Wave reflection and transmission for cylindrical pile arrays, MS Thesis, May 1965, Reprint No. 313

B. Van Weele
Gravity Wave Research

WAVE REFLECTION AND TRANSMISSION FOR CYLINDRICAL PILE ARRAYS

by

Brian Van Weele

Fritz Engineering Laboratory Report No. 293.4
WAVE REFLECTION AND TRANSMISSION
FOR CYLINDRICAL PILE ARRAYS

Prepared by
Brian Van Weele

May 1965

Bethlehem, Pennsylvania

Fritz Engineering Laboratory Report No. 293.4
I would like to extend thankful recognition to Dr. John B. Herbich, Chairman of the Hydraulic and Sanitary Engineering Division at Lehigh University, who advised and assisted in this report. The investigation reported herein is a part of a long-term study of wave reflection and transmission.

A special note of thanks is also due to Mr. Michael A. D'Apice, for his assistance in preliminary preparations, to Mr. E. G. Dittbrenner, who installed and maintained much of the test equipment, and to Miss Rosalie Fischer who typed the manuscript.

Professor W. J. Eney is the Head of the Department of Civil Engineering and the Fritz Engineering Laboratory. Dr. Lynn S. Beedle is the Director of the Laboratory.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATE OF APPROVAL</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>II REVIEW OF EARLIER STUDIES</td>
<td>4</td>
</tr>
<tr>
<td>III EXPERIMENTAL STUDIES</td>
<td>7</td>
</tr>
<tr>
<td>A. Test Facilities</td>
<td>7</td>
</tr>
<tr>
<td>B. Experimental Procedure</td>
<td>10</td>
</tr>
<tr>
<td>C. Cases Tested</td>
<td>13</td>
</tr>
<tr>
<td>IV RESULTS</td>
<td>19</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>33</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>34</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>VITA</td>
<td>38</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wave Tank</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Wave Generator</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Sanborn Twin-Viso Recorder</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Pile Group Arrangement</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Permeable Wave Absorber</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Set Up For Reflection Coefficient Tests</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Case I, Spacings "a" = D and "b" = 2D</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Case I, Spacings "a" = 4D and "b" = 2D</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Comparison of the Two Extreme Patterns of Case II</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Case III, Staggered Array</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Wave Height of 1.40 Inches</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Wave Height of 2.30 Inches</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>Wave Height of 3.20 Inches</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Case I, Transmissibility as a Function of Wave Steepness</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Case II, Transmissibility as a Function of Wave Steepness</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Case I, Reflection Coefficient as a Function of Wave Steepness</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>Case II, Reflection Coefficient as a Function of Wave Steepness</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>Case I and II, Reflection Coefficient as a Function of Wave Steepness</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>Case I, Reflection Coefficient as a Function of Spacing "a"</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>Case II, Reflection Coefficient as a Function of Spacing "b"</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>Case I, Transmissibility as a Function of Spacing "a"</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>Case II, Transmissibility as a Function of Spacing "b"</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

"a" = Transverse distance between piles, pile diameters
"b" = Longitudinal distance between the piles, pile diameters
D = Diameter of the piles, inches
d = Depth of the water measured from the still water level to the bottom of the tank, inches
L = Length of wave measured from crest to crest, inches
R = Reflection Coefficient, ratio, or R×100%, percentage
T = Transmissibility, ratio, or T×100%, percentage
ABSTRACT

This report is an investigation of the relationship between wave reflection and transmission, and several pile-group configurations. A total of 16 circular piles were used in different rectangular arrangements and one staggered pattern. In the rectangular arrangements both the spacings transverse to the oncoming wave and the spacings longitudinal to the oncoming wave were investigated. The experimental studies were performed in a two-dimensional wave channel.
I INTRODUCTION

In the extensive field of Oceanographical Engineering the reflection of waves from solid sea walls of different types is an important occurrence. However, if the sea wall is permeable, the transmission of the waves through the structure, as well as the reflection from it, combine to describe a part of the "wave characteristics" of the structure.

A group of piles in a specific geometrical pattern might be generalized as a porous structure or porous sea wall. Therefore, both wave reflection and transmission play an important part in the "wave characteristics" of pile groups. Many such types of porous structures were investigated before the invasion of Normandy during World War II (10)*.

Most of the experiments in the past on pile groups were mainly concerned with the transmission character of the particular group, and with the effect of various types of waves upon the transmission characteristic, also called Transmissibility. It can be said that in the previous studies the pile groups were considered mostly as breakwaters, and their wave absorption characteristics were of main concern.

A vast amount of research has also been focused in the past upon the wave forces acting on the piles (5)(6)(7)(10).

*Numbers in parenthesis refer to references on page 37.
Very little research has been performed on the wave reflection from cylindrical piles. It is true that in some reports mention is made of magnitudes of wave reflection from pile groups and the effect of spacings of the piles in the pile groups, but conclusions, if any, are quite general. This rather vague and small amount of information on the reflection from pile groups prompted my interest in this investigation. A further motivation for a report on the studying of pile groups arose from a statement by Wiegel, which read: "For a given number of piles, there does not appear to be any appreciable difference in the effect of the various array configurations upon the effectiveness of the structure as a breakwater." (10)

The present report is an attempt to clarify to some extent the relationship between wave reflection and various pile group configurations, as well as between wave transmission and various pile group configurations.
II REVIEW OF EARLIER STUDIES

Wiegel developed a formula for the transmissibility of a single row of piles\(^\text{10}\). In assuming that the portion of power transmitted through the pile row is proportional to the portion of gaps between the piles, the following formulas,

\[
\frac{H_T}{H_I} = \frac{P_T}{P_I} = \frac{b}{D+b},
\]

be derived, where

- \(H_T\) = the transmitted wave height,
- \(H_I\) = the incident wave height,
- \(P_T\) = the transmitted power,
- \(P_I\) = the incident power,
- \(b\) = the distance between piles, and
- \(D\) = the diameter of the piles.

However, Wiegel remarked that from a model study the measured transmitted wave height was almost 25 per cent greater than the transmitted wave height predicted by this formula. The discrepancy here was attributed to wave diffraction effects.

Wiegel also points out that if a group or configuration of piles is used which has more than one row, the problem of calculating the power transmitted, and consequently the transmitted wave height, becomes more complicated. This is due to a number of factors, namely, reflection of the energy, scatter of the energy, and the energy dissipated by skin drag and from drag.

Reid and Bretschneider comment that the results of studies seem
to indicate that the mutual interference of piles apparently does have an effect on the wave characteristics if the spacing is less than two pile diameters\(^7\). However, it is mentioned further that for greater spacing the effect is slight and probably can be ignored in most piling structures.

The studies mentioned by Reid and Bretschneider refer to an unpublished report of Iversen and Morison from the University of California at Berkeley, in August 1951, called "Forces on Piling".

In a report entitled "Experimental Studies of Forces on Piles", by Morison, Johnson, and O'Brien, mention is made of an investigation of the effect of mutual interference of piles\(^5\). Although the interference concerns the ratio of the maximal moment on the center pile of a column or row to the maximal moment on a single pile, the results showed that at spacings of less than 1-1/2 times the pile diameter in the row arrangement (perpendicular to wave travel) interference effects are noticeable on the three-pile row used in the study. Also, this interference effect on the row of piles was concluded to be negligible for spacings of 1-1/2 times the pile diameter or greater.

In 1952, Costello published a paper entitled "Damping of Water Waves by Vertical Circular Cylinders"\(^1\). Costello studied the wave-height transmission capacity of dense pile structures, comparing the effects of spacing between piles transverse to the wave front to the effects of longitudinal spacing of piles. The results of his studies, first of all, indicate that the relative depth, d/L, may be neglected in the comparison of various transmission capacities. Costello also
noted that increasing the number of rows by 100 per cent resulted in an average decrease in wave transmission of only 18 per cent, irrespective of the configuration and density of the cylinders. Furthermore, from the data obtained within the pile group itself, Costello concluded that approximately 50 per cent of the total decrease in wave transmission occurred within a distance of less than 1/4 of the wave length, measured from the incident face of the group of cylinders. In an abstract of the paper Costello states that: "The overall results of the experiments show rather conclusively that a moderately dense piled structure is highly selective in its capacity to reduce wave action"(1).

In a report on the study of gravity wave reflections from cylinders, Joshi, in 1962, studied on a single row of piles the relation of the coefficient of reflection to several wave characteristics, such as L/D, and steepness(4).

The above-mentioned investigations provide a firm basis for further study as well as worthy material for comparison.
III EXPERIMENTAL STUDIES

A. Test Facilities

The experiments were conducted in a wave tank that has an overall length of 67.5 feet, a depth of 2 feet, and a width of 2 feet. An overall view of the wave channel is shown in Figure 1. At the left end of the wave tank is the wave generator, which is shown in Figure 2. The wave generator is of the oscillating-pendulum type with adjustments for stroke and period. Behind the generator is a sloped, wave-absorbing beach.

Figure 3 indicates the Sanborn Twin-Viso Recorder, Model 60-1300 B. Such needed information as the incident wave height, reflected wave height, transmitted wave height, and consequently the Reflection Coefficient and Transmissibility, were accurately determined with the Sanborn Recorder. The wave probe is of the parallel-wire capacitance type and is mounted on a movable carriage frame. Further discussion on the use of the recorder will follow in another section of this report.

The pile configurations consisted of groupings of sixteen pipes, each having a diameter of 3/4 inch, in all cases except for one arranged in a rectangular array. The particular patterns of the piles were set up by using two pieces of 3/8 inch marine plywood with the pattern holes drilled through them. Pins were placed through the four corner pipes directly above the piece of plywood on the bottom of the tank and directly below the piece on the top of the tank. The pile group was then firmly held in place when clamped down as shown in Figure 4.
Figure 1 Wave Tank

Figure 2 Wave Generator
Figure 3 Sanborn Twin-Viso Recorder

Figure 4 Pile Group Arrangement
At the right end of the tank is a highly efficient permeable wave absorber\(^{(3)}\). A view of the wave absorber is shown in Figure 5.

B. Experimental Procedure

The depth of water used throughout the testing was held constant at 1 foot. Also held constant was the L/d ratio (length of wave/depth of water). For reasons concerning the geometrical nature of the tank and to insure a reasonably good shallow-water wave an L/d of 3.70 was chosen. Inasmuch as both L and d are known, one can solve for the wave period, T, by using the classical Airy equation:

\[
L = T \sqrt{\frac{gL}{2\pi} \tanh \left(\frac{2\pi d}{L} \right)} ,
\]

where \(g \) = acceleration of gravity, 32.2 ft/sec\(^2\). The wave period was then set on the wave generator and remained constant for all tests.

The Wave Recorder was calibrated before each series of tests. For measurement of Reflection Coefficient the probe was placed on the approaching wave side of the pile group as shown in Figure 6.

After starting the wave generator, the stylus of the Recorder was slowly moved back and forth in the longitudinal direction at the center line of the pile group for a distance slightly more than that of the wave length. This was repeated with the probe moved to be in line with the outer column of the pile group, in order to obtain an average reading. With this accomplished for the three wave steepnesses (H/L) used, information was now available for determining the incident wave heights and Reflection Coefficients. A discussion of the methods used
Figure 5 Permeable Wave Absorber
Figure 6 Set Up for Reflection Coefficient Tests
in determining both the incident wave height and the Reflection Coefficient is in Reference 2.

Having the probe moved to the opposite side of the pile group as shown in Figure 1, testing was now completed by gathering information for computing the transmitted wave height for the three-wave steepnesses used.

C. Cases Tested

Three cases were tested for this report. Cases I and II were similar in that a basic pattern of four columns and four rows was used. Case I involved tests on groups of piles with the clear space transverse to the oncoming wave being the variable and keeping the clear space parallel to the oncoming wave constant at two pile diameters (2D). Case II involved tests on groups of piles with the clear spacing parallel to the oncoming wave being the variable and keeping the clear space transverse to the oncoming wave constant at 2D. For both Case I and II the clear spacings used were D, 1.5D, 2D, 3D, and 4D, making a total of 9 different tests. Figures 7 and 8 show the two extreme arrays involved in Case I whereas Figure 9 shows a comparison of the two extreme arrays comprising Case II.

Case III consisted of just one pattern of the piles in which they were staggered, the clear space between them being equal to 2D. Figure 10 shows a view of this configuration.

As mentioned before three waves of different steepness (H/L) were used for the tests. Inasmuch as the wave length, L, remained
Figure 7 Case I, Spacings "a" = D and "b" = 2D

Figure 8 Case I, Spacings "a" = 4D and "b" = 2D
Figure 9 Comparison of the Two Extreme Patterns of Case II

Figure 10 Case III, Staggered Array
constant throughout the test, this meant that three different incident wave heights were used. The magnitudes of these wave heights were approximately: 1.40 inches, 2.30 inches, and 3.20 inches. Photographs of these waves in order of increasing wave height are shown in Figures 11, 12, and 13.
Figure 11 Wave Height of 1.40 Inches

Figure 12 Wave Height of 2.30 Inches
Figure 13 Wave Height of 3.20 Inches
IV RESULTS

The results of the study can best be expressed by examining the plots developed from the experimental data. Essentially five variables are analyzed in these plots; they are as follows:

1. Reflection Coefficient --this quantity, expressed as a percentage, is equal to the height of the reflected wave divided by the height of the incident wave;
2. Transmissibility--this is the height of the transmitted wave divided by the height of the incident wave;
3. Steepness--this is the height of the incident wave divided by the wave length;
4. Spacing "a"--this is the gap or space between the piles transverse to wave movement;
5. Spacing "b"--this is the gap or space between the piles parallel to the wave movement (longitudinally).

Figure 14 and 15 show plots of Transmissibility versus Steepness. These curves are similar to curves presented by both Wiegell and Costello and demonstrate the general trend of decreasing Transmissibility with increasing Steepness. In Figure 14 the cases investigated seem to indicate that as the spacing "a" increases the Transmissibility decreases. This however seems contrary to expectations and will be investigated further in a subsequent plot. In Figure 15 the trend is as expected because here as the spacing "b" increases so does the Transmissibility. This will also be discussed in more detail.

Reflection Coefficient is first explored by examining Figures 16 and 17. In both Case I and Case II the trend of the Reflection Coefficient decreasing with increasing Steepness is apparent from the lowest Steepness to approximately 0.065. Beyond 0.065 the Reflection
Figure 14 Case I, Transmissibility as a Function of Wave Steepness
Figure 15 Case II, Transmissibility as a Function of Wave Steepness
Figure 16 Case I, Reflection Coefficient as a Function of Wave Steepness
Figure 17 Case II, Reflection Coefficient as a Function of Wave Steepness
Coefficient seems to increase. However, it is felt that the main reason for this apparent increase is due to an experimental difficulty. In order to obtain data for the largest Steepness it was necessary to reduce the scale on the Sanborn Wave Recorder by 50%, and thereby decreasing accuracy. The reduction in scale therefore affected the accuracy of the computations involved.

In general the decrease in Reflection Coefficient is at a faster rate at the low Steepness portions of the curves for small spacings of piles, and at a faster rate of decrease on the high steepness portions of the curves for larger spacings. The Reflection Coefficient decreases with increasing spacing as was expected. It also is interesting to note that both the largest and smallest magnitudes of Reflection Coefficient were obtained in Case II as shown in Figure 17.

Figure 18 is comprised of the same curves as those in Figures 16 and 17, except that they are presented on log-log paper in a manner in which it has been customary to describe Transmissibility. The same comments can be used to describe Figure 18 as have been used for Figures 16 and 17.

The relationship between the Reflection Coefficient and both the transverse and longitudinal spacings is shown in Figures 19 and 20. It is now very clear from these two figures that the Reflection Coefficient steadily decreases with an increase in the spacing for both cases tested. Again it is also noticed that Case II produces both the highest and lowest magnitudes of Reflection; but now it can
Figure 18 Case I and Case II, Reflection Coefficient as a Function of Wave Steepness
Figure 19 Case I, Reflection Coefficient as a Function of Spacing "a"
Figure 20 Case II, Reflection Coefficient as a Function of Spacing "b"
be seen directly that in Case II the rate of reduction in Reflection Coefficient is definitely greater. Thus with regard to the patterns tested, it is beginning to appear as that the spacing "b", is of equal, if not more, importance than the spacing "a", as far as the Reflection Coefficient is concerned. However, it is possible that, had another spacing between piles been chosen to be held constant, the results might have been different.

Figure 21 is an interesting plot drawn for Case I showing how the Transmissibility is affected by the transverse spacing, "a", of the pile arrays. As revealed by Figure 14, it is again shown that the lowest steepness gives the highest Transmissibility with a particular spacing or pattern. However, the shape of the curves, is particularly interesting. If some thought is given as to why the Transmissibility increases, it appears logical that as the spacing increases less energy will be lost. Hence, the Transmissibility will rise. Why does the Transmissibility then at first decrease as the spacing increases? A possible explanation to this question is available if we examine the two major types of energy losses encountered when a wave passes through a pile group. The two losses are: Reflection loss and Energy loss as a result of eddy formation. Now, if energy loss due to eddy formation is considered to be significantly higher than that due to reflection for this particular case ("b" = 2D), it can be surmized then that as the spacing increases from a comparatively dense arrangement the Transmissibility will decrease mainly due to larger eddy losses. As the spacing becomes very large however, the effectiveness of the pile group as an energy dissipator decreases. Thus, the shapes of the curves in
Figure 21 Case I, Transmissibility as a Function of Spacing "a"
Figure 21 can be explained. It should also be noted that the decrease in Transmissibility in Figure 21 might not be as steep as it appears. The reason for this is that, when the small spacing groups of Case I were tested, there appeared a "peaking" of the waves behind the pile groups due to the higher ends of the wave along the tank walls moving transversely toward the lower or center part of the wave. This made it difficult to obtain an accurate measurement of the transmitted wave height.

For an idea of how Transmissibility is affected by the parallel spacing,"b", of the piles (Case II), Figure 22 can be examined. Again it is shown that the lowest Steepness yields the highest Transmissibility with a particular spacing. The shape of the curves in this plot also merit special attention. If the pattern with "b" = D is used, it can be assumed that the energy loss is due mainly to reflection because the spacing parallel to the oncoming wave is not yet sufficient to yield great eddy losses. Hence, the Transmissibility increases as the spacing becomes larger and the effect of reflections becomes less pronounced. But now as the spacing,"b", gets larger than 2D, the eddy loss becomes considerable, and the Transmissibility will decrease slightly. Although Figure 22 seems to indicate this decreasing trend might continue, it is highly probable that the curves will again start to rise and continue rising asymptotically toward H_t/H_1 = 1, beyond some spacing larger than 4D.

Case III consisted of a single test performed on a pile arrangement in which the piles were staggered and evenly spaced both transversely and longitudinally by 2D. This test can then be compared with
Case II (Spacing "a" = 2D)

Figure 22 Case II, Transmissibility as a Function of Spacing "b"
the rectangular array, spaced 2D by 2D. It was found that the Reflection Coefficient for the staggered array was slightly less than that for the rectangular array. The reason for this is not clear, because it would seem that the Reflection Coefficient would be larger for the staggered array owing to the fact that more surface area would be directly in the way of the incident wave. However, the average difference of Reflection Coefficient between the two pile groups was less than 1%, which very well might be less than the experimental error.

The staggered array produced a Transmissibility which was less for each wave than that produced by the 2D by 2D rectangular array. This result agrees with the statement found in Costello's report which reads:

"The head loss across uniformly spaced banks of tubing was greater for a staggered array than for rectangular spaced tubes" (1).

The subject of reflections from staggered arrays warrants further experimentation.
V CONCLUSIONS

The following conclusions are drawn:

(1) The Transmissibility of a particular pile group decreases with a decrease in the Steepness of the waves passing through the group.

(2) In general, the Reflection Coefficient of a particular pile group also decreases with a decrease in the Steepness of the waves passing through the group.

(3) The Reflection Coefficient decreases with an increase in the longitudinal and transverse spacing between piles.

(4) It appears that the longitudinal spacing, "b", is of equal, if not more, importance than the transverse spacing, "a", in regard to the Reflection Coefficient of pile groups. This is based on the facts that the case of longitudinal spacing had the largest and smallest Reflection Coefficients and consequently a greater rate of reduction in Reflection Coefficient for an increase in spacing.

(5) The variation in Transmissibility between different pile groups depends considerably on the spacings between the piles and the corresponding combinations of reflection loss and eddy loss.

(6) The Reflection Coefficient does not appear to be significantly changed by staggering the piles.

(7) Staggering the piles does decrease the Transmissibility.
Appendix

... Data
<table>
<thead>
<tr>
<th>Case I</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing "a"</td>
<td>(H_I = 1.44)</td>
<td>(H_I = 2.30)</td>
<td>(H_I = 3.20)</td>
</tr>
<tr>
<td>D</td>
<td>10.2</td>
<td>9.5</td>
<td>9.3</td>
</tr>
<tr>
<td>1.5D</td>
<td>9.6</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>2D</td>
<td>9.2</td>
<td>8.5</td>
<td>8.4</td>
</tr>
<tr>
<td>3D</td>
<td>8.5</td>
<td>8.2</td>
<td>8.1</td>
</tr>
<tr>
<td>4D</td>
<td>7.6</td>
<td>7.5</td>
<td>6.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case II</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing "b"</td>
<td>(H_I = 1.44)</td>
<td>(H_I = 2.30)</td>
<td>(H_I = 3.20)</td>
</tr>
<tr>
<td>D</td>
<td>13.9</td>
<td>9.4</td>
<td>9.9</td>
</tr>
<tr>
<td>1.5D</td>
<td>12.1</td>
<td>8.8</td>
<td>8.5</td>
</tr>
<tr>
<td>2D</td>
<td>9.2</td>
<td>8.5</td>
<td>8.4</td>
</tr>
<tr>
<td>3D</td>
<td>7.0</td>
<td>5.9</td>
<td>4.8</td>
</tr>
<tr>
<td>4D</td>
<td>5.9</td>
<td>5.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case III</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_I = 1.44)</td>
<td>(H_I = 2.30)</td>
<td>(H_I = 3.20)</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>7.3</td>
<td>7.6</td>
<td></td>
</tr>
</tbody>
</table>
TRANSMISSIBILITY

<table>
<thead>
<tr>
<th>Case</th>
<th>Spacing "a"</th>
<th>$H_1 = 1.44$</th>
<th>$H_1 = 2.30$</th>
<th>$H_1 = 3.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>0.990</td>
<td>0.980</td>
<td>0.983</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0.963</td>
<td>0.970</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>0.950</td>
<td>0.930</td>
<td>0.915</td>
</tr>
<tr>
<td></td>
<td>3D</td>
<td>0.932</td>
<td>0.890</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>4D</td>
<td>0.945</td>
<td>0.900</td>
<td>0.880</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>Spacing "b"</th>
<th>$H_1 = 1.44$</th>
<th>$H_1 = 2.30$</th>
<th>$H_1 = 3.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>0.880</td>
<td>0.900</td>
<td>0.890</td>
</tr>
<tr>
<td></td>
<td>1.5D</td>
<td>0.890</td>
<td>0.880</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>0.950</td>
<td>0.930</td>
<td>0.915</td>
</tr>
<tr>
<td></td>
<td>3D</td>
<td>0.970</td>
<td>0.920</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>4D</td>
<td>0.940</td>
<td>0.930</td>
<td>0.890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>$H_1 = 1.44$</th>
<th>$H_1 = 2.30$</th>
<th>$H_1 = 3.20$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.895</td>
<td>0.910</td>
<td>0.870</td>
</tr>
</tbody>
</table>
REFERENCES

(1) Costello, R. D., "Damping Of Water Waves By Vertical Circular Cylinders", Transactions, American Geophysical Union, Vol. 33, No. 4, p. 513-519, August 1952

(2) Herbich, J. B., FLUID MECHANICS LABORATORY MANUAL, Lehigh University, Fritz Engineering Laboratory, 1960

(3) Herbich, J. B., EXPERIMENTAL STUDIES OF WAVE FILTERS AND ABSORBERS, University of Minnesota, St. Anthony Falls Hydraulic Laboratory, Project Report 44, 1956

(4) Joshi, D. R., REPORT ON STUDY OF THE GRAVITY WAVE REFLECTIONS FROM CYLINDERS, Lehigh University, Fritz Engineering Laboratory, May, 1962

(6) Morris, H. M., APPLIED HYDRAULICS IN ENGINEERING, Ronald Press, 1963

(7) Reid, R. O., and Bretschneider, C. L., SURFACE WAVES AND OFFSHORE STRUCTURES, The Agricultural and Mechanical College of Texas, Department of Oceanography, October 1953

(8) Van Weele, B. J., BEACH SCOUR DUE TO WAVE ACTION ON SEA WALLS, Lehigh University, Fritz Engineering Laboratory, April, 1965, Report No. 293.3

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>McPherson, N. B.</td>
<td>DESIGN OF DAM OUTLET-OUTLET TRASH-BACK VERIFIED BY MODEL TESTS</td>
<td>1950</td>
</tr>
<tr>
<td>McPherson, N. B.</td>
<td>ASYMMETRIC DISTRIBUTED PRESSURE POLARIZATION</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>White, K. K.</td>
<td>Discussion on Paper: Determination of Pressure-Controlled Profiles</td>
<td>1953</td>
</tr>
<tr>
<td>Macnaughton, R. F.</td>
<td>ACCIDENTAL AIR IN COMBUSTION</td>
<td>1953</td>
</tr>
<tr>
<td>Herbich, J. B.</td>
<td>KNOX METER PERFORMANCE</td>
<td>1954</td>
</tr>
<tr>
<td>Taylor, D. G.</td>
<td>FLUID DYNAMICS OF HYDRAULIC SCOURING</td>
<td></td>
</tr>
<tr>
<td>Herbert, N. B.</td>
<td>BUTTERFLY VALVES FLOW CHARACTERISTICS</td>
<td>1957</td>
</tr>
<tr>
<td>Dittig, R. O.</td>
<td>DISCUSSION OF SEVEN EXPERIMENTAL STUDIES IN HYDRAULICS</td>
<td>1957</td>
</tr>
<tr>
<td>Herbert, N. B.</td>
<td>A STUDY OF BREAK-WAVE ENERGY DISSIPATION</td>
<td>1957</td>
</tr>
<tr>
<td>Karr, N. H.</td>
<td>OUTLET Portal PRESSURE DISTRIBUTION</td>
<td>1958</td>
</tr>
<tr>
<td>Herbert, N. B.</td>
<td>AN EXPERIMENTAL STUDY OF HYDRAULIC BREAKWATERS</td>
<td>1958</td>
</tr>
<tr>
<td>Hortel, A. R.</td>
<td>LABORATORY TESTS OF BARRELABLE WAVE ABSORBERS</td>
<td>1958</td>
</tr>
<tr>
<td>Bowers, G. S.</td>
<td>Discussion on Paper: SHIPBOARD HYDRAULIC BREAKWATER</td>
<td>1958</td>
</tr>
<tr>
<td>Herbich, J. B.</td>
<td>DISCUSSION ON WAVE FORCES ON SUBMERGED STRUCTURES</td>
<td>1959</td>
</tr>
<tr>
<td>Herbich, J. B.</td>
<td>DISCUSSION ON: TRANSLATIONS OF FOREIGN LITERATURE</td>
<td>1960</td>
</tr>
<tr>
<td>Warmook, R. G.</td>
<td>AN ANALYSIS OF THE BALDWIN CREEK HYDROLOGIC MODEL</td>
<td>1960</td>
</tr>
<tr>
<td>Howie, J. W.</td>
<td>THE EFFECT OF SPUR DYES ON FLOOD FLOWS THROUGH BRIDGE CONSTRUCTIONS</td>
<td></td>
</tr>
<tr>
<td>Herbich, J. B.</td>
<td>DISCUSSION ON: LATEST ENGINEERING PRACTICES</td>
<td>1963</td>
</tr>
<tr>
<td>Sorensen, R. J.</td>
<td>EFFECT OF INVEILLER DESIGN CHANGES ON CHARACTERISTICS OF A PILL BREAK</td>
<td>1963</td>
</tr>
<tr>
<td>Sorensen, R. J.</td>
<td>EFFECT OF Basin ON WAVE RUN-UP ON COMPOSITE BEACH</td>
<td>1963</td>
</tr>
<tr>
<td>Wilkenbrock, J. H.</td>
<td>VIBRATION PARAMETERS OF A CIRCULAR CYLINDER OF FINELY LARGED IN AN INVERTED FLUID</td>
<td>1963</td>
</tr>
<tr>
<td>Wilkenbrock, J. H.</td>
<td>USE OF HIGH SPEED PHOTOGRAPHY TO ANALYZE PARTICLE MOTION IN A MODEL BREAK</td>
<td>1963</td>
</tr>
<tr>
<td>Wilkenbrock, J. H.</td>
<td>EFFECT OF LARGE-SCALE ROUGHNESS ELEMENTS ON FLOW IN OPEN CHANNELS</td>
<td>1964</td>
</tr>
<tr>
<td>Wilkenbrock, J. H.</td>
<td>LARGE-SCALE ROUGHNESS IN OPEN-CHANNEL FLOW</td>
<td>1964</td>
</tr>
<tr>
<td>Sorensen, A. M.</td>
<td>EFFECT OF BREAK-WAVES ON COMPOSITE BEACHES</td>
<td>1964</td>
</tr>
<tr>
<td>Wilkenbrock, J. H.</td>
<td>THERE ARE NO LARG: SCALE BREAKWATERS</td>
<td>1964</td>
</tr>
</tbody>
</table>

LENNOX UNIVERSITY
Department of Civil Engineering
FRITZ ENGINEERING LABORATORY
HYDRAULICS DIVISION
STAFF PUBLICATIONS
McPherson, M. B.
STUDY OF MISALIGNMENTS IN AN OPEN CHANNEL
Project Report No. 16 12 pages 1950

McPherson, M. B.
MODEL STUDY OF HILLS CREEK DAM SPILLWAY
Project Report No. 17 43 pages 1950

Eagleson, P. S.
CONTINUATION OF MODEL STUDY OF HILLS CREEK DAM SPILLWAY
Project Report No. 18 75 pages 1951

McPherson, M. B.
MODEL STUDY OF A CORRECTIVE DESIGN FOR THE LITTLE FINE CREEK OUTLET STRUCTURE
(Sponsored by Justin and Courtney, Consulting Engineers, Philadelphia, Pa.)
Project Report No. 19 41 pages 1952

Williams, J. C.
TESTS OF A SIX-INCH BUTTERFLY VALVE DISCHARGING UNSUBMERGED
(Sponsored by Fluids Controls Company, Philadelphia, Pa.)
Project Report No. 20 23 pages 1952

McPherson, M. B.
MODEL TESTS OF PROPOSED DESIGN OF AMERTAN (HAYNESBORO) DAM SHAFT SPILLWAY STRUCTURE
(Sponsored by Gannett, Fleming, Corddry and Carpenter, Inc., Harrisburg, Pa.)
Project Report No. 21 76 pages 1952

McPherson, M. B.
TESTS OF A 1:32 MODEL OF A PROPOSED OUTLET STRUCTURE FOR FIRST FORK SINNEMAHONING DAM
(Sponsored by Gannett, Fleming, Corddry and Carpenter, Inc., Harrisburg, Pa.)
Project Report No. 22 16 pages 1952

Reid, A. W.
MODEL TESTS FOR SHAWVILLE DAM
(Sponsored by Gilbert Associates, Reading, Pennsylvania)
Project Report No. 14 1953

McPherson, M. B.
BUTTERFLY VALVE RESEARCH
(Sponsored by CDC Control Services, Hatboro, Pennsylvania)
Project Report No. 25 48 pages 1953

6" **BUTTERFLY VALVE HEAD LOSS TESTS**
(Sponsored by W. S. Rockwell Co., Fairfield, Connecticut)
Project Report No. 26 14 pages 1953

Reid, A. W.
MODEL TESTS FOR CONDENSING WATER OUTLET STRUCTURE - FRONT STREET STATION, ERIE, PENNSYLVANIA
(Sponsored by Gilbert Associates, Reading, Pennsylvania)
Project Report No. 14 1953

McPherson, M. B.
MOVABLE BED MODEL STUDY OF GREENSBORO, NORTH CAROLINA DAM
(Sponsored by William C. Olsen and Associates, Raleigh, North Carolina)
Project Report No. 27 20 pages 1955

McPherson, M. B.
3 to 100 SCALE MODEL STUDY OF CHUTE SPILLWAY PENN FOREST DAM
(Sponsored by Bethlehem Authority, Bethlehem, Pennsylvania)
Project Report No. 28 10 pages 1956

Reid, A. W.
MODEL TESTS - NEW DIVERSION DAM
(Sponsored by Pennsylvania Elec. Co.)
Project Report No. 29 10 pages 1956

Dittig, R. G.
TESTS OF A WIRE MESH FILTER
(Sponsored by Purolator Products, Inc., Rahway, New Jersey)
Project Report No. 30 18 pages 1958

Herbich, J. B.
CHARACTERISTICS OF A MODEL DREDGE PUMP
(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)
Project Report No. 31 110 pages 1959
<table>
<thead>
<tr>
<th>Title</th>
<th>Sponsor(s)</th>
<th>Report No.</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALE EFFECT ON 270° PILE BENDS FOR HINMAN BODY FIIID</td>
<td>(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)</td>
<td>277-N-12</td>
<td>1960</td>
</tr>
<tr>
<td>ANALYSIS OF HIGH-SPEED MOVIES OF A MODEL HMP</td>
<td>(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)</td>
<td>277-N-11</td>
<td>1960</td>
</tr>
<tr>
<td>CONTROL OF BRIDGE SCOUR BY SURF DIES</td>
<td>(Sponsored by Modjeski and Masters, Harrisburg, Pennsylvania)</td>
<td>270-N-32</td>
<td>1961</td>
</tr>
<tr>
<td>EFFECT OF SMALLER EASON CHANGES ON CHARACTERISTICS OF A MODEL HMP</td>
<td>(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)</td>
<td>277-P.33</td>
<td>1961</td>
</tr>
<tr>
<td>STATUS REPORTS ON IMPROVING DESIGN OF A HOPPER LADGE HMP</td>
<td>(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)</td>
<td>277-14</td>
<td>1962</td>
</tr>
<tr>
<td>CONTROL OF BRIDGE SCOUR BY SURF DIES</td>
<td>(Sponsored by Modjeski and Masters, Harrisburg, Pennsylvania)</td>
<td>270-N-17</td>
<td>1962</td>
</tr>
<tr>
<td>A STUDY OF THE EFFECT OF HORIZONTAL BEND VARIATION ON WAVES #5-37 UPON A COMPOSITE BEACH SLIDE</td>
<td>(Partially Sponsored by The Institute of Research)</td>
<td>293-35</td>
<td>1962</td>
</tr>
<tr>
<td>MODIFICATIONS IN DESIGNED IMPROVE BRIDGE RMP EFFICIENCY</td>
<td>(Sponsored by U. S. Army Corps of Engineers, Philadelphia District)</td>
<td>277-35</td>
<td>1962</td>
</tr>
</tbody>
</table>
LEHIGH UNIVERSITY
Department of Civil Engineering
Fritz Engineering Laboratory
HYDRAULICS DIVISION

SPECIAL REPORTS

Delany, A. G.
THE FIDDE N VALVE UNDER LOW PRESSURE
Unpublished Thesis 49 pages
Karr, M. H.
BUCKET-TYPE ENERGY DISIPATORS
Graduate Study Report 30 pages

Dawson, J. E.
THE EFFECT OF LATERAL CONTRACTIONS ON SUPER-CRITICAL FLOW IN OPEN CHANNELS
M. S. Thesis 76 pages
Murthy, D. S. N.
POENTIAL FLOW IN 90° HENDS BEF ELECTRICAL ANALOGY
Graduate Study Report 23 pages

Coles, D.
EXPERIMENTAL RELATION BETWEEN STUWND WALL ABRISON CHANGES AND STANDING WAVES IN SUPERCRITICAL FLOW
27 pages
Morel, A. R. R.
EXIT PORTAL PRESSURE STUDY; SQUARE COQUIT
Graduate Study Report 13 pages

Shintilro, T.
HYDRAULIC LABORATORY MANUAL
An Undergraduate Thesis 43 pages
Gloiem, J. W.
INVESTIGATION BY ELECTRICAL ANALOGY OF POTENTIAL FLOW IN A 90° ELBOW WITH A DIVIDING VANE
Undergraduate Study Report 17 pages

Jacobsen, J. T.
INVESTIGATION OF PRESSURE MAGNITUDES AT MISALIGNMENTS IN AN OPEN CHANNEL
12 pages
Bach, F.
HYDRAULIC MODEL INVESTIGATION ON CHIEF JOSEH DAM SPILLWAY
Graduate Study Report 44 pages

Becker, H. L.
DESIGN OF LONG-RADIUS, HIGH-RATIO FLOW NOZZLE
5 pages
Castro, V. A.
DESIGN OF A CAVITATION UNIT
Undergraduate Report 22 pages

Becker, H. L.
A STUDY OF MISALIGNMENT IN A CLOSED CONDUIT
22 pages
Rehmer, R.
THE USE OF SPUR DIKES WITH BRIDGE ABUTMENTS
Graduate Study Report 16 pages

Wiliams, J. C.
THE CONSTRUCTION AND TESTING OF A SCALE MODEL OF A DAM SPILLWAY AND STILLING BASIN (FALL RIVER DAM, KANSAS)
11 pages
Carle, R. J.
THE EFFECT OF SPUR DIKES ON FLOOD FLOWS THROUGH HIGHWAY BRIDGE ABUTMENTS
Graduate Study Report 135 pages

Neces, R. E.
EXPERIMENTAL DETERMINATION OF CIRCULAR WEIR CHARACTERISTICS
37 pages
Kable, J. C.
THE DETERMINATION OF THE LENGTH OF SPUR DIKES FOR FLOOD FLOWS THROUGH HIGHWAY BRIDGE ABUTMENTS
Graduate Study Report 63 pages

Hrey, G. M.
STUDY OF MISALIGNMENT IN AN OPEN CHANNEL AND A CLOSED CONDUIT
M. S. Thesis 61 pages
Weiss, W. L.
SUGGESTED DESIGN CHANGES FOR A CENTRIFUGAL PUMP
Graduate Study Report 20 pages

Williams, J. C.
THE DESIGN OF BENDS FOR HYDRAULIC STRUCTURES
C. E. Thesis 56 pages
Joshi, D. H.
STUDY OF SPUR DIKES
M. S. Thesis 40 pages

McPherson, M. B.
THE CHARACTERISTICS AND ACCURACY OF RECTANGULAR BENDS USED AS FLOW METERS
18 pages
Patel, G.
REPORT ON STUDY OF GRAVITY WAVE REFLECTIONS FROM FLOATING HYDRAULIC BODIES
Graduate Study Report 22 pages

Taylor, D. C.
THE CALIBRATION AND ACCURACY OF ELBOW METERS
Undergraduate Study Report 1953

1940
1943
1943
1948
1949
1951
1951
1952
1952
1953
1953
1956
1956
1957
1957
1959
1959
1959
1959
1959
1963
1963
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Type</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talian, S. P.</td>
<td>A STUDY OF THE EFFECT OF HORIZONTAL BERM VARIATION</td>
<td>Graduate Study Report</td>
<td>46</td>
<td>1963</td>
</tr>
<tr>
<td></td>
<td>IN WAVE RUN-UP UPON A COMPOSITE BEACH SLOPE WITH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEPTH OF WATER EQUAL TO BERM HEIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vesilind, P. A.</td>
<td>CAVITATION CHARACTERISTICS OF A MODEL DREDGE PUMP</td>
<td>Graduate Study Report</td>
<td>34</td>
<td>1963</td>
</tr>
<tr>
<td></td>
<td>IN OPEN CHANNELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbich, J. B.</td>
<td>SCOUR OF FLAT SAND BEACHES DUE TO WAVE ACTION ON</td>
<td>Graduate Study Report</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MILD SLOPED SEAWALLS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Armanet, L.
TURBINE BUTTERFLY VALVES (VANNES - PAPILLON DES TURBINES)
Genissiat
La Houille Blanche
Translated by P. J. Colleville
Fritz Engineering Laboratory
Translation No. T-1. 1953

Krisam, F.
INFLUENCE OF VOLUTES ON CHARACTERISTIC CURVES OF CENTRIFUGAL PUMPS
(DER EINFLUS DER LEITVORRICHTUNG AUF DIE KENNLINIEN VON KREISELPUMPEN)
Zeitschrift des Vereines Deutscher Ingenieure, Vol. 94, No. 11/12
pp. 319-366 April 1952
Translated by A. Ostapenko and John B. Herbich,
Fritz Engineering Laboratory Translation No. T-5. 1959