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FIGURES 

Table 1. pds5-1 ctf4 is synthetically lethal. 

 Observed  Expected  

Wildtype  13  27  

pds5-1  14  27  

ctf4::HIS  20  27  

pds5-1 ctf4::HIS  3*  27  

Dead  58 0  

(*) Cells were unable to grow on new YPD plates after colony purification   
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Table 2. Yeast Strain Table 

Strain Genotype Reference 

YMM324 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 

Tong and Skibbens, 2014 

YMM326 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 

elg1::KAN 

Tong and Skibbens, 2015 

KT034 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 pds5-

1 

Tong and Skibbens, 2014 

KT029 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

Tong and Skibbens, 2015 
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LEU2:tetR-GFP 

TRP1:PDS1-MYC13 pds5-

1 elg1::KAN 

 MATα ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

can1-100 HIS3::ctf4 

This Study 

YMM843 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

can1-100 pds5-1 

Maradeo et al., 2010 

 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 

HIS3::BrdU-Inc 

This study 

 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 pds5-

1 HIS3::BrdU-Inc 

This study 

 MATa ade2-1 his3-11,15 This study 
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leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 

elg1::KAN HIS3::BrdU-

Inc 

 MATa ade2-1 his3-11,15 

leu2-3,112 trp1-1 ura3-1 

CTF7:ADE2 URA3:tetO 

LEU2:tetR-GFP 

TRP1:PDS1-MYC13 pds5-

1 elg1::KAN HIS3::BrdU-

Inc 

This study 

*All strains are in W303 background 
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Figure 1. pds5-1 elg1 mutant cells exhibit a cell cycle delay. (A) Flow cytometry 

analyses of DNA content in wildtype, pds5-1 and elg1 single mutant cells and pds5-1 

elg1 double mutant cells. Log phase cells were synchronized in G1 (alpha factor) at 

permissive temperature of 23°C for 2.5 hours, then released into 37°C fresh YPD  

supplemented with nocodazole to arrest cells pre-anaphase. Samples were collected every 

30 minutes. (B) Live cell imaging of wildtype and pds5-1 elg1 cells on Biostation IM 

(Nikon). Video frames were analyzed to determine the time interval between initial 

budding and cytokinesis. 
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Figure 2. Cell cycle delay in pds5-1 elg1 double mutant cells occurs independent of the 

Rad53-dependent DNA damage response. (A) Flow cytometry analyses of DNA content 

of wildtype and pds5-1 elg1 mutant cells. Log phase cells were synchronized in G1 

(alpha factor) at permissive temperature of 23°C for 2.5 hours, then released into 37°C 

fresh YPD supplemented with nocodazole to arrest cells pre-anaphase. Cell samples were 

collected every 20 minutes. Samples shown were selected to represent similar levels of 

cell cycle progression. (B) Rad53 phosphorylation state monitored by Western upon 

release of cells from G1 arrest. Samples shown were selected to represent similar levels 

of cell cycle progression based on 2A. (C) Wildtype and pds5-1 elg1 cells are competent 

to phosphorylate Rad53 in response to DNA damage (MMS) at both 23°C and 37°C, but 

do not phosphorylate Rad53  in the absence of MMS. 
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Figure 3. Viability is not rescued by fork stalling. (A) Serial dilutions of wildtype and 

pds5-1 cells plated on YPD rich medium plates supplemented increasing levels of 

hydroxyurea (HU). Plates were incubated at 23°C or 37° and grown for 3 days. 
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Figure 4. pds5-1 elg1 double mutant cells exhibit reduced levels of late origin of 

replication firing (A) Flow cytometry analyses of wildtype, pds5-1, elg1, and pds5-1 elg1 

mutant cells. Log phase cells were synchronized in G1 (0) at 23°C, then released into 

37°C YPD rich medium supplemented with nocodazole. Samples were collected every 15 

minutes and assessed for DNA content. (B) BrdU chromatin-immunoprecipitation of 

early (ARS607) and late (ARS609) origins of replication. (C) Representative gel of BrdU 

ChIP. 
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Concluding Remarks and Future Directions 
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Cohesins are critical for multiple cellular pathways. The primary function of cohesins is 

the tethering of sister chromatids together to maintain proper pairing after replication and 

through mitosis. Mutations in cohesins result in segregation defects and aneuploidy, a 

hallmark of cancer cells. However, cohesins also affect chromsome condensation, with 

many cohesin mutations in yeast having condensation defects (Guacci and Koshland, 

2012; Guacci et al., 1997; Hartman et al., 2000; Tong and Skibbens, 2014).  Additionally, 

cohesins have been implicated in gene regulation and transcription (Dorsett, 2007; 

Dorsett, 2011). Finally, cohesins and its regulators alike have genetic and physical 

interactions with several replication factors, implying a link between cohesins and 

replication (Maradeo et al., 2010; Maradeo and Skibbens, 2009; Maradeo and Skibbens, 

2010; Moldovan et al., 2006; Rudra and Skibbens, 2012; Tong and Skibbens, 2015). With 

the assortment of functions cohesins have a role in - it is imperative to understand how 

cohesins and their associated factors affect each pathway. 

  

Cohesin structure is still unknown 

 The structural basis through which cohesins tether sister chromatids together 

remains highly debated. Early studies suggest that coiled-coil domains residing between 

bound heads and hinges of Smc proteins remain flexible and kink out to form a lumen 

(Gruber et al., 2003; Haering et al., 2002; Haering et al., 2004). This gave rise to the 

notion of cohesins as huge rings that entrap DNA, even two DNA molecules, within a 

single lumen (Nasmyth and Haering, 2009). However, this "one-ring entrapment" model 
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 There are several possible candidates for Pds5 function apart from cohesins. For 

instance, cohesins, condensins, and the DNA repair complex all contain SMC 

heterodimers (Smc1,3 and Smc2,4 and Smc5,6 respectively) (Jeppsson et al., 2014b). 

Pds5 might aberrantly associate with other SMC complexes and impede progression of 

the DNA replication fork. Induced degradation of Smc2 or Smc5 would similarly test for 

roles of other SMC complexes in producing a cell cycle delay. Alternatively, we may find 

that the cell cycle delay is independent of any SMC complex. Here, we would pursue a 

model that Pds5 interacts directly with DNA polymerase or other replication initiation 

factors, a model predicated on pds5-1 synthetic lethality with ctf4 (Tong and Skibbens, 

unpublished). Pds5 also binds Top2 isomerase, which appears independent of cohesion 

and thus supports a model that Pds5 may directly impact DNA metabolism factors 

outside of cohesin pathways (Aguilar et al., 2005).   

   

Pds5 can be used to characterize cohesin-dependent functions 

 While our studies focused on the mutant pds5-1, different pds5 mutants result in 

cohesion defects but exhibit phenotypes that differentiate between Pds5 functions. For 

example, pds5-1, pds5-99, and pds5-101 all exhibit cohesion defects, yet each exhibit 

distinct phenotypes (Hartman et al., 2000; Panizza et al., 2000; Stead et al., 2003). For 

example, pds5-1 and pds5-101 mutants still retain chromatin bound Mcd1, though the 

soluble pool of Mcd1 is depleted in pds5-1 mutants (Chan et al., 2013; D'Ambrosio and 

Lavoie, 2014; Hartman et al., 2000; Tong and Skibbens, 2014). pds5-99 mutants, 

however, do exhibit defects in retention of Mcd1 to chromatin (Panizza et al., 2000). 

Additionally, pds5-101 and pds5-99 mutants show a reduction in Smc3 acetylation, 
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indicating a defect in facilitating Ctf7 establishment function, whereas pds5-1 does not 

(Chan et al., 2013; Tong and Skibbens, 2014). In contrast, pds5-r10 has a smaller 

cohesion defect than compared to others, and rescues ctf7 mutant temperature sensitivity, 

opposite of the synthetic lethality seen in pds5-1 ctf7-203 (Noble et al., 2006; Sutani et 

al., 2009). Further characterizing other pds5 mutants is likely to reveal important details 

of the processes of cohesin loading, establishment, and maintenance in a genetic system 

in which each process can be studied in isolation, similar to our studies of pds5-1 roles of 

cohesion maintenance from condensation (Tong and Skibbens, 2015).  

 

Implications of future studies  

 Understanding the roles of cohesins is crucial in understanding many underlying 

causes of several diseases. Cohesinopathies such as Roberts Syndrome, SC-Phocamelia, 

and Cornelia deLange show a wide range of symptoms, ranging from mental disorders to 

severe cranial facial and malformations. The segregation defects of cohesin mutants can 

also lead to aneuploidy, a hallmark of many cancers. While cohesinopathies are primarily 

due to mutations in cohesins, not all mutations result in segregation defects (Bose and 

Gerton, 2010; Liu and Krantz, 2008; Mehta et al., 2013; Skibbens et al., 2013). 

Therefore, studying the roles of cohesins outside of sister chromatid cohesion is even 

more crucial to understand the molecular basis of many of these developmental diseases. 

 Pds5 remains a powerful tool from which to understand various functions of 

cohesins, especially outside of cohesion. A great advantage is being able to study the 

process of cohesion maintenance without altering the loading or retention of cohesins 

onto DNA (Tong and Skibbens, 2014). Furthermore, we have shown separable pathways 
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of cohesion and cohesin-dependent condensation, revealing the ability to bypass the 

individual functions in yeast (Tong and Skibbens, 2015). The ability to isolate and study 

cohesin-associated pathways in budding yeast represents a critical advancement, as we 

begin to better mimic cohesin regulation in higher eukaryotes and humans. For example, 

Pds5 homolog knockdowns in mice exhibit developmental defects similar to CdLS, yet 

do not show cohesion defects (Zhang et al., 2009; Zhang et al., 2007). Additionally, Pds5 

and its human orthologs reveal changes in transcriptional regulation, implicating those 

changes to cancer cell progression (Denes et al., 2010; Maffini et al., 2008; Ren et al., 

2008). Elucidating the various functions of cohesins and their regulators in a simpler 

model organism will make recognizing, understanding, and treating developmental 

diseases much easier, and will advance the field that much quicker moving forward.  
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