Image Theses and Dissertations A Computational Model of Cell Movement on Surface with Concave Corner Architecture and Viscoelastic Effects Living cells respond to the outside physical environment by changing their geometry and location. It is crucial to understand the mechanism of cellular activities, such as cellular movement and utilize cellular properties, such as cellular viscoelasticity by both experimental and computational means. A computational model is developed as a tensegrity structure, which not only consists of the cytoskeleton, but also models the cellular nucleus and lamellipodia. View Item
Image Theses and Dissertations Exploring the Energetics of Cell Movement via Finite Element Analysis Two different cytoskeleton architectures corresponding to the mesenchymal cell and the fibroblast cell, are proposed in this work. They are subsequently modelled by Finite Elements in ANSYS APDL and are tested in two different constraint cases: polarized and unpolarized. Polarization in the context of this work is when the cell disintegrates all its focal adhesions except the ones at the leading edge and the tail edge. The opposite of a polarized cell is defined as an unpolarized cell, which has all the focal adhesions intact. View Item