Date

2014

Document Type

Thesis

Degree

Master of Science

Department

Mechanical Engineering

First Adviser

Liu, Yaling

Abstract

Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

Share

COinS