Microfluidic Capture and Quantification of HIV

Jay Fraser
Kathryn Kundrod

Follow this and additional works at: http://preserve.lehigh.edu/undergrad-scholarship-freed-posters

Recommended Citation
http://preserve.lehigh.edu/undergrad-scholarship-freed-posters/8

This Poster is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in David and Lorraine Freed Undergraduate Research Symposium Posters by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.
Microfluidic Capture and Quantification of HIV

Kathryn Kundrod¹, Jay Fraser¹, Xuanhong Cheng, Ph.D.¹,²

¹Program in Bioengineering and ²Department of Materials Science & Engineering

Introduction
Human Immunodeficiency Virus (HIV) presents a prominent global health issue, having claimed the lives of 39 million people and currently affecting 35 million people worldwide.¹ Standard techniques for the detection of HIV consist of two facets (viral amplification and immunodetection) that present their own unique advantages. As of 2013, “routine viral load monitoring is now strongly recommended as the monitoring strategy of choice” in managing antiretroviral therapy.² Microfluidic technology offers the ability to analyze small sample volumes, encouraging the development of point-of-care systems for viral diagnostics. The small size of virions limits the use of traditional flat-bed immunoaffinity microfluidic devices. Thus, we validate the effectiveness of a nanoporous filtration matrix to isolate pseudo HIV virions from a solution.³ Following isolation, the captured virions are quantified using a method of cyclic voltammetry adapted from de la Escosura-Muñiz and Merkoçi.⁴ This system, once optimized, has the potential to perform viral load quantification in a point-of-care setting.

Methods

STEPS:
1. Assemble devices (Figs. 1 & 2)
2. Binding assay (Fig. 3)
3. Cyclic voltammetry
4. Generation of standard curve

Figure 1: Fabrication process for microfluidic devices.

![Fabrication process for microfluidic devices](image)

Figure 2: Photo of assembled microfluidic device. Scale is in centimeters.

Cyclic Voltammetry
- Redox solution injected into microfluidic devices
- Voltage swept cyclically from -0.4 to +0.3 V
- Peak current measured

Figure 3: Representation of binding assay run within assembled devices.

![Representation of binding assay run within assembled devices](image)

Results and Discussion

Figure 4: The cyclic voltammetric curves corresponding to four different viral concentrations are shown. Differences in peak currents are highlighted within the black oval.

![Cyclic Response to Bead Concentrations](image)

Figure 5: Peak currents for the proof of concept experiment are shown (n=4). Linear regression indicates an inverse correlation between peak currents and simulated viral load as expected.

![Standardized Peak Current](image)

Figure 6: Flow rate optimization test. Higher flow rates correlated with smaller peak current reductions, indicating a decrease in membrane capture efficiency.

![Flow Rate Comparison](image)

Figure 7: Potential clinical impact of a point-of-care viral load diagnostic test.

![Number of Circulating HIV Viruses During Disease Progression](image)

Conclusions

- Initial tests indicate ability to quantify viral load through cyclic voltammetry
- Next Steps:
 - Binding assay optimization
 - Generation of standard curve using pseudo-virus

Acknowledgements

David and Lorraine Freed Undergraduate Symposium, Lehigh University
Krissada Surawathanawises, Kaylynn Genemaras, Paul Schroeder, and the Gilchrist Lab at Lehigh University

References