1949

Relaxation method applied to torsion, July 18, 1949

F. K. Chang

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation
Chang, F. K., "Relaxation method applied to torsion, July 18, 1949" (1949). Fritz Laboratory Reports. Paper 1457.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1457

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
Relaxation Method Applied To Torsion

![Graphs](image)

Formulas for Residuals:

(A) Regular star: (Fig.1.) \(R_0 = \phi_1 + \phi_2 + \phi_3 + \phi_4 + 250 - 4 \phi_o \)

(B) One unequal leg at \(\phi_i \): (Fig. 2.) \(R_0 = (II)_{s=A1} \phi_4 + (III)_{s=A2} + 250 - [(I)_{s=A1} + 2] \phi_0 \)

(C) Two unequal legs at \(\phi_i \& \phi_3 \): (Fig. 3.) \(R_0 = (II)_{s=A1} \phi_4 + (III)_{s=A3} \phi_4 + 250 - [(I)_{s=A1} + (II)_{s=A3}] \phi_o \)

Relaxation of Residuals:

(A) Regular star (Fig.1.)

If change \(\phi_o \) by an amount \(m \)

Then \(R_0 \) should be changed by \(-4m\)

\(R_1, R_2, R_3 \) and \(R_4 \) changed by \(+m\).

(B) Irregular star, one unequal leg. (Fig. 2.)

All the same except that changes in \(R_0 \) due to the changes in \(\phi_0 \) or \(\phi_1 \) are different.

(i) If change \(\phi_0 \) by \(m \), \(R_o \) should be changed by \(-[(I)_{s=A1} + 2] m \)

(ii) If change \(\phi_1 \) by \(m \), \(R_0 \) should be changed by \(+[(II)_{s=A1}] m \)

(C) Irregular star, two unequal leg (Fig. 3.)

All the same except that changes in \(R_0 \) due to the changes in \(\phi_0, \phi_2 \) or \(\phi_4 \) are different.

(i) If change \(\phi_0 \) by \(m \), \(R_0 \) should be changed by \(-[(I)_{s=A1} + (II)_{s=A3}] m \)

(ii) If change \(\phi_2 \) by \(m \), \(R_0 \) should be changed by \(+[(II)_{s=A1}] m \)

(iii) If change \(\phi_4 \) by \(m \), \(R_0 \) should be changed by \(+[(II)_{s=A3}] m \)
Block relaxation operators:

Rule: All points like a, having an alteration to the residual of -3 are connected directly to 3 points that remain undisplaced, whilst all pts like b, having a residual alteration of -2, are connected directly to 2 points that remain undisplaced. Of the points that do not move, at any one such pt there is an alteration to the residual of +1 for each direct connection from that point to a point that is being displaced.

Techniques with Symmetry:

Notes:
1. The constant \(\frac{250}{3} \) in the first 3 formulas may be of different values for different cases.
2. All \(\phi \)-values along the boundary equal zero.
3. \((II)_{seal}\), for example, means the value in column (II) of the table on p. 34 "NUMERICAL SOLUTION OF LAPLACES & POISSONS EQUATIONS" corresponding \(S \) value equal to A1. A1 is the ratio of unequal leg to full leg.
(1) Improved Points for 02

\[x = y \times (a + b) \]

(2) Improved Points for 02

\[x = y \times (c + d) \]

(3) Choice of Improved:

Shading from pt A
from right to left in order of:
from top to the letter pt
from bottom to the letter pt

[Table and diagrams]

[Signature]

Investigating in Tables

K. E K. K.