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conducted into the IR port of FV1000 system (see fig2.4B), but the microscope system has not yet been 

modified for IR laser and a large portion of power was lost when it goes through the diachronic mirrors (fig 

2.4B).  

The average output power of our pulse laser was about 45mW. With low repetition rate (1kHz) 

and the pulse width is 1 ps, the peak laser power would be as high as 4.5x10
7
 W, which makes it possible to 

produce strong SHG signal through transmission setup (see fig2.4A) if the laser was highly focused on the 

material that has non-zero second order susceptibility. The laser was focused on the sample with beam 

waist as 0.65 µm by microscope lens. So the peak intensity of focused laser is 3.4x10
7
 W/µm

2
. It is 

necessary to compare the average power of SHG signal in different microscopic systems.  

The average power of SHG produced in our system could be 4 orders larger than the SHG 

generated by Ti-Sapphire laser commonly used in SHG microscopy [119-122] according to the calculation. 

This is an estimation of SHG power obtained from biological tissues. From Eq. (2.5), the power of SHG 

can be expressed as: 
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2   PAP                                                                                   (2.10) 

where A is a constant determined by the sample and microscopic system, and P is the power of 

incident laser. From the comparison in Table 2.1, we can see that when the average power of Ti:Sapphire 

laser with high repetition rate (80 MHz) is the same as the pulse laser with low repetition rate (1 kHz) in 

our lab, the peak intensity of our pulse laser is 10
4
 times larger than the Ti:Sapphire laser. Because of the 

nonlinear relation between input laser power and the output laser power (see Eq. 2.5 and 2.10), the peak 

power of SHG produced by our laser is 10
8 

times larger than by Ti:Sapphire laser. Although the longer 

pulse length and lower repetition rate of our laser leads to a factor of 10
4
 loss of average power of SHG 

compared to the Ti:Sappire laser, the average power of SHG signal generate from our system is still 

1.2x10
4
 times larger than the system using Ti:Sapphire laser (see table 2.1).  

 However, we found that there must be a threshold value for the peak intensity of input laser, which 

is much smaller than the peak intensity produced by the pulse laser, to avoid photodamage. Figure 2.8 

shows that highly focused laser beam destroyed the cells in one second (IR absorption and photodamage to 

biomaterials will be discussed in the next section). Therefore we have to use the input laser with the 
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peaking intensity lower than 3.4x10
7
 W/μm

2
. We didn’t measure the threshold peak intensity of laser that 

damages the cells, but we measured the power of input laser that damages the cells to be ~5 mW before 

focused by microscope objective. Even if the input power of our laser is reduced to 1 mW, the average 

power of SHG signal is calculated to be 4.1x10
-7

 W, which is still larger than the power of SHG produced 

by Ti:Sapphire laser shown in table 2.1. We will then take samples of KNbO3 (Potassium Niobate) crystals, 

starch granules, fixed and live cells for nonlinear microscopy in our system.         
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Figure 5.4 Simulation of Type III cells with STICS analysis of the simulation results. (A) A snapshot of a 

simulation of Type III cell without focal adhesions (green) and minifilaments (red) in a 8x8μm
2
 

region indicated by red frame (kc=50 pN/µm, ). (B) A snapshot of ROI starts from 4200 sec in 

simulation time. The ROI is 100x100 pixels. (C) Plot of STICS functions obtained in (B) with time lag 

. (D) Plots of normalized function of vs. with mean StDev., fitted by an 

exponential function, (n=10). 
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By reducing the contractile force by a factor of ten (reducing kc to 5.0 pN/μm and Fal to 0.6 pN) we find that 

minifilaments cannot assemble into long fibers. This happens with or without including focal adhesions in 

the simulations (Fig. 5.5 A, C). Short fibers were still observed in the middle of simulated cortex; however, 

these fibers had a short lifetime and disassembled before they could elongate to bridge focal adhesions, 

maintain tension and stabilize. The reduction of the magnitude of contractile and aligning forces results in a 

reduction of the motion of the minifilaments. The decay time of the STICS  0,r  in Fig. 5.5B, D is now 

210-230 sec, which is about twice longer compared to Fig. 5.2-5.4 because it is mostly determined by the 

turnover kinetics that occurs over a time 
1

0



dk = 10
3
 sec rather than contraction and alignment. This 

increase in the decay time is consistent with the results of Fig. 4.7.  

In the simulations of the effect of blebbistatin in Fig. 5.5 we kept the parameters of minifilament 

turnover kinetics 0dk and 
0

dF in Eq. (7) unchanged compared to Fig. 7. While minifilament turnover still 

occurs in the presence of blebbistatin (Fig. 4.7B), it is difficult to accurately estimate the influence of 

blebbistatin on the minifilament turnover kinetics as a function of contractile force. For simplicity, we kept 

the turnover kinetics unchanged to show that the simulated reduction in contraction in Fig. 5.5 is enough to 

reproduce the experimental trend in the presence of blebbistatin. Finally, we note that the FWHM of 

 0ρ,r  in Figs. 5.2-5.5 is somewhat smaller than in the experiments of Fig. 4.6, 4.7 and 4.8 because the 

simulated minifilaments were drawn as 0.8x0.2 μm
2
 rectangles, which did not include the effect of the 

microscope’s PSF broadening.  
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              Table 5.2. Comparison of the simulation results. 

 Cell type/condition Decay time of   

 0,r  (sec) 

FWHM of 

 0,r  (µm) 

E
x

p
er

im
e
n

t 
Control 50130  09.066.0   

+Blebbistatin 90240  09.063.0   

Washout 160220  12.064.0   

S
im

u
la

ti
o

n
 

Type I (control) 23105  05.049.0   

Type II (control) 2689  04.049.0   

Type III (control) 2592  03.050.0   

Type II (+blebbistatin) 40210  0.49 

Type III (+blebbistatin) 50230   0.49 
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Figure 5.5.  2D simulation of actomyosin network in type II and type III cells (A: with focal adhesions. B: 

without focal adhesion.) treated with blebbistatin by decreasing the contractile force and aligning force by 

90% (kc=5.0 pN/μm, fal=0.6 pN) of control cells. In both (A) and (B), there was no bundle formed and no 

contractile activity between minifilaments. (C,D) STICS analysis on the simulated type II and III cells 

treated with blebbistatin demonstrates that STICS decay time increases ( 40210  sec in type II cell 

and 50230 sec in type III cell) in blebbistatin treated cells due to the inhibition of myosin II, which 

is close to the STICS analysis results in experimental data (see Fig.4.7). The data was shown as the format 

of mean StDev. (n=10).  
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5.4 Discussion and further work 

Based on previous study and our experimental results (Chapter 4), we used a 2D mechanical 

model to simulate the interactions between myosin minifilaments and appearance/disappearance from the 

cortical plane. The simulations replicate the processes of  myosin II minifilament contraction, break and 

disassembly, appearance and disappearance  on the cortex of HeLa cells. By adjusting the number density 

of myosin minifilaments and focal adhesions, one can obtain Type I, II and III cells. The parameters for the 

simulation of Type I control cells are listed in table 5.1. The simulation of type II cells were obtained by 

reducing the number of myosin minifilament by 10%. Compared to Type I cells, the transient fibers are 

unstable and subject to disassembly in a short time because there are less minifilaments that can be 

assembled into fibers to keep the tension. For Type III cells without focal adhesions, short fibers were 

assembled for a short period of time in simulations. However, the fibers were unstable because there was 

no anchor for them to maintain high tension. Longer fibers were assembled occasionally, but they were 

more unstable compared to Type II cells (see Fig. 5.3 & 5.4). To simulate cells treated with blebbistatin, we 

reduced the contractile and aligning force between minifilaments by 90% from the control cells. In the 

simulations of Type II and III cells there was rarely contraction and alignment between minifilaments while 

appearance and disappearance persists. This resembles the time-lapse MRLC-GFP images of blebbistatin 

treated cells in Chapter 4.         

STICS analysis of the simulated cell suggests that the activity of myosin minifilaments 

(appearance and disappearance; contraction and alignment) determines the decay time of  τr ,0 , which is

sec23105 , sec2689 , and sec2592 for Type I, II and III cells, respectively. The decay time of

 τr ,0  is close to, but somewhat smaller than the value from experimental data of control cells 

( sec50130 control ). This difference could be improved by adjusting the magnitude of effective 

elastic spring constant ck , the magnitude of aligning force alF , and the disappearing rate 0dk in 

simulations. The decay time of  τr ,0  for simulated cells in blebbistatin is sec40210  and

sec50230   for Type II and Type III cells, respectively, which is close to the time obtained from the 
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experimental data of blebbistatin treated cells ( sec90240 bleb ). Time-lapse images of both control 

cells and blebbistatin treated cells show the appearing and disappearing process in the ROI for STICS 

analysis. The only difference is that the fiber reorganization in control cells is faster than in the blebbistatin 

treated cells due to the interaction between myosin minifilaments. This suggests that the decay time of

 τr ,0  can be used to determine the activity of myosin II in cells.  

The simulations also demonstrate that the FWHM of function  0,r   is related to the length of 

minilaments. In simulations, minifilaments are represented by short thin rods with the length of 8.0 µm 

and the width of 2.0 µm, which results in a FWHM of  0,r   equal to 49.0 µm for control cells and 

cells in blebbistatin. In the microscopic MRLC-GFP images, the myosin foci are not precisely rod-shaped, 

and some foci might contain multiple minifilaments, which results in large value of FWHM as 64.0 µm.  

The parameters 
0

al and 
0

c are important in determining the assembly of fibers and  network in 

simulations. It is difficult to precisely determine 
0

al and 
0

c through experiments. More systematically 

study 
0

al and 
0

c in simulation is necessary to better understand the mechanism of the cortical cytoskeletal 

network assembly.   

Our model and simulation can be used to study a variety of cortical actomyosin network assembly 

process. A direct application of our model is to understand why some cells have both peripheral and central 

stress fibers (Type I), while some have peripheral stress fibers only (Type II & III). It is well known that 

myosin II plays an important role in cytoskeletal network assembly and regulating the elasticity of 

cytoskeletal network. HeLa cells cultured on soft and stiff polyacrylamide substrates (400 Pa and 60 kPa) 

are very different in morphology, focal adhesions (size and number) [155], and cytoskeletal network (Type 

I, II and III cells) (see Fig. 4.2). Interestingly, the stem cell differentiation on soft and stiffer substrates is 

also regulated by the activity of myosin II [79, 187].   

The mechanical properties and dynamics of stress fibers in cells adherent on elastic substrates are 

regulated by the activity of myosin II. Our model will shed light on understanding mechanisms of the 
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cellular mechanosensing and mechanotransduction, and how it is related to cortical cytoskeletal network 

reorganization.      
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Chapter 6  

Conclusions and discussion 
 

6.1 Summary and conclusions 

The dynamics of cytoskeletal network is very important to cell activity such as cell migration 

during wound healing and cell division. In this dissertation, I demonstrated that the concentration and 

activity of myosin II in non-muscle cells is crucial to the actomyosin network reorganization and medial 

fiber assembly through confocal fluorescence microscopy and STICS analysis. The time-lapse MRLC-GFP 

images show that the medial actomyosin cortex exists in a homeostatic state of assembly, reorganization 

and disassembly. Myosin foci appear and disappear on the cortex over time, as well as contract towards one 

another and align. These dynamics reflect the process of myosin pulling on actin filaments located at the 

cell cortex, which tend to form bundles with myosin minifilaments and actin cross-linking proteins. 

Formation of stable linear fibers depends on myosin motor activity and is positively correlated to presence 

of contraction, implying that the stability of myosin minifilaments in the cortex increases with tension, as 

also suggested by prior experiments [97, 164, 188-190]. When coupled to adhesion formation, long fibers 

can thus develop along the cortex by maintaining tension through anchors at focal adhesions. Thus the 

stability of long medial fibers is determined by the number density of minifilament and focal adhesions. 

Compared to Type I cells, Type II cells have slightly less medial MRLC-GFP foci on the cortex and more 

focal adhesions, resulting in a medial network of short fibers as opposed to long bundles. Type III cells 

have even less medial MRLC-GFP foci with no focal adhesions in the middle, resulting in the absence of a 

network or fibers in the cell middle. The STICS analysis of the medial regions in Type I, II and III cells 

reveals the decay time of  τr ,0  is determined by both contraction and alignment of the foci and the 

turnover process of the foci (see Fig.3.3). In the cells with 100 µM blebbistatin treatment, the motion of 

foci due to the contraction and alignment is suppressed. However, the turnover kinetics of foci remain (see 

Fig. 3.5B). The STICS analysis shows that the decay time of  τr ,0 for blebbistatin-treated cells is almost 

twice longer than the decay time in untreated cells because of the inhibition of myosin II.      
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We developed a 2D coarse grained model to simulate the medial stress fiber assembly driven by 

the contraction, alignment, and the turnover kinetics of myosin minifilaments in Type I, II and III cells. By 

tuning the number of minifilaments and focal adhesions, the simulations reproduce the dynamics of medial 

fibers in Type I and II cell. In Type I cells, a long medial fiber was assembled and anchored on focal 

adhesions and stabilized under tension. In Type II cells, long medial fibers are less likely to assemble and 

stabilize because of lower number of minifilaments. In Type III cells, no long fiber could be assembled 

because there was no anchor for the fiber to be stabilized. The behavior of cells treated with blebbistatin 

was simulated by decreasing the contractile and aligning force of the minifilaments. The simulations 

captured the dynamics of myosin foci in blebbistatin treated cells, which show little contraction and 

alignment, but the turnover kinetics seems to be less affected. STICS analysis was applied on the 

simulation results in the same way as it was applied to the time-lapse MRLC-GFP images. The decay time 

of  τr ,0  for simulations of untreated cells and cells in blebbistatin is close to the value obtained using 

experimental data (Fig. 3.4, 3.5, 3.6, 4.2, 4.3.). Our model suggests that the kinetic processes of myosin 

minifilament assembly and disassembly; aligning and contraction; medial fiber anchoring on focal 

adhesions; stabilization upon increasing contractile tension; interaction with extracellular matrix through 

focal adhesions, contribute to the remodeling of medial cortical fibers.    

Filamentous proteins, such as collagen fibers, microtubules and actomyosin bundles in muscle 

tissue can generate SHG excited by high intensity of IR pulse laser, which provides the information on the 

microstructures of cells and tissues. It is possible that the SHG signal from myosin minifilaments might 

vary quantifiably during the cortical fiber assembly and the reorganization of network because their 

conformation changes under tension and contraction. Thus SHG spectroscopy could be useful in the study 

of the mechanical and dynamical features of the cortical actomyosin network reorganization process. To 

explore this idea, we set up a SHG microscopic system on an Olympus IX81 confocal microscope, using a 

tunable wavelength pulse laser to produce SHG from samples. The SHG images of KNbO3 crystals and 

starch granules obtained on this SHG microscope (see Chapter 2) demonstrate that our SHG microscopic 

system is successful. The calculations suggest that our low repetition rate pulse laser (CLARK laser) 

provides great advantages by generating much higher peak intensity (10
4
 time larger) compared to the 
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Ti:Sapphire laser that is often used in SHG microscopy. However, we found that the photodamage to the 

cells was severe due to the absorption of high intensity IR laser. Another issue is that the CLARK pulse 

laser is not synchronized with the scanning system of Olympus microscope, which reduces the efficiency of 

SHG imaging. These issues will be studied and solved in future work.       

6.2 Discussion and future work 

Future work could further examine in more detail the process of minifilament assembly and 

disassembly on the cell cortex. Myosin minifilaments can be assembled from dimers at a rate nearly 

identical to the accumulation rate of minifilaments at the cortex [191]. Myosin minifilaments can bind to 

the cortex and accumulate under tension at the time scale of ~200 s [191, 192]. The unbinding rate of 

myosin II heads from actin filaments without tension is ~300 s
-1

 [191]. A simple estimate of the rate of 

disassociation for a minifilament composed by 40 myosin II motors is 
3

40

108.1300 



Tk

E

B

j
S

e  s
-1

 

( TkE
B

j

S
3.0 [191]), which is close to the value of 001.00 dk  s

-1
 in simulations. The time lapse 

MRLC-GFP images show the myosin foci turnover in blebbistatin treated cells, however, it is difficult to 

distinguish the kinetics of myosin foci turnover in cells with blebbistatin treatment from the untreated cells. 

A prior study [192] suggested that the assembly of myosin bipolar filaments is accelerated by the tension.  

Future work could explore in more detail how signaling pathways in the cells contribute to the 

assembly and disassembly of myosin filaments and fiber stabilization [193]. Phosphorylation regulates 

myosin minifilament assembly and treatment with drugs can interfere with this process. In this work we 

used blebbistatin. Our experiments demonstrate that the treatment of blebbistatin, which inhibits myosin II 

association with F-actin, directly disrupts the stress fibers along with the loss of focal adhesions both in 

number and size. The MRLC of myosin II in blebbistatin-treated cells has been shown to be mostly in the 

phosphorylated state and assembled in bipolar filaments [191, 192].  

Rho-kinase activity is important for maintaining focal adhesions that associate with the medial 

fibers. The growth of focal adhesions is also correlated to the increase of tension along the stress fibers that 

anchor on the focal adhesions [171, 194]. When cells (fibroblasts and endothelial cells) were treated with 
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Y-27632, which inhibits myosin light chain phosphorylation by decreasing ROCK activity, the medial 

stress fibers were disrupted and focal adhesions disassembled, while most of the peripheral stress fibers 

were unaffected [195, 196]. When cells are treated with ML-7, the MLCK inhibitor, the peripheral stress 

fibers were observed to be weakened but the medial stress fibers remain stable [192, 196]. It is still not 

clear why the peripheral and medial stress fibers respond to the ROCK inhibitor and MLCK inhibitor 

differently, although both stress fibers contain ROCK and MLCK. Further investigation of time lapse 

MRLC-GFP images of cells with ROCK or MLCK inhibitor treatment is required to get better understand 

the network reorganization dynamics.   

 Although our 2D model is very simple, it could be used to study many experiments related to 

cytoskeletal network and stress fibers. For example, fibroblasts and epithelial cells cultivated on elastic 

substrates coated by collagen I develop cytoskeletal networks with different morphology and mechanical 

properties (e.g. viscoelasticity, Young’s modulus and shear modulus, etc.) [60, 155, 197, 198]. Within one 

cell,  the ventral, dorsal and transverse arc stress fibers are assembled by different mechanisms [199]. Our 

model could be used as a framework to investigate how the cytoskeletal network reorganizes in respond to 

the external perturbation or mechanical incentive, such as cyclic stretching the elastic substrates [200, 201], 

laser incision of specific stress fibers inside a cell [202], and shear flow around the adherent cells [203]. It 

is promising to use this model to simulate the actomyosin network reorganization for the whole cell scale 

by integrating the mechanosensing through focal adhesion dynamics and configurations. It might also 

provide a tool for the guidance of polymer self-assembly or self-organization in the material synthesis 

engineering.   
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