Wim + response appendices, March 1986

J. Hartley Daniels
John L. Wilson
L. Y. Lai
R. Abbaszadeh

Follow this and additional works at: https://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation
https://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2298

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
Prepared For
U. S. Department of Transportation
Federal Highway Administration
Office of Research and Technology
Washington, D. C., 20590

WIM+RESPONSE APPENDICES

By

J. Hartley Daniels
John L. Wilson
L. Y. Lai
R. Abbaszadeh
B. T. Yen

Department of Civil Engineering
Fritz Engineering Laboratory, Bldg. No. 13
LEHIGH UNIVERSITY
Bethlehem, PA., 18015

March 1986

Fritz Engineering Laboratory Report No. 490.9
METRIC CONVERSION FACTORS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>*2.5</td>
<td>centimeters cm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>30</td>
<td>centimeters cm</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9</td>
<td>meters m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6</td>
<td>kilometers km</td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>6.5</td>
<td>square centimeters cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.09</td>
<td>square meters m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>0.8</td>
<td>square meters m²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.6</td>
<td>square kilometers km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.4</td>
<td>hectares ha</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>1.6</td>
<td>square centimeters cm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.8</td>
<td>square meters m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yards</td>
<td>2.6</td>
<td>square kilometers km²</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>0.4</td>
<td>square kilometers km²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>2.6</td>
<td>square miles mi²</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28</td>
<td>grams g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.45</td>
<td>kilograms kg</td>
</tr>
<tr>
<td>t</td>
<td>short tons</td>
<td>0.9</td>
<td>tonnes t</td>
</tr>
</tbody>
</table>

MASS (weight)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsp</td>
<td>teaspoons</td>
<td>5</td>
<td>milliliters ml</td>
</tr>
<tr>
<td>Tbsp</td>
<td>tablespoons</td>
<td>15</td>
<td>milliliters ml</td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>30</td>
<td>milliliters ml</td>
</tr>
<tr>
<td>c</td>
<td>cups</td>
<td>0.24</td>
<td>liters l</td>
</tr>
<tr>
<td>pt</td>
<td>pints</td>
<td>0.47</td>
<td>liters l</td>
</tr>
<tr>
<td>qt</td>
<td>quarts</td>
<td>0.95</td>
<td>liters l</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.8</td>
<td>liters l</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.03</td>
<td>cubic meters m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.76</td>
<td>cubic meters m³</td>
</tr>
</tbody>
</table>

VOLUME

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
<td>*5/9 (then subtracting 32)</td>
<td>°C Celsius</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact)

<table>
<thead>
<tr>
<th>°C Celsius</th>
<th>°F Fahrenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-18</td>
</tr>
<tr>
<td>10</td>
<td>-29</td>
</tr>
<tr>
<td>20</td>
<td>-4</td>
</tr>
<tr>
<td>30</td>
<td>8.5</td>
</tr>
<tr>
<td>40</td>
<td>10.4</td>
</tr>
<tr>
<td>50</td>
<td>14.0</td>
</tr>
<tr>
<td>60</td>
<td>16.7</td>
</tr>
<tr>
<td>70</td>
<td>19.4</td>
</tr>
<tr>
<td>80</td>
<td>22.2</td>
</tr>
<tr>
<td>90</td>
<td>25.0</td>
</tr>
<tr>
<td>100</td>
<td>27.8</td>
</tr>
</tbody>
</table>

*1 m = 2.54 (exactly). For other exact conversions and more detailed tables, see NBS

ACKNOWLEDGEMENTS

This research was performed by personnel at Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, Bethlehem, Pennsylvania. Dr. Irwin Kugelman is Chairman of the Department of Civil Engineering.

The research reported herein is part of an investigation entitled "Structural Evaluation of In-Service Bridges Using WIM Technology, sponsored by the Federal Highway Administration (FHWA), Washington, D.C. The project supervisor and contracting officer's administrative representative (COTR) for the FHWA is Mr. Harold Bosch.

The field studies would not have been possible without the excellent cooperation and expert assistance of personnel from the Pennsylvania Department of Transportation (PADOT), District 5-0. Special thanks are due Mr. Jim Hoegg, Maintenance Inspector, whose presence and assistance provided vital liaison between PADOT, District 5-0 and the Lehigh University research team.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FIELD TIPS AND NOTES</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Cable Arrangements</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tapeswitches</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Truck Weight Calculation</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Transducers</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Conditioners</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Power Frequency Meter</td>
<td>3</td>
</tr>
<tr>
<td>1.7 Keypad</td>
<td>3</td>
</tr>
<tr>
<td>2. MODIFICATIONS AND UPDATES TO THE WIM+RESPONSE SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>3. OPERATING SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>4. SYSTEM POWER UP-BOOTING THE SYSTEM</td>
<td>5</td>
</tr>
<tr>
<td>5. FILE MAINTENANCE</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Initialization and Formatting Disks</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Copying Files</td>
<td>6</td>
</tr>
<tr>
<td>5.3 Deleting Files</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Listing Files</td>
<td>8</td>
</tr>
</tbody>
</table>
1. FIELD TIPS AND NOTES

1.1 Cable Arrangements:

a. Short gray cables (5 conductor) connect the WIM transducers either to the junction box or S-Box, which is connected to the WIM conditioner through a larger cable (19 conductor), or directly to the WIM conditioner.

b. White cables connect strain gages directly to the RESPONSE conditioner.

c. Long gray cables (5 conductor) connect tapeswitches (T-Box) to the WIM conditioner.

d. Numbering of the cables (gray or white), at both ends, which corresponds to the number of the channel will be helpful in locating the gages on the bridge and possible errors that might occur such as bad connections.

e. All of the connectors must be inspected before connection, and care must be taken to ensure that they are free of dirt and moisture (especially if they are left overnight).

1.2 Tapeswitches:

a. In placement of the tapeswitches on the pavement, the distance between tapeswitch one (TS1) and tapeswitch two (TS2) in lane one, and tapeswitch three (TS3) and tapeswitch four (TS4) in lane two should be greater than 4.0 feet for accurate velocity determination.

b. Tapeswitches are always put on the roadway perpendicular to the direction of traffic. For a skew bridge, the distance between tapeswitch 1 and bridge is defined as the average distance of those at both ends of a tapeswitch.

c. Test all of the tapeswitches to ensure they work properly. This is done by stepping on the connected tapeswitches to see if the corresponding LED lamp inside the van lights on.

d. If you are getting different number of axles from TS1 and TS2, adjust the PULSE WIDTH dial on the WIM conditioner (clockwise gives a longer pulse).

e. The tapeswitches are connected to the connector as shown in Figure 1.
f. Mounting of tapeswitches on the pavement.

1. Sweep the pavement's surface carefully to remove dust and dirt.

2. If the pavement is not dry, remove as much moisture as possible with a propane burner.

3. Stick a double-sided tape on the back of the tapeswitches to help secure them to the pavement.

4. Cover the tapeswitches with heavy-duty tape, twice. First, right on top of the tapeswitch so it holds the tapeswitch to the deck. Second, move about an inch toward the traffic so it protects the first layer of tape.

5. Application of a gummy substance around the tape will prevent the intrusion of moisture under the tape.

1.3 Truck weight calculation:

a. A negative front axle weight as determined by field processing may be due to a vehicle in an adjacent lane or a vehicle that is changing lanes. Also, in the case of a skew bridge, you may want to disregard some of the initial samples.
1.4 Transducers:
 a. For prestressed concrete girders, the door clamps should be used to mount the transducers.

1.5 Conditioners:
 a. Check if all channels are working properly by the flashing of lights for each channel on the conditioner when vehicles pass over the bridge.

1.6 Power Frequency Meter:
 a. Be sure that the power frequency is approximately 60 Hz.

1.7 Keypad:
 a. Make sure buttons operate properly by checking the readout from the CRT screen as the buttons are pressed (activated).
 b. In case that keypad is used to choose specific trucks for data collection, the keypad operator must make sure that when a button is pressed, another vehicle will not activate the tapeswitches before the chosen truck.

2. Modifications and Up-Dates to the WIM+RESPONSE System

The Master Program Library (MPL) has the primary purpose of maintaining the integrity of the computer programs and associated data undergoing any evaluation. This entails ensuring that the current computer program code is verified and that it accurately represents the capabilities in the released documents. Version integrity is maintained by controlling the progressive construction (or reconstruction) of the computer program versions by FHWA or other personnel by conducting integrity checks over the code.

Integrity checks on constructed versions of computer programs are performed by the person in charge of the MPL for two reasons:

(1) to provide assurance that the version has remained unchanged from the time it was tested and certified as an authorized version; and

(2) to demonstrate a continuous record of version development.

To help ensure integrity of the WIM+RESPONSE programs, the following procedure (checklist) is suggested.

Accounting and Reporting to the MPL

Typical information includes (for each program affected).

1. Date of the change.
2. Number of the version of the software release.

3. Name of the person making and validating the change.

4. Name of the person approving the change.

5. The previous version number that can be used as a back-up if problems occur.

6. Type of change - including capabilities affected.

7. Related programs that are affected.

8. Checklist of WIM+RESPONSE documentation manuals affected.

This log file should be included in the Appendices Manual to the WIM+RESPONSE documentation.

Each piece of information required for reporting should be directly entered into the disks for system software and documentation so that users know the current status accurately and correctly.

3. **Operating System**

The present configuration of the WIM+RESPONSE system utilize V5.1c of the DEC operating system. The reason for this update was that the previous version is no longer supported by DEC.

The procedures for generating the operating system (SYSGEN) can be found in DEC Manual RT-11 Installation Guide (AA-H376E-TC) as contained in the Master Program Library for the WIM+RESPONSE system.

The advantages of the new operating system include a graphics capability, and more efficient memory management.

It is important to note though that the following options are no longer supported under the new DEC operating system V5.1c.

1. The original plotting routine PLOT55 is not applicable any longer.

2. The PRINT command is not applicable to the new system. In order to get a hard copy, program PRINTQ must be executed prior to any program. Then, all the information shown on the screen will be transferred to the line printer and a hard copy will be obtained. When hard copy is no longer needed, simply execute the program STOPRI.
4. **System Power Up — Booting the System**

The MINC system can be started by turning all the components of the system on. The MINC system consists of a CPU with lab modules, disk drives, a terminal, and the MINC cart. Each of these components has an ON/OFF switch and can be powered individually. Usually, these components are plugged in at the MINC cart and can be powered up simultaneously by the ON/OFF switch on the MINC cart.

Booting of the system is now set in manual mode. The procedure required to boot the system is as follows:

(a) turn on the ON/OFF switch to ON on the cart

(b) the system will respond with:

```
28
STARTS?
```

(c) The user should now input "DYO" or "DY1" depending on which drive the system disk resides.

(d) If the system responds with:

```
RT-11SJ V05.01C
.SET TT SCOPE
.SET USR SWAP
.ASS DY1: 14
.ASS DY1: 15
```

then the system has been successfully booted.

(e) If the system responds with:

```
?BOOT - U - I/O error
```

the system booting has not succeeded. The user should push the "BREAK" key on the keyboard and then start step (c) again.

5. **File Maintenance**

5.1 Initializing and Formatting Disks

With an operating system on DYO: and a new blank disk on DY1: the procedure required to format and initialize the blank disk is as follows:

(a) The user should enter:

```
R FORMAT
```
(b) The system will respond with
*
(c) The user should then enter:
DY1:
(d) The system will respond with:

DY1: FORMAT - Are You Sure?
(e) The user should enter a "Y" if the disk is drive 1 is
the right one to be formatted.
(f) The system will start to format the disk in drive 1.
As soon as the formatting is finished, the system will
respond with:

? FORMAT -I-Formatting complete
*
(g) The user should enter a CTRL C when the formatting is finished.
The user should now enter:

INIT/BAD DY1:

This procedure is to initialize the disk and search for any
bad blocks that may be contained on the disk. If no bad
blocks are found, the system will respond with:

? DUP-I-No bad blocks detected DY1:

and the initializing is finished.

5.2 Copying Files
(1) System file copying

System file copying can be done by using the following command:

COPY/SYS < filespec 1> < filespec 2>

Where <filespec 1> is the file to be copied from and <filespec 2>
is the file to be copied to. The filespec should contain the
disk where the file is on, the file name and type of the file.
For example:

COPY/SYS DYO: LP.SYS DY1: LP.SYS

the command will copy system file LP.SYS from DYO: to DY1:
(2) Ordinary file copying

The following command can be used to copy data files and program files:

COPY <filespec 1> <filespec 2>

The filespec is same as mentioned in (1).

(3) Two disk copy

To copy files between the disk in drive 1 and the disk other than the system disk in drive 0, the following procedure must be followed.

(a) The user should enter:

COPY/WAIT <filespec 1> <filespec 2>

where filespec is same as mentioned in (1). For example, if a file TEST.SAV on a 3rd disk is to be copied to the disk in drive 1, the following command must be entered:

COPY/WAIT DYO: TEST.SAV DY1: TEST.SAV

(b) The system will then respond with:

MOUNT input volume in DYO:; CONTINUE?

(c) The user should now replace the system disk in DYO: with the 3rd disk on which the input file resides, and then enter Y

(d) The system will respond with:

MOUNT output volume in DY1:; CONTINUE?

(e) The user should put the disk to accept the output file in DY1, and enter:

Y

(f) The system will respond with:

MOUNT system volume in DYO: CONTINUE?

(g) The user should put the previous system disk back into DYO: and enter:

Y

Then the copying will be completed.
5.3 Deleting Files

A file can be deleted from the disk by the following command:

DELETE <filespec>

where, an example of filespec is: DYO:TEST.SAV

5.4 Listing Files

'TYPE' command is the only command available for listing a file. To get a hard copy of the listing, PRINTQ must be executed prior to using the TYPE command. An example of getting a listing is as follows:

TYPE DYO:TEST.FOR

Note: The binary form files cannot be listed.

For further information regarding file maintenance, please see the DEC manual RT-11 V.5 Volume 2A, System User's Guide.