vehicle routing problem: Latest advances and new challenges,

pages 103–122. Springer, 2008.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In International Conference on Learning

Representations, 2015.

140

[8] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

Neural combinatorial optimization with reinforcement learning. arXiv preprint

arXiv:1611.09940, 2016.

[9] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[10] Dimitri P Bertsekas. Convex optimization theory. Athena Scientific Belmont, 2009.

[11] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee.

Natural actor-critic algorithms. Automatica, 45(11), 2009.

[12] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48.

Springer, 2009.

[13] Burak Büke and Hanyi Chen. Stabilizing policies for probabilistic matching systems.

Queueing Systems, 80(1-2):35–69, 2015.

[14] Ana Bušić and Sean Meyn. Optimization of dynamic matching models. arXiv preprint

arXiv:1411.1044, 2014.

[15] Ana Bušić, Varun Gupta, and Jean Mairesse. Stability of the bipartite matching

model. Advances in Applied Probability, 45(2):351–378, 2013.

[16] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement

learning: An overview. In Innovations in multi-agent systems and applications-1,

pages 183–221. Springer, 2010.

[17] René Caldentey, Edward H. Kaplan, and Gideon Weiss. Fcfs infinite bipartite match-

ing of servers and customers. Advances in Applied Probability, 41(3):695–730, 2009.

[18] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Neva-

tia. Abc-cnn: An attention based convolutional neural network for visual question

answering. arXiv preprint arXiv:1511.05960, 2015.

[19] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong Tang.

Stabilizing reinforcement learning in dynamic environment with application to online

141

recommendation. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 1187–1196. ACM, 2018.

[20] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. Conference on Empirical

Methods in Natural Language Processing, 2014.

[21] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-

constrained reinforcement learning with percentile risk criteria. Journal of Machine

Learning Research, 18(167):1–167, 2017.

[22] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh.

A lyapunov-based approach to safe reinforcement learning. In Advances in Neural

Information Processing Systems, pages 8092–8101, 2018.

[23] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences

Research Group, 1976.

[24] Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to a

number of delivery points. Operations research, 12(4):568–581, 1964.

[25] Harold Cramer. Mathematical methods of statistics, princeton univ. Press, Princeton,

NJ, 1946.

[26] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable

models for structured data. In International Conference on Machine Learning, pages

2702–2711, 2016.

[27] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning

combinatorial optimization algorithms over graphs. Advances in Neural Information

Processing Systems, 2017.

[28] Shuo Feng, Peyman Setoodeh, and Simon Haykin. Smart home: Cognitive interactive

people-centric internet of things. IEEE Communications Magazine, 55(2):34–39, 2017.

142

[29] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão,

Marcelo Reis, Eduardo Uchoa, and Renato F Werneck. Robust branch-and-cut-and-

price for the capacitated vehicle routing problem. Mathematical programming, 106

(3):491–511, 2006.

[30] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine.

Divide-and-conquer reinforcement learning. arXiv preprint arXiv:1711.09874, 2017.

[31] Joren Gijsbrechts, Robert N Boute, Jan A Van Mieghem, and Dennis Zhang. Can

deep reinforcement learning improve inventory management? performance and im-

plementation of dual sourcing-mode problems. Performance and Implementation of

Dual Sourcing-Mode Problems (December 17, 2018), 2018.

[32] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.

[33] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, pages 249–256, 2010.

[34] Fred Glover and Manuel Laguna. Tabu search*. In Handbook of combinatorial opti-

mization, pages 3261–3362. Springer, 2013.

[35] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The Vehicle Rout-

ing Problem: Latest Advances and New Challenges, volume 43. Springer Science &

Business Media, 2008.

[36] Inc. Google. Google’s optimization tools (or-tools), 2018. URL https://github.

com/google/or-tools.

[37] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement

learning for robotic manipulation with asynchronous off-policy updates. In IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 3389–3396, 2017.

143

[38] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016. URL http:

//www.gurobi.com.

[39] Itai Gurvich and Amy Ward. On the dynamic control of matching queues. Stochastic

Systems, 4(2):479–523, 2014.

[40] Seunghoon Hong, Junhyuk Oh, Honglak Lee, and Bohyung Han. Learning trans-

ferrable knowledge for semantic segmentation with deep convolutional neural network.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3204–3212, 2016.

[41] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z

Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsuper-

vised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[42] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using

very large target vocabulary for neural machine translation. 2015.

[43] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep learning

for video game playing. arXiv preprint arXiv:1708.07902, 2017.

[44] BRK Kashyap. The double-ended queue with bulk service and limited waiting space.

Operations Research, 14(5):822–834, 1966.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Machine Learning, 2015.

[46] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907, 2016.

[47] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated

annealing. science, 220(4598):671–680, 1983.

[48] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural

Information Processing Systems, pages 1008–1014, 2000.

144

[49] Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate

algorithms. European journal of operational research, 59(3):345–358, 1992.

[50] Gilbert Laporte, Michel Gendreau, Jean-Yves Potvin, and Frédéric Semet. Classical

and modern heuristics for the vehicle routing problem. International transactions in

operational research, 7(4-5):285–300, 2000.

[51] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew

Lefrancq, Laurent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint

arXiv:1711.09883, 2017.

[52] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing and schedul-

ing problems. Networks, 11(2):221–227, 1981.

[53] Xiujun Li, Lihong Li, Jianfeng Gao, Xiaodong He, Jianshu Chen, Li Deng, and

Ji He. Recurrent reinforcement learning: a hybrid approach. arXiv preprint

arXiv:1509.03044, 2015.

[54] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. International Conference on Learning Representations, 2016.

[55] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of

horizon: Infinite-horizon off-policy estimation. In Advances in Neural Information

Processing Systems, pages 5361–5371, 2018.

[56] László Lovász and Michael D Plummer. Matching theory, volume 367. American

Mathematical Soc., 2009.

[57] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches

to attention-based neural machine translation. Conference on Empirical Methods in

Natural Language Processing, 2015.

[58] Jean Mairesse and Pascal Moyal. Stability of the stochastic matching model. Journal

of Applied Probability, 53(4):1064–1077, 2016.

145

[59] Aranyak Mehta. Online matching and ad allocation. Theoretical Computer Science,

8(4):265–368, 2012.

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[61] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[62] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. In International Conference on Machine Learning,

pages 1928–1937, 2016.

[63] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal of Electronic

Imaging, 16(4):049901, 2007.

[64] Mohammadreza Nazari and Alexander L Stolyar. Reward maximization in general

dynamic matching systems. Queueing Systems, 91(1-2):143–170, 2019.

[65] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Re-

inforcement learning for solving the vehicle routing problem. In Advances in Neural

Information Processing Systems, pages 9861–9871, 2018.

[66] Graham Neubig. Neural machine translation and sequence-to-sequence models: A

tutorial. arXiv preprint arXiv:1703.01619, 2017.

[67] Afshin Oroojlooyjadid, Mohammadreza Nazari, Lawrence Snyder, and Martin Takáč.

A deep q-network for the beer game with partial information. arXiv preprint

arXiv:1708.05924, 2017.

[68] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep

multitask and transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

146

[69] Ismail Parsa and Ken Howes. Kdd cup 1998 data, 1999. data retrieved from The UCI

KDD Archive, https://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

[70] Edwin Pednault, Naoki Abe, and Bianca Zadrozny. Sequential cost-sensitive decision

making with reinforcement learning. In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 259–268.

ACM, 2002.

[71] Erica L Plambeck and Amy R Ward. Optimal control of a high-volume assemble-to-

order system with maximum leadtime quotation and expediting. Queueing Systems,

60(1):1–69, 2008.

[72] Ulrike Ritzinger, Jakob Puchinger, and Richard F Hartl. A survey on dynamic and

stochastic vehicle routing problems. International Journal of Production Research, 54

(1):215–231, 2016.

[73] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,

James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia

Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

[74] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. Computational capabilities of graph neural networks. IEEE Transactions

on Neural Networks, 20(1):81–102, 2009.

[75] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cogni-

tive Sciences, 3(6):233–242, 1999.

[76] Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Do-

ersch, Wojciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman,

Karen Simonyan, et al. Kickstarting deep reinforcement learning. arXiv preprint

arXiv:1803.03835, 2018.

[77] Jennie Si and Yu-Tsung Wang. Online learning control by association and reinforce-

ment. IEEE Transactions on Neural networks, 12(2):264–276, 2001.

147

[78] David Silver, Leonard Newnham, David Barker, Suzanne Weller, and Jason McFall.

Concurrent reinforcement learning from customer interactions. In International Con-

ference on Machine Learning, pages 924–932, 2013.

[79] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[80] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.

Prentice hall Englewood Cliffs, NJ, 1991.

[81] Lawrence V Snyder and Zuo-Jun Max Shen. Fundamentals of Supply Chain Theory.

John Wiley & Sons, 2nd edition, 2018.

[82] Alexander L Stolyar. Maximizing queueing network utility subject to stability: Greedy

primal-dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[83] Alexander L Stolyar. Greedy primal-dual algorithm for dynamic resource allocation

in complex networks. Queueing Systems, 54(3):203–220, 2006.

[84] Alexander L Stolyar and Tolga Tezcan. Control of systems with flexible multi-server

pools: a shadow routing approach. Queueing Systems, 66(1):1–51, 2010.

[85] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages 3104–

3112, 2014.

[86] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[87] Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance

related risk criteria. In Proceedings of the twenty-ninth International Conference on

Machine Learning, pages 387–396, 2012.

148

[88] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia

Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement

learning. In Advances in Neural Information Processing Systems, pages 4496–4506,

2017.

[89] Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Ad rec-

ommendation systems for life-time value optimization. In Proceedings of the 24th

International Conference on World Wide Web, pages 1305–1310. ACM, 2015.

[90] Georgios Theocharous, Philip S Thomas, and Mohammad Ghavamzadeh. Personal-

ized ad recommendation systems for life-time value optimization with guarantees. In

IJCAI, pages 1806–1812, 2015.

[91] Andrea Lockerd Thomaz, Cynthia Breazeal, et al. Reinforcement learning with hu-

man teachers: Evidence of feedback and guidance with implications for learning per-

formance. In Aaai, volume 6, pages 1000–1005. Boston, MA, 2006.

[92] Yegor Tkachenko. Autonomous crm control via clv approximation with deep

reinforcement learning in discrete and continuous action space. arXiv preprint

arXiv:1504.01840, 2015.

[93] Yegor Tkachenko, Mykel J Kochenderfer, and Krzysztof Kluza. Customer simulation

for direct marketing experiments. In Data Science and Advanced Analytics (DSAA),

2016 IEEE International Conference on, pages 478–487. IEEE, 2016.

[94] Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

[95] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat

Chaudhuri. Programmatically interpretable reinforcement learning. arXiv preprint

arXiv:1804.02477, 2018.

[96] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances

in Neural Information Processing Systems, pages 2692–2700, 2015.

[97] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to

sequence for sets. 2016.

149

[98] Christos Voudouris and Edward Tsang. Guided local search and its application to

the traveling salesman problem. European journal of operational research, 113(2):

469–499, 1999.

[99] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

[100] Ronald J Williams and Jing Peng. Function optimization using connectionist rein-

forcement learning algorithms. Connection Science, 3(3):241–268, 1991.

[101] Anthony Wren and Alan Holliday. Computer scheduling of vehicles from one or more

depots to a number of delivery points. Operational Research Quarterly, pages 333–344,

1972.

[102] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng

Zhang. The application of two-level attention models in deep convolutional neural

network for fine-grained image classification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 842–850, 2015.

[103] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image

caption generation with visual attention. In International Conference on Machine

Learning, pages 2048–2057, 2015.

150

Biography

Mohammadreza Nazari is a Ph.D. candidate in the Department of Industrial and Systems

Engineering at Lehigh University in Bethlehem, PA. After earning his undergraduate degree

in Industrial Engineering, he ranked 1st among more than 8,000 Industrial Engineering Par-

ticipants in the Iranian National Graduate Qualification Exam and was awarded admission

with honor to the Masters degree program at Sharif University of Technology. After several

years of experience in industry as an ERP consultant and Business Process Analyst, he

joined Lehigh University to pursue his Ph.D. with Professors Lawrence Snyder and Martin

Takáč. During his Ph.D. studies, he has been engaged in analyzing and designing novel

Machine Learning and Reinforcement Learning solutions for real-world problems in Supply

Chain and Marketing. He has been collaborating with SAS Institute Inc. over the last two

years, with a desire to build practical solutions that incorporate Artificial Intelligence. Be-

cause of his excellence in research and service, he was twice awarded the ISE Ph.D. Student

of Year title (2017, 2019), and Graduate Student Leadership and Service prize, 2017.

151

