Date

2016

Document Type

Dissertation

Degree

Doctor of Philosophy

Department

Materials Science and Engineering

First Adviser

DuPont, John N.

Other advisers/committee members

deBarbadillo, John J.; Vinci, Richard P.; Watanabe, Masashi

Abstract

Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several γ’ precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys.First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) was performed. γ’-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of γ’. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the γ’-forming elements.Next, the microstructural evolution of INCONEL® 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to determine the correlation of discontinuous coarsening of the γ’ phase with time at temperature, creep strain, plastic prestrain, post-weld heat treatment, and compositional modification. The discontinuous coarsening reaction was shown to depend most strongly on the total strain experienced during creep. Post-weld homogenization and compositional modification had mixed effects on fusion weld rupture life and the rate of discontinuous coarsening. The differences in rupture life and discontinuous coarsening across a large matrix of creep specimens were related to the differences in strain at rupture and the relative ease of grain boundary motion in the samples.Finally, in-depth characterization of the discontinuous coarsening reaction products in alloy 740H creep specimens was performed. The effects of solute partitioning during non-equilibrium solidification on the variation in the volume fraction of strengthening precipitates along the length of the grain boundaries has been linked to the propensity for discontinuous coarsening. Evidence for the preferential development of discontinuous coarsening along grain boundary segments with sharp variations in γ’ content was presented. In addition, evidence for the preferred growth of colonies of discontinuous coarsening into regions of lower γ’ content was documented. Scanning transmission electron microscopy determined the compositions of the matrix and precipitate phases within the colonies and quantified the segregation of alloying elements to the reaction front. Thermodynamic and kinetic modeling using commercially available software packages were leaned on extensively throughout this research, both as a way to provide theoretical bases for experimental observations and as a way to design and guide experimentation. Overall, the results presented in this work offer detailed observations on the evolution of deleterious grain boundary features in A-USC alloy fusion welds and provide insight for changes that may improve their creep performance.

Share

COinS