Calculation of yielding penetration zone of 8 wf 40, October 1951

C. H. Yang

Follow this and additional works at: https://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation
Yang, C. H., "Calculation of yielding penetration zone of 8 wf 40, October 1951" (1951). Fritz Laboratory Reports. 1363.
https://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1363

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
Calculation of Yielding penetration zone

\(P_0 = 41.05 \text{ in}^3 \)

\(t_{sw} = 0.371 \text{ in} \)

\(T_{0-gage} = 37.6 \text{ kip/ft} \)

\(T_{0-web} = 38.7 \text{ kip/ft} \)

\[M_{ABC} = \frac{(6.5)^2}{2} \times 37.1 = 3.91 \]

\[M_0 = (41.05 - 3.91) \times 37.6 + \frac{2}{3} \left(\frac{(6.5)^2}{2} \right) \times 0.371 \times 38.7 \]

\[M_0 = 37.14 \times 37.6 + \frac{2}{3} (3.25)^2 \times 0.371 \times 38.7 \]

\[M_0 = 1395 + 101 = 1495 \text{ kip-ft} \]

\[W = 211.6 \text{ (knot load)} \text{ kip} \]

\[L = \frac{1495}{211.6} = 6.93 \text{ in} \]

\[M = 1395 + \frac{\alpha}{3} \left(\frac{g^2}{2} \right) \times 0.371 \times 38.7 \Phi \]

\[+ \frac{(3.25 \cdot y)(3.25 + y)}{2} \times 38.7 \]

\[= 1395 + \frac{\alpha}{3} \left(\frac{g^2}{2} \right) \times 0.371 \times 38.7 \]

\[+ \frac{(3.25 \cdot y - y^2)}{2} \times 37.1 \times 38.7 \]

\[= 1395 + \frac{1}{8} \left(0.371 \times 38.7 \right) + \frac{1}{2} \]
\[= 1395 - \frac{1}{3} \cdot 0.371 \cdot 38.7 \cdot y^2 + (3.25)^2 \cdot [0.371 \cdot 38.7] \]

\[= 1395 - \frac{1}{3} \cdot 14.35 \cdot y^2 + 3.25 \cdot 14.35 \cdot y \\
= 1395 + 151 - 4.78 y^2 \]

\[= 1546 - 4.78 y^2 \quad \text{previous calculation = 1540} \]

\[y = 0 \quad x = \frac{1546}{21.6} = 71.6'' \]

\[y = 35'' \quad x = 69.3'' \quad 71.6 - 69.3 = 2.3'' \]

The Curve

\[21.6 \cdot x = 1546 - 4.78 \cdot y^2 \quad \text{between} \quad x = 71.6'' \]

\[\& \quad x = 69.3'' \]

Calculation of yields & zones \# 4W-31 to be continued.
1. Simple tension test with white
 work to see the yield point
 development as a companion
 of measured strain

2. More strain gages on cantilever
 to study spirit of mechanism
 in bend