Lecture 5, Part 1: High power laser glass and its application

Lili Hu
Shanghai Institute of Optics and Fine Mechanics, CAS

Follow this and additional works at: https://preserve.lehigh.edu/imi-tll-courses-uschinawinterschool

Part of the Materials Science and Engineering Commons

Recommended Citation
https://preserve.lehigh.edu/imi-tll-courses-uschinawinterschool/11

This Video is brought to you for free and open access by the Semester Length Glass Courses and Glass Schools at Lehigh Preserve. It has been accepted for inclusion in US-China Winter School China 2010 by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
High power laser glass and its application

Lili Hu
Shanghai Institute of Optics and Fine Mechanics, CAS, China
Outline

- History and basic theory of laser glass
- High power Nd:phosphate laser glass and its application
- High power Nd:glass fabrication technologies
- High power Yb:silica fiber and its fabrication
- Outlook on next generation high power laser material.
1 What’s laser glass

- Laser glass is a material which can lase under xenon lamp or laser diode pumping;
- In glass, laser has been mostly observed in rare earth ion doped case;
- Nd:glass is an important high power laser glass;
- Laser glass works in both bulk and fiber forms.
History of laser glass

- In 1960, Snitzer in US found first Nd:silicate glass;
- In 1960, Snitzer found laser in Nd, Er doped glass fiber;
- A.O company in US first developed ED-2 Nd:silicate glass;
- In late 1970s, Hoya company in Japan developed Nd:phosphate glass.
- Er:phosphate glass was developed in 1980s;
- High power Yb:silica fiber laser was developed since 2000.
Application of Laser Glass and Fiber

- Material processing
- Laser glass and fiber
- Medicine
- Optical communication
- Fusion energy
 - Inertial confinement fusion (ICF)
Glass is a good host for rare earth ions

- Rare earth ion concentration can be widely adjusted in glass;
- The spectroscopic properties of rare earth ions in glass host can be modified by composition through ion-host interaction.
Three widely used rare earth ions in glass

- The most popularly used rare earth ions in glass are neodymium, erbium and ytterbium.
- Nd^{3+} doped phosphate glass is widely used in ICF facility;
- Er^{3+} doped silica fiber is commercially applied in optical communication.
- Yb^{3+} doped silica fiber is now getting use in industrial material processing.
Splitting of energy level is caused by electron-electron and electron-host interaction.
Main parameters of laser glass

- Stimulated emission cross section;
- Effective absorption of pumping light;
- Fluorescent lifetime of up-energy level;
- Quantum efficiency.
Precondition of laser oscillation

- Population inversion of lasing ion;
- Enough gain to overcome the loss from material and resonator;
- High stimulated emission cross section and long fluorescent lifetime;
- Small loss at lasing wavelength.
Basic properties of Nd$^{3+}$ ion

- Four energy level rare earth ion with lower laser threshold;
- Efficient lasing at 1050-1060nm wavelength;
- Relative large stimulated emission cross section and short fluorescent lifetime (hundreds of microsecond).
Energy levels of Nd$^{3+}$ ion
Absorption spectrum of Nd$^{3+}$ ion in glass
Main fluorescent spectrum of Nd3+ ion in glass
(Usually three fluorescent peaks are detected in Nd:glass)
The evaluation of spectroscopic properties of Nd$^{3+}$ ions

- Judd-Oflet theory is commonly used to calculate the spectroscopic properties of Nd$^{3+}$ ion.
Basic properties of Er^{3+} ion

- Three energy level with high laser threshold;
- Long fluorescent lifetime (several mini-second) and small emission cross section;
- Lasing at 1530-1550nm wavelength range;
- Small absorption at pumping wavelength, co-doping with Yb^{3+} is needed.
Energy level of Er$^{3+}$ ion
Absorption spectrum in IR range of $\text{Er}^{3+},\text{Yb}^{3+}$ co-doped phosphate glass
Fluorescent spectrum of $\text{Er}^{3+}, \text{Yb}^{3+}$ co-doped phosphate glass
The evaluation of emission cross section of Er$^{3+}$ ion

- McCumber method

\[\sigma_e(\lambda) = \sigma_a(\lambda) \exp\left[\frac{(\varepsilon - h\nu)}{kT}\right] \]

- \(k \): Boltzmann constant;
- \(\varepsilon \): transition energy from \(^4I_{15/2}\) to \(^4I_{13/2}\)
Gain of Er\(^{3+}\) ion at different pumping power

\[
\sigma_g(\beta) = \beta \sigma_{em} - (1 - \beta) \sigma_{abs}
\]

\(\beta\) is the ratio of ion concentration at upper energy level to lower energy level.
a: Gain of Er\(^{3+}\) doped fluorophosphate glass at various pump power

b: Gain of Er\(^{3+}\) doped phosphate glass at various pump power
Basic properties of Yb$^{3+}$ ion

- Two energy level ions;
- Large laser threshold and lower energy level population sensitive to temperature;
- Long fluorescent lifetime (0.5-2ms);
- Lasing at 1000-1200nm range;
- Large absorption at both 940nm and 980nm;
- High laser efficiency can be obtained in Yb:silica fiber.
Energy level of Yb$^{3+}$ ion in different matrix

<table>
<thead>
<tr>
<th>SILICATE GLASS</th>
<th>PHOSPHATE GLASS</th>
<th>YALO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10989</td>
<td>10905</td>
<td>10730</td>
</tr>
<tr>
<td>10417</td>
<td>10437</td>
<td>10410</td>
</tr>
<tr>
<td>10285</td>
<td>10268</td>
<td>10220</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{2F}_{5/2} & \quad \text{2F}_{7/2} \\
\text{920} & \sim \text{940 nm} \\
\text{974 nm} & \sim \text{1.02 \mu m}
\end{align*} \]
Stimulated emission cross section of Yb$^{3+}$ ion

$$
\sigma_{emi}(\lambda) = \sigma_{abs}(\lambda) \frac{Z_l}{Z_u} \exp\left(\frac{E_{zl} - h\nu \lambda^{-1}}{kT} \right)
$$

Z_l/Z_u is partition function of lower and up levels, E_{zl} is zero-line energy.
Absorption and emission cross sections of Yb$^{3+}$ doped bismuth glass
Nd:phosphate glass is a widely used high power laser glass since its application in early 1980s. Nd:phosphate laser glass is mainly used as amplifier material in high peak power laser facility.
Laser system in NIF, US

Flash point. NIF’s laser system pushes the boundaries of technology. Some think its optical glass will not stand up to the strain.
The advantages of phosphate glass as laser matrix

- High rare earth ion solubility;
- Large stimulated emission cross section;
- Medium phonon energy;
- Good thermal optical property;
- Lower nonlinear refractive index;
- Lower contents of Pt inclusions.
Disadvantages of phosphate glass as laser matrix

- Poor chemical and mechanical properties;
- Poor fabrication property.
Mission of large high power laser facility

- Inertial confinement fusion for future nuclear energy generation;
- Basic scientific researches on astrophysics and plasma physics.
ICF concept

INERTIAL CONFINEMENT FUSION CONCEPT

- **Laser energy**

 - Inward transported thermal energy

- **Atmosphere Formation**
 - Laser or particle beams rapidly heat the surface of the fusion target forming a surrounding plasma envelope.

- **Compression**
 - Fuel is compressed by rocket-like blowoff of the surface material.

- **Ignition**
 - With the final driver pulse, the fuel core reaches 1000 – 10,000 times liquid density and ignites at 100,000,000°C.

- **Burn**
 - Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the driver input energy.
The nuclear fusion reaction

\[^2\text{D}_1 + ^3\text{T}_1 \rightarrow ^4\text{He}_2 + ^1\text{n}_0 + 17.6\text{MeV} \]

- D and T are isotopes of hydrogen, He is helium nuclei, n is neutron.
Target of 192 beam laser in NIF, US

Pin point. All 192 beams must shine into the ends of this gold cylinder, which encloses the target.
By 1980, multibeam, multiterawatts 1μm laser facilities built for ICF research.
Nova facility in LLNL built with Nd:phosphate laser glass

- Nova laser at LLNL – 10 beams, ~30 kJ_{UV} (1986–1999)
OMEGA EP finished in 2008 with 60 laser beams

OMEGA EP: Completed 2008, first user experiments in Q1 FY09
NIF facility in LLNL finished in last March
ICF facilities built with Nd:glass laser glass

<table>
<thead>
<tr>
<th>Finished</th>
<th>Facility</th>
<th>Glass used</th>
<th>Beams</th>
<th>Nd:glass volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Omega-EP in US</td>
<td>LHG-8, LG-770</td>
<td>60</td>
<td>15L</td>
</tr>
<tr>
<td></td>
<td>NIF in US</td>
<td>LHG-8, LG-770</td>
<td>192</td>
<td>15L</td>
</tr>
<tr>
<td></td>
<td>Shen Guang II in China</td>
<td>N21, N31</td>
<td>8+1</td>
<td>3.7L</td>
</tr>
<tr>
<td></td>
<td>Shen Guang III proto-type</td>
<td>N31</td>
<td>8</td>
<td>7.6L</td>
</tr>
<tr>
<td></td>
<td>Firex in Japan</td>
<td>LHG-8</td>
<td>24</td>
<td>15L</td>
</tr>
<tr>
<td>Under building</td>
<td>Shen Guang III</td>
<td>N31</td>
<td>48</td>
<td>15L</td>
</tr>
<tr>
<td></td>
<td>L M J in France</td>
<td>LHG-8, LG-770</td>
<td>240?</td>
<td>15L</td>
</tr>
</tbody>
</table>
The development of Nd:glass
The main requirements on Nd:glass in high peak power laser facility

- High stimulated emission cross section and long fluorescent lifetime----high gain
- Efficient stored energy
- High energy extraction efficiency
- High laser damage threshold, lower Pt inclusions,
- Small nonlinear refractive index;
- Excellent optical homogeneity \((2 \times 10^{-6}) \) and small wavefront distortion.
FOM for high peak power Nd:glass

\[
FOM_{\text{laser}} = \frac{\Delta \lambda_{\text{abs}} (\tau_0 Q) \sigma_{\text{em}} \eta_{\text{ex}}}{n_2}
\]
Relation between absorption peak and line strength

Relation between integrated absorption cross section and $S_{JJ'}$ according to J-O theory

$$\int kd \lambda = \frac{8 \pi^3 e^2 \lambda N_0}{3 \text{nch} \ (2J + 1)} \times \frac{(n^2 + 2)^2}{9} \times S_{JJ'}.$$
Line strength calculation

\[S_{JJ'} = \sum_{t=2,4,6} \Omega_t \left| \left\langle 4 f^N (SL) J \left| U^{(\lambda)} \right| 4 f^N (S'L') J' \right\rangle \right|^2 \]

\(\Omega_t \) is determined by glass composition, line strength \(S_{JJ'} \) can be calculated from measured absorption spectrum, density and refractive index of glass.
Spontaneous emission probability

Spontaneous emission probability from manifold \(|(S',L')J'>\) to manifold \(|(S,L)J>\)

\[
A_{J',J} = \frac{64 \pi^2 e^2 n}{3 \hbar (2J' + 1) \lambda^3} \times \frac{(n^2 + 2)}{9} \times S_{JJ'}.
\]
Effective fluorescent bandwidth

\[\Delta \lambda_{\text{eff}} = \int \frac{I(\lambda) d\lambda}{I(\lambda_p)} \]
The stimulated emission cross section

- It is most important parameter of laser material. Its peak value can be calculated from the following formula for Nd\(^{3+}\):

\[
\sigma = \frac{\lambda^4}{8 \pi c h^3} \times \frac{A_{JJ'}}{\Delta \lambda_{\text{eff}}}
\]
A simplified method to calculate stimulated emission cross section

- Stokowski proposed a simplified method

\[\sigma = 18.9 \left[\frac{(n^2+2)^2}{9n} \right] \frac{S_{750}}{\Delta \lambda_{\text{eff}}} \]
Fluorescent lifetime

Measured fluorescent lifetime:

\[\tau = \frac{1}{(A_{rad} + W_{nr})} \]

Relation between fluorescent lifetime and Nd\(^{3+}\) ion concentration

\[\tau = \tau_0/(1+(N/Q)^2) \]
Quantum efficiency

\[\eta = \frac{A_{\text{rad}}}{A_{\text{rad}} + W_{\text{rad}}} \]
Radiative and non-radiative transitions

- Transition from high energy level to low energy level includes radiative and non-radiative transitions.
- Fluorescence occurs in the former, while heat effect is accompanied in the non-radiative transitions.
Non-radiative transition

There are three main factors which affect non-radiative transition:

- Rare earth ion interaction;
- The interaction between rare earth ion and impurities (such as OH, transition metal ions, other rare earth ions);
- The phonon energy of matrix.
Total nonradiative decay rate

\[W_{nr} = W_{mp} + W_{Nd} + W_{OH} + \sum_{i=1}^{n} W_{TM_i} + \sum_{j=1}^{m} W_{RE_j} \]
Nonradiative transitions of Nd$^{3+}$ ion
Stored energy of Nd:glass

\[E_g = h \nu N \]

N is inversion density of Nd-ion.

\(E_g \) is usually 0.25J/cm\(^3\).
Saturated fluence of Nd:glass

\[F_{sat} = \frac{h \nu}{l / \sigma} \]

It is usually 5J/cm^2.
Energy extraction efficiency

\[\eta_{ex} = \sigma_{em} / \sigma_{gs} \]

\(\sigma_{gs} \) is cross section calculated from measured gain saturation, \(\sigma_{em} \) is spectroscopically determined cross section.
Small signal gain

\[G_0 = \exp(z[\sigma N - \alpha]) \]

Alpha is transmission loss coefficient,
Z is length of gain medium.
Nonlinear refractive index and B factor

Cumulative nonlinear phase retardation: B factor

$$ B = \frac{2\pi}{\lambda} \int \gamma I dZ $$

Nonlinear refractive index γ:

$$ \gamma = \frac{40 \pi n_2}{nc} $$

Nonlinear refractive index n_2 in 10^{-13} esu:

$$ n_2 = \frac{68 (n_d^2 + 2)^2 (n_d - 1)}{\nu \left\{ 1.517 + \left[\nu (n_d^2 + 2) (n_d + 1) \right] / 6 n_d \right\}^{1/2}} $$
Thermal optical property

\[W = \frac{d n}{d T} + (n - 1) \alpha \]
Relation between glass composition and laser properties for Nd doping
Composition research

- Most of composition research was done in the early period of laser glass research.
- Commercial laser glasses are metaphosphate glass with P:O=1:3.
Type of glass

- Silicate
- Borosilicate
- Borate
- Phosphate
- Tellurite
- Germanate
- Fluorophosphate
- Fluorozirconate
- Fluoroberyllate

Peak stimulated emission cross section (10^{-20} cm2)
Type of glass

- Fluoroberyllate
- Fluorozirconate
- Fluorophosphate
- Phosphate
- Tellurite
- Borate
- Borosilicate
- Germanate
- Silicate

$^{4}F_{11/2}$ Lifetime (μs)
Nd:glass for high power laser application

- LHG-8 from Hoya;
- LG-750, LG-760, LG-770 from Schott;
- Q88 from Kigre in US;
- N21 and N31 glasses from SIOM, China.
Companies and Institute who develop high power laser glasses

- Hoya company, Japan;
- Schott company, Germany;
- Kigre Company in USA;
- SIOM in China
Table 1: Properties of commercially available HPP glasses in common use on ICF lasers.

<table>
<thead>
<tr>
<th>Glass Properties</th>
<th>Symbol</th>
<th>LHG-80</th>
<th>LHG-8</th>
<th>LG-770</th>
<th>LG-750</th>
<th>Q88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>refractive index @ 587.3 nm</td>
<td>(n_d)</td>
<td>1.54291</td>
<td>1.52962</td>
<td>1.50674</td>
<td>1.526</td>
<td>1.5449</td>
</tr>
<tr>
<td>@ 1053 nm</td>
<td>(n_l)</td>
<td>1.53289</td>
<td>1.52005</td>
<td>1.49908</td>
<td>1.516</td>
<td>1.5363</td>
</tr>
<tr>
<td>non-linear refractive index ((10^{-13}) esu)</td>
<td>(n_2)</td>
<td>1.24</td>
<td>1.12</td>
<td>1.02</td>
<td>1.08</td>
<td>1.14</td>
</tr>
<tr>
<td>((10^{-20}) m²/W)</td>
<td>(\gamma)</td>
<td>3.36</td>
<td>3.08</td>
<td>2.78</td>
<td>2.98</td>
<td>3.11</td>
</tr>
<tr>
<td>Abbe number</td>
<td>(\nu)</td>
<td>64.7</td>
<td>66.5</td>
<td>68.5</td>
<td>68.2</td>
<td>64.8</td>
</tr>
<tr>
<td>Temp-coeff. refract. index ((10^6/K))</td>
<td>dn/dT</td>
<td>-3.8</td>
<td>-5.3</td>
<td>-4.7</td>
<td>-5.1</td>
<td>-0.5</td>
</tr>
<tr>
<td>Temp-coeff. optical path ((10^4/K))</td>
<td>(\delta)</td>
<td>1.8</td>
<td>0.6</td>
<td>1.2</td>
<td>0.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Laser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>emission cross-section ((10^{-20})cm²)</td>
<td>(\sigma_{em})</td>
<td>4.2</td>
<td>3.6</td>
<td>3.9</td>
<td>3.7</td>
<td>4.0</td>
</tr>
<tr>
<td>saturation fluence (J/cm²)</td>
<td>(F_{sat})</td>
<td>4.5</td>
<td>5.3</td>
<td>4.8</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>radiative lifetime (zero-Nd) (µs)</td>
<td>(\tau_0)</td>
<td>337</td>
<td>365</td>
<td>372</td>
<td>383</td>
<td>326</td>
</tr>
<tr>
<td>Judd-Ohfelt radiative lifetime (µs)</td>
<td>(\tau_r)</td>
<td>327</td>
<td>351</td>
<td>350</td>
<td>367</td>
<td>326</td>
</tr>
<tr>
<td>Judd-Ohfelt parameters ((10^{-20})cm²)</td>
<td>(\Omega_2)</td>
<td>-</td>
<td>4.4</td>
<td>4.3</td>
<td>4.6</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>(\Omega_4)</td>
<td>-</td>
<td>5.1</td>
<td>5.0</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>(\Omega_6)</td>
<td>-</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>emission band width (nm)</td>
<td>(\Delta \lambda_{eff})</td>
<td>23.9</td>
<td>26.5</td>
<td>25.4</td>
<td>25.3</td>
<td>21.9</td>
</tr>
<tr>
<td>conc. quenching factor (cm⁻³)c</td>
<td>(Q)</td>
<td>10.1</td>
<td>8.4</td>
<td>8.8</td>
<td>7.4</td>
<td>6.6</td>
</tr>
<tr>
<td>fluorescence peak (nm)</td>
<td>(\lambda_L)</td>
<td>1054</td>
<td>1054</td>
<td>1053</td>
<td>1053.5</td>
<td>1054</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thermal conduct. (W/mK)</td>
<td>(k)</td>
<td>0.59</td>
<td>0.58</td>
<td>0.57</td>
<td>0.60</td>
<td>0.84</td>
</tr>
<tr>
<td>thermal diffusivity ((10^{-7}) m²/s)</td>
<td>(\alpha)</td>
<td>3.2</td>
<td>2.7</td>
<td>2.9</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>specific heat (J/gK)</td>
<td>(C_p)</td>
<td>0.63</td>
<td>0.75</td>
<td>0.77</td>
<td>0.72</td>
<td>0.81</td>
</tr>
<tr>
<td>Coeff. thermal expan.* ((10^7/K))</td>
<td>(\alpha_s)</td>
<td>130</td>
<td>127</td>
<td>135</td>
<td>132</td>
<td>104</td>
</tr>
<tr>
<td>Glass transition temp (°C)</td>
<td>(T_g)</td>
<td>402</td>
<td>485</td>
<td>460</td>
<td>450</td>
<td>367</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>density (g/cm³)</td>
<td>(\rho)</td>
<td>2.92</td>
<td>2.83</td>
<td>2.59</td>
<td>2.83</td>
<td>2.71</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>(\mu)</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>Fracture toughness (MPa m⁰.⁵)</td>
<td>(K_{IC})</td>
<td>0.46</td>
<td>0.51</td>
<td>0.48</td>
<td>0.48</td>
<td>-</td>
</tr>
<tr>
<td>Hardness (GPa)</td>
<td>(H)</td>
<td>3.35</td>
<td>3.43</td>
<td>3.58</td>
<td>2.85</td>
<td>-</td>
</tr>
<tr>
<td>Young's modulus (GPa)</td>
<td>(E)</td>
<td>50.0</td>
<td>50.1</td>
<td>47.3</td>
<td>50.1</td>
<td>69.8</td>
</tr>
<tr>
<td>Stress optic coeff. (Pa)</td>
<td>(\Delta B)</td>
<td>1.77</td>
<td>1.93</td>
<td>2.2</td>
<td>1.80</td>
<td>2.07</td>
</tr>
</tbody>
</table>
Properties of Nd:phosphate glass from SIOM

<table>
<thead>
<tr>
<th>Properties</th>
<th>N21</th>
<th>N31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Nd}_2\text{O}_3) (wt%)</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>(\text{Nd}^{3+}) ion conc. ((10^{20} \text{ions/cm}^3))</td>
<td>2.68</td>
<td>2.26</td>
</tr>
<tr>
<td>(\sigma_{\text{em}}) ((10^{-20} \text{cm}^2))</td>
<td>3.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Fluorescent lifetime ((\mu \text{s}))</td>
<td>330</td>
<td>340±10</td>
</tr>
<tr>
<td>FWHM (nm)</td>
<td>24.0</td>
<td>20.1</td>
</tr>
<tr>
<td>Laser wavelength (nm)</td>
<td>1053</td>
<td>1053</td>
</tr>
<tr>
<td>Optical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_d)</td>
<td>1.5758</td>
<td>1.5357</td>
</tr>
<tr>
<td>(n_L)</td>
<td>1.5652</td>
<td>1.5280</td>
</tr>
<tr>
<td>(n_2 (10^{-13} \text{esu}))</td>
<td>1.3±0.1</td>
<td>1.1±0.1</td>
</tr>
<tr>
<td>Abbe No.</td>
<td>65.2</td>
<td>66.2</td>
</tr>
<tr>
<td>(\frac{dn}{dT} (10^{-6}/\text{°C}) (20-100\text{°C}))</td>
<td>-4.2</td>
<td>-4.3</td>
</tr>
<tr>
<td>(\frac{ds}{dT} (10^{-6}/\text{°C}) (20-100\text{°C}))</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>density (g/cm(^3))</td>
<td>3.40</td>
<td>2.83</td>
</tr>
<tr>
<td>(E (\text{kg/mm}^2))</td>
<td>5640</td>
<td>5270</td>
</tr>
<tr>
<td>(\nu)</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Knoop hardness (kg/cm(^2))</td>
<td>650</td>
<td>330</td>
</tr>
</tbody>
</table>
Properties of N21 and N31 glasses from SIOM (continued)

<table>
<thead>
<tr>
<th>Properties</th>
<th>N21</th>
<th>N31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_g (°C)</td>
<td>500</td>
<td>450</td>
</tr>
<tr>
<td>α ($10^{-6}/°C$)(20-100°C)</td>
<td>110</td>
<td>107</td>
</tr>
<tr>
<td>α ($10^{-6}/°C$)(100-300°C)</td>
<td>120</td>
<td>127</td>
</tr>
<tr>
<td>K (W/m.K)</td>
<td>0.553</td>
<td>0.558</td>
</tr>
<tr>
<td>$C_p(25°C)$ (J/cm3.°C)</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Chemical durability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_w ($H_2O, 100°C, 1hr, wt loss%$)</td>
<td>0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>D_A ($HNO_3, pH2.2, 100°C, 1hr Wt. Loss%$)</td>
<td>0.30</td>
<td>0.40</td>
</tr>
</tbody>
</table>
3 Fabrication technology of Nd:phosphate laser glass

- Fabrication technology is very important to laser glass because many properties of Nd:glass is concerning with fabrication processing
- By now there are two melting technologies of Nd:phosphate laser glass
 - Pot melting
 - Continuous melting
Properties concerning to fabrication processing

- Fluorescent lifetime;
- Optical loss at laser wavelength;
- Optical quality;
- Bubbles;
- Platinum inclusions;
- Absorption at 400nm;
- Residual stress
Advantages of continuous melting

- Lower cost of laser glass;
- High efficiency of production;
- Less change of properties among different glass slabs;
- Better optical homogeneity;
- Less micro-crack on glass surface after annealing.
Pot melting process of laser glass
Continuous melting process of laser glass
Nd:glass from continuous melting in Hoya
Key technologies of Nd:phosphate glass fabrication

- Dehydroxylation;
- Elimination of Pt inclusions
- Forming
- Cladding with Cu ion doped phosphate glass.
Mechanism of dehydroxylation

\[CCl_4 + 2H_2O \leftrightarrow CO_2 + 4HCl\]

\[4 \left(\begin{array}{c} -P-OH \\ O \end{array} \right) + CCl_4 \leftrightarrow 2 \left(\begin{array}{c} -P-O-P- \\ O \end{array} \right) + 4HCl + CO_2\]
Mechanism of eliminating Pt inclusions

- Dissolve inclusions under oxidizing conditions ($\text{Pt} + n/4 \text{O}_2 \rightleftharpoons \text{Pt}^{n+} + n/2 \text{O}_2^{-}$)
- Minimize thermal gradients to reduce vapor transport ($\text{Pt}^0 + \text{O}_2 \rightleftharpoons \text{PtO}_2 (g)$)
Forming

- Forming is very important for both pot melting and continuous melting.
- It affects the optical homogeneity especially in forming large size glass.
Cladding of laser glass

- Cladding is an effective method to remove amplified spontaneous emission and get high gain in Nd:glass.
- Residual reflection in cladding surface less than 0.1% is required.
Nd:phosphate glass disk after cladding
4 High power fiber laser

- Yb:silica is a widely used high power fiber laser material because of its high quantum efficiency.
- Up to now several thousands watt power has been achieved in a single Yb:silica fiber.
Its extreme low loss is the main advantage of silica fiber.

Good thermal property and mechanical strength of silica.
Fabrication of Yb:silica fiber

- MCVD and solution doping method are used to prepare Yb doped silica preform and then fiber is drawn from the preform.
Rare Earth Doped Fiber Fabrication

1) Porous Layer Deposition

SiCl₄ + O₂

2) Solution Impregnation

RE Chloride + H₂O

3) Deposit Drying

Cl₂ + He + O₂

4) Preform Collapse

2000°C
(a) Energy diagram of Yb$^{3+}$ in silica

(b) Absorption and emission cross section of Yb$^{3+}$ in silica
Structure of fiber laser
Spectra and output power of fiber lasers by 2004
Output and input relation of a single mode Yb:silica fiber in 2003

![Graph showing the output and input relation of a single mode Yb:silica fiber in 2003. The x-axis represents the estimated coupled power in watts (W), while the y-axis represents the fiber laser power in watts (W). The graph includes data points for right-side output, left-side output, and total output, with a trend line indicating 75% efficiency.](image-url)
5 Outlook on next generation high power laser material

- Laser Fusion Energy (LFE) research project aimed on laser power plant is proposed by US and European scientists in recent years.
LFE requirements on laser material

- Work in several Hz repetition rate (up to 10Hz),
- High efficiency, 20-30%;
- Good thermal properties;
- Can be produced in large size.
Possible next generation laser material for LFE

- Laser ceramics?
- \(\text{Nd}^{3+} \) or \(\text{Yb}^{3+} \) doped SiO\(_2\) bulk?
- Multi-component glass?
- Special optical fiber?
- \(\text{Yb}^{3+} \) doping?
Relation between thermal shock parameter and stimulated emission cross section

![Graph showing the relation between thermal shock parameter and stimulated emission cross section.](image-url)
Thanks for your attention!
Main references

- M.J.F. Digonnet, Rare earth doped fiber lasers and amplifiers, 1993 edition;
- J.H. Campbell, LLNL research report, UCRL-JC-124244