Date

2017

Document Type

Thesis

Degree

Master of Science

Department

Mechanical Engineering

First Adviser

Hart, Terry J.

Abstract

As the National Aeronautics and Space Administration (NASA) moves closer towards placing humans on Mars, prediction of the weather on the planet becomes more vital to ensure the safety of the astronauts. Currently on Mars NASA has land based weather stations on the rovers and a few satellites orbiting the planet that help to predict the weather. They also use Earth based telescopes to look at the Martian atmosphere similar to what an orbiting satellite would [1]. These resources provide information about what the weather is like on the surface and what the weather looks like from space but there is little information from inside the atmosphere. Having a device that can fly through the atmosphere and collect data would enable scientists to generate more accurate models of the weather on Mars.Another use for these devices could be to get aerial photographs of the planet, which could help to determine possible sites for future exploration. Also the Martian air could be collected and analyzed to determine its composition and whether there could be any airborne signs of life. The research presented in this thesis is a first step towards designing a device to fly on Mars and take weather data. A lifting type is selected and through test flights on Earth the design is modified until a workable platform for flight testing is achieved. Once it is determined, the design is scaled to be able to fly in the Martian atmosphere.

Share

COinS