2010

Above Threshold Analysis of Quasi Guided Optical Waveguide VCSELs

Alexander Wendt

Follow this and additional works at: https://preserve.lehigh.edu/undergrad-scholarship-freed-posters

Recommended Citation
https://preserve.lehigh.edu/undergrad-scholarship-freed-posters/23

This Poster is brought to you for free and open access by the Undergraduate scholarship at Lehigh Preserve. It has been accepted for inclusion in David and Lorraine Freed Undergraduate Research Symposium Winning Posters by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
Above Threshold Analysis of Quasi-Guided Optical Waveguide VCSELs for Single-Mode High-Power Application

Alexander C. Wendt *, Zhian Jin, and Nelson Tansu ±
Department of Electrical and Computer Engineering, Center for Optical Technologies, Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
* Email: acw210@lehigh.edu, ± Email: Tansu@lehigh.edu

Proposed Solutions - Quasi-Guided Structure

- **Quasi-guided VCSEL**
 - Higher-order modes are less guided than fundamental mode
 - Photonic band gap radiative mechanism
 - Index contrast is made smaller in active region

Quasi-Guided VCSELs - Simulation

Parameters of the simulated case

- Radiation loss of LpLp and L1L2 vs J and Q

Thermal Lensing Analysis of QGOW VCSELs

- Thermal lensing causes droop in current-voltage curves
- Thermal lensing effects are also strongly dependent on current level

Spatial Hole Burning Analysis of QGOW VCSELs

- Spatial hole burning affects the radiation loss in QGOW VCSELs

Numerical Model for 2D Lateral Mode Analysis

- Wave equation (Fourier differential equation)

Thermal Profile in QGOW VCSELs - Green Function Method

- Thermal lensing effect on QGOW VCSELs

Proposed Solutions - Quasi-Guided VCSELs

- Substrate width is increased for single mode operation
- Higher-order modes are less guided than fundamental mode
- Photonic band gap radiative mechanism
- Index contrast is made smaller in active region

Effective Index Model of VCSELs

- Effective Index Model of Quasi-Guided VCSELs

Radiation Loss of LP01 and LP11 vs J and Q

Analysis of ARROW VCSELs

- ARROW VCSELs + Antiguiding channel

Numerical Flow Chart for Above Threshold Analysis of QGOW VCSELs

- Thermo-optical analysis is performed using finite difference methods
- Wave equation (Fourier differential equation)

Characteristics of Antiguided Structure

- Antiguided Single Mode VCSELs

Spatial Hole Burning in QGOW VCSELs

- Spatial hole burning effects on radiation loss in QGOW VCSELs

Numerical Model for 2D Lateral Mode Analysis

- General Solution

Thermal Sensing of Antiguided VCSELs

- Thermal sensing effect is studied in detail

Thermal Sensing of Antiguided VCSELs

- Thermal sensing effect is studied in detail

Thermal Lensing and Spatial Hole Burning Effects on Radiation Loss in QGOW VCSELs

- Thermal lensing causes droop in current-voltage curves
- Thermal lensing effects are also strongly dependent on current level

Thermal Lensing in QGOW VCSELs

- Thermal lensing effect on QGOW VCSELs

Numerical Flow Chart for Above Threshold Analysis of QGOW VCSELs

- Thermo-optical analysis is performed using finite difference methods
- Wave equation (Fourier differential equation)

Acknowledgements

- Helpful technical contributions and assistances from Yush P. Gupta, David M. Schindler, Guangyu Liu, and Kavita Jain-Cocks