1950

Proposal for connection tests at university of texas, Nov. 29, 1950

Lynn S. Beedle
A. A. Topractsoglou

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1408

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
To: Members, Lehigh Project Subcommittee

CONNECTION TESTS AT UNIVERSITY OF TEXAS

Gentlemen:

Mr. Topractsoglou is anxious to continue the kind of research in Texas that he was doing with me at Lehigh. In Chicago at the time of the AWS meeting we discussed a program which he has now developed and is sending to you for your suggestions.

He is arranging his financing separately. Whenever we can loan equipment to him we shall do so in order that his work may proceed with as little expense as possible.

Sincerely yours,

Lynn S. Beadle
Assistant to the Director

LSB:fs

CC: LaMotte Grover
 William Spraragen
File No. 205C

To: Mr. T. R. Higgins
 Director of Engineering
 American Inst. of Steel Construction
 101 Park Avenue
 New York 17, New York

PROPOSAL FOR CONNECTION TESTS

Dear Mr. Higgins:

I hereby submit a proposal for test of connections for welded rigid portal frames. This proposal does not discuss details such as fabrication, financing, etc. It is hoped that it will be considered for discussion during the forthcoming meeting of the Lehigh Project Subcommittee and will be criticized by you and the members of the committee.

PURPOSE

The general purpose of the proposed investigation is the obtaining of additional information on the behavior in the elastic and plastic range of type 8B square knees and type 4 bracketed knees.

The Lehigh investigations showed the square knees of type 8B and 2 (Fig. 1) to be less rigid than the "equivalent length" of beam (Fig. 2). However, this type, being the least expensive connection to fabricate, deserves further investigation.

Type 4 (Fig. 3) connections showed greater rigidity and strength (Fig. 2). The cost of fabrication of this compares favorably with the cost of square knees and is far less than the cost of curved knees. Consequently, its further consideration for investigation is recommended especially in view of the fact that the proposed designs of this type of connection would result in additional economy in cost of fabrication.

PROGRAM OF TESTS

A total of six tests are proposed. Specimens recommended for investigation are shown in Fig. 4. The information obtained from these tests will supplement previous studies on the same types. An 8B13 may be used in order to compare results obtained with those of previous investigations.
DISCUSSION OF SPECIMENS

The dotted lines in Fig. 1 show where yield lines first appear in square knees. The shear stress induced by the tension flange force accounts for the large rotations of this type (Fig. 2). Rotations in such knees are reduced considerably by the diagonal stiffener (compare with knee without diagonal stiffener. See Fig. 13, Progress Report D, June 1, 1949). However, the diagonal stiffener cannot prevent shear yield completely (Fig. 1).

Specimen "L".

It is identical to specimen "L" tested at Lehigh (see "Revised Proposal for Connection Tests", September 9, 1949). This specimen will be used as a check. (Fig. 1).

Specimen "B".

It is proposed as a better design of square type knees. Shear yield may be avoided because of the arrangement of stiffeners. This design should result in less rotation in the knee.

Specimen "S". "T", "U", "V".

These specimens (modifications of type 4) are recommended to determine the effect of stiffeners. They should be considered because: a. of their high strength and rigidity. These may be due to the ample knee web area, which is enough to avoid early shear yield. b. The vertical stiffeners (shown with S in Fig. 3) do not have any obvious structural function because of the ample web area and they are omitted. In this way the cost of fabrication would be reduced and this type of knees will be in a favorable position when compared to square knees on cost basis.

cc: Members, Lehigh Project Subcommittee
 Structural Steel Committee
 Welding Research Council

Phil Ferguson
Noils Thompson
R. F. Dawson
Lynn Boodle
LaMotte Grover
William Spraggon
John Griffiths

Sincerely yours,

A. A. Toprachtsoglou
Assistant Professor
Civil Engineering Dept.
Fig. 1

Type 8B

Type 2

Type 4

Rotation

Fig. 2

Type 3B

Beam

Fig. 3

Fig. 4
Short Note for Lynn at the end
File 205 C

Nov. 15, 1949

To: Mr. T.R. Hopkins
Director of Engineering
American Inst. of Steel Construction
101 Park Avenue
N.Y. 17, N.Y.

PROPOSAL FOR CONNECTION TESTS

Dear Mr. Hopkins:

I hereby submit a proposal for tests on connections for welded rigid portal frames. This proposal does not discuss details such as fabrication, financing, etc. It is hoped that it will be considered for discussion during the forthcoming meeting of the Lehigh Project subcommittee and will be critiqued by you and the members of the committee.

PURPOSE: To obtain more information on the behavior of certain welded connections in the elastic and plastic range. The Lehigh investigations showed the square knees type 88 and 2 (Fig. 1) as less rigid than the equivalent length of rolled sections. See Fig. 2. On the other hand, Type 4 (Fig. 3) connections were more rigid and stronger. See Fig. 2. The cost of fabrication of Type 4 to Type 2 is in the ratio of about 2.5 to 1:5 which shows that it is not very expensive compared to square knees and it is less expensive compared to flanged and other built-up knees. Consequently, its further consideration for investigation should be recommended.

PROGRAM OF TESTS: A total of 6 tests are proposed as shown in Fig. 4 (specimens 1 to 6). The information obtained from these tests will supplement previous studies on the same type. An 8B13 is done at Lehigh University.

DISCUSSION OF SPECIMENS:

The dotted lines in Fig. 1 show yield lines first appear in square knees. Obviously, the shear stress induced by the tension flange force accounts for the large reduction by the diagonal stiffener which supports the knee (compare with knee without diagonal stiffener. See Progress Report 2, June 1, 1949) it the diagonal stiffener, cannot prevent the shear yield completely (Fig. 1).

Specimen 1: It is proposed for investigation as a type of square knee that will be more rigid than the ones investigated.

Specimen 2: It is identical to specimen "L" tested at Lehigh.
(See Revised Proposal for Connection Tests, Sept. 9, 1949)
This specimen will furnish be used as a check.
Specimen 3, 4, 5, 6: These specimens (modifications
of Type 4) are recommended for investigation to de-
terminate the effect of stiffeners. They are considered
because a previous tests have shown Type 4 as stronger and
more rigid (compared to rolled section) which may be
due to the fact that there is ample web area in
the knee to avoid early shear yield.

b. The vertical stiffeners (Fig. 3, 5) do not have any obvi-
ous structural function, and they are omitted thus
reducing the cost of fabrication and putting this type
of knees to more favorable position when compared
to square knees.

Sincerely yours

C.C. Members, Lehigh Project Subcomittee
Structural Steel Committee
Welding Research Council
Asst. Prof.
C.E. Dept.

Dean Wolfbrick, Director
Bureau of Eng. Research
Univ. of Texas

W. Spranagen
La Motte Grover
Frig. Eng. Lab

To whom else?

Dear Lynn,

I overlooked and did not read carefully your letter of Nov. 9.
Here is the proposal I cooked. What are you going to do with it?
Look it over and send it back? I have a copy. Do you want me
to go and do everything there? I guess if you criticize and return
it by air mail I shall get them out the same day I receive
your answer or word. That would be more appropriate I think.

But do what you like.

Tony