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Abstract 

The von Willebrand Factor (vWF) is a large multimeric protein in the blood that aids in 

blood clotting. It activates the clotting cascade at specific time and specific place, which is 

one of the human body’s masterpieces in targeted molecular manipulation. Hydrodynamic 

forces trigger conformational changes of vWF, by which its potency and reactivity are 

regulated. In this thesis, inspiration is taken from novel findings in vWF experiments. The 

present study aims to describe the behaviors in this process within the context of polymer 

science. Understanding the basic physical principle helps us to develop targeted drug 

therapy, which is capable to deliver drug wherever and whenever needed. 

 

After the introduction of blood clotting process, researchers in our group propose a novel 

bead-spring model. Contrary to classic bead-spring model that each bead is connected by 

one type of spring, the new model’s beads are connected by finitely extensible nonlinear 

elastic (FENE) springs and Hookean springs consecutively. The motivation is that the A2 

domain, which will undergo significant unfolding process during stretching experiments, 

has been proven to be very flexible. Instead of modeling a monomer as one bead, more 

details inside each monomer and more complexity of vWF multimer have been captured 

by modeling vWF monomers as a highly flexible A2 domain with relatively very rigid 

domains on either side of A2. The A2 domain is modeled as a finitely extensible nonlinear 

elastic (FENE) spring, which is capable of significant extension. At each end of the spring 

is a spherical bead, which is used to represent neighboring rigid domains. In addition, the 

adjacent monomers are connected by a tight harmonic spring successively to form the vWF 
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multimers of desired length.  

 

In an effort to validate our mythology and generalize our results quantitatively, it is 

necessary to study the vWF multimers represented by this noval model in both relaxation 

without flow scenarios and unfolding in response to specific flow circumstances. 

 

Since other researchers in our group have already studied the behaviors of a single vWF 

multimer unfolding in response to shear flow, here we extend our research further to the 

behaviors in response to extensional flow. The first and second chapter of this thesis state 

a brief introduction of blood clotting process and the simulation methodology which uses 

the noval model proposed by researchers in our group. The third chapter includes all the 

relevant calculation, analysis, results and discussion in details. Finally, the last chapter 

presents a comprehensive summary of the behaviors of vWF unfolding process in respond 

to extensional flow. From the research, it concludes that flow intensity and molecular size 

do have profound influences on the behavior characteristics of vWF multimer unfolding 

process. A certain length chain has been proven to unfold much faster in response to 

stronger extensional flow. Moreover, longer vWF chains have been proven to have more 

potential to unfold. Thus, comparing with shear flow, vWF multimers will unfold faster 

and stronger in response to extensional flow. 
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Chapter 1 Introduction 

1.1  Biopolymer manipulation inspired by blood clotting 

In the past few decades, one of the major motivations in the study of polymer science has 

become the desire to utilize the power to control the behavior of biopolymers. [1] The 

thermodynamics, kinetics, and polymer chain structure knowledge in the field of polymer 

science could work together to strengthen a techniques for the manipulation, which could 

also possibly make many significant breakthroughs in polymer science. [2] The biopolymer 

manipulation, “protein unfolding”, which used molecule manipulation techniques, 

deserves consideration. One of the protein unfolding technique is implemented in an 

indirect way – through the presence of fluid flows.  

 

Hemostasis is a well-balanced process that can prevent excessive blood loss after vascular 

injury involving a complex interplay between a plethora of agonists and antagonists. [3] 

Under special conditions, platelet-rich thrombi will occlude the vascular lumen, often 

resulting in cardiovascular disease, which is still the leading cause of death in the modern 

world. [3] The function of von Willebrand Factor (vWF) is related to the unfolding of it in 

response to the presence of various fluid flows. vWF is also able to bind to both 

subendothelial structures in the injured vessel wall and circulating blood platelets by 

supporting the formation of a platelet-rich plug that will prevent bleeding and promote 

wound healing. [4,5] In this thesis, since studying the characteristic of vWF protein under 

shear flow has already been accomplished, extending the topic further to the extensional 

flow is the primary focus. Moreover, the results gained from this study will suggest 

approaches to achieve a specific medical help in human body, such as targeted drug therapy. 
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1.2  Blood Clotting Process – Coagulation 

The blood clotting process, which is also named coagulation, is one of the most 

complicated phenomena in human body. [4] The mechanism of coagulation includes 

activation, adhesion, and aggregation of platelets and more. Once the injury appears, vWF 

will not interact circulating platelets. [6] Under this situation, endothelial cells no longer 

form a barrier wall between the inside blood and the extracellular matrix. Collagens, 

constituting almost of the extracellular matrix, interact with vWF and then result in the 

deposition of vWF on the damaged vessel wall in response to fluid flows. It is possible for 

vWF to bind platelets with affinity areas sufficiently to snare them from rapidly flowing 

blood and retains them at the injury place. However, platelets have no measurable 

interaction with vWF in the circulation, but adhere prompt to exposed immobilized vWF. 

[7] This localization of platelets to the extracellular matrix promotes collagen interaction 

with platelet glycoprotein VI. Binding of collagen to glycoprotein VI leads a signaling 

cascade that results in activation of platelet integrin, which indirectly tight binding of 

platelets to extracellular matrix. Activated platelets release the contents of stored granules 

into the blood plasma, which in turn, activate additional platelets.  

 

1.3  Structure and Functionality of Von Willebrand Factor 

von Willebrand Factor is one of the main actuators in the blood clotting process. Once 

secreted into the plasma, circulating vWF will keep its ultra-large state and are the most 

active ones by the time they provide multiple interactive sites for binding. [3] The ultra-

large vWF multimer becomes smaller fragments by a disintegrin and metalloprotease 

named ADAMTS13 and undergoes scission to shorten the chain to its typical length. [8–
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12] After cleavage, the vWF concatemers in plasma are able to contain 40 to 200 monomers 

that can be stretched by hydrodynamics forces. In addition, multimeric vWF has many 

binding sites for platelets and collagen, and experiences highly significant hydrodynamic 

forces in the circulating system. It has been studied that vWF has force-sensing capability: 

the protein adopts a compact shape in normal circulatory state where extensional rates 

range from hundreds to a few thousand per second; for extensional rates greater than 5000 

s-1. As vWF changes conformation to an elongated shape, it increases its interaction with 

platelets and collagen. (Fig. 1.3 (B))  

 

Model proposed by Ouyang [30] suggests that each pro-vWF subunit consists of four types 

of repeated domains that are arranged in the sequence D1-D2-D’-D3-A1-A2-A3-D4-B1-

B2-B3-C1-C2-CK (Fig. 1.3.(A)). Each domain contains the various chemical 

functionalities required for the interactions between vWF and its surroundings. [5] Among 

all domains in vWF, A2 domain is a force-sensitive domain that lacks a long-range 

disulfide and thus will unfold by hydrodynamic forces in extensional flows. [5,12] 

Unfolding of A2 has an important functionality that dictates the cleavage of vWF 

multimers through with ADAMTS-13.  

 

Fig. 1.3 (A) Schematic illustration of vWF’s domains. (B) Possible mechanism of flow-induced 

conformational change. 
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This is a normal process that will occur in the bloodstream, which is a way to limit the 

length of vWF. [7,12,30] A1 domain strongly interacts with platelets on their surfaces. 

Remarkably, since A1 domain is the most positively charged domain in vWF and the face 

of GP1ba receptor is negatively charged, electrostatic interactions aid in coupling of this 

ligand-receptor pair. [5,7] The role of this interaction appears to be the incorporation of 

platelets into plug, which initiate the blood-clotting cascade. Also, A1 domain has binding 

sites for collagens, although mutagenesis studies suggest the major collagen binding site 

of multimeric vWF is within domain A3. A1 binds collagen VI, a microfibrillar collagen 

and binds collagens I and III as well. The fluid flow activation is required for vWF 

multimer to function. For example, strong extensional flow or shear flow, which is normal 

to damaged vessel wall, is able to elongate vWF multimer that will expose multiple binding 

sites in a physiological environment and facilitate blood clotting process at last. This 

unique characteristic of vWF multimer is certainly inspiring. Comprehensive studies will 

help to develop novel drug delivery method that use a molecule to carry specific drug 

directly to the target sites as a vehicle and therefore diminish the side effects. Study on 

manipulating these characteristics of vWF multimer is very necessary to design targeted 

drugs. Therefore, based on the research achievements by Ouyang [30], which is mainly 

focused on the presence of shear flow in blooding clotting model, it is requisite to further 

extend this topic to the presence of extensional flow to consummate this topic. 
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Chapter 2 vWF Simulation Methodology  

2.1  von Willebrand Factor Model 

Previous researcher in our group has already successfully developed a new model which 

attempts to more realistically describe molecular architecture inherent in the protein will 

be presented. This model can capture the aspect which we believe to be a primary 

mechanical response of a single monomer. It is accomplished by modeling vWF monomers 

as an extensible domain with relatively rigid domains on either side of it. The A2 domain 

has been shown to undergo significant unfolding process in rapid flow conditions. At each 

end of the spring is a spherical bead which represents neighboring rigid domains (Fig. 2.1). 

Adjacent monomers are connected by a relatively stiff harmonic spring between beads of 

each monomer, so as to form the vWF multimers of desired length. This innovative 

improvement of the previous typical coarse-grain vWF models introduces a simple model, 

which, however, is capable of capturing the structural complexity of vWF multimers.  

 

Fig. 2.1 (A) Schematic illustration of vWF’s domains. (B) The vWF monomer model containing two rigid 

beads connected by a highly flexible FENE spring. (C) Possible mechanism of flow-induced 

conformational change. 
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2.2  Numerical Method 

The vWF model in this thesis is developed from the bead-spring model which has already 

been used by many investigators. [15,16] In the present model, each monomer owns one 

FENE spring that connects its two beads. Experimental evidence demonstrates that the A2 

domain of each monomer will undergo unfolding process due to hydrodynamic forces 

applied on vWF molecules under rapid blood flow conditions. From a mechanical response 

point of view, it is more realistic to represent the extensible part of each monomer as a 

FENE spring than to represent the whole monomer as a single bead. Moreover, the use of 

FENE spring can be computed more efficiently than modeling the A2 domain as a 

relatively long series of beads. As for the pair potential between beads, a Lennard-Jones 

pairwise interaction will be applied. 

 

2.2.1 Brownian dynamics 

The Brownian dynamics (BD) is a simplified version of Langevin dynamics (LD), in which 

the average acceleration will be neglected, so that BD is also called non-inertial dynamics. 

The BD simulation, an efficient method for studying molecular dynamics, is proposed as 

early as 1978 by D.L. Ermak and J.A. McCammon. [17] They used BD simulations of short 

chains with hydrodynamic interaction (HI) at equilibrium. Meanwhile, Fixman developed 

the mathematical background for BD simulations of polymer chains in hydrodynamic flow 

conditions. 
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2.2.2 Physical forces 

The drag force is a type of hydrodynamic force which flowing solvent exerts on the 

polymer and is given by 

                 𝑭𝑖
𝐷 = −𝜁(�̇�𝑖 − 𝒗𝑖) = −𝜁(�̇�𝑖 − (∇𝒖)

𝑇𝐫𝑖)                 (1) 

where 𝜁 is the drag coefficient, �̇�𝑖 is the velocity of the bead 𝑖 , 𝒗𝑖 is the undisturbed 

velocity field and ∇𝒖 is the velocity gradient tensor. Similar to Hoda and Larson’s work 

[13], variables are made dimensionless by scaling length with √𝑘𝑏𝑇/𝐻, force with √𝐻𝑘𝑏𝑇, 

and time with 𝜁 𝐻⁄ . Here 𝑘𝑏 is the Boltzmann constant, 𝑇 is the absolute temperature 

and 𝐻 is the spring constant in the FENE spring term. 𝑭𝑺 is either a FENE spring force 

or a harmonic spring force, which account for the connectivity of the chain. Dimensionless 

FENE springs are described as 

                         𝑭𝑖,𝐹𝐸𝑁𝐸
𝑆 =

𝑸𝑖

1−𝑄𝑖
2 𝑄0

2⁄
                          (2) 

where 𝑸𝑖 = 𝐫𝑖+1 − 𝐫𝑖 and 𝑄𝑖  is the magnitude of 𝑸𝑖 . 𝑄0  is the maximum extended 

length for the FENE spring. The expression for the harmonic springs is given by 

                         𝑭𝑖,𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐
𝑆 = 𝑘

𝑸𝑖

𝑄𝑖
(𝑄𝑖 − �̇�)                     (3) 

The harmonic force of strength 𝑘  keeps the average distance between connected 

monomers stiffly constrained to relatively small fluctuations around �̇�. To ensure this, the 

value of 𝑘 is chosen to be 100. �̇� = 4 (21.54𝑛𝑚) which is larger than two times of the 

bead radius, determined from size considerations for vWF monomers.  

 

The self-association between different monomers, which collapses the vWF multimer into 

a relatively compact globule, is represented by a pairwise truncated Lennard-Jones 
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interaction force that acts between beads. 

𝑭𝑖𝑗
𝐼𝑛 =

4

𝑑𝑒𝑣

{
 

 [12 (
𝑑𝑒𝑣

𝑟𝑖𝑗
)
13

− 6𝜀 (
𝑑𝑒𝑣

𝑟𝑖𝑗
)
7

] �̂�𝑖𝑗       𝑟𝑖𝑗 ≥ 3

[12 (
𝑑𝑒𝑣

3
)
13

− 6𝜀 (
𝑑𝑒𝑣

3
)
7

] �̂�𝑖𝑗       𝑟𝑖𝑗 < 3

                (4) 

where  𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 , 𝑟𝑖𝑗 = |𝐫𝑖𝑗|, �̂�𝑖𝑗 is the unit vector along 𝐫𝑖𝑗 , and 𝜀 and 𝑑
𝑒𝑣 are the 

energy and length parameters, respectively, whose values are addressed below.  

 

The Brownian force is 

 𝑭𝑖
𝐵 = (

6𝑘𝐵𝑇𝜁

∆𝑡
)1/2𝒏                            (5) 

where 𝒏 is a random three-dimensional vector, each component of which is uniformly 

distributed in the interval [1, −1].  

 

In order to make sure the stability of the simulations even when two beads are overlapping 

with each other, the Lennard-Jones Potential is truncated. The truncation distance is chosen 

to produce the same level of maximum repulsive force as Larson’s paper. [15] 

 

2.2.3 Governing equations 

The governing equations in the inertia free limit can be obtained by a force balance on each 

bead: 

𝑭𝑖
𝐷 + 𝑭𝑖

𝑆 + 𝑭𝑖
𝐼𝑛 + 𝑭𝑖

𝐵 = 0, 𝑖 = 1,2, … ,𝑁            (6) 

where the subscript 𝑖  refers to the bead number and 𝑭𝑖
𝐷 ,  𝑭𝑖

𝑆 ,  𝑭𝑖
𝐼𝑛  and 𝑭𝑖

𝐵  are the 

hydrodynamic (viscous) drag force, the spring force (either FENE or harmonic), the bead-

bead interaction force, and the Brownian force, respectively.  
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Fig. 2.4.1 Rg is plotted as a function of time for a 20-beads chain without HI when Wi=10 for four cases. 

(A) ∆𝒕 = 𝟏𝟎−𝟒 without Lennard-Jones interaction, (B) ∆𝒕 = 𝟏𝟎−𝟓 without Lennard-Jones interaction,  

(C) ∆𝒕 = 𝟏𝟎−𝟒 with Lennard-Jones interaction, and (D) ∆𝒕 = 𝟏𝟎−𝟓 with Lennard-Jones interaction. 

 

The nominal value of the Rg obtained by both time steps are nearly the same with and 

without the Lennard-Jones pairwise interaction. This assures that temporal convergence is 

attained for the time step of ∆𝑡 = 10−4.  

 

As a result, considering the computer configurations such as CPU, RAM, and the 

computational efficiency, the time-step of ∆𝑡 = 10−4 is sufficient to conduct simulations 

here. 
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2.4.5 Transient effects and equilibrium state 

It is concluded that the time-step of ∆𝑡 = 10−4  satisfies the condition for temporal 

convergence. What is needed next is to determine if the whole time period is long enough 

to calculate the nominal value of the radius-of-gyration (Rg) accurately. Thus, using the 

time-step of ∆𝑡 = 10−4 , for both situations whether the Lennard-Jones pairwise 

interaction is applied or not, the radius-of-gyration (Rg) is calculated as a function of time 

and is plotted in Fig. 2.4.2.  

 

  

  

Fig. 2.4.2 Rg is plotted as a function of time for a 20-beads chain without HI when Wi=10 for two cases. 

 (A) without Lennard-Jones pairwise interaction and (B) with Lennard-Jones pairwise interaction. 
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Following conclusions are reached: 

1. The transition from initial configuration to the quasi equilibrium configuration is very 

short. 

2. After the initial transition a stable equilibrium state is reached in both cases (with and 

without particle interaction). 

3. The amplitude of the fluctuations in the equilibrium state is very small. 

It is illustrated that there are no remarkable difference in the nominal value of radius-of-

gyration of polymer chain between the existence and nonexistence of the Lennard-Jones 

potential interaction. Therefore, in order to simplify the simulations, this factor will not be 

considered in later study. 

 

Moreover, the total computational time for simulation is long enough to reach quasi-

equilibrium state and obtain accurate representation of the nominal values of the radius-of-

gyration. As for the nominal value, in order to eliminate the influence transitional effects 

after the initialization of the vWF multimer, the average value of the radius-of-gyration is 

determined using the time window taken after the equilibrium state is reached. The 

sensitivity of the selection of time window for calculation of the nominal value of the radius 

of gyration is tested using different time period and different stage of the equilibrium state. 

It is shown that the nominal value of the radius of gyration predicted is not very sensitive 

to the averaging process. 
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2.4.6 Flow condition 

The vWF multimers are modeled in quiescent solvent or in fluid flow. Since the study on 

shear flow condition has already been accomplished by other researchers in this group, 

only one flow condition will be investigated in this thesis: extensional flow. For a pure 

extensional flow, the velocity gradient of the flow field was given by 

∇𝐮 = (

𝜀̇ 0 0

0 −
�̇�

2
0

0 0 −
�̇�

2

)                           (17) 

and 𝜀̇ is the extensional rate.  
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Chapter 3 Flow-induced conformation changes of homopolymers 

3.1 Introduction 

In order to get a better understanding of vWF’s behaviors, a collapsed homopolymers in an 

infinite medium under the influence of fluid flow is considered. The conformational 

transition from coiled states to stretched states has been widely studied in the area of 

polymer science for many years. [19,23–25] D. Smith has successfully observed the 

movement of individual, flexible polymers in both steady shear and extensional flow by 

the use of video fluorescence microscopy and simulated single DNA molecule under these 

flow conditions, in which quantitative agreement has been achieved. Subsequently, R. 

Larson further developed the simulation methodology by considering self-entanglements. 

[14,26] The present results constitute a broad context, regarding conformational changes 

of homopolymers in response to various fluid flow types with or without various effects. 

In the present work, only extensional flow condition for the free draining (FD) cases is 

considered. 

 

3.2 Results and discussion 

The starting point of the present work is to consider vWF multimer in an infinite medium 

under the influence of extensional flows. [30] Basic approaches and the principles of the 

present model are based on those introduced by investigations from our research group. 

Interaction with surfaces and walls are not studied in the present work. 
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3.2.1 Calculation of the longest relaxation time 

The Weissenberg number Wi is defined as the ratio of a viscoelastic fluid’s relaxation time 

 to some characteristic temporal scale. In simple extensional flow, 

𝑊𝑖 = 𝜏�̇�                               (18) 

where 𝜀̇ is extentional rate. The longest relaxation time 𝜏 of vWF multimers varies with 

the number of repeat units, which means the number of monomers in present study. The 

number of monomers is N/2, since N is the number of beads. [30] With the effort of 

researchers in our group, the method of obtaining relaxation curves was obtained, and then 

we just need to directly refer to the relaxation curves for square of end-to-end distance 

versus time for N = 60 vWF multimers, which is shown in Fig. 3.2.1 [30]. From this figure, 

it suggests the longest relaxation time 𝜏 was only measured when the ratio of end-to-end 

distance to L is below 0.3. [16,27] Simulations with three different initial conformations 

were conducted for the same number of beads. However, results from all the simulations 

were essentially identical, which demonstrates that the initial conformation of vWF 

multimer has little influence on 𝜏. 

 

Fig. 3.2.1 Relaxation curves for square of end to end distance versus time using 60 beads without HI [30] 
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In addition, according to previous study in our group, Fig. 3.2.2 shows the longest 

relaxation time 𝜏 for different number of beads with and without HI, of which only the 

results for free draining (FD) cases are considered in present work. [28] It suggests that a 

power-law scaling of relaxation time with number of beads exists, with exponents of 1.97 

in the simulation for FD cases. The 𝑅2 values showing the quality of the fits are 0.9929 

for FD, while the exponents determined here agree well with the Rouse relaxation time 

(without HI) 𝜏𝑅~𝑁
2, which is predicted by polymer theory. [29] 

 

Considering the molecular size used in the present FD simulations, prediction for the 

relaxation time differs from experimental observation by nearly a factor of two. Due to the 

simplicity of our model, our prediction is rational. Therefore, it can be taken as an 

indication that the relaxation time here is more appropriately predicted in FD cases.  

 

Fig. 3.2.2 Dependence of the longest relaxation time 𝝉 on the number of beads N with and without 

hydrodynamics: (A) linear scale plot with error bar (confidence interval) and (B) log scale plot. 
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3.2.2 The effect of Lennard-Jones pairwise interaction 

The radius-of-gyration of the 20-bead chain is determined for unfolding process for a wide 

range of Weissenberg numbers (Wi) in response to extensional flows with or without 

Lennard-Jones pairwise interaction, so as to understand the effect of this principle potential 

interaction on the conformation of vWF multimers. 

 

Nominal values of the radius-of-gyration for different values of Weissenberg numbers are 

listed in Table 3.2.1. 

 

Table 3.2.1 Nonimal values of Rg for different values of Wi 

Weissenberg Number Rg (without Lennard-Jones) Rg (with Lennard-Jones) 

0 7.07 8.95 

0.1 13.26 15.82 

0.5 20.16 22.16 

1 22.38 22.47 

10 29.34 30.18 

50 58.16 61.16 

100 62.03 62.66 

200 63.40 63.51 

 

Fig. 3.2.3 depicts the corresponding nominal values of the radius-of-gyration as a function 

of the Weissenberg number with and without the Lennard-Jones potential interaction. 
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Fig. 3.2.3 Dependence of the radius-of-gyration (Rg) on Weissenberg number (Wi) for two cases. 

(A) without Lennard-Jones pairwise interaction, (B) with Lennard-Jones pairwise interaction and 

(C) details comparison between two situations. 

 

It is demonstrated that the bead-bead interaction influences the vWF conformation only at 

low values of Weissenberg number. The radius of gyration with bead-bead interaction 

becomes nearly the same as that without bead-bead interaction as the Weissenberg number 

reaches unity or above. With increasing intensity of extensional flows, bead-bead 

interaction becomes less influential. 

 

Bead-bead interaction has some degree of influence at low value of Weissenberg number. 
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This is due to the repulsive forces. In the limit of low extensional flows, small values of 

the Weissenberg number, the radius-of-gyration in the equilibrium state is not large enough 

so that beads are closer to each other and the amplitude of the repulsive forces are larger. 

Repulsive forces in such limit leads to larger degree of the unfolding of the vWF multimer. 

However, when the Weissenberg number reaches unity or above, this can be viewed as a 

critical intensity level for the onset of unfolding induced by extensional flows, the vWF 

multimer chain extends and repulsive forces lose their dominance. Therefore, for values of 

Wi above near and above unity, the radius-of-gyration (Rg) becomes nearly independent of 

the Lennard-Jones pairwise interaction between beads. 

 

Since the effect of the Lennard-Jones pairwise interaction on the conformational changes 

of the vWF multimer is only significant for small extension rates or small values of 

Weissenberg number, the Lennard-Jones bead-bead interaction is neglected in all 

simulation presented in this document. 

 

3.2.3 Calculation of molecular response in extensional flows 

Previous study shows the dependence of radius-of-gyration on the length of vWF multimer 

in a no-flow condition (FD simulations), as shown in Fig. 3.2.4. [30] The results presented 

in Fig. 3.2.4 is performed using model parameters determined from experimental 

observations as mentioned above. Ouyang and his co-workers [30] has already successfully 

showed that Rg of vWF scales with 𝑁0.322.  


