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Abstract

The security of biometrics against attacks is a a serious concern in biometric personal

authentication systems. In particular, the security of biometric templates is a topic

of rapidly growing importance in the area of user authentication.

In this dissertation, we investigate the security of Dynamic Time Warping (DTW),

Vector Quantization (VQ), and Gaussian Mixture Model (GMM) methods that have

been used in speaker verification systems. We present attack models based on adver-

sary knowledge. We start with naive adversaries without knowledge of an authen-

tic speaker and develop them into highly knowledgeable adversaries who know the

speaker’s information, have the speaker’s voice samples, acquire the speaker’s tem-

plate, and know the algorithm used by the speaker verification system. We propose

an analysis-synthesis forgery in which the informed adversary can exploit information,

such as feature vectors from the template and a statistical probability from the voice

samples of the target speakers to regenerate a forgery that can be used in remote

or on-line authentication. We show that the effectiveness of the regenerated forgery

is better than the other attack models. In addition, we have demonstrated that the

traditional approach to evaluate the security of speech biometric speaker verifications

was insufficient. These results raise important issues for researchers when attempting

1



to demonstrate the security of speech biometric systems.

We then describe our approach to cryptographic-based speaker verification. We

present a new scheme to transform speech biometric measurements (feature vector) to

a binary string which can be combined with a pseudo-random key for cryptographic

purposes. We utilize DTW in our scheme. The challenge of using DTW in a cryp-

tosystem is that a template must be useful to create a warping function, while it

must not be usable for an attacker to derive the cryptographic key. In this work,

we propose a hardened template to address these problems. We evaluate our scheme

with two speech datasets and compare with baseline DTW, VQ, and GMM speaker

verifications. The experimental results show that the error rates of the proposed

scheme against attackers utilizing the template information significantly outperform

the DTW, VQ, and GMM speaker verifications. For the other attack models, the

recognition performance of the proposed scheme outperforms the VQ and GMM. It

is slightly degraded when compared to the DTW speaker verification.

Finally, we propose a way to strengthen a system by combining a password with a

biometric cryptosystem. We show that attackers have to spend more time to search

for the keys when we compare our scheme with a password approach. In addition,

the security provided by the proposed framework remains unaffected even when the

password is compromised, since the scheme only utilizes a password that is indepen-

dent of the key used in the system. The experimental results show that the scheme

enhances security and improves recognition performance of the system.

2



Chapter 1

Introduction

For more a decade, biometrics as cryptography has been an interesting area because

of the inability of humans to remember strong passwords [4, 65]. The traditional

approach uses a password to release a cryptographic key, but it is easy to guess

using dictionary attacks [30, 53]. Hence, users have to select unusual keys for their

passwords that are easy to forget. To address these problems, biometrics are used

to combine or generate a cryptographic key to apply to applications, such as file

encryption and user authentication for two reasons. First, it is hard to get past the

biometrics compared to a common eight character password. Second, biometrics are

human characteristics, so they cannot be forgotten.

Biometrics can be divided into two classes: physiological and behavioral biomet-

rics. Physiological biometrics measures the shape of the body that experts can recog-

nize, such as fingerprints, iris codes, and DNA or by humans, such as faces. Behavioral

biometrics measures the action of the person, such as typing rhythm, handwriting or

signature, gait, and voice. The applications that use physiological biometrics may

3



face two problems. First, an adversary can acquire physiological biometrics easily,

for example, the ubiquitous fingerprint on the surface and the image of user by cam-

era. As the users cannot change their physiological biometrics, their key may be

compromised. The other problem is that it is inadvisable to use the same key in all

applications. Users should be concerned about the security of their keys. If one of

their applications is compromised, the other applications will be in danger. Although

some researchers proposed the ways to re-issue a new key after the previous key has

been compromised [36, 75], when the key was compromised, the biometrics might be

derived from the old template [4]. For this reason, behavioral biometrics can be used

to alleviate this concern. The users can change their key by changing their behav-

ioral biometrics. However, the questionable security of the biometric system against

adversary attacks is a concern.

There are eight points of attack in a generic biometric system as indicated in

Figure 1.1 [74]. For the first type, the attacker presents fake biometrics to the sensor.

Examples include a fake finger, a forgery signature, a face mask, and an imposter pass-

phrase. For the second type, the attacker bypasses the sensor and resubmits an old

recorded signal. Examples include an audio recording. For the third type, the feature

extractor could be replaced with a Trojan horse program so that it would produce the

feature sets desired by the attacker. For the fourth type, the extracted features may be

replaced with synthesized or modified features which match the stored template. For

the fifth type, the matcher is overridden by the attacker. Consequently, the system

always produces a high or low match score. For the sixth type, the attacker can

modify the template so that the attacker can submit feature vectors which match the

modified template. For the seventh type, the transmitting template may be captured

4
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Figure 1.1: Points of attack in a generic biometric system [74].

or changed before arriving at the matcher. For the eighth type, the decision module

is overridden.

In this dissertation, we focus on the first, second, fourth, and seventh types of

attack. For the first, second, and fourth types of attack, two classes of adversaries

[2] have to be considered: human or algorithmic. For both classes, the ability of the

adversary to compromise the system depends on their knowledge of private informa-

tion, public information and the motivation [5]. The knowledge of private information

includes target biometrics and public information includes auxiliary information such

as the construction of the authentication system and templates [2]. The motivation

depends on how important gaining access to the system is to the adversary.

For the third, fifth, and eighth types of attack, we assume that the system uses

secure code execution or specialized hardware which can protect the system from

attacks, such as Trojan horse attacks.

5



For the sixth and seventh types of attack, we assume that the stored templates

are located in a secure location, such as a central database. However, the templates

have to be transmitted to the matcher for verification. Thus, attackers may capture

the template information at this point. Then, they create a physical spoof from the

template information to replay to the sensor or matcher. A common way to secure

a channel is to encrypt the data with cryptographic keys. Nevertheless, the system

we refer to is a cryptographic-based biometric system; it is unreasonable to assume

that we can access the keys from other sources. Hence, it is necessary to protect the

stored template.

We choose to study speech-based biometrics. Several reasons for investigating the

security of speech-based biometrics are: 1) The system is inexpensive compared with

the implementation of other kinds of biometrics (e.g., iris or fingerprints). Why is

it inexpensive? Because of the ubiquity of cell phones and microphones embedded

in computers. 2) Voice is behavioral biometrics; users can change their pass-phrases

easily. 3) Attacks against speech biometric templates have not been studied as much

as attacks against other kinds of biometrics (e.g., fingerprints or handwriting).

The major motivation of the dissertation is based on the concern for the security

of speaker verification systems. To demonstrate this issue, three popular systems are

used in our experiments: the Dynamic Time Warping (DTW), Vector Quantization

(VQ), and Gaussian Mixture Model (GMM). We employ attack models with various

assumptions proposed in the literature to evaluate the security of the systems. More-

over, we propose a new attack model under assumptions we have created. The attack

models and assumptions are briefly mentioned in Section 1.1 and fully discussed in

Chapter 4. In the remaining chapters, we contribute to design schemes to protect a

6



speaker verification system against attacks and demonstrate the security of our sys-

tem in a rigorous way. The details are briefly provided in Section 1.2 and 1.3. For

full detail, see Chapter 5, 6, and 7.

1.1 Attacks Against Speech Biometric Systems

Biometric authentication systems are vulnerable to attacks. Two classes of adver-

saries have to be considered: human or algorithmic [2]. For both classes, the ability

of the adversary to compromise the system depends on their knowledge of private

information and public information as we introduced earlier.

Motivation

Three speaker verification systems based on a pattern matching technique are

popularly used. According to [15], the pattern matching methods include a

template, a codebook, and a statistical model. The DTW is used in the template

model, the VQ in the codebook model, and the GMM in the statistical model.

Even though a number of researchers [73, 62, 99, 61, 45] reported results which

demonstrate the performance and security of these systems, the experiments

were conducted using different methodologies (systems, datasets, assumptions,

and attack models). Therefore, it is difficult to compare these systems.

Moreover, much of the work to demonstrate the performance and security has

been done on the GMM-based speaker verification system. Thus far, the at-

tacks on the DTW and VQ system reported in literature were based on human

attacks that include random and imposter trial [71, 32, 37, 46, 78]. For ran-
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dom trials, the researchers assumed that an adversary did not know the actual

pass-phrase. For the imposter trial, they assumed that an adversary knew the

pass-phrase and said the actual pass-phrase without listening to the authentic

speaker pass-phrase. For the GMM, both human and algorithmic attacks were

reported. Beyond the random and imposter trial, there was informed imposter

trial where the researchers assumed that an adversary mimics the pass-phrase

by listening to the authentic speaker pass-phrase. Another trial was an algorith-

mic attack. For this trial, the researchers assumed that an adversary knew the

pass-phrases and acquired some voice samples of authentic speakers. Then, the

adversary used this information to synthesize the pass-phrase. Thus, all attack

models proposed in the literature should be used to investigate the security of

all mentioned systems. We note that the mentioned trials are considered as the

first type of attack.

One of the most serious attacks is against the stored template. Attacks on the

template can lead to three vulnerabilities according to Jain et al. [44]. First,

if the template is replaced by the attackers, they can use the input signal that

corresponds to the replaced template to gain unauthorized access. Second, the

attackers can utilize the template information to create a forgery. Lastly, the

stolen template can be directly replayed to the matcher. One way to secure the

biometric system is to put all the system modules and interfaces on a smartcard.

However, the template can be gleaned from a stolen card [44]. Therefore, to

demonstrate the security of the stored template, we should assume that an

adversary knows the pass-phrase and acquires the stored template. Hence, the

mentioned trial falls under the fourth and seventh types of attack.
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While the template attack is one of the most serious concern, we have not seen

any reports of this kind of attack for speaker verification systems elsewhere in

the literature.

Contribution

To demonstrate these issues of concerns, we attack systems using human and

algorithmic attacks. We study the state-of-the-art in speaker verification sys-

tems: DTW, VQ, and GMM. We investigate the security of those systems by

doing a series of experiments that include both human and algorithmic attacks.

We use the attack models proposed in literature to evaluate the security of

the systems. In addition, we propose an analysis-synthesis forgery in which

the highly informed adversaries can exploit information, such as feature vectors

from the template and a statistical probability from the voice samples to regen-

erate a forgery that can be used in remote or on-line authentication. We conduct

experiments in the same controlled environment (datasets, instruments, and as-

sumptions). We show that the DTW yields the best recognition performance

when we compare it with the VQ and GMM using the attack models proposed

in the literature; the error rates of the DTW system are the best. Unfortunately,

the error rate of the DTW against our attack model is significantly higher than

the VQ and GMM error rates. These results suggest that if the DTW template

is protected properly, it will be better than the other systems; our results also

appear in [40].
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1.2 Dynamic Time Warping-based Biometric Key

Binding (DBKB)

When comparing two sequences in speech biometrics, the main problem is that the

duration of the same biometrics provided by the same user at a different time changes

with non-linear expansion and contraction. The solution to this problem is to use

DTW to set up a non-linear mapping of one signal to another by minimizing the

distance between two signals [79]. To utilize DTW, we need a template as a keying

or reference signal (reference template) to set up a warping function for incoming

inputs. Then, the result (warped signal) is compared with a matching template to

decide whether to accept a user.

Motivation

In [40], we have shown that the reference and matching templates leak informa-

tion to an adversary. Therefore, both templates must be protected. An ideal

biometric template protection scheme should possess four properties [60]. 1)

Diversity: Different templates must be used for different applications. 2) Revo-

cability: A compromised template can be canceled and re-issued. 3) Security:

It must be computationally hard to invert the secure template to the original

template. 4) Performance: The system using the secure template should not

degrade the recognition performance. Speech biometrics satisfies the first two

properties as the users can easily change their biometric samples. The remain-

ing properties are the critical issues that we will focus on. In particular, the

proposed schemes in the literature typically apply a transformation function to
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transform features. However the features in a transformed domain will degrade

recognition performance.

There is a scheme in literature to protect a DTW template by using a non-

invertible method for signature authentication [58]. Even though the authors

proved that to recover the original templates was computationally as hard as

random guessing [59], the system left the transformed templates which could

be used in gaining access to the system.

Contribution

We present a scheme to protect the DTW templates. The scheme is used

to create a hardened template which is useful in creating a warping function,

while it is not usable for an attacker in gaining access to the system. As the

hardened template is only used to create a warping function, an input signal

is not transformed. Hence, the result remains unaffected by a transformation

function which is utilized in the literature (e.g., [58], [75]). For the matching

template, it is protected by cryptographic framework. To combine a secret with

biometric information, we present a scheme to transform behavioral biometric

measurements (feature vectors) to a binary string which can be combined with

a pseudo-random key for cryptographic purposes. The binary string, as a re-

quirement, should appear to be random in the context of cryptography. We

propose a mapping algorithm using multi-thresholds that are determined by

incorporation with pseudo-random bits. Hence, the algorithm can generate a

binary string to meet the requirement.

We also present empirical results based on public dataset and our dataset. The
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assumptions we made remain the same as the previous section (Section 1.1).

Hence, we can directly compare results from this section with the previous.

The experimental results show that the proposed scheme outperforms the VQ

and GMM for all attack models. It is slightly degraded when compared to the

DTW for the attack models proposed in the literature but, for the algorithmic

attack we propose, our scheme significantly outperforms the other systems. Our

results appear in [39].

Next, we compare the transformation approach proposed by Maiorana et al.

[58] with ours. The experimental results show that our system outperforms

the transformation approach. We also show that an adversary can exploit the

transformed template to gain access to the system which does not differ from

the unprotected approach [32]. These results appear in [41].

1.3 Speech Cryptographic Key Regeneration based

on Password

Motivation

One of the promising ways to authenticate users is to combine a biometric

cryptosystem with one or both of the other factors: knowledge or token. There-

fore, the performance is improved in the case that the biometrics and the input

factors are not compromised simultaneously. There are a number of works in-

volving combination of biometrics with a password or a random key [70, 49, 90].

These works suffer from two main problems: 1) The error rate is still high. 2)
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A hill-climbing attack is possible because a decision threshold is stored in the

system.

In this section, we assume that the attacker acquires the biometric information

(the second type of attack). This assumption is reasonable because, in our case

(speech), this could happen with audio recording. However, it could also happen

in other cases; the ubiquitous fingerprint left on a surface and the image of a

face or an iris captured on camera are examples of these cases. Therefore, this

scenario has to be investigated.

The other problem is that the security of the mentioned systems does not differ

from a traditional password approach when the biometrics is compromised.

Contribution

We propose a way to combine a speech biometric cryptosystem with a password.

The system consists of three layers. For the first layer, the biometrics is trans-

formed using a password. Then, we map the transformed version to a binary

string. For the second layer, the result from the second layer is permuted using

a password in such a way that the attackers cannot discriminate the correct

password from brute-force search if the biometrics is not compromised. For the

third layer, a cryptographic key and the binary string are hidden using a fuzzy

commitment framework so that it makes a hill-climbing attack more difficult as

the attackers are not left with the match score to decide whether the attack is

close to the original biometrics.

We show that the verification performance of the system meets the same level

of a traditional password-based approach if biometrics and password are not
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compromised simultaneously. Furthermore, the system increases the computa-

tional time for attackers to search for the key. Even if the attackers acquire the

biometrics, they are forced to align query biometrics each time they guess the

password.

1.4 Dissertation Outline

Chapter 2: We explore past research related to ours and explain how our work

builds on or improves it.

Chapter 3: We describes the theory of speech signal processing and the speaker

verification techniques related to this dissertation.

Chapter 4: We study the state-of-the-art in speaker verification systems: Dy-

namic Time Warping (DTW), Vector Quantization (VQ) and Gaussian Mixture

Model (GMM). We investigate the security of those systems by doing a series

of experiments that include both human and algorithmic attacks. We propose

an analysis-synthesis forgery that can be used in remote or on-line authentica-

tion. We find that the DTW yielded the best recognition performance for the

text-dependent speaker verification, but it was the most susceptible to attack.

Chapter 5: We propose a cryptosystem for a text-dependent speaker verifica-

tion named DBKB (Dynamic time warping-based biometric key binding). We

utilize DTW in our scheme. A DTW-based biometric user verification system

needs a DTW template to set up a warping function for query biometrics. In

addition, a matching template is required to examine similarity. The challenge
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of using DTW in a cryptosystem is that a template must be useful to create a

warping function, while it must not be usable for an attacker to derive the cryp-

tographic key. In this chapter, we propose a hardened template to address these

problems. For the matching template, it is protected by cryptographic frame-

work. The experimental results show that the performance of the proposed

scheme outperforms VQ and GMM. It is slightly degraded when compared to

the DTW speaker verification.

Chapter 6: In this chapter, we investigate the performance and security of

transformation approach applied in a DTW-based system. We compare the

transformation and unprotected approach with the DBKB. The experimental

results show that the DBKB outperforms the transformation approach. More-

over, it is slightly degraded when we compare it with the unprotected template.

We also show that an adversary can exploit the transformed template to gain

access to the system which does not differ from the unprotected approach.

Chapter 7: In this chapter, we propose a way to combine a password with

a speech biometric cryptosystem. We present two schemes to enhance veri-

fication performance in a biometric cryptosystem using password. Both can

resist a password brute-force search if biometric is not compromised. Even if

the biometric is compromised, attackers have to spend many more attempts

in searching for cryptographic keys when we compare ours with a traditional

password-based approach. In addition, the experimental results show that the

verification performance is significantly improved.
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Chapter 8: This chapter is conclusion of this dissertation and suggested future

work. We propose a new algorithmic attack based on template information to

demonstrate that the traditional approach to evaluate the security of speech

biometric user verification is insufficient. Then, we develop the cryptographic-

based speaker verification to protect the biometric templates. Lastly, we use a

password to protect stored templates, enhance security, and reduce error rates

in biometric cryptosystems. Our techniques offer great potential to protect the

speech biometric template. In further research, we will investigate security and

performance of other behavioral biometrics, such as handwriting or a signature.

Finally, the permutation technique we proposed is a general technique which we

believe can be used in any biometric modalities for the key binding scheme. In

further research, we will investigate security and performance of our technique

for physiological biometrics, such as fingerprints, faces, and iris codes.

16



Chapter 2

Related Work

In this chapter, we first explore the evaluation of various attacks on the biometric sys-

tems. Next, we explore biometric cryptographic systems. Then, we review template

protection approaches.

2.1 Attack Against Biometric Systems

Many biometric modalities are susceptible to attack because some information is

leaked from the biometric template [4]. Moreover, the security against the attack

is underestimated [5]. Lopresti and Raim proposed a generative model to attack a

handwriting authentication system [57]. The basic units of user’s handwriting sam-

ples were manually segmented and then the corresponding units were concatenated

to form a user’ pass-phrase. Next, a feature space search was performed within a

predetermined time limit of 60 seconds. As a result, their attack succeeded 49% of

the time. In later research, Ballard et al. expanded the work in [57]. In their work
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[5], they conducted a series of attacks using human-based and generative models to

attack a handwriting authentication system. For the human-based attack, they used

trained imposters who were allowed to select and replay real time renderings of a tar-

get user’s pass-phrase in the experiments. The authors showed that the FAR (False

Acceptance Rate) of the trained imposters when compared to the untrained coun-

terparts significantly increased. For the generative model, the results showed that

the generative attack match or exceed the effectiveness of forgeries rendered by the

trained imposters.

In chapter 4, we adopt the attack models mentioned above to investigate speech-

biometric authentication systems: DTW, VQ, and GMM. The results are similar to

the work in [57, 5]. Then, we further evaluate the systems when we assume that the

attacker acquires template information. We propose algorithms to regenerate pass-

phrases. The experimental results show that our algorithms outperform the other

attack models.

There are a number of successful attacks against speaker verification [73, 62, 99,

61, 45]. Yee, Wagner and Tran [99] reported the attack on a GMM-based speaker

verification system against human impostors. Two people, male and female, played

the roles of imitators against 138 speakers in the YOHO database. At first, the

imitator was required to speak the same utterance in the YOHO database to calculate

the similarity score between the imitator and the same-gender subject in the YOHO

database. Among 138 speakers, the closest, intermediate, and furthest speakers have

been selected by similarity scores. Finally, each imitator tried to mimic three target

speakers in the database. The best result of the female imitator was accepted 30%

of the time by the system, while the male imitator achieved a 35% acceptance rate.
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Pellom and Hansen [73] investigated the security of a GMM-based speaker verification

system with an Equal Error Rate (EER) of 1.45% as the baseline for human impostors.

They proposed a new trainable speech synthesis algorithm based on trajectory models

of the speech Line Spectral Frequency (LSF) parameters to synthesize the target

voice. After the algorithm has been applied, the result showed that the FAR was

increased from 1.45% to 86%. Jin et al. [45] presented an attack on a classical GMM-

based speaker identification system using a voice transformation technique. First,

the models of each speaker were created from a set of training data, and then the

test data from the unknown speaker was used to test the system. The baseline of

the model was 100% accuracy. The experimental results showed that impostors using

voice transformation were able to fool the GMM-based speaker identification system.

In other words, the GMM system always hypothesizes the speaker that is used as the

target speaker for voice transformation.

Even though these attacks have been done with GMM-based systems and the

same database was used (in [99] and [73]), the experiments were conducted with

different datasets. Moreover, these results are not necessarily applicable to other

systems (DTW and VQ). To make these issues clear, we conduct experiments under

the same controlled environment, such as assumptions, datasets, and instruments.

These results are shown in Chapter 4.

Masuko et al. [61] presented an attack model using synthetic speech. An HMM-

based speaker verification with an FAR of 0% for human impostors was used as a base-

line. They used an HMM-based speech synthesizer to create synthetic speech. The

results showed that the FAR against the HMM-based synthesized speech increased

to 70% by using only 1 sentence as training data. However, De Leon et al. proposed
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a technique to detect the synthesized speech [24]. The fact that the HMM-based

synthesizer always produces the same optimal waveform in term of likelihood score

was exploited to detect the synthetic speech. With this step, the speaker verification

system was able to prevent some imposters using synthesized speech. However, to

determine the likelihood score, the system needs a template. Therefore, the template

attack we propose in Chapter 4 may work on this system.

2.2 Biometric Cryptographic Systems

A number of researchers have proposed biometric cryptosystems. Monrose et al.

[64] proposed a behavioral biometric key generation based on keystroke biometrics.

They use dynamic features (duration of keystrokes and latencies between keystrokes)

to strengthen a user’s password. This scheme makes the system more secure by

adding 15 bits of entropy to the password for 15 dynamic features [95]. In their

later works [65, 66, 67], they applied this scheme to voice data. The algorithm to

generate cryptographic keys from voices was mainly based on the speaker verification

and identification technologies, such as digital signal processing, feature extraction,

and the vector quantization technique. Consequently, their system was eventually

able to generate cryptographic keys up to 60 bits from voice features. However, the

False Rejection Rate (FRR) was still high (20%). Moreover, since their approach was

based on the VQ technique, the system left useful information which can be used

in gaining access to the system. In Chapter 4, we show that we can exploit VQ

template information to regenerate a pass-phrase. As a result, the error rate of the

demonstrated system significantly increases. In Chapter 5, we show that the Dynamic
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Time Warping-based cryptographic key regeneration, which we propose, yields better

recognition performance when it is compared with the VQ technique.

Garcia-Perera et al. [33] proposed a way to generate cryptographic keys based on

speech recognition. The phoneme of the user’s pass-phrase was trained and mapped to

binary by using a Support Vector Machine (SVM) classifier. However, their scheme

could generate a short length of key; the bit length was equal to the number of

phoneme in the pass-phrase. For example, in one of our datasets, the minimum

number of phonemes is eight. Therefore, this scheme can generate only an eight-

bit key which is very short when it is compared with a traditional password-based

approach, which is insufficient for security applications.

Hao and Chan [35] proposed a way to generate biometric keys from hand-written

signatures. The DTW template was protected by utilizing static features as the

DTW template so that the template did not reveal the key that was generated from

dynamic features. Their approach achieved 40 bits of entropy with 1.2% acceptance

rate. However, Ballard et al. [4] demonstrated that the dynamic features can be

reproduced given the static features by using temporal inference techniques that they

proposed. The experimental results showed that the keys were accurately recreated

22% of the time on the first attempt, and approximately 50% of the keys were correctly

guessed after making fewer than 215 guesses.

In later research, Hao et al. [36] proposed the combining of biometrics and cryp-

tography with a two factors scheme: biometrics and a token. They stored a lock data

(encoded keys combine with biometrics) in a smartcard which can be unlocked and

decrypted at later time by user’s biometrics. The template was hidden by following

the fuzzy commitment scheme [48]. They were able to generate 140 bits from iris
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codes with 44 bits of entropy. The authors also reported that the benefits of their

scheme include revocability. More precisely, if the key is compromised, the new key

will be issued. However, the new key has to be hidden with biometric information (iris

code) which cannot be changed. Therefore, if the key is compromised, the biometrics

might be derived from the old template [4]. For our approach, we also utilize the

fuzzy commitment scheme, but our construction is more flexible. If the key is com-

promised, the new key will be issued and the users will be required to provide a new

biometric measurement to the system. Hence, the old biometrics will be canceled.

2.3 Template Protection Approaches

Ratha et al. [75] proposed cancelable fingerprint templates. The non-invertible trans-

formation functions were used to transform fingerprint feature (minutiae) positions

so that the matcher could still be applied in feature domain. The result showed that

there was a trade-off between discriminability and non-invertibility. In this proposal,

three transformation functions were proposed: cartesian, polar, and functional. The

Cartesian transformation yielded the best security. However, the performance was

relatively poor. In addition, Nagar et al. [69] have shown that Ratha et al.’s scheme

was vulnerable to intrusion attack because it was relatively easy to obtain a pre-image

of the transformed template.

Numerous researchers proposed schemes to protect biometric templates by incor-

porating with random keys or passwords [82, 90, 80, 3, 70, 49]. These systems satisfy

these criteria 1) The attackers cannot discriminate the correct password from incor-

rect when they use a brute-force search to find the key without the knowledge of
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biometrics. 2) When the password is compromised, it cannot be used to reveal the

key.

Ballard et al. [3] used a password to encrypt selected biometric features and

some helper data for their key generation scheme. Their construction follows the

approach similar to [7] where a low-entropy password is used to encrypt a high-

entropy string. The features were specified as indexes into a table, and then a subset

of the features was randomly assigned to each user. The feature indexes of this subset

were encrypted in the template with a password using a cipher with arbitrary finite

domain [8]. In this way, any passwords that are used to decrypt the template yield

a subset of features indexes that falls within the global table. The authors ensured

the indistinguishable from decryption with the correct and incorrect password by

assigning any given feature with the same probability across the population to a user.

Therefore, in both cases, a decrypted template appears as a random permutation on

a subset of feature indexes. They demonstrated that their scheme did better than

the previous approaches against attacks even when the password was compromised.

However, the error rate when the password was not compromised was not reported.

Nandakumar et al. [70] proposed a scheme to secure a fingerprint with a password.

The password was used to select a transformation function to secure the fingerprint

template. The transformed template was then secured using fuzzy vault framework.

Finally, they used a key derived from a password to encrypt the vault. By using their

scheme, the attackers are required to know the correct password before they can guess

the key. Even if the correct password is selected, the security of the scheme is still at

the same level as before using a password. Benefits of their scheme include template

revocability, prevention of cross-matching, enhanced security and a reduction in the
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False Accept Rate. However, their scheme noticeably affects the False Reject Rate.

By utilizing the idea from Hao et al. [36]., Kanade et al. proposed a three factors

scheme (biometrics, smartcard, and password) to apply to iris codes where a password

was used to permute the key [49]. They could generate the key of 198 bits (compared

to 140 bits in [36]) with estimated entropy of 83 bits (compared to 44 bits in [36]).

Unfortunately, their scheme creates a security loophole which allows the attacker to

crack the helper data without any additional information [85].

Teoh and Chong [90] proposed secure speech template protection in speaker ver-

ification system. The speech template was hidden through the random subspace

projection process. In this process, a speech feature matrix is integrated with a

user-specific key to obtain a random-projected matrix which cannot be inverted to

the original speech feature matrix. The random-projected matrix is used to form a

speaker probabilistic model and a decision threshold. They showed that the verifi-

cation performance was very high. However, it would make some attacks, such as

hill-climbing easier, as the system left the decision threshold and random-projected

vectors for matching process. In the case that the token is stolen, the attacker may

make small changes in the input imposter’s feature matrix and check to see how

the match score changes. After a number of iterations, the attacker may be able to

acquire a feature matrix that is close to the original.

To address the problems mentioned above, in Chapter 7, we propose schemes to

combine a speech biometric cryptosystem with a password. We first transform the

biometrics using a password. Then, the transformed version is mapped to a binary

string. In this way, the transformation process forces the attackers to run dynamic

programming every time they try another password. Next, the biometric information
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is permuted using a password in such a way that the attackers cannot discriminate the

correct password from brute-force search even when the biometrics is compromised.

Lastly, a cryptographic key and the biometric information are hidden using a fuzzy

commitment framework to protect the matching template so that it makes a hill-

climbing attack more difficult as the attackers cannot discriminate whether the attack

yields a positive result.
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Chapter 3

Background

In this chapter, we describe the theory of speech signal processing and the speaker

verification techniques which are utilized in this dissertation.

3.1 Speech Signal Processing

A speech signal is usually represented by a function of time, sa(t) in which t denotes

time. The first step is the transformation of an analogue signal to digital. This process

is called A/D conversion. The analogue signal is usually sampled at 8kHz. The reason

is that most information in human speech is at frequencies below 10,000 Hz. For

speech communication networks, only frequencies less than 4,000 Hz are transmitted.

Thus an 8,000 Hz sampling rate is sufficient; frequencies less than or equal to 4k Hz.

can be reconstructed according to the Nyquist theorem [25]. Hence, we can use a

low-pass digital filter with a cut-off at 4 kHz to strip the higher frequencies from the

signal. If we denote the sampling period as Ts, the digital signal will be represented
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by the following equation.

s[n] = sa(nTs), n = 0, . . . , N − 1 (3.1)

The next step is pre-emphasis, which is the process to raise the Signal to Noise

Ratio. The signal is pre-emphasized by passing the signal to a first order digital filter

represented by the following equation where γ ranges between 0.9 to 1 [31].

H[z] = 1− γz−1 (3.2)

Framing is the next step. The signal is framed into the short time analysis interval.

These frames have to be overlapped properly. The length of each frame is usually

around 30 msecs; This length would yield good results for speech processing with 10

msecs overlap [31]. Each frame is multiplied by a window function to reduce abrupt

changes at the start and the end of each frame. The result can be represented by

equation 3.3.

x[n] = s[n] · w[n] (3.3)

The processes we mentioned above are illustrated in Figure 3.1

The next step is feature extraction where the features are extracted from the

signal. The following features are popularly used for speech analysis.
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Figure 3.1: Block diagram of speech signal processing.
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3.2 Discrete Fourier Transform (DFT)

A basic feature of voice is the DFT. The DFT of N points signal s[n] for k = 0, . . . , N−

1 can be defined as:

X[k] =
N−1
∑

n=0

s[n] exp
−j2πnk

N
(3.4)

The Inverse Discrete Fourier Transform (IDFT) for n = 0, . . . , N−1 can be defined

as:

s[n] =
N−1
∑

k=0

X[k] exp
−j2πnk

N
(3.5)

According to the real function property [72], if s[n] is real and s[n] and X[k] are

transform pairs, then

X[−k] = X[N − k] (3.6)

This symmetric property, equation (3.6), can be exploited to decrease the com-

putation required to transform a real sequence. To derive DFT, there is no need to

compute X for N/2 <k <N, since these values can be found from the first half of X.

The most efficient feature to identify a speaker is known as cepstral coefficients

or cepstrum [52]. Cepstrum physically represents the movement of articulators (the

teeth, alveolar ride, hard palate, and velum) of speakers [66]. Its use is popular

because of low correlation [50]. Hence, it is appropriate to apply it for cryptographic

purposes.
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3.3 Linear Predictive Coding (LPC)

The coefficients of the Linear Predictive Coding play an important role in the speech

signal processing. The concept of predicting the future signal from past samples was

introduced in the late 1940’s [72]. As the adjacent samples of the speech waveform

are highly correlated, each sample can be approximated by a linear combination of

the past samples. More precisely, an approximation of a speech signal s[n] can be

calculated by a linear combination of the LPC coefficients and P previous samples of

the original signal (autoregressive model). Basically, the following equation represents

this concept where a[p], p = 1, . . . , P , are the LPC coefficients, P is the order of the

linear predictor (number of the LPC coefficients).

s[n] ≈ a[1]s[n− 1] + a[2]s[n− 2] + . . .+ a[p]s[n− P ] (3.7)

Given Gu[n], an excitation term, equation 3.7 can be converted to equation 3.8

where u[n] is a normalized excitation and G is the gain of the excitation.

s[n] =
P
∑

p=1

a[p]s[n− p] +Gu[n] (3.8)

We can express equation 3.8 in z-domain as indicated in equation 3.9.

S[z] =
P
∑

p=1

a[p]z−pS[z] +GU [z] (3.9)

Considering equation 3.8 as an IIR filter, the transfer function of the filter is given

by the following equation.
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H[z] =
S[z]

U [z]
=

G

1−
∑P

p=1 a[p]z
−p

(3.10)

The LPC coefficients can be obtained by solving AR equations [72]; two methods

can be used: covariance and autocorrelation method. The autocorrelation method

is computationally more effective and stable since the positive definiteness of the

correlation matrix is guaranteed by the definition of the correlation function, an

inverse matrix exists for the correlation matrix [31]. For the autocorrelation method,

the LPC coefficients can be obtained by solving the equation 6.3 where R is the

autocorrelation sequence defined in equation 3.12.
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R[p] =

N−p
∑

n=1

s[n]s[n− p] (3.12)

However, the LPC coefficients are highly correlated [77]. A better feature set (less

correlated) is Linear Predictive Cepstral Coefficient (LPCC) [52]. The LPCC, cLPCC ,

can be obtained from equation 3.13 where cLPCC [0] = In(G).

cLPCC [v] =











a[v] +
∑v−1

k=1
k
v
cLPCC [k]a[v − k] 1 ≤ v ≤ P

∑v−1
k=1

k
v
cLPCC [k]a[v − k] v > P

(3.13)

31



3.4 Mel-Frequency Cepstrum Coefficients (MFCC)

Another feature that is also popular in speech processing is Mel-Frequency Cepstrum

Coefficients. If we say that cepstral coefficients are derived from a speech production

mechanism, MFCC will be derived from a speech recognition mechanism. For MFCC

extraction, we use a set of non-linear scaled filters or a filterbank to filter the signal in

a way similar to the human perceptual system. In [50, 38], the filterbank was defined

as a set of band-pass filters whose frequency responses are triangular shape and whose

center frequencies spread non-linearly across the frequency range of speech. Specifi-

cally, the scaled filterbank is approximately linear below 1kHz and logarithmic above.

To derive MFCC with N samples, the magnitudes of Discrete Fourier Transform are

passed to the filter, then the output of each filter is used to form MFCC parameters

using discrete cosine transform.

From the explained above, let Hm for m = 1, . . . ,M be a set of filters in the

filterbank, the log-energy output of each filter S[m] can be expressed as

S[m] = In

[N−1
∑

k=1

∣

∣

∣
X[k]

∣

∣

∣

2

Hm[k]

]

, 0 < m ≤M

The MFCC, cMFCC [v], is then the discrete cosine transform of S[m] that can be

expressed as

cMFCC [v] =
M−1
∑

m=1

S[m]cos(πv
(m− 1)

2M
) (3.14)

The inversion of Mel-Frequency Cepstrum Coefficient

For this section, the objective is to find a signal that yields the desired MFCCs.

32



Consequently, when we pass the signal into the speaker verification system, the

result is the desired MFCCs.

For L frames with M-order MFCC of the speech signal, let A and B represent the

output of the filterbank and cosine transform matrix where the inner product

of A and B is the MFCC, we rewrite equation (3.14) as

C = BA (3.15)

where C is a MFCC matrix.

We multiply both sides of (3.15) with B−1 where B−1 is the inversion of B.

Then equation (3.15) will be

B−1C = A

Hence, the output of the mth filter for lth frame will be S[m, l] = 10(B
−1C[m,l])

for l=1, . . . , L.

The next step is to interpolate the frequency response from the filterbank’s

outputs. For an overview of the filterbanks, each filter is characterized by the

lowest and highest frequency represented by flow, fhigh in Hz where the center

frequency fcenter = (flow+fhigh)/2. The flow and fcenter of the next filter are the

fcenter and fhigh of the previous filter and so on. Hence, most frequency response

corresponding DFT bin center frequency (fbin) are affected by two connected

filters. We interpolate the frequency response with the weight functions. Let w1

and w2 be the weight functions of the first and second filter which are defined as
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w1 = [fbin− fcenter(m)/fcenter(m+1)− fcenter(m)] and w2 = 1−w1. In case the

DFT bin falls into one filter, one of the weight functions is set to zero and the

other is set to one. More precisely, w1 = 1, w2 = 0 if fbin ∈ [flow(1) fcenter(1)]

and w1 = 0, w2 = 1 if fbin ∈ [fcenter(M) fhigh(M)]. The interpolated DFT

(Finterp) can be expressed as

Finterp = w1S(m, l) + w2S(m+ 1, l) ,m = 1, . . . ,M (3.16)

Therefore, the desired signal is the Inverse Fourier Transform of Finterp.

3.5 Short-term Energy

Energy of a signal expresses the strength of the signal. It is usually applied for voice

activity detection. The energy of a voice is higher than the energy of the noise. Hence,

it can use to segment the signal into speech and silence region. The short-term energy

E is represented by the following equation.

E =
N
∑

n=1

s2[n] (3.17)

Another measure that provides equivalent information is the short-term power P

represented in the following equation.

P =
1

N

N
∑

n=1

s2[n] (3.18)
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Figure 3.2: Block diagram of a speaker verification system.

3.6 Speaker Verification Models

The speaker verification model is represented in Figure 3.2. This figure shows five

components of the speaker verification system. We have described the signal process-

ing and feature extraction components. Now, we are going to explain the rest.

The following techniques based on a pattern matching method [15] are popularly

used in the speaker verification system. All techniques are used to create a speaker

model. The speaker model is used to examine the similarity between the model and a

test utterance (pattern matching). Let ξ be the similarity between the speaker model

and a test utterance. The decision is given as the following equation where θ is a

decision threshold which is determined so that it minimizes an error rate.

ξ











> θ Accept

≤ θ Reject
(3.19)
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jk = mik−Q

A

i

l(1,1)

l(M,N)

j

B

m = (N−Q)/M−Q

Figure 3.3: An example of Dynamic Time Warping where the mapping between two
signals (A and B) is given by the dot line.
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Dynamic Time Warping (DTW)

For DTW, given two time sequences of feature vectors, we have to find a warping

function which minimizes the distance between the two feature vectors. Let the

two sequences of feature vectors which should be compared be

A = a1, a2, . . . , ai, . . . , aM and B = b1, b2, . . . , bj , . . . , bN

The warping function can be represented by a sequence of lattice points on the

plane (see Figure 3.3), l = (i, j), as indicated in the following equation.

L = l1, l2, . . . , lk, . . . , lK , lk = (ik, jk)

Let d(lk) be a cost function which is defined as the distance between aik and bjk .

The overall cost function, D(L), can be determined by the following equation

[72].

D(L) =
K
∑

k=1

d(lk) (3.20)

In addition, a warping function is required to minimize the overall cost function

under the following constraints [72, 31].

1. The function must be monotonic:

ik ≥ ik−1 and jk ≥ jk−1

2. The function must match the endpoints of A and B (Boundary condition).

i1 = j1 = 1, iK =M, and jK = N

3. The function must be a continuity function.
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ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1

4. The function must be a global limit to prevent extreme expansion and

contraction.

|ik − jk| < Q, Q = constant

Hence, we have to find the minimum-cost path from point(1,1) to point (M,

N). The minimum-cost warping path can be efficiently determined by using

Dynamic Programming (DP). With the constraints described above, the cu-

mulative distance D(i, j) over a partial sequence of l1, l2, . . . , lk, . . . , lK where

lk = (i, j) can be expressed as the following equation.

D(i, j) = d(i, j) +min(D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)) (3.21)

An example of DTW is shown in Figure 3.3. The signals to be mapped are

shown along the axes. The diagonal dot line shows the mapping between A and

B where the ith sample of A is aligned with the jth sample of B.

Vector Quantization (VQ)

For VQ, the acoustic models of speakers are created by partitioning a collection

of acoustic feature vectors to C clusters [83]. Each cluster is represented by a

mean vector or centroid denoted by ci for i = 1, . . . , C. In literature, a set

of controid C = {c1, . . . , cC} are referred to as a codebook. An example of

VQ-based speaker model is shown in Figure 3.4 with C = 10.

For verification, given an input vector X = {x1, . . . , xm} , the quantization

distortion for speaker j can be calculated by summing the nearest distance in
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Figure 3.4: An example of the VQ-based speaker model with 10 clusters.
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the codebook (Cj). More precisely, the distortion d of the vector xk from Cj ,

d(xk, Cj), is given by equation 3.22 where d(xk,ci) is a distance between xk and

ci.

d(xk, Cj) = arg minciǫCj d(xk, ci) (3.22)

Hence, the distortion of X from Cj is determined by the following equation.

D(X, Cj) =
1

m

m
∑

k=1

d(xk, Cj) (3.23)

Gaussian Mixture Models (GMM)

The GMM model consists of a finite number of Gaussian mixtures. Each mix-

ture is parameterized by a priori probability π, mean vector µ, and covariance

matrix Σ [76]. The GMM model can be represented by λ = {λ1, . . . , λK} where

λk = (πk, µk,Σk). These parameters can be estimated by using the Expectation-

Maximization (EM) algorithm [26]. An example of GMM-based speaker model

is shown in Figure 3.5 with K = 10.

Given an input vector X = {x1, . . . , xm}, the matching score for GMM is

determined by the log-likelihood of the GMM, LGMM , in the following equation

where λj = (πj, µj, Σj) and λj′ = (πj′, µj′, Σj′) are the model of speaker j and

the background model of speaker j.

LGMM = log p(X|λj)− log p(X|λj′) (3.24)
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Figure 3.5: An example of the GMM-based speaker model with 10 Gaussian Mixtures.
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Chapter 4

Attack Against Speaker

Verification

4.1 Introduction

In this chapter, we investigate the security of user authentication based on adversary

knowledge of private and public information and the motivation of the adversary

as introduced in Chapter 1. Three systems based on a pattern matching technique

are used in the study. According to [15], the pattern matching methods include a

template, a codebook, and a statistical model. Dynamic Time Warping (DTW) is

used in the template model, Vector Quantization (VQ) in the codebook model, and

Hidden-Markov Model (HMM) in the statistical model. For statistical models, we

used a single state HMM which is referred to as a Gaussian Mixture Model (GMM)

[15].

We present attack models based on adversary knowledge. We start with naive
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adversaries without knowledge of an authentic speaker and develop them into highly

knowledgeable adversaries who know the speaker’s information, have the speaker’s

voice samples, acquire the speaker’s template, and know an algorithm of the speaker

verification system. We propose an analysis-synthesis forgery in which the highly

informed adversary can exploit information, such as feature vectors from the template

and a statistical probability from the voice samples of the target speakers to regenerate

a forgery that can be used in remote or on-line authentication.

We attack the systems using human and algorithmic attacks. For the first scenario

(human), we ask a subject to say the pass-phrases of the target users for multiple

rounds. For the first round, the impostors say the pass-phrases without listening to

the target voice. In the second round, they are asked to imitate the pass-phrases

of the target users by listening to the voice of the target users. In this round, we

ensure that the subjects are well-motivated by providing an incentive reward for the

best imitator. For the second scenario (algorithmic), we will use voice recordings

from the target users to generate synthesized pass-phrases. The synthesized sound

will be generated from state-of-the-art technologies; we use an HMM-based speech

synthesizer. We carefully designed the collection of the voice data, so the voice

would not overlap with the pass-phrases of the target users. In the last scenario

(algorithmic), we regenerate users’ pass-phrases based on the template information.

Then, these pass-phrases will be used to attack the systems. These scenarios are

detailed in Section 4.4.
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4.2 Datasets

We evaluate the recognition performance using an Equal Error Rate (EER) which

is the rate at which the False Acceptance Rate (FAR) and the False Rejection Rate

(FRR) are equal. The FAR is the percentage of the time that the system accepts

the wrong speaker or one who is not authorized to access the system. In the same

way, the FRR is the percentage of the time that the system rejects the authorized

speaker. Two datasets are used in our experiments: The MIT mobile device speaker

verification corpus dataset (MDS) [97] and The Lehigh quiet environment speaker

verification dataset (LDS). The MDS is a public dataset available from MIT. The

LDS is our own dataset collected over a one month period of time.

4.2.1 The MIT Mobile Device Speaker Verification Corpus

This dataset was collected from 48 speakers (22 females and 26 males). The utterances

were recorded in three acoustic environments: office, lobby, and street intersection via

two types of microphones: external earpiece headset and built-in mobile device. The

dataset consists of two sets: a set of enrolled users and a set of dedicated imposters.

For the enrolled set, speech data was collected over two sessions on separate days

(20 minutes for each session). For the imposter set, users participated in a single

20 minutes session. There are six lists of pass-phrases that were varied by three

environments and two types of microphones. We select the first list for our experiment

because it provided pass-phrases that were said by the same speaker multiple times

under the same environment (office). So, we can use this list in the training and the

testing phase.
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During each data collection session, the user recited a list of ice cream flavor

phrases which were displayed on the hand-held device. The sets of enrolled users’ pass-

phrases and dedicated imposters’ pass-phrases used in our experiments are provided

in Appendix A.1 and A.2.

4.2.2 The Lehigh Quiet Environment Speaker Verification

Dataset

This dataset contains 4,320 recordings collected on a laptop computer via an external

earpiece headset microphone from six male speakers during several rounds. The data

collection was taken in the graduate study room at Lehigh University’s Library that

can be referred to as a quiet environment.

In the first round, the subjects were asked to say their five pass-phrases which

were chosen from idioms, famous phrases and everyday conversations (see Appendix

A.3). Each pass-phrase was uttered 10 times. In addition, they were asked to say

270 short sentences (see Appendix A.4) to make a speech corpus. The set of short

sentences in the speech corpus were chosen from “The CMU arctic speech databases”

designed by Language Technologies Institute, Carnegie Mellon University, USA [54].

The databases consist of approximately 1200 phonetically balanced English utter-

ances. We note that the 270 selected sentences are not overlapped with any user’s

pass-phrases. However, the selected sentences to cover all pass-phrases’ diphones.

Thus, we can synthesize reasonable quality sound to attack the systems.

Approximately two weeks later, in the second round, they were asked to say their

same set of pass-phrases. Each was uttered five times. Furthermore, they were asked

45



to say other subjects’ pass-phrases. Each was uttered five times. Lastly, they were

asked to imitate the other subjects’ pass-phrases by listening to the pass-phrases that

we replayed to them. Each pass-phrase was uttered five times.

The third round began at the end of the fourth week. By listening to imitated

pass-phrases, we selected the best imitator, who was then asked to mimic the target

speaker’s pass-phrases. Each pass-phrase was uttered five times.

4.3 Speaker Verification Models

For all constructions in the following subsections, we use a low-pass digital filter with

a cut-off at 4 kHz to strip the higher frequencies from the signal. The next step

is pre-emphasis. We set the pre-emphasis parameter γ to 0.98. Then the signal is

framed into the short time analysis interval and multiplied with the Hamming window

defined as follow.

w(n) =











0.54− 0.46cos2nπ
N

0 ≤ n ≤ N − 1

0 otherwise
(4.1)

We set the length of each frame to 30 msecs with 10 msecs overlap. For the

sampling rate of 8 kHz, we use 240 samples per frame that are shifted every 80

samples.

A decision threshold is estimated based on the distribution of overall distances

between each authentic speaker’s and a set of imposters’ features. For our setting, let

mean and standard deviation of the inter-speaker score be µ and σ, we set the decision
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threshold θ by the followings equation where c is some constant that minimize the

error rate.

θ = µ− cσ (4.2)

4.3.1 Dynamic Time Warping (DTW)

For DTW, we use the first utterance as the keying signal and perform DTW to the

rest. The averaged result is stored as the matching template. The distance between

an input and the template is determined by using the Euclidean distance. The system

decides whether to accept or reject the speaker by comparing the Euclidean distance

to the decision threshold.

4.3.2 Vector Quantization (VQ)

For our setting, K-means clustering is used to quantize the training vectors. We

investigate the performance of VQ in our datasets by setting the number of clusters

to 10, 20, 30, 40, and 50. The performance with 30 clusters yields the best results.

Therefore, we set C = 30. The distance between an input vector and the nearest

centroid is determined by using the Euclidean distance. The system decides whether

to accept or reject the speaker by comparing the distance to the decision threshold.
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4.3.3 Gaussian Mixture Models (GMM)

The GMM model consists of a finite number of Gaussian distributions parameterized

by their priori probability πj, mean vectors µj, and covariance matrices Σj [76]. In

this experiment, we use nodal covariance matrices. We initialize the speaker models

using the K-means clustering, then the parameters are estimated by using the EM

algorithm [26].

The training utterances of all speakers except speaker j are used to create the

background model and the rest is used to create the speaker model of speaker j.

We use the GMM mixture order = 10 for the reason similar to the setting of the

VQ. The system decides whether to accept or reject the speaker by comparing the

log-likelihood to the decision threshold.

4.4 Attack Models

We investigate two types of attack: human and algorithmic. We vary the adversary

knowledge by making three different assumptions in the human case and two different

assumptions in the algorithmic case, for a total of five classes of attacks.

4.4.1 The Human Type with Assumption I (H-I)

We assume that the attackers do not know the authentic speakers and their pass-

phrases. We evaluate the error rate of the authentic speakers compared with the

adversary (naive) who say the random pass-phrase with different phonetic content

than the actual pass-phrase.

48



4.4.2 The Human Type with Assumption II (H-II)

We assume that the attackers know the pass-phrase and say the actual pass-phrase.

In this experiment, the adversaries (imposter) say the actual pass-phrase without

listening to the target pass-phrase. All other subjects except the authentic speaker

will be the adversaries.

4.4.3 The Human Type with Assumption III (H-III)

We assume that the attackers know the pass-phrase and are acquainted with the

authentic speaker. Then, they try to mimic the target pass-phrase. In our experiment,

we re-play the pass-phrases of target speakers to the adversary (informed imposter)

and then the informed imposter repeats the pass-phrases. Note that we use the term

“informed” instead of “skilled” because the attackers have only been given useful

information for creating a forgery. Taken literally, “skill” means that someone has

demonstrated a proven talent; we have done nothing to prove that the test subjects

actually have a real talent for forgery.

4.4.4 The Algorithmic Type with Assumption I (A-I)

We assume that the attackers know the pass-phrase and have acquired sufficient voice

samples of the target user to build a speech synthesizer tuned to the user’s voice.

Then, they synthesize the pass-phrase. In this type, we use HMM-based speech syn-

thesizer to create synthetic pass-phrases [92]. We use 270 phrases in the first round

in the LDS dataset for training the speaker-dependent models to synthesize pass-

phrases. The phonemes in each phrase are labeled to form HMM models of each
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phoneme in the training phrase. The HMM models are parameterized by spectrum

(MFCC) and excitation (fundamental frequency, and duration) parameters. To syn-

thesize the sound, the pass-phrase to be synthesized is analyzed then the phoneme

HMM models are concatenated based on unit clustering. Finally, the concatenated

HMM models output the parameters to synthesize the sound by passing these pa-

rameters to the synthesis filter. For each speaker, five pass-phrases are synthesized

corresponding to their pass-phrases. For all processes in synthesizing the sound, we

set the sampling rate at 8000 Hz.

4.4.5 The Algorithmic Type with Assumption II (A-II)

We assume that the attackers know the pass-phrase and have acquired the template

of the target user. Moreover, they know the system’s construction and use this

information to create regenerated pass-phrases.

We refer the algorithmic type attacker (A-I and A-II) to as an informed adversary.

Attack against DTW template.

We store 13 order MFCCs of the first utterance as the reference template.

Hence, we have to transform this template to a signal. We first transform

MFCCs to DFTs using Auditory Toolbox [81]. Then the DFTs are transformed

to the speech signal used as the forgery.

Attack against VQ and GMM template.

For VQ and GMM, we use 13 order MFCCs for training and verification. The

authentication system consists of two units as indicated in Figure 4.1. The
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Figure 4.1: Block diagram of the VQ and GMM speech biometric user authentication.
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first is speaker verification which aims to determine whether the person is who

he/she claims to be. The second is speech recognition which is used to check

whether user utter the registered pass-phrases. For the speech recognition unit,

the implementation is based on DTW. A set of pass-phrases from the speakers

is used to create templates of M classes. Each class consists of R reference

templates. An input vector will be aligned to the same range of the set of

reference templates in each class. Hence, we employ k-nearest neighbor for

classification [29]. Next, the unknown spoken input will be classified into one

of M classes. For our datasets, M is 10 for the MDS and 30 for the LDS. The

accuracy of the recognition unit to recognize pass-phrases is 90.58% and 94.64%

on average.

The VQ template consists of a codebook C and a decision threshold θ, for each

speaker. These parameters will be used to calculate the distortion of a set of

input vectors X (a set of range m or number of frame of speech). The system

will accept the speaker, if the distortion of the X is lower than the threshold.

Hence, we will search a set of vector xi ∈ X that yield a distortion close to the

decision threshold.

Let the distortion of xi be d(xi). We want to select a set of vectors v =

{xi|d(xi) < Ta, i = 1, 2, . . . , n} where n ≤ m and Ta is the appropriate threshold

to re-synthesize the pass-phrase. Basically, the verification performance will be

degraded if Ta is high. On the other hand, by setting Ta too low, it will degrade

the speech recognition performance. Hence, the appropriate threshold will be

determined by experimentation. More precisely, we will set Ta = θ + κθ where

κ ∈ [−a, a] is a tuning parameter. Then, we select κ which yields the best result.
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A possible problem is the case of a null set of v. In this case, we use the source’s

vectors (X).

For the GMM attack, the priori probability πj, mean vectors µj, and covariance

matrices Σj are used to calculate the log-likelihood of the input vectors. We

will select a set of vectors based on the decision threshold of log-likelihood the

same way as we did for VQ attack.

4.5 Experiments and Results

4.5.1 Experimental Setup

For the LDS, we use five pass-phrases from each speaker in our experiment, a total

of 5*6 = 30 different pass-phrases. Six recordings from the first round are used to

train the system. Five recordings from the second round are used for verification. We

randomly select 25 other pass-phrases from other speakers that do not correspond to

the verification pass-phrase to evaluate H-I’s trial. Five recordings of the same pass-

phrase uttered by other speakers in the second round are used to evaluate H-II’s trial,

in total of 5*5 = 25 recordings for each pass-phrase. For H-III’s trial, five mimicked

recordings are used. The synthesized pass-phrase is used for A-I’s trial. For A-II’s

trial, we use five recordings from H-II’s trial as the sources of acoustic features and

change them to target pass-phrases.

For the MDS, we use six recordings to train the systems. Two recordings are

used for verification. As this dataset includes gender information, we conduct two

experiments based on gender: Same and Mixed. For the same-gender experiment,
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Figure 4.2: The error rates of regenerated pass-phrases by varying κ in VQ and GMM
system.

the number of H-II’s pass-phrases that are available in the dataset varies from 1 to

6. For the mixed-gender experiment, it varies from 5 to 11. For both experiments,

these pass-phrases are used as sources of acoustic features for the A-II. For H-I’s trial,

we use six pass-phrases from other speakers that are different from the verification

pass-phrase (based on gender). For the other classes, we do not have enough voice

samples to synthesize reasonably high quality sound and we do not have mimicked

utterances. Hence, we do not investigate the H-III and A-I.
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4.5.2 Experimental Results

Same-gender experiment

The results in Figure 4.2 illustrate the error rates of regenerated pass-phrases

by varying κ ∈ [−0.8, 0.8]. Maximum points of each plot optimize the tradeoff

between the recognition and verification performance of the systems. Thus, we

set κ to the maximum point for each system.

Figure 4.3 depicts the graphical results of EERs against the various attacks

for the LDS and MDS. For each attack, we repeat the experiment 30 times.

Each time, we randomly select an adversary pass-phrase from a set of dedicated

imposters and assign it to each user. In general, if a number of samples is greater

than or equal to 30, the sample variance (s2) will be close to the population

variance (σ2) [68]. Therefore, we can determine the confidence interval on the

mean (µ) by the following equation where Z is the standard normal distribution,

s the standard deviation of the sample, x is a set of samples, ns is sample size,

µ is the mean of the population, and α is the confidence coefficient.

x̄− Zα
2

s√
ns

≤ µ ≤ x̄+ Zα
2

s√
ns

(4.3)

These results are shown in Figure 4.3 where we set α to 0.05; the results are the

95% confidence interval. It is clear that the informed adversary utilizing the

template information (A-II) is the most successful adversary in gaining access

to all systems. In particular, for the DTW system, the error rate is the highest.

The results of the A-II from the MDS and LDS seem to conflict (Figure 4.3).
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The A-II algorithm for the GMM did better in the MDS, but in the LDS the

result is reversed. This may be possible for two reasons. First, we vary the

tuning parameters coarsely. Thus, the better value of κ may be missed. The

other reason is that we just utilize imposters’ pass-phrases (H-II) in the case

of a null set of s. Hence, these pass-phrases may affect the results. For the

other attack models, the EERs of the DTW are the lowest. In particular, for

the H-III and A-I in the LDS, the EERs of the DTW are noticeably lower than

the EERs of the VQ and GMM. These results suggest that the DTW will yield

a good performance if the template is protected properly. Thus, the template

protection is the critical issue for the DTW approach.

Assuming that the practitioners do not take the informed imposter and adver-

sary (H-III, A-I, and A-II) into account, a decision threshold may be determined

to be at an operating point of the H-II. We further assume that the systems do

not check whether the pass-phrase is correct because for text-dependent speaker

verification systems if the pass-phrase is incorrect, the matching score will be

greater than the threshold and eventually be rejected. The results are sum-

marized in Table 4.1 which illustrates the error rates (FAR) of various attacks.

The figures of the H-I and H-II in the table reflect the standard (traditional)

evaluation of biometric authentication systems. Beyond the standard evalua-

tion, the FARs of other attack models are very high. In particular, the FARs

of the A-II are the highest.
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Table 4.1: FARs (%) of speaker verification systems (DTW, VQ, and GMM) against
various attacks using decision thresholds at operating points of imposters (H-II).

Datasets Attack models DTW VQ GMM
H-I 0.27 3.53 2.22
H-II 7.20 11.56 8.89

LDS H-III 8.67 25.47 24.05
A-I 20.00 26.67 60.00
A-II 90.00 55.00 65.00
H-I 0.00 4.08 2.08

MDS H-II 11.86 16.40 13.12
A-II 100.00 47.22 89.93

Mixed-gender experiment

The same methodology which we use for the same-gender experiment is applied

for the mixed-gender experiment. Figure 4.4 illustrates comparisons of the H-

I and H-II results for the same-gender and mixed-gender experiments for the

DTW, VQ and GMM system. The EERs from the two experiments are not

significantly different for the VQ and GMM but, for the DTW, it is noticeably

different. One possible reason may be that the length of random pass-phrases for

males and females are different. For a set of male pass-phrases, there are many

short pass-phrases, for example “rocky road.” Therefore, these pass-phrases may

affect the EER of the mixed-gender experiment.

For the A-II results (Figure 4.5), we do not show results for the DTW system

because the DTW template does not depend on gender. For the VQ and GMM,

the results are also not significantly different.
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4.6 Summary

In this work, we have shown that the adversary can exploit the DTW, VQ or GMM

template and use them to attack the systems. We developed an algorithm to re-

generate the pass-phrases that can be used in remote or on-line authentication. We

compared our algorithmic attack with the traditional (human imposters) and the more

sophisticated attack (an adversary utilizing a synthetic pass-phrase). The EERs of the

regenerated pass-phrases were higher than the other attack models. Then, we have

demonstrated that the traditional approach to evaluate the security of speech biomet-

ric speaker verifications was insufficient. The results indicated that the FARs of other

attack models beyond the traditional approach were very high. We also investigated

the results based on gender information. There were no significant differences.

We hope that these results raise important issues for researchers when attempting

to demonstrate the security of speech biometric systems. For future work, we are

considering ways to address the weaknesses we have identified in this chapter.
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Figure 4.3: The EERs against various attacks and models with the 95% confidence
interval for the same-gender experiment (a) the LDS and (b) the MDS
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Figure 4.4: Comparisons of the same-gender and mixed-gender experiments with the
95% confidence interval on the DTW, VQ and GMM system in the MDS (a) the H-I
(b) the H-II
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ments with the 95% confidence interval on the DTW, VQ and GMM system in the
MDS.
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Chapter 5

Dynamic Time Warping-based

Biometric Key Binding

The results of previous chapter showed that the security of the speech biometric

templates was relatively low. In this chapter, we propose a cryptosystem to address

this problem. We present a new scheme to transform speech biometric measurements

(feature vector) to a binary string which can be combined with a pseudo-random

key for cryptographic purposes. We utilize Dynamic Time Warping (DTW) in our

scheme. The challenge of using DTW in a cryptosystem is that a template must be

useful to create a warping function, while it must not be usable for an attacker to

derive the cryptographic key.
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5.1 Introduction

The template protection approaches that are proposed in the literature can be clas-

sified into two categories [44] (see Figure 5.1): feature transformation and biometric

cryptosystem. For the first approach, a template is transformed using some transfor-

mation functions to form a transformed template. The scheme utilizing a one-way

function is called non-invertible transforms (e.g. [75, 88, 91]). The main drawback of

this scheme is that the performance is degraded since the matching algorithm takes

place in a transformed domain. Another scheme for this approach is called salting.

The salting scheme uses an invertible transformation function that is parameterized

by a random key or a password to transform a template (e.g., [6, 19, 80, 89]). This

scheme also suffers from transformed features. Furthermore, if a random key or a

password is compromised, it can be used to recover the biometric template. For

the second approach, the public information that does not significantly reveal the

biometric template is stored. This information is referred to as helper data. Dur-

ing the matching process, the helper data and the biometrics are used to derive a

cryptographic key. The system that directly uses the helper data and the biomet-

rics to generate the cryptographic key is called a key generation cryptosystem (e.g.,

[1, 12, 13, 17, 18, 27, 55, 86, 87, 96, 100]). If the biometrics is used to extract the

cryptographic key from the helper data, the system is called a key binding cryptosys-

tem (e.g., [11, 20, 21, 23, 28, 36, 47, 48, 51, 64, 93, 94, 98]). The system that uses

more than one scheme will be referred to as hybrid schemes (e.g., [10, 70, 82, 84]).

Our approach falls under the hybrid schemes. We protect the DTW template

using the idea similar to the non-invertible transformation scheme. The Hardening
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Figure 5.1: Categorization of template protection schemes.

algorithm (Section 5.2.1) is proposed to perturb the original template by removing

some frequency-domain features from the template. Finally, the rest of features will

be transformed to a time-domain template that we refer to as a hardened template

(Definition 1). This template will be used as a keying signal in DTW process. The

Discrete Fourier Transform DFT and the inverse DFT (IDFT) will be used to create

a stored or hardened template.

Definition 1 Given a DFT vector (full template) X = {xi, i = 1, . . . , F}, A

hardened template HT is an IDFT of a hardened vector H = {X|∃xi = 0} such that

the hardened template must be useful to create a warping function, while it must not

be usable for an attacker to derive the cryptographic key.

The next step is to regenerate a cryptographic key. The key binding approach is

used to protect the key. We refer this template (key binding) to as a lock data L or

a binary template.
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Figure 5.2: Dynamic time warping-based biometric key binding in training phase.

The other problem is the correlation among features. Hao reported that “an iris

code usually has a run length of eight consecutive ‘1’s or ‘0’s [34].” For speech (e.g.,

Monrose et al.’s scheme [66]), we cannot specify the exact length of repetition. It

depends on the number of phonemes in a pass-phrase and the idiosyncrasy of each

user when he/she utters the pass-phrase. However, consecutive ‘1’s or ‘0’s will lower

the randomness of the template. We address this problem by proposing theMapping

algorithm (Section 5.2.2) using a multi-threshold template T that are determined from

pseudo-random bits (Section 5.2.3). Hence, the algorithm can generate a binary string

that an observer cannot predict.

We focus on how to reliably, securely, and randomly (in the context of cryptogra-

phy) generate a binary string from biometrics. The DTW will make our scheme more

reliable while the hardened template maintains security. Finally, a multi-thresholds

scheme will help our system generate a binary string unpredictably to maximize the

entropy of the template. The following section describes our approach to regenerate

a cryptographic key.
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5.2 Dynamic Time Warping-based Biometric Key

Binding (DBKB)

Our design can be viewed as two phases: training and verification. The biometric key

binding is in the training phase indicated in Figure 5.2. Users provide their train-

ing pass-phrases that are repeated l+1 times to the system. Feature extraction is the

first process to derive feature vectors and Discrete Fourier Transform (DFT) features.

This process involves digital signal processing which we have described in the previous

chapter. The system is initialized by using one of the training utterances as the keying

signal which is stored as 121 DFT features of m frames. Then the system performs

DTW to the rest of training utterances. The feature vectors of each utterance (m

frames) will be mapped, a frame per bit, to a binary string of length m called a set of

feature descriptors. Lastly, l sets of feature descriptors are used to define distinguish-

ing features: features of length D that the user can reliably generate. The binary

string of distinguishing features derived from the training utterances is called distin-

guishing descriptors. The mapping and defining the distinguishing features procedure

are detailed in Section 5.2.2.

We initialized the template by using a full set of DFT features. However, we are

not able to use the full template as attackers can utilize it to derive the cryptographic

key. Hence, the template has to be perturbed which is what we call hardening the

template and we refer the result to as a hardened DTW template. We set the goal of

hardening the template by the following statement: the attacker directly utilizing a

hardened template should not be better than the simplest attack where the attacker

randomly guesses the distinguishing descriptors.
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Specifically, let the total number of bit derived from the hardened template that

corresponds to the distinguishing descriptors be T; the system should yield T as less

than or equal to D/2. The motivation is due to the hardening goal. For a simplest

attack, any random bits are equally likely to be 1 or 0. Hence, the expected propor-

tion of agreeing bits between the simplest attack and the template (distinguishing

descriptors) is 0.5 or D/2.

It is worth noting that we assume that a binary string derived from the hardened

template does not correlate to the distinguishing descriptor in the training phase. In

practical, some information may leak from the hardened template because of corre-

lation of features. For this issue, in Section 5.3.3, we will investigate the information

leakage and show security analysis where the attackers have perfect knowledge of the

correlation of the features.

If this condition hold, T ≤ D/2, the template will not help the attackers as they

just using a simplest attack is easier (better). For this reason, if T is greater than D/2,

the template will be hardened (see Section 5.2.1). After each step in hardening the

template, the new hardened DTW template will be the keying signal of the training

pass-phrases and the process will be re-started until the condition is met. Finally, the

IDFT of the latest hardened DTW template is stored as a hardened template HT and

2n-1 distinguishing descriptors, where n = 3, 4, . . ., will be selected based on feature

variation to form a binary string S.

Once the hardened template is set, a pseudo-random key k is generated and then

encoded properly denoted by E(k). In our case, we use Bose and Ray-Chaudhuri

(BCH) code [56] . The encoding code E(k) has to tolerate error within Hamming

distance (H), a maximum number of bit differences between the distinguishing de-
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scriptors and the feature descriptors of a legitimate user. For the next step, the S and

the encoding code E(k) will be hidden using an XOR operation and then stored as a

lock data denoted by L. Only the user with feature descriptors S ′ that is sufficiently

similar to the S within Hamming distance (|S − S ′| ≤ H) can unlock the L and

correctly decode the key. We refer to the fuzzy commitment scheme [48] for more

detail.

5.2.1 Hardening Template

As described earlier, the DFT features should be used to create a template to be a

keying signal. The template is m frames of 121 DFT features each. We need to store a

hardened template in order to set the time alignment to the input signal using DTW

technique. This template should not be used to derive the key. The straightforward

way is to enumerate over m frames of the original template then choose a set of

optimal features that yield T ≤ D/2, but the computational time is not possible.

Hence, the optimal search algorithm should be employed. We choose a Sequential

Backward Search (SBS) that is a top down search procedure starting from the full set

of features and remove one feature per step until the condition is met [71]. By using

SBS, it is easy to terminate the program under the assumption we described earlier.

To start, a user presents l+1 training pass-phrases to the system. Then, the sets

of DFT features, β1, . . . , βl+1, are extracted from the pass-phrases and these sets are

used as the inputs of the Hardening algorithm (see Algorithm 1). Next, the threshold

is initialized with Ω, the mean of the linear combination of all components in the

DFT features (vectors) of the biometric samples. The β1 is used as the initialized
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Algorithm 1 Specification of the Hardening algorithm

Input: The biometric samples β1, . . . , βl+1

Output: The lock data L, multi-thresholds T , hardened template HT ,
selected relevant indexes Ψ
Initialize: T ← Ω, ψ = {1, . . . , 121}, ζ ← 121, [D,T ]← m,
H ← β1

1: Hardening(ψ,H)
2: for j ← 1 to ζ
3: H′ ← H
4: H′(ψ(j))← 0
5: [T ′, D′]← Mapping(T ,H′)
6: if T ′ < T
7: T ← T ′, D ← D′, index← j
8: H(ψ(index))← 0, Remove(ψ(index)), ζ ← ζ − 1
9: if T >D/2 and ζ > 1

10: Hardening(ψ,H)
11: return H
12: T ← MultiThreshold(µ, σ, κ)
13: HT ← IDFT(H)
14: [B, indexes]← Mapping(T ,HT )
15: Ψ ← {Ψ(1), . . . ,Ψ(2n− 1)} such that σ(Ψ(i)) < σ(Ψ(i+1)) and Ψ ⊂ indexes
16: S ← B(Ψ)
17: L ← E(k)⊕ S
18: Delete({β1, . . . , βl+1}, p, µ, σ, κ, B, S, indexes)
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hardened DTW template (H) and the ψ is a list of DFT indexes. For the hardening

process, the algorithm will search for a DFT feature in H that yields the least T

when that DFT feature is substituted with 0. Then the index is removed from the ψ

(see Algorithm 1, lines 2-8). The hardening process includes the Mapping algorithm

that will return T and D (more detail will be explained in Section 5.2.2). Thus, the

system can check whether T is greater than D/2. The above described steps are

iterated until T less than or equal to D/2 (see lines 9-11).

When the recursion is terminated, the algorithm will generate multi-thresholds

T (see Section 5.2.3). Next, the IDFT of H is stored as the hardened template

(HT in line 13). The algorithm then inputs the HT and the multi-thresholds T

into the Mapping algorithm. Consequently, it yields the distinguishing descriptors

and their relevant indexes (B and indexes in line 14). The last step, we select 2n-1

the least variation of the distinguishing features (selected relevant indexes Ψ), where

n = 3, 4, . . ., to form a binary string S and a lock data L (see lines 15-17). Finally,

the system securely deletes a set the training parameters using a Delete function and

stores L, T , HT , and Ψ in the database.

5.2.2 Mapping the Biometric to a Binary String

Algorithm 2 is used to map feature vectors to a binary string. First, the algorithm

performs DTW between H and βk, k = 1, . . . , l+1. The results are represented with

fk. For each frame of fk, let fk(i) represents a feature vector, where i = 1, . . ., m,

is the number of the frame. We compute f ′
k(i) from the linear combination of all

components in fk(i) and then set a biometric feature φk(i) = f ′
k(i)−T (i) where T is
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a set of thresholds (see lines 2-5). Binarization is the next step. The φk(i) is mapped

to a feature descriptor, bk(i), by testing whether φk(i) is positive or negative. It will

be mapped to 1 if it is positive and 0 otherwise (see lines 6-7). The last step is to

define distinguishing features that the user can reliably generate. It means that any

binary strings derived from the distinguishing features of any βk should be identical.

Therefore, a bitwise XORing of the distinguishing descriptors will be 0. For this

reason, we determine XORing of, bk(i), k = 2, . . . , l+1. If the XORing of bk(i) is 0,

the ith feature will be a distinguishing feature and we set B(i) = b2(i) (see lines 8-13).

Here, the B is a set of distinguishing descriptors of length D (see line 14). Next, the

algorithm returns a set of indexes of the distinguishing features (indexes), B, and D.

Finally, the hardened template is examined and the algorithm returns the number of

bits T that corresponds to distinguishing descriptors (see line 15).

5.2.3 Multi-thresholds Generation

We select a set of thresholds in such a way that the entropy of the biometric tem-

plate is maximized. According to Jain et al., the entropy of the biometric template

can be understood as a measure of the number of different identities that are dis-

tinguishable by a biometric system [44]. Hence, the set of thresholds that is used in

mapping process should yield a binary string that appears to be random in a context

of cryptography.

We first generate pseudo-random bits p ∈ {0, 1}m using Blum Blum Shub (BBS)

algorithm [9]. Next, a set of thresholds is selected based on the criteria that query

biometrics will be mapped to a binary string that is close to p. Finally, the pseudo-

71



Algorithm 2 Specification of the Mapping algorithm
Input: T ,H
Output: T,D,B, indexes
indexes← {}, β1 ← H
1: for k ← 1 to l + 1
2: fk ← perform DTW of H and βk
3: for i← 1 to m
4: f ′

k(i)←linear combination of all components in fk(i)
5: φk(i)← f ′

k(i)-T (i)
6: if φk(i) > 0
7: bk(i)← 1 otherwise bk(i)← 0
8: for i← 1 to m
9: b(i)← 0

10: for k ← 3 to l + 1
11: b(i)← b(i) + (b2(i)⊕ bk(i))
12: if b(i) = 0
13: B(i)← b2(i), indexes← indexes ∪ i
14: D ← range indexes
15: T ← the number of bits such that b1(indexes(i))⊕ B(indexes(i)) = 0
16: return T,D,B, indexes
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Figure 5.3: Dynamic time warping-based biometric key retrieval in verification phase.

random bits will be securely deleted. As the Mapping algorithm simply maps a

feature to 1 if the feature is greater than a threshold and 0 otherwise, hence we select

a threshold to be lower than the mean of that feature if a corresponding pseudo-

random bit is 1 and greater than the mean otherwise. Specifically, to generate the

multi-thresholds for any users, the MultiThreshold function is used in Hardening and

Mapping algorithm. Let µ(i) and σ(i) be the mean and standard deviation of the

linear combination of all features of ith frame over l training utterances, the function

executes as follows:

1. Generate pseudo-random bits p ∈ {0, 1}m using BBS algorithm [9].

2. Set the multi-thresholds T (i) = µ(i)+(−1p(i)) κiσ(i) for some parameter κi >

0 which optimize the distinguishing descriptor.

3. Securely delete pseudo-random bits
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5.2.4 Biometric Key Retrieval

The biometric key retrieval process is in the verification phase indicated in Figure

5.3. The user requests the template from the database that contains the hardened

template, the multi-thresholds, and the lock data. Then the system performs DTW

employing a user’s pass-phrase. The signal that results from DTW is executed using

the algorithm similar to Section 5.2.2 to generate feature descriptors, and the feature

descriptors of the distinguishing features (feature descriptors of the relevant indexes

in the Ψ) will be XORed with the lock data. The next step is the decoding process.

If the error is within the tolerance, the key can be correctly reconstructed. To check

whether the key is identical to the key generated in the training phase, a number of

researchers [3, 34, 67] checked the hash function. In the training phase, the initialized

key, k, was stored as h(k). Once the key k′, is regenerated from the verification phase,

the system checks to see whether h(k) = h(k′). If h(k) = h(k′), the key, k′, is correct.

5.3 Experiments and Results

5.3.1 Experiments Setup

We compare the DBKB with other speaker verification systems: Dynamic TimeWarp-

ing (DTW) [32], Vector Quantization (VQ) [83], and Gaussian Mixture Model with

Universal Background Model(GMM-UBM) [76].

For the DBKB, 121 DFT elements of a full template are reduced to an average

of nine and 11 for the MDS and LDS. We set the length of the binary string to 511

bits. For the MDS, we can generate 139 bits on average for each feature; we need
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four features to generate 511 bits. For our setting, four features are the Short-Term

Energy, the 13 order MFCC, the 12 order Linear Prediction Coefficient (LPC), and

the DFT. Nevertheless, some pass-phrases cannot generate a binary string of length

511. In this case, we use a zero padding scheme to adjust the lengths of the binary

string of these pass-phrases to that length even if these pass-phrases may degrade the

recognition performance of our approach. For LDS, we can generate 221 bits for each

feature. However, we use the same features in the MDS.

For DTW, VQ, and GMM, the attack models and the parameters are set to be

the same as the previous chapter. For the DBKB, the difference is for the A-II which

we are going to describe now.

For the DBKB template attack, the attacker can exploit a hardened and multi-

thresholds template. We consider two approaches for the attack. For the first ap-

proach, we directly invert the hardened template (DFT vectors) to the signal using

Inverse Discrete Fourier Transform (IDFT). For the second approach, we will search

in sources’ pass-phrases similar to VQ and GMM attack. Therefore, the average of

multi-thresholds is used as the decision threshold for analysis. Upon examination of

the first approach, the EER was 0%. Hence, we employ the second approach for the

DBKB attack. The results are illustrated in Figure 5.4.

5.3.2 Performance

The same datasets in the previous chapter are used in the experiments. Figure 5.5

shows the recognition performance (EERs) of the DTW, VQ, GMM-UBM, and DBKB

for same-gender experiments. From all attack models except the A-II, the DTW
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Figure 5.4: The error rates of regenerated pass-phrases by varying κ in VQ, GMM,
and DBKB.

yields the best performance while the DBKB has the second best results. However,

the difference between the DTW and DBKB is slight. As indicated in Figure 5.5,

the EER of the DTW method against the A-II is significantly higher than others,

therefore, its slightly better performance has no merit because the security and privacy

are significantly lost.

The EERs of the DBKB against the A-II are the lowest when we compare them

with other attack models and other systems. This is due to the design. The security

of the template is the main issue for the DBKB. We previously mentioned that, in the

hardening process, the system examines the template before storing it. Therefore, it

is not surprising that the EER of our construction against the A-II is the lowest.

The operating points of the DBKB for imposter trial are 38 and 54 bits for the

MDS and LDS. We use t-error-correcting BCH [56] which denoted by BCH(n, k, t)
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Figure 5.5: The EERs against various attacks and models with the 95% confidence
interval for same-gender experiments on the DTW, VQ, GMM, and DBKB (a) the
LDS and (b) the MDS
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Figure 5.6: The performance of the DBKB against attackers using random pass-
phrases (Random), true pass-phrases (Imposter), and the templates (Template): (a)
the LDS (b) the MDS.
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where n is a block length, k is the key, and t is correctable bits. Hence, BCH(511,

229, 38), and BCH(511, 139, 54) are employed for the MDS and LDS. By testing

with pass-phrases of 1.87 and 3.05 seconds on average in the MDS and LDS, we can

generate the cryptographic key up to 229 and 139 bits that exceed the requirement

of 128-bit Advanced Encryption Standard (AES).

Figure 5.6 shows the plots of the recognition performance of the DBKB against

various attacks including the attackers who acquire the hardened template. Assuming

that the attackers use a hardened template to derive the key the same way as in the

random pass-phrase and imposter trial, the EERs of the template attack are 0% in

both datasets. However, more analysis of the security of the template is provided

in Section 5.3.3 where the attackers have perfect knowledge of the correlation of the

features.

We also show the FARs when the decision thresholds are set to be the operating

point of the H-II’s EER. These results are indicated in Table 5.1 which illustrates the

error rates (FAR) of various attacks. The figures of the H-I and H-II in the table reflect

the standard (traditional) evaluation of biometric authentication systems. Beyond the

standard evaluation, the FARs of other attack models are very high for the VQ and

GMM. In particular, the FARs of the A-II are the highest. For the DTW and DBKB,

the FARs of the H-I, H-II, H-III, and A-I are close, but the A-II’s FARs of the DBKB

are significantly lower than the DTW. These results are also another evidence to

demonstrate that the security of our scheme is better.

Furthermore, we show gender-based results under the same setting of the previous

chapter. These results are shown in Figure 5.7 and 5.8. Figure 5.7 illustrates compar-

isons of the H-I and H-II results for the same-gender and mixed-gender experiments
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Figure 5.7: Comparisons of the same-gender and mixed-gender experiments with the
95% confidence interval on the DTW, VQ and GMM system in the MDS (a) the H-I
(b) the H-II
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Figure 5.8: Comparisons of the A-II for the same-gender and mixed-gender experi-
ments with the 95% confidence interval on the DTW, VQ and GMM system in the
MDS.

for the DTW, VQ, GMM, and DBKB system. Figure 5.8 illustrates comparisons of

the A-II results for the same-gender and mixed-gender experiments for the DTW, VQ

and GMM system. The EERs of the DBKB are similar to the DTW for the same

reason we have mentioned in the previous chapter.

5.3.3 Security Analysis

The security of the scheme is based on the template protection. Our scheme falls under

the hybrid schemes. First, the DTW template is protected using a non-invertible

transformation scheme. The algorithm will search for a set of features in order to use

them as the hardened template. Next, the key binding scheme is applied to protect

the key, and then the training data will be securely deleted from the system. It is
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Table 5.1: FARs (%) of speaker verification systems (DTW, VQ, GMM, and DBKB)
against various attacks using decision thresholds at operating points of imposters
(H-II).

Datasets Attack models DTW VQ GMM DBKB
H-I 0.27 3.53 2.22 4.90
H-II 7.20 11.56 8.89 8.26

LDS H-III 8.67 25.47 24.05 8.53
A-I 20.00 26.67 60.00 23.33
A-II 90.00 55.00 65.00 0.00
H-I 0.00 4.08 2.08 3.52

MDS H-II 11.86 16.40 13.12 12.26
A-II 100.00 47.22 89.93 2.78

computationally hard to decode the key without any knowledge of biometric data

[44].

We can estimate the security of the scheme using the sphere packing bound [63]

similar to Hao’s work [34]. Let z be the uncertainty of voice and w be the error bits

that can be corrected by the system, the lower bound BF can be set by the following

equation.

BF =
2z

∑w

i=1

(

z

i

) (5.1)

To estimate the lower bound, we use two verification recordings of each speaker

in the MDS. We carry out 4,512 of inter-speaker comparisons to evaluate the uncer-

tainty. The following steps are the uncertainty analysis [22]. For more detail, we refer

to Daugman’s work [22]. For each comparison, the Normalized Hamming Distance

(NHD) between two binary templates, A and B, is given in the following equation

where DH(A,B) is a function to calculate the Hamming distance between A and B.
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NHD =
DH(A, B)

511
(5.2)

Hence, NHD = 0 would represent a perfect match. Figure 5.9 (a) shows the

distribution of the NHD of inter-speaker comparisons where µ = 0.5281 is mean and

σ = 0.0455 is standard deviation of NHD. The result in this figure is close to a

binomial distribution as shown in Figure 5.9 (b) which has the the fractional function

in the following equation where N = 120 and µ = 0.5.

f(x) =

(

N

y

)

µy(1− µ)N−y, x = y/N (5.3)

These results indicate that the difference between the binary templates is likely

distributed to be a binomial experiment of 120 repeated trials with µ = 0.5. Therefore,

for a binary string of 511 bits, it has approximately 120 degrees-of-freedom. For the

H-II, the system should be able to correct the error up to 38 bits (imposter trial),

that is approximately 8%. Here, z is 110 bits and w is 10 bits. The estimated entropy

is 73 bits.

However, some information may leak from the hardened template and multi-

thresholds. Recall that any bits in the binary template were set to be close to

pseudo-random bits p, any given bits in the binary template were equally likely to

be 1 or 0. If a binary string generated from the hardened template is random, the

expected agreement between the binary template and the binary string derived from

the hardened template should be close to 256 bits. Upon testing in the MDS, the

expected agreement is 303 bits, the result implies that some information leaks from
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Figure 5.9: The comparison of a distribution of Normalized Hamming Distance and
a binomial distribution (a) Distribution of Normalized Hamming Distances obtained
from 4,512 comparisons of inter-speaker in the MDS and (b) A binomial distribution
with µ = 0.5 and N = 120 degrees-of-freedom.
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the hardened template. Furthermore that the attackers randomly guess the remain-

ing 511− 303 = 208 bits can get 104 bits correct. In the worst case, we assume that

the attacker can correctly locate these 303 + 104 − 256 = 151 bits. Hence, 151 bits

or 151
511
× 100 = 29.54% leak from the hardened template. As a result, the estimated

entropy will be 51 bits.

We further carry out 4,512 of inter-speaker comparisons using the global-threshold

scheme where the threshold is fixed. The estimated entropy is 16 bits. Table 5.2 sum-

marizes the security when we compare the multi-thresholds to the global-threshold

scheme in the MDS. It is clear that the entropy of the multi-thresholds scheme is

significantly improved.

Table 5.2: The security of the multi-thresholds and the global-threshold scheme in
the MDS.

Multi-thresholds Global-threshold
Estimated Entropy (bits) 51 16

5.4 Summary

We addressed two problems in a cryptosystem. First, the problem of the feature

correlation could be mitigated by using the proposed multi-thresholds. As a result,

the randomness of the key (entropy) was increased from 16 to 51 bits. Second, we

addressed the challenge in using DTW in a cryptosystem, more specifically, that the

template must be useful to create a warping function, while it must not be usable for

an attacker to derive the cryptographic key. A solution, the hardened template, was

proposed. We showed that the EERs against the attackers using the hardened tem-

plate were 0%. We compared our system with DTW, VQ, and GMM-UBM speaker
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verifications. The DTW yielded the best performance while ours had the second

best results. However, the differences between the DTW and ours were slight. We

noted that the DTW speaker verification is not secure and it leaves all the biometric

information (a full set of DFT templates) in the system. Hence, its slightly better

performance has no merit because the security and privacy are significantly lost. We

also investigated the results based on gender information. There were no significant

differences.
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Chapter 6

Performance and Security of the

Hardened Template

A DTW-based biometric user verification system needs a DTW template to set up a

warping function for query biometrics. In addition, a matching template is required

to examine similarity. A transformation approach utilized a transformation function

to protect a DTW template. Unfortunately, the matching template was not protected

properly. In this chapter, we first show that an adversary can exploit the matching

template to gain access to the system. We also compare our scheme (hardened tem-

plate in the previous chapter) with a transformation approach and an unprotected

method. Moreover, we continue to demonstrate the security of the hardened tem-

plate. First, we prove that it is hard to recover the original template. Then, we focus

on an algorithmic attack.
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6.1 Introduction

To our knowledge, the first approach to protect a DTW template was applied to on-

line handwriting [35]. The authors protected the DTW template by using only static

features while only dynamic features were utilized for verification. More precisely,

the static feature used in this work was (x,y) coordinates. The dynamic features

were pen-down time, Root Mean Square (RMS) of Vx, RMS of Vy, etc. Moreover,

the authors protected a matching template by utilizing a cryptographic framework.

The entropy of their scheme was approximately 40 bits which was better than 18-30

bits for eight characters password-based system [14]. However, the authors did not

compare the error rates when the template was not protected.

Maiorana et al. [58] proposed a scheme which utilized a convolution function to

transform a template. The best result was reported that the error rate only degraded

from 4.07% to 5.22% when they compared the protected template with unprotected.

In their work, the transformed versions were stored as templates and used as a DTW

template and a matching template. The system performed DTW with each template

to query biometrics and then the minimum distance was selected. The system de-

cided whether to accept that biometrics by comparing the minimum distance to a

decision threshold. Even though they proved that to recover the original templates

was computationally as hard as random guessing [59], the system left the transformed

templates which could be used in gaining access to the system.

In this chapter, we compare the recognition performance of the transformation

approach with ours (DBKB). We conduct two experiments which are described in

Section 6.2. For the first experiment, we aim to demonstrate that the transformed
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template (detailed in Section 6.2) can be used to gain access to the system which

does not differ from the traditional approach (Unprotected template). For the second

experiment, we compare performance of the transformed template and the hardened

template when they are utilized in our scheme. The results are also compared with

the unprotected approach.

6.2 Transformation Approach

In this section, we describe the transformation approach as a scheme to compare it

with ours (DBKB). The transformation approach is based on Maiorana et al.’s scheme

[58]. Let the original template RF be a set of vectors RF = {r(n), n = 1, . . . , N}.

The r(n) is an F -element vector r(n) = [r1(n), . . . , rF (n)]
T . The transformation

version T F is another set of vectors, T F = {f(n), n = 1, . . . , K}. The f(n) is

also an F -element vector f(n) = [f1(n), . . . , fF (n)]
T . To derive T F , the RF is first

partitioned into W segments.

Let bj = ⌊(dj
R
N)⌋ for j = 0, . . . ,W where dj is selected randomly from a set of

integer d = [1, R−1] such that dj > dj−1 and R is an upper bound of dj. In addition,

d0 and dW are set to 0 and R. The original sequence ri∈[1,F ](n) is divided into W

segments of length Nj = bj − bj−1. Each segment is represented by equation 6.1 for

n = 1, . . . , Nj and j = 1, . . . ,W .

rj
i∈[1,F ](n) = ri∈[1,F ](n+ bj−1) (6.1)

The fi∈[1,F ](n), n = 1, . . . , K(K = N −W +1) is then obtained through the linear
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convolution of the function rj
i∈[1,F ](n), j = 1, . . . ,W represented by equation 6.2.

fi∈[1,F ](n) = r1i∈[1,F ](n) ∗ . . . ∗ rWi∈[1,F ](n) (6.2)

6.2.1 Experimental Setup

We investigate the performance of three systems: the unprotected approach, transfor-

mation approach, and our approach (DBKB) with the MDS. For all constructions, we

use a low-pass digital filter with a cut-off at 4 kHz. The signal is pre-emphasized by

passing the signal to a first order digital filter H(z) = 1-γz−1, where we set γ = 0.98.

Framing is the next step. The signal is framed into the short time analysis interval.

Each frame is multiplied by a window function (Hamming). For the sampling rate of

8 kHz, we use 240 samples per frame that are shifted every 80 samples.

Unprotected Approach

For the unprotected approach, we employ a DTW user verification system where

the DTW and matching template are a set of 13 order Mel-Frequency Cepstrum

Coefficients (MFCCs). More precisely, we use the first utterance in the training

set as the reference signal (DTW template) and then perform DTW to the rest.

The averaged result is stored as the matching template. The distance between

an input and the matching template is determined by using the Euclidean dis-

tance. The system decides whether to accept or reject the speaker by comparing

the Euclidean distance to the decision threshold.
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Transformation Approach

For the transformation approach, the parameter W in Section 6.2 can be un-

derstood as the security and error rate index. From Maiorana et al.’s report,

the error rate was the best when they set W to the lowest value. For the se-

curity issue, the attackers have to figure out W unknown functions to invert

the transformed template. Thus, the security may be harmed if we set the W

too low. However, in this experiment, we set W = 2, the lowest, to guarantee

that it will yield the best recognition performance. In addition, the R is set to

100. The features and construction applied to this system are the same as the

unprotected approach.

DBKB

For the DBKB, 121 DFT elements of a full template are reduced to an average

of nine. We set the length of the binary string to 511 bits. For the MDS,

we can generate 139 bits on average for each feature; we need four features to

generate 511 bits. For our setting, four features are the Short-Term Energy,

the 13 order MFCC, the 12 order Linear Prediction Coefficient (LPC), and the

DFT. Nevertheless, some pass-phrases cannot generate a binary string of length

511. In this case, we use a zero padding scheme to adjust the lengths of the

binary string of these pass-phrases to that length even if these pass-phrases may

degrade the recognition performance of our approach.
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6.2.2 Experimental Results

For the experiments in this chapter, we evaluate the systems with the MDS. We use

six recordings to train the systems. Two recordings are used for verification. To

investigate the performance of the system, we use the same pass-phrase uttered by

other speakers to evaluate the imposter trial. The number of imposters available in

the dataset varies from 1 to 6 (same-gender experiment). In addition, we use six

pass-phrases of other speakers that are different from the verification pass-phrase to

evaluate the random trial.

Experiment I

For the first experiment, we employ a DTW user verification system. We com-

pare the recognition performance of the transformation approach (transformed

template) with the unprotected approach (unprotected template). Beyond the

random and imposter trial, we present a generative attack which we are going

to describe now.

We know that the 13 order MFCCs of the training utterances are stored as the

matching template. Hence, we have to transform this template to a signal. We

first transform MFCCs to DFTs using Auditory Toolbox [81]. Then the DFTs

are transformed to the speech signal used as a forgery. We refer to this attack

as the generative trial.

For each attack, we repeat the experiment 30 times. Each time, we randomly

select an adversary pass-phrase from a set of dedicated imposters and assign it

to each user. Therefore, we can determine the confidence interval on the mean

using equation 4.3.
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Table 6.1: Equal Error Rates (EERs) with the 95% confidence interval of the transfor-
mation approach (transformed template) and the unprotected approach (unprotected
template) for the DTW-based systems against random attack, imposter, and gener-
ative.

DTW EER (x̄± Z 0.05
2

s√
ns

%)

Template Random Imposter Generative
Transformed 8.06 ± 2.28 16.46 ± 2.73 45.31 ± 1.95
Unprotected 2.89 ± 0.36 11.20 ± 0.83 65.83 ± 1.78

The experimental results are illustrated in Table 6.1 with the 95% confidence

interval. The EERs of the random and imposter trial are noticeably degraded

when we compare the transformation approach with the unprotected. These

results are consistent the Maiorana et al.’s work [58]. Let DF = ET−EB

EB
be

a degradation factor where EB is an EER of the original template and ET

is an EER of the transformed template. The degradation factor in Table 6.1

(imposter) and the Maiorana’s work (Table 1 in [58], W = 2) are 0.46 and 0.47.

For the generative attack, even if the EER of the transformed template is sig-

nificantly better than the unprotected, it is still very high when we compare it

with the other trials. These results demonstrate in a very convincing way that

the matching template must be protected.

Experiment II

We employ our construction (DBKB) to protect the matching template. For the

DTW template, the DBKB uses the hardened template to protect the reference

signal (Section 5.2). Hence, this template (hardened) can be replaced with

the transformed version (Section 6.2). In this experiment, we compare the

performance of the DBKB when the hardened and transformed template are
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Table 6.2: Equal Error Rates (EERs) with the 95% confidence interval of the DBKB
when the transformed template and hardened are applied.

DBKB EER (x̄± Z 0.05
2

s√
ns

%) Error Corrected

Template Random Imposter {Random, Imposter}(bits)
Transformed 10.69 ± 1.35 17.27 ± 0.42 {41, 37}
Hardened 5.14 ± 0.35 11.54 ± 1.28 {42, 38}

used as the DBKB’s DTW template. The results are illustrated in Table 6.2

with the 95% confidence interval. The performance of the hardened template

noticeably outperforms the transformed version.

We also compare the results with the unprotected approach. The comparisons

are illustrated in Figure 6.1. For the imposter trial, the performance of our ap-

proach is not far from the unprotected approach and it noticeably outperforms

the transformation approach. For the random trial, the performance of our ap-

proach is slightly degraded, but it is significantly better than the transformation

approach.

The operating points of the DBKB for imposter trial are 38 and 37 bits for

the hardened and transformed template (Table 6.2). We use t-error-correcting

BCH [56] which denoted by BCH(n, k, t) where n is a block length, k is the key,

and t is correctable bits. Hence, BCH(511, 229, 38), and BCH(511, 238, 37)

are employed for the hardened and transformed template. By testing with pass-

phrases of 1.87 seconds on average, we can generate the cryptographic key up to

229 and 238 bits that exceed the requirement of 128-bit Advanced Encryption

Standard (AES).

For security against the generative attack, we illustrate the results in Figure 6.2,
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which shows the plots of the recognition performance of the DBKB against var-

ious attacks including the attackers who acquire the DBKB’s DTW templates.

Assuming that the attackers use the hardened and transformed template to de-

rive the key the same way as in the random and imposter trial, the EERs of

the template attack are 0% and 2.08%. However, more analysis of the security

of the template is provided in Section 6.3.

6.3 Security of the Hardened Template

We have shown that the attacker utilizing the hardened template to derive the key

cannot access the system. In this section, we will show whether the attacker can

invert the hardened template.

Given N points of speech signal x[n], we can derive the Discrete Fourier Transform

DFT X[k] =
∑N−1

n=0 x[n] exp
−j2πnk

N
for k = 0, . . . , N − 1. If we write the series

expression for X[k] for each value of k, we obtain a set of N equations as shown in

the following where WN = e−j 2π
N .

X[0] = 1
N

[

x[0] + x[1] + . . .+ x[N − 1]
]

X[1] = 1
N

[

x[0] + x[1]W 1
N + . . .

+x[N − 1]WN−1
N

]

...
...

X[N − 1] = 1
N

[

x[0] + x[1]W
(N−1)
N + . . .

+x[N − 1]W
(N−1)(N−1)
N

]
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Figure 6.1: The ROC curves of three approaches: Unprotected, transformation, and
our approach (DBKB). (a) the imposter trial and (b) the random trial.
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Figure 6.2: The EERs of attackers using true pass-phrases (Imposter), random pass-
phrases (Random), and generative attack (Template): (a) the transformation ap-
proach is applied to the DBKB’s DTW template (b) the hardened template is uti-
lized.
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From the experiment’s result, the 121 DFT coefficients were reduced to nine.

According to the real function and symmetric property [72], the attackers are left

with 18 equations with 240 unknown variables. Thus, these equations cannot be

resolved. Even if it is hard to recover the original template, the template may be

useful for attackers to devise algorithms for creating forgeries to gain access to the

system. Hence, a mathematical proof may not work here (nor with the transformation

approach). The following section uses the experiments to demonstrate the security

of the template in this case.

6.3.1 Experimental Setup

We also use the MDS in this experiment. We assume that the attackers acquire the

hardened template which consists of U unknown elements out of N and K = N − U

known elements. In addition, they know the pass-phrases and they collect samples of

⌈N
K
⌉ pass-phrases for analysis.

By definition, the hardened vector H = {XT |∃XT [k] = 0} where XT [k], k =

1, . . . , N is a full template of a target speaker, the attackers know that any elements

XT [k] = 0 are likely to be the elements which was removed. Then they arrange the

index of those elements in ascending order, such that k(j) < k(j + 1), j = 1, . . . , U ,

in ν = {k(j)}. In the same way, the index of known elements is ν̄ = {k(i), i =

U + 1, . . . , N}.
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Modification

Given the DFT XT
k∈ν̄ [k] =

∑N−1
n=0 x[n] exp

−j2πnk
N

where x[n], 1, . . . , N is an origi-

nal signal, we have shown in the previous section that the attacker cannot derive

x[n]. They have to modify the pass-phrase samples xs[n] denoted by xs̄[n] such

that

XT
k∈ν̄ [k] =

N−1
∑

n=0

xs̄[n] exp
−j2πnk

N
(6.3)

Let a[n] be an estimation function such that

xs̄[n] = a[n]xs[n] (6.4)

Now, we substitute xs̄[n] in 6.3; we obtain

XT
k∈ν̄ [k] =

N−1
∑

n=0

a[n]xs[n] exp
−j2πnk

N
(6.5)

We have to determine a[n] to estimate the transformed signal xs̄[n]. For each

pass-phrase sample, we obtain K equations with N unknown variables; we need

⌈N
K
⌉ pass-phrase samples to determine a[n]. For the MDS, N is 121 and K is

9; we need ⌈121
9
⌉ = 14 pass-phrase samples. Hence, these samples are selected

from mixed-gender imposter’s pass-phrases.
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Table 6.3: Equal Error Rates of the modified pass-phrase attack, the original im-
posters’ pass-phrases, the adversary using template information only.

Attack Models EER (%)
Template 1.86

Imposters’ pass-phrases 11.96
Modified pass-phrases 5.43

6.3.2 Experimental Results

Table 6.3 shows the EERs of the modified pass-phrase attack when we compare it

with the EER of the original imposters’ pass-phrases and the EER of the adversary

using template information only. The experimental results show that the EER of

the modified pass-phrase attack is noticeably better than the EER of the adversary

using template information, but it is significantly lower than the EER of the origi-

nal imposters’ pass-phrases. Hence, the attack in this scenario is not useful for the

adversaries as the original imposters’ pass-phrases attack is better.

6.4 Summary

Even though the DTW transformed template is computationally hard to invert to

the original template, we have shown that the adversary can exploit the transformed

version to attack the system on-line. We compared our approach (DBKB) with

the transformation approach and the unprotected method. The experimental results

showed that the recognition performance (EER) was almost the same when we com-

pared the DBKB with the unprotected approach. In addition, our system noticeably

outperformed the transformation approach. We have also demonstrated that the

transformation approach can be applied in the DBKB; the EER was only slightly
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increased.

We have shown that the attacker directly utilizing the hardened template cannot

gain access to the system. The EER of this attack was 0%. Even if it is impossible

to recover the original template, the attacker may devise an algorithm by exploiting

the hardened template and imposter’s pass-phrase information to re-synthesize the

forgeries. We evaluate this attack by devising an algorithm which exploits the tem-

plate information and imposter’s pass-phrases to re-synthesize the pass-phrases. The

results show an improvement in gaining access to the system when we compare them

with template information only attack. However, percentage to be accepted by the

system is still lower than imposter’s pass-phrase only attack.
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Chapter 7

Speech Cryptographic Key

Regeneration based on Password

Thus far, we have shown that the security of biometric templates we proposed is

significantly improved. In doing so, we demonstrated the security of the templates

both mathematical proof and empirical experiments. Furthermore, we have evalu-

ated the recognition performance against several attacks. The experimental results

showed that its recognition performance of our scheme is marginally degraded when

we compare ours with the DTW system and noticeably improved when we compare

ours with the VQ and GMM system. However, the error rates were still high. In this

chapter, we address this problem by proposing a way to combine a password with

a speech biometric cryptosystem. We present two schemes to enhance verification

performance in a biometric cryptosystem using password. Both can resist a password

brute-force search if biometric is not compromised. Even if the biometric is compro-

mised, attackers have to spend many more attempts in searching for cryptographic
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keys when we compare ours with a traditional password-based approach. In addi-

tion, the experimental results show that the verification performance is significantly

improved.

7.1 Introduction

Personal authentication systems that yield high security and verification performance

are desired. In addition, convenience-to-use systems are preferred. The traditional

knowledge-based (e.g., password) and token-based (e.g., smartcard) authentication

systems meet the requirement of verification performance, but their security is a

concern. In analyzing the security of a knowledge-based system, one of the factors is

the complexity of passwords. Unfortunately, users tend to select a password which

is easy to guess [30]. To select more complex passwords, users have to follow advice

and rules which are different for each system. Thus, it is difficult and inconvenient

to remember every systems’ password. For a token-based system, the security of the

system may be compromised when tokens are stolen. Moreover, carrying tokens all

the time may be inconvenient. For these reasons, biometric-based systems have been

proposed by a number of researchers to address the mentioned issues. Furthermore,

they offer properties, such as proof of identity.

To date, it is well known that biometric systems are vulnerable to attack [70].

In particular, the security of a stored template is a serious concern. To alleviate

this problem, researchers proposed a biometric cryptosystem to secure the template.

However, the verification performance is degraded. Moreover, the error rate is un-

acceptable, for example the work in [39]. Even though the authors showed that
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the verification performance was slightly degraded when it was compared with the

unprotected template approach, its error rate was still high.

Thus far, one of the promising ways to authenticate users is to combine a biometric

cryptosystem with the other factors: knowledge or token. Therefore, the performance

is improved in the case that the biometrics and the input factors are not compromised

simultaneously.

We consider the knowledge-based approach to be another factor in improving a

biometric cryptosystem because the users do not need to carry a token. However,

we need to deal with weak passwords selected by users. For this issue, we will show

that the proposed scheme offers better properties than a traditional password-based

approach when the biometrics is compromised.

For a biometric system based on a password, it must be ensured that the attackers

must not be able to discriminate the correct password from incorrect when they utilize

a brute-force search to find the key without knowledge of the biometrics. On the other

hand, even if the password is compromised, it cannot be used to reveal the key. Hence,

in this case (the password is compromised), the security of such a construction is still

the same as before the password is used.

In this chapter, we present Speech Cryptographic Key Regeneration based on

user’s Passwords (SCKRP). The SCKRP is a cryptographic framework that binds a

biometric template with a pseudo-random key to create a protected template. We

propose two schemes to enhance verification performance in a biometric cryptosystem

using password. The proposed schemes are: transformation and permutation. Both

can resist password brute-force search if biometric is not compromised. Even if the
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biometric is compromised, the security meets the same level of the password approach.

On the other hand, the security provided by the biometric cryptosystem is not affected

even when the password is compromised. We utilize Dynamic Time Warping (DTW)

in our scheme. A DTW-based biometric user authentication system needs a DTW

template to set up a warping function for query biometrics. In addition, a matching

template is required to examine similarity. We utilize a hardened template proposed

in Chapter 5 to protect the DTW template. For the matching template, it is protected

by cryptographic framework. Next, the hardened template and query biometrics will

be transformed using a password. We then introduce a scheme for mapping behavioral

biometric measurements (feature vector) to a binary string which can be combined

with a pseudo-random key for cryptographic purposes. These steps are detailed in

Section 7.2.

We evaluate SCKRP verification performance using Equal Error Rate (EER) with

a public database: The MIT mobile device speaker verification corpus [97] available

from MIT.

We consider three different scenarios in evaluating the SCKRP: I) Genuine: When

an adversary does not access genuine biometrics and passwords. II) Compromised

passwords: When an adversary accesses genuine passwords. III) Compromised bio-

metrics: When an adversary acquires genuine biometrics. Then, we compare the

system with unprotected Dynamic Time Warping-based speaker authentication [32].

Next, we compare ours with the protected approach in [39]. These experiments are

detailed in Section 7.3. Finally, the results and security analysis are illustrated in

Section 7.4.
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Figure 7.1: Enrollment phase: Initialization.

7.2 Speech Cryptographic Key Regeneration based

on Password (SCKRP)

The SCKRP can be overviewed as two phases: Enrollment and Verification. The

biometric key regeneration is in the enrollment phase that comprises of two stages:

Initialization and Regeneration. The first stage is used to protect the DTW template

through a hardening process illustrated in Figure 7.1. The second stage illustrated

in Figure 7.2 is used to protect the matching template; we apply a password in the

second stage.

7.2.1 Enrollment: Initialization

For the Initialization stage (Figure 7.1), we follow the processes in Section 5.2.1. For

a quick overview, the processes are detailed in the following.

To start, a user presents training utterances to the system. Then, the first utter-

ance is used as the initialized hardened template. The algorithm performs DTW to

match it to the other training utterances. Next, the results are mapped to binary

strings by comparing with the multi-threshold. Next, the bits from a binary string

that the speaker can reliably generate are defined and refer to as distinguishing de-
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scriptor D. The next step is hardening process that is the process to remove a feature

from the DTW template. Specifically, let the total number of bit derived from the

hardened template that corresponds to the distinguishing descriptors be T; the sys-

tem should yield T as less than or equal to D/2. In Chapter 5, we showed that, under

this condition, the hardened template was secure even if the attacker acquired the

templates and had perfect knowledge of correlation of features. For this reason, if T

is greater than D/2, one of templates feature vectors will be removed. After each step

in hardening the template, the hardened DTW template will be the keying signal of

the training pass-phrase and the process will be re-started until the condition is met.

Finally, the result is stored as a hardened template in using for the next stage.

7.2.2 Enrollment: Regeneration

This stage (Figure 7.2) consists of three main steps: transformation, permutation,

and key binding. Firstly, random numbers derived from the user’s password are used

to transform the hardened template and training pass-phrases. The transformed
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biometrics is then mapped to binary strings. Then, a distinguishing descriptor (a

binary string that users can reliably generate) is defined. Secondly, the distinguishing

descriptor is encrypted with a password. Finally, the encrypted binary string is used

to secure the cryptographic key using fuzzy commitment framework [48]. These steps

are detailed in the following.

Transformation

The system first generates two sets of pseudo-random numbers, S = {−1, 1}2m

where m (the same m in the initialization stage) is the number of frames of the

hardened template. Hence, if training biometrics is greater than 2m frames, the

users will be asked to re-utter their pass-phrases.

Two sets, say S1 and S2, are arranged in a two-column table: S1 in the first

column and S2 in the second column. Then the system uses an eighth-character

password to generate a 2m bit binary string R = {ri ∈ {0, 1}, i = 1, . . . , 2m}.

Next, the R will be used to select the random numbers in the table: select the

number in the first column if ri = 1 and otherwise in the second column. Lastly,

the selected random numbers will be used to transform feature vectors. More

precisely, let H = {fi, i = 1, . . . ,m} be a set of feature vectors of the hardened

template where the vector fi = [fi(1), . . . , fi(121)]
T . The transformed version of

H can be represented by T = {(−1)ri ·fi+fi, i = 1, . . . ,m}. For a set of training

vectors X = {xi, i = 1, . . . , n ≤ 2m} where the vector xi = [xi(1), . . . , xi(121)]
T ,

the transformed version is Q = {(−1)ri · xi + xi, i = 1, . . . , n}. Using T as

a reference template, the system performs DTW to the Q. The result will

be used in mapping and generating distinguishing descriptor the same way as
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described in Section 5.2.1, 5.2.2, and 5.2.3. Next, we select 2n-1 bits, where

n = 3, 4, . . ., based on feature variation to form a binary string S = {bi ∈

{0, 1}, i = 1, . . . , L = 2n − 1}.

Permutation

For the second step, the indexes of the S will be randomly permuted in the

context of cryptography. Next, the permuted indexes are used to arrange the

binary string S and we refer the result to as an arranged binary string S ′.

Finally, we employ a prefix cipher [8] with domain and range in [1, L] where

[1, L] denote a set of integers from 1 to L in encryption and decryption the

permuted indexes with a password P ∈ K.

The prefix cipher consists of two functions: E : K × [1, L] → [1, L] and D :

K× [1, L]→ [1, L]. Therefore, if we refer the encrypted permuted indexes to as

M, every possible password when it is used to decryptM, will yield an integer

string that consists of non-repeated random integers in [1, L]. By utilizing this

scheme, the attackers cannot discriminate the correct password from brute-force

search as the decrypted template appears as a random permutation on a subset

of the indexes.

Key binding

To combine the arranged binary string S ′ with cryptographic key is the last step.

The system first generate a pseudo-random bit k and then encoded properly

denoted by E(k) of length L (see Figure 7.2). In our case, we use BCH code [56].

The encoding code E(k) has to tolerate error within Hamming distance (H), a

maximum number of bit differences between the distinguishing descriptors and
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the feature descriptors of a legitimate user. For the next step, the S and the

encoding code E(k) will be hidden using an XOR operation and then stored

as a lock data denoted by L. Only the user with feature descriptors S ′ that is

sufficiently similar to the S within Hamming distance (|S−S ′| ≤ H) can unlock

the L and correctly decode the key.

7.2.3 Verification

The biometric key retrieval process is in the verification phase illustrated in Figure

7.3. The user requests the template from the database that contains the hardened

template, the multi-thresholds, and the lock data. A user’s password will be used to

transform the hardened template and query biometrics the same way in Section 7.2.2.

Once the transformed versions are set, the system performs DTW. Then, the result

will be mapped to a feature descriptor q. Next, the encrypted permutation indexes

M will be decrypted with the password; the result is used to re-arrange the feature

110



descriptor q and we refer the re-arranged result to as q′. Then, the q′ will be XORed

with the lock data. The next step is the decoding process. If the error is within

the tolerance, the key can be correctly reconstructed. To check whether the key is

identical to the key generated in the training phase, a number of researchers [3, 36, 67]

checked the hash function. In the training phase, the initialized key was stored as

h(k). Once the key k′, is regenerated from the verification phase, the system checks

to see whether h(k) = h(k′). If h(k) = h(k′)), the key, k′, is correct. The system

authenticates the user.

7.3 Experimental Setup

We compare the SCKRP with other speaker verification systems: Dynamic Time

Warping (DTW) [32] detailed in Section 4.3.1 and Dynamic Time Warping-based

Biometric key Binding (DBKB) detailed in Chapter 5.

For the SCKRP, the same parameters in the DBKB are utilized except the cor-

rectable bits parameter t illustrated in Table 7.1 is varied to an operating point of each

scenario. We will evaluate verification performance using Equal Error Rate (EER).

However, the dataset does not include users’ passwords. In our experiments, we have

to select passwords which are likely to be used in the real world application. For this

reason, we select eight character users’ passwords based on difficulty levels indicated

in Figure 7.4 [16]. Six classes of users’ passwords and their distribution are: 1) one

word (23%), 2) combination of two or more word (6%), 3) familiar numbers, such as

a social security number, street address, birth date, etc. (21%), 4) unfamiliar num-

bers (10%), 5) string of numbers and letter (34%), 6) string of numbers, letter, and
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Figure 7.4: Distribution of users’ passwords that are comprised of one word, combina-
tion of two or more words, unfamiliar numbers, familiar numbers, string of numbers
and letters, or string of numbers, letters, and symbols.

symbols (6%).

7.4 Experimental Results

We will first investigate in the case that one of the applied password schemes is

excluded (one-layer scheme). Then, we will investigate the two-layer scheme SCKRP

(transformation and permutation schemes).
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7.4.1 One-layer Scheme

Table 7.1 shows the EERs of the DTW [32], DBKB [39], and SCKRP in the MDS and

LDS against imposter attack (H-II). In the case of the permutation scheme only, the

error rate of the compromised password scenario (II) does not differ from the DTW

and DBKB system. In the other scenarios (I and III), the verification performance

meets the same level of the password approach.

In the case of the transformation scheme only, the error rate of the compromised

password scenario (II) also does not differ from other systems, but the error rates in

the other scenarios (I and III) are noticeably degraded when we compare them with

the previous case. As we introduced, the transformation layer is designed to slow

down attackers who try to brute-force search the key. Therefore, it is necessary to

keep this layer. In the next section, we will show that we can address this drawback

when two schemes are combined.

7.4.2 Two-layer Scheme

Table 7.2 shows the EERs of the two-layer scheme SCKRP in the MDS and LDS

against imposter attack (H-II). In the case that the password and biometrics are

not compromised (scenario I), the verification performance of the SCKRP clearly

outperforms the other systems. For the compromised biometric case (scenario III),

the error rate is still the same as scenario I. For the compromised password case

(scenario II), the verification performance of the SCKRP does not differ when we

compare it with other systems. These results are also illustrated in Figure 7.5.
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Figure 7.5: ROC curves of two-layer scheme. Scenario I: genuine, Scenario II: com-
promised password, and Scenario III: compromised biometrics (a) the MDS (b) the
LDS
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Table 7.1: EERs of speaker verification systems in the MDS and LDS against imposter
attack for Dynamic Time Warping-based (DTW), Dynamic Time Warping-based Bio-
metric key Binding (DBKB), and our approach (SCKRP) in the case that one of the
applied password layer is excluded. Scenario I: genuine, Scenario II: compromised
password, and Scenario III: compromised biometrics

.

Dataset Method Scenario EER (x̄± Z 0.05
2

s√
ns

%) Error Corrected

DTW [32] I 11.20 ± 0.83 -

DBKB[39] I 11.54 ± 1.28 38 bits
Permuted I 0.00 53 bits

MDS SCKRP II 10.69 ± 1.11 38 bits
III 0.00 53 bits

Transformed I 3.61 ± 0.24 46 bits
SCKRP II 11.61 ± 1.65 38 bits

III 9.05 ± 0.62 38 bits

DTW [32] I 7.82 ± 1.57 -

DBKB[39] I 8.96 ± 1.17 38 bits
Permuted I 0.00 53 bits

LDS SCKRP II 8.40 ± 1.71 38 bits
III 0.00 53 bits

Transformed I 4.43 ± 1.72 46 bits
SCKRP II 9.35 ± 2.58 38 bits

III 7.40 ± 1.12 38 bits

7.4.3 Security Analysis

In this section, we investigate the security of two-layer SCKRP with three scenarios.

For the case of the genuine (scenario I), we use the same approach presented in

Chapter 5 to estimate the entropy. Hence, the security of the scheme can be estimated

using the sphere packing bound BF= 2z
∑w

i=1 (
z

i)
where z is the uncertainty of voice and

w is the error bits that can be corrected by the system [36]. We carry out 4,512 of

inter-speaker comparisons (the same dataset as used in Chapter 5) to evaluate the

uncertainty. For a binary string of 511 bits, the uncertainty of our template is 125

bits. From Table 7.2, the system should be able to correct the error up to 39 bits,
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Table 7.2: EERs of two-layer SCKRP in the MDS and LDS against imposter attack
(H-II). Scenario I: genuine, Scenario II: compromised password, and Scenario III:
compromised biometrics

Dataset Method Scenario EER (x̄± Z 0.05
2

s√
ns

%) Error Corrected

Two− layer I 0.00 53 bits
MDS SCKRP II 10.72 ± 1.65 39 bits

III 0.00 53 bits
Two− layer I 0.00 53 bits

LDS SCKRP II 8.24 ± 1.13 39 bits
III 0.00 53 bits

that is approximately 8%. Here, z is 125 bits and w is 10 bits. The estimated entropy

is 76 bits, which is much better than the DBKB (51 bits).

For the case of the compromised password (scenario II), the estimated entropy is

77 bits. However, 33.07%, which is determined using the analysis technique proposed

in [39], leaks from the hardened template. Therefore, the estimated entropy is 51

bits, which is the same as reported in [39]. Even though 51 bits of entropy can easily

be enumerated using today’s computational resources, this space is determined under

the assumption that an attacker knows every users’ password in the system. However,

it is very difficult for the attacker to do.

For the case of the compromised biometrics (scenario III), the estimated entropy is

between 18-30 bits [14]. However, the attackers have to spend many more attempts for

two reasons. First, the SCKRP is a biometric-based system; it prevents the attacker

who is content to find the password of any users in the system (the weakest link).

More precisely, the attackers randomly try the most probable password with every

user in the system and try other passwords until they find the first match. For the

SCKRP, they cannot do that as applying the same password to different biometrics
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yields different results. Second, the transformation process forces the attackers to run

dynamic programming every time they try other different passwords. In contrast, if

the transformation process is excluded, they can run dynamic programming only

once. Then, they apply passwords to the warping signal and check to see whether

the result matches the template. As a result, this case (the transformation layer is

excluded) does not differ from the traditional password-based approach.

Overall processes create a greater computational load for an attacker. Even if this

also makes users wait more time for authentication, it makes much more time for the

attackers as they have to try every possible password.

7.5 Summary

We have proposed a way to combine a speech biometric cryptosystem with a password.

The system consists of three layers. For the first layer, the biometrics is transformed

using a password. Then, we map the transformed version to a binary string. For the

second layer, the result from the second layer is permuted using a password in such

a way that the attackers cannot discriminate the correct password from brute-force

search if the biometrics is not compromised. For the third layer, a cryptographic

key and the binary string are hidden using a fuzzy commitment framework. The

experimental results show that the verification performance of the system meets the

same level of a traditional password-based approach if biometrics and password are not

compromised simultaneously. Furthermore, the system increases the computational

time for attackers to search for the key. Even if the attackers acquire the biometrics,

they have been forced to align query biometrics each time they guess the password.
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In further research, we plan to investigate the impact of user passwords on the

system.
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Chapter 8

Conclusion and Future Work

8.1 Conclusions

The DTW, VQ, and GMM techniques have been used in speaker verification systems.

The DTW was the first technique developed. Even though it yields good recognition

performance, researchers are concerned about the security of the template because the

system stores a full set of feature vectors. After that, VQ and GMM were developed

to address this problem and have been popular since then.

In this thesis, we have investigated the security of the aforementioned methods

against various attacks. The attacks included the traditional attack reported in the

literature (human imposters), the more sophisticated attack (an informed adversary

utilizing synthetic pass-phrases), and the algorithm we developed (an informed ad-

versary utilizing biometric templates). We have shown that these attacks were dev-

astating to the biometric systems. In particular, the most effective was the biometric

template attack. Then, we have demonstrated that the traditional approach to eval-

119



uate the security of speech biometric user verification was insufficient. The results

indicated that the FARs of the other attack models beyond the traditional approach

were significantly high. We also investigated the results based on gender information.

There were no significant differences.

We developed the cryptographic-based speaker verification to protect the bio-

metric template. We utilized Dynamic Time Warping (DTW) in our system. We

presented a hardened template which was useful for creating a warping function, but

it was not usable for an attacker to derive the cryptographic key. We have shown that

the recognition performance of the hardened template was not far from the unpro-

tected template. In addition, the EER against the attackers utilizing the hardened

template to generate a cryptographic key was 0%. The results were also compared

with the transformation approach where the one-way function was used to protect

the template. The experimental results showed that our approach performed better

than the transformation approach. In addition, we showed that even if a template

was stored as a transformed version, the attacker could gain access to the system

which did not differ from an unprotected template.

We addressed the problem of feature correlation which reduced the security of

the biometric template by proposing a multi-thresholds scheme. As a result, the

randomness of the key (entropy) was increased from 16 to 51 bits. Lastly, we showed

that the EER of the proposed system against the template attack was significantly

lower than the other methods.

Finally, we used a password to protect stored templates, enhance security, and

reduce error rates in biometric cryptosystems. We addressed the problem of the

security of the system dropping to the same level as that of a password approach
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if the biometrics is compromised. We have shown that the EER of our scheme was

the same as a traditional password-based approach even when the biometrics was

compromised but the scheme increased the computational time for attackers to search

for the key. Even if the attackers acquire the biometrics, they have been forced to

align the biometrics each time they guess the password.

Through careful study of biometrics and their flaws, we believe that our work

can ultimately lead to stronger, more usable biometric security. We proposed a new

algorithmic attack based on template information to demonstrate that the traditional

approach to evaluate the security of speech biometric user verification was insufficient.

Then, we developed the cryptographic-based speaker verification to protect the bio-

metric templates. Lastly, we used a password to protect stored templates, enhance

security, and reduce error rates in biometric cryptosystems.

8.2 Future Work

Future work is suggested as follows.

1. Even though the error rates of the proposed system against synthetic speech are

the lowest when we compare our scheme with the other systems, it is still high

when compared with other attack models. Hence, the design of a speaker ver-

ification system should have the ability to discriminate between synthetic and

real pass-phrases. This issue is related to the construction of speech synthesiz-

ers. For example, with HMM-based synthetic pass-phrases, the fact that the

synthesizer always produces the same optimal waveform in terms of likelihood

score should be used as another feature in a speaker verification system. If the
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likelihood score is greater than the threshold, the speaker verification system

will reject the pass-phrase. For other speech synthesizers, we believe that there

are similar likelihood-score features. It is also possible that a challenge-response

scheme or some kind of dialog-based scheme might work. The natural varia-

tion that arises when a human says the same phrase twice might be hard to

duplicate in some synthesis methods. In further research, these features should

be identified to improve the recognition performance of a speaker verification

system.

2. By assigning an appropriate tuning parameter to the proposed generative model,

we have shown that it offered great potential in gaining access to the systems.

In this work, we have set a tuning parameter as a global threshold. In further

research, we should focus on investigation of a local threshold, one per a target

user.

3. We have shown that our techniques offer great potential to protect the speech

biometric template with slightly degraded recognition performance in the case

of a compromised password. In further research, we should investigate security

and performance of other behavioral modalities which have temporal features,

such as a signature or handwriting.

4. The permutation technique we proposed in Chapter 7 is a general technique

which we believe can be used in other biometric modalities for the key binding

scheme. In further research, we should investigate security and performance of

our technique for physiological biometrics, such as fingerprints, faces, and iris

codes.
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Appendix A
Datasets

Appendix A.1

A list of pass-phrases in the MDS, F = Female and M = Male

Enrolled subject Pass-phrase Enrolled subject Pass-phrase
F00 mint chocolate chip F11 mint chocolate chip
F01 pralines and cream F12 chunky monkey
F02 chocolate fudge F13 chocolate fudge
F03 pralines and cream F14 peppermint stick
F04 pralines and cream F15 mint chocolate chip
F05 pralines and cream F16 chunky monkey
F06 mint chocolate chip F17 chunky monkey
F07 chunky monkey F18 pralines and cream
F08 chocolate fudge F19 chunky monkey
F09 chocolate fudge F20 chocolate fudge
F10 peppermint stick F21 mint chocolate chip
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A list of pass-phrases in the MDS (continue), F = Female and M = Male

Enrolled subject Pass-phrase Enrolled subject Pass-phrase
M00 peppermint stick M13 rocky road
M01 rocky road M14 rocky road
M02 peppermint stick M15 peppermint stick
M03 chocolate fudge M16 rocky road
M04 pralines and cream M17 chocolate fudge
M05 mint chocolate chip M18 pralines and cream
M06 chunky monkey M19 chunky monkey
M07 peppermint stick M20 rocky road
M08 rocky road M21 rocky road
M09 peppermint stick M22 peppermint stick
M10 chocolate fudge M23 peppermint stick
M11 pralines and cream M24 chunky monkey
M12 mint chocolate chip M25 mint chocolate chip
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Appendix A.2

A list of dedicated users’ pass-phrases in the MDS, F = Female, M = Male, and
i = Dedicated imposter

Enrolled subject Pass-phrase Enrolled subject Pass-phrase
F00i chocolate fudge M03i rocky road
F01i chocolate fudge M04i rocky road
F02i chocolate fudge M05i pralines and cream
F03i chocolate fudge M06i rocky road
F04i chunky monkey M07i pralines and cream
F05i chunky monkey M08i rocky road
F06i mint chocolate chip M09i peppermint stick
F07i mint chocolate chip M10i pralines and cream
F08i chocolate fudge M11i mint chocolate chip
F09i mint chocolate chip M12i peppermint stick
F10i mint chocolate chip M13i pralines and cream
F11i mint chocolate chip M14i mint chocolate chip
F12i chunky monkey M15i peppermint stick
F13i chunky monkey M16i chunky monkey
F14i peppermint stick M17i mint chocolate chip
F15i pralines and cream M18i peppermint stick
F16i pralines and cream M19i chunky monkey
M00i rocky road M20i mint chocolate chip
M01i pralines and cream M21i mint chocolate chip
M02i rocky road M22i chocolate fudge
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Appendix A.3

A list of pass-phrases in the LDS

Enrolled subject Pass-phrase
subject1 If you can’t beat them, join them.

When it rains, it pours.
The person who has no opinion will seldom be wrong.
I kept getting a busy signal.
I’d like to reserve a table for dinner.

subject2 The first step is always the hardest.
Blood is thicker than water.
The secret of being tiresome is to tell everything.
We seem to have a bad connection on this phone.
Do you have an apartment available?

subject3 There’s no place like home.
A fool and his money are easily parted.
Only the suppressed word is dangerous.
Would you care to leave a message?
We could do it first thing tomorrow morning.

subject4 If you can’t beat them, join them.
When it rains, it pours.
The person who has no opinion will seldom be wrong.
I kept getting a busy signal.
I’d like to reserve a table for dinner.

subject5 You have to take the good with the bad.
All in the same boat.
The important thing is never to stop questioning.
I want it to be very, very lean.
I hope there’s nothing serious.

subject6 Absence makes the heart grow fonder.
A taste of your medicine.
Doubt is not a pleasant condition, but certainty is absurd.
Let me get back to you in a few minutes.
I left the keys in the car.
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Appendix A.4

A list of phrases to build the speech corpus in the LDS

Pass-phrase
001 Gad, do I remember it.
002 You got out by fighting, and I through a pretty girl.
003 I can see that knife now.
004 When I can’t see beauty in woman I want to die.
005 His slim fingers closed like steel about Philip’s.
006 He seized Gregson by the arm and led him to the door.
007 Hear the Indian dogs wailing down at Churchill.
008 I’d say there was going to be a glorious scrap.
009 He turned the map to Gregson, pointing with his finger.
010 His eyes never took themselves for an instant from his companion’s face.
011 Lakes and rivers, hundreds of them, thousands of them.
012 Whitefish, Gregson, whitefish and trout.
013 They robbed me a few years later.
014 He chuckled as he pulled out his pipe and began filling it.
015 Everything was working smoothly, better than I had expected.
016 I was completely lost in my work.
017 His slim hands gripped the edges of the table.
018 Philip dropped back into his chair.
019 If I was out of the game it would be easily made.
020 It is growing, every day, every hour.
021 Now, you understand.
022 You have associated with some of these men.
023 All operations have been carried on from Montreal and Toronto.
024 Gregson held a lighted match until it burnt his fingertips.
025 Gregson had seated himself under the lamp and sharpening a pencil.
026 He caught himself with a jerk.
027 How does your wager look now.
028 He confessed that the sketch had startled him.
029 After all, the picture was only a resemblance.
030 Philip knew that she was not an Indian.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
031 In her haste to get away she had forgotten these things.
032 Philip took a step toward Gregson, half determined to awaken him.
033 But if Pierre did not return, until tomorrow.
034 Ten minutes had not elapsed since he had dropped the handkerchief.
035 It won’t be for sale.
036 For a few moments he ate in silence.
037 Philip did not pursue the subject.
038 Philip produced a couple of cigars and took a chair opposite him.
039 Suppose you saw me at work through the window.
040 He looked like one who had passed through an uncomfortable hour.
041 There was nothing more, except a large ink blot under the words.
042 All this day Gregson remained in the cabin.
043 The sixth day he spent in the cabin with Gregson.
044 The flush was gone from her face.
045 That is why I am, am rattled, he laughed.
046 He understood the meaning of the look.
047 She was even more beautiful than when I saw her, before.
048 I’ll give a thousand if you produce her, retorted Gregson.
049 They have won popular sentiment through the newspapers.
050 We must achieve our own salvation.
051 In moments of mental energy Philip was restless.
052 He would keep his faith with Gregson for the promised day or two.
053 Something about it seemed to fascinate him, to challenge his presence.
054 Now it was missing from the wall.
055 He boiled himself some coffee and sat down to wait.
056 I’m going down there with you, and I’m going to fight.
057 Now have you got anything to say against me, Mr Philip.
058 If I meet her again I shall apologize, said Eileen.
059 Below him the shadow was broken into a pool of rippling starlight.
060 Only the chance sound had led him to observe them.
061 Could the incident have anything to do with Jeanne and Pierre.
062 There was no chance to fire without hitting him.
063 There was no answer from the other side.
064 Then he hastened on, as Pierre had guided him.
065 With these arguments he convinced himself that he should go on alone.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
066 Yet, behind them there was another and more powerful motive.
067 In that case he could not miss them, if he used caution.
068 Before he could recover himself Jeanne’s startled guards were upon him.
069 It is the nearest refuge.
070 There was pride and strength, the ring of triumph in his voice.
071 Tomorrow it will be strong enough for you to stand upon.
072 You were going to leave after you saw me on the rock.
073 He bit his tongue, and cursed himself at this fresh break.
074 In it there was something that was almost tragedy.
075 Your face is red with blood.
076 Her eyes smiled truth at him as he came up the bank.
077 He can care for himself.
078 They will search for us between their camp and Churchill.
079 Until I die, he exclaimed.
080 Her beautiful hair was done up in shining coils.
081 The Churchill narrowed and its current became swifter as they progressed.
082 For a full half minute Jeanne looked at him without speaking.
083 I want to die in it.
084 Darkness hid him from Jeanne.
085 And yet if she came he had no words to say.
086 He heard a sound which brought him quickly into consciousness of day.
087 Within himself he called it no longer his own.
088 Besides, that noise makes me deaf.
089 Philip looked back from the crest and saw Jeanne leaning over the canoe.
090 Fifty yards ahead of her were the first of the rocks.
091 There was one chance, and only one, of saving Jeanne.
092 You’re a devil for fighting, and will surely win.
093 I’ll only be in the way.
094 He lifted his eyes, and a strange cry burst from his lips.
095 Shooting pains passed like flashes of electricity through his body.
096 I know that you are in charge there, and Jeanne knows.
097 For a full minute the two men stared into each other’s face.
098 He was sure, now, of but few things.
099 It was a miracle, and I owe you my life.
100 Philip ate lightly of the food which Pierre had ready for him.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
101 Such men believe, when they come together.
102 The journey was continued at dawn.
103 Jeanne and Pierre both gazed toward the great rock.
104 There was something pathetic in the girl’s attitude now.
105 He moved his position, and the illusion was gone.
106 For two hours not a word passed between them.
107 I have hunted along this ridge, replied Philip.
108 We saw your light, and thought you wouldn’t mind a call.
109 Billinger may arrive in time.
110 I want my men to work by themselves.
111 He destroyed everything that had belonged to the woman.
112 Philip bent low over Pierre.
113 She saw the answer in his face.
114 There is no need of further detail, now – for you can understand.
115 There followed a roar that shook the earth.
116 Blind with rage, he darted in.
117 In it was the joy of life.
118 Swiftly his eyes measured the situation.
119 But this little defect did not worry him.
120 And then, steadily, he began to chew.
121 Together they ate the rabbit.
122 They edged nearer, and stood shoulder to shoulder facing their world.
123 It was beating and waiting in the ambush of those black pits.
124 Something vastly more thrilling had come into it now.
125 It took him half an hour to reach the edge of it.
126 But there was no longer the mother yearning in his heart.
127 Besides, had he not whipped the big owl in the forest.
128 After all, it was simply a mistake in judgment.
129 Had it struck squarely it would have killed him.
130 The Indian even poked his stick into the thick ground spruce.
131 Pebbles and dirt flew along with hair and fur.
132 And he was filled with a strange and foreboding fear.
133 It was steel, a fisher trap.
134 OW, a wild dog, he growled.
135 That is the strange part of it.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
136 His freshly caught furs he flung to the floor.
137 In the crib the baby sat up and began to prattle.
138 She obeyed, shrinking back with the baby in her arms.
139 His teeth shut with a last click.
140 It was over when he made his way through the ring of spectators.
141 In a flash he was on his feet, facing him.
142 He thought he saw a shudder pass through the Factor’s shoulders.
143 The moon had already begun its westward decline.
144 They laughed like two happy children.
145 He pulled, and the log crashed down to break his back.
146 Fast, but endure.
147 A little before dawn of the day following, the fire relief came.
148 The Indian felt the worship of her warm in his heart.
149 He drew in a deep breath as he looked at them.
150 Then he shouted, Shut up.
151 He changed his seat for a steamer reclining chair.
152 To these he gave castor oil.
153 Hatred and murder and lust for revenge they possessed to overflowing.
154 Sheldon glanced at the thermometer.
155 Also, I want information.
156 Let them go out and eat with my boys.
157 I, I beg pardon, he drawled.
158 And you preferred a cannibal isle and a cartridge belt.
159 I was in New York when the crash came.
160 No, I did not fall among thieves.
161 Such things in her brain were like so many oaths on her lips.
162 Your being wrecked here has been a godsend to me.
163 I can’t go elsewhere, by your own account.
164 Her achievements with coconuts were a revelation.
165 He glanced down at her helplessly, and moistened his lips.
166 That is what distinguishes all of us from the lower animals.
167 He also contended that better confidence was established.
168 Outsiders are allowed five minute speeches, the sick man urged.
169 So was Packard’s finish suicide.
170 Joan cried, with shining eyes.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
171 Nobody knows how the natives got them.
172 How can you manage all alone, Mr Young.
173 The planters are already considering the matter.
174 I use great trouble advisedly.
175 Dear Sir, Your second victim has fallen on schedule time.
176 We leave the eventuality to time and law.
177 Similar branch organizations have made their appearance in Europe.
178 Society is shaken to its foundations.
179 A month in Australia would finish me.
180 Down through the perfume weighted air fluttered the snowy fluffs.
181 You were destroying my life.
182 Horses and rifles had been her toys, camp and trail her nursery.
183 I’m as good as a man, she urged.
184 You read the quotations in today’s paper.
185 He’s terribly touchy about his black wards, as he calls them.
186 Whatever he guessed he locked away in the taboo room of Naomi.
187 This is eighteen eighty.
188 Death is and has been ever since old Maui died.
189 Let us talk it over and find a way out.
190 It is a good property, and worth more than that.
191 I wish you were more adaptable, Joan retorted.
192 Such is my passage engaged on the steamer.
193 The issue was not in doubt.
194 Well, there are better men in Hawaii, that’s all.
195 Harry Bancroft, Dave lied.
196 It’s a Yankee, Joan cried.
197 He was the leader, and Tudor was his lieutenant.
198 They likewise are disinclined to being eaten.
199 But to culture the Revolution thus far had exhausted the Junta.
200 The President of the United States was his friend.
201 Your face was the personification of duplicity.
202 Shorty turned to their employers.
203 You were engaged.
204 I saw it all myself, and it was splendid.
205 Now run along, and tell them to hurry.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
206 What’s that grub-thief got to do with it.
207 It was a superb picture.
208 So she said, the irate skipper dashed on.
209 And watch out for wet feet, was his parting advice.
210 They just lay off in the bush and plugged away.
211 The very thought of the effort to swim over was nauseating.
212 And there was a dog that barked.
213 There are four, all low, McCoy answered.
214 The women they carried away with them to the Big Valley.
215 The Japanese understood as we could never school ourselves.
216 They had been on the same lay as ourselves.
217 The boy grew and prospered.
218 He wanted to give the finish to this foe already so far gone.
219 Exciting times are the lot of the fish patrol.
220 I know they are my oysters.
221 By this time Charley was as enraged as the Greek.
222 They must have been swept away by the chaotic currents.
223 It resembled tea less than lager beer resembles champagne.
224 At the same time spears and arrows began to fall among the invaders.
225 Then, again, Tudor had such an irritating way about him.
226 Outwardly, he maintained a calm and smiling aspect.
227 You fired me out of your house, in short.
228 Her mouth opened, but instead of speaking she drew a long sigh.
229 It’s worth eight dollars.
230 And he did hurt my arm.
231 Only once did I confide the strangeness of it all to another.
232 I was not to cry out in the face of fear.
233 And now put yourself in my place for a moment.
234 The boy threw back his head with pride.
235 Why not like any railroad station or ferry depot.
236 We could throw stones with our feet.
237 These were merely stout sticks an inch or so in diameter.
238 Then it was that a strange thing happened.
239 From the source of light a harsh voice said.
240 But I did not enjoy it long.
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A list of phrases to build the speech corpus in the LDS (continue)

Pass-phrase
241 We were now good friends.
242 Two of the Folk were already up.
243 He gave one last snarl and slid from view among the trees.
244 Again the girls applauded, and Mrs Hall cried.
245 Just the same I’d sooner be myself than have book indigestion.
246 Some of the smaller veins had doubtless been ruptured.
247 But we were without this momentum.
248 There was one difficulty, however.
249 The hyena proceeded to dine.
250 Or have they already devised one.
251 We would not spend another such night.
252 At first his progress was slow and erratic.
253 He placed his paw on one, and its movements were accelerated.
254 The awe of man rushed over him again.
255 The Fire-Men wore animal skins around their waists.
256 Between him and all domestic animals there must be no hostilities.
257 All right, Sir, replied Jock with great regret.
258 Why should a fellow throw up the sponge after the first round.
259 His hand shot out and clutched Crooked-Leg by the neck.
260 Does the old boy often go off at half-cock that way.
261 A flying arrow passed between us.
262 I pulled, suddenly, with all my might.
263 Here we allow our solicitors to look after our legal work.
264 His previous wives had never lived long enough to bear him children.
265 It was our river emerging like ourselves from the great swamp.
266 Cameron looked at his hands with their long, sinewy fingers.
267 We got few vegetables and fruits, and became fish eaters.
268 We never made another migration.
269 Nor was Elam Harnish an exception.
270 A little treatment, massage, with some help from the doctor.
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Appendix B
List of passwords in the

experiments

Appendix B.1

Passwords in the MDS

Enrolled subject Password
F00 commands
F01 hatching
F02 jeopardy
F03 kangaroo
F04 metaphor
F05 obligate
F06 offender
F07 quainter
F08 relegate
F09 scooters
F10 tendency
F11 getmoney
F12 whatisit
F13 amIright
F14 35463478
F15 34345434
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Passwords in the MDS (continue)

Enrolled subject Password
F16 32435698
F17 74357023
F18 45367584
F19 12091974
F20 41118015
F21 19865123
M00 50820122
M01 61041912
M02 48427405
M03 09281987
M04 36100008
M05 50218015
M06 72382128
M07 Peteson1
M08 Chevron9
M09 4debby06
M10 john1954
M11 411Webst
M12 Brown311
M13 born1974
M14 3brother
M15 mike3son
M16 access97
M17 where2go
M18 make2002
M19 oikee013
M20 July1234
M21 Honday10
M22 one2tree
M23 @411home
M24 t#197412
M25 fo!%345
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Appendix B.2

Passwords in the LDS

Enrolled subject Pass-phrase Password
1 commands
2 hatching

1 3 jeopardy
4 kangaroo
5 metaphor
1 obligate
2 offender

2 3 getmoney
4 whatisit
5 35463478
1 74357023
2 45367584

3 3 34345434
4 12091974
5 35463478
1 34345434
2 34345434

4 3 74357023
4 john1954
5 411Webst
1 Brown311
2 born1974

5 3 3brother
4 mike3son
5 access97
1 where2go
2 make2002

6 3 4debby06
4 @411home
5 t#197412
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