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Abstract

Concurrent data structures lie at the heart of modern parallel programs. The design

and implementation of concurrent data structures can be challenging due to the de-

mand for good performance (low latency and high scalability) and strong progress

guarantees. In this dissertation, we enrich the knowledge of concurrent data struc-

ture design by proposing new implementations, as well as general techniques to

improve the performance of existing ones.

The first part of the dissertation present an unordered linked list implementation

that supports nonblocking insert, remove, and lookup operations. The algorithm

is based on a novel “enlist” technique that greatly simplifies the task of achieving

wait-freedom. The value of our technique is also demonstrated in the creation of

other wait-free data structures such as stacks and hash tables.

The second data structure presented is a nonblocking hash table implementa-

tion which solves a long-standing design challenge by permitting the hash table to

dynamically adjust its size in a nonblocking manner. Additionally, our hash table

offers strong theoretical properties such as supporting unbounded memory. In our

algorithm, we introduce a new “freezable set” abstraction which allows us to achieve

atomic migration of keys during a resize. The freezable set abstraction also enables

highly efficient implementations which maximally exploit the processor cache local-

ity. In experiments, we found our lock-free hash table performs consistently better

than state-of-the-art implementations, such as the split-ordered list.

The third data structure we present is a concurrent priority queue called the

“mound”. Our implementations include nonblocking and lock-based variants. The

mound employs randomization to reduce contention on concurrent insert operations,
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and decomposes a remove operation into smaller atomic operations so that multiple

remove operations can execute in parallel within a pipeline. In experiments, we

show that the mound can provide excellent latency at low thread counts.

Lastly, we discuss how hardware transactional memory (HTM) can be used to

accelerate existing nonblocking concurrent data structure implementations. We pro-

pose optimization techniques that can significantly improve the performance (1.5x

to 3x speedups) of a variety of important concurrent data structures, such as binary

search trees and hash tables. The optimizations also preserve the strong progress

guarantees of the original implementations.
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Chapter 1

Introduction

1.1 Background

Concurrent data structures are a fundamental building block for scalable multi-

threaded programs. They are widely used in software systems that handle concur-

rent tasks, e.g., operating systems and web servers. In these systems, a concurrent

data structure is often shared by the whole system, and can significantly impact the

overall performance. As an example, a web cache service [2] may store the cached

key-value pairs in a shared hash table, which is accessed by concurrent threads that

perform lookup or update operations on the data structure. To maximize the scal-

ability of the cache service, the hash table often requires careful design to avoid

performance bottlenecks.

Arguably, the simplest way to obtain a concurrent data structure implementation

is to protect a sequential implementation with a mutual exclusion lock [13]. In this

approach, programmers can mark each data structure operation as a critical section

protected by a single mutual exclusion lock, which allows at most one thread to

execute a critical section at a time. However, this approach is not scalable since

it permits at most one thread to access the data structure at a time. Applications

sometimes admit relaxations of the mutual exclusion property. For example, readers-

writer exclusion [53] (a.k.a, readers-writer locks) allows a thread to declare itself as

3



a reader or a writer for the critical section, where multiple readers can share the

critical section at the same time but a writer precludes any other request for the

critical section. In reader-dominated workloads, using readers-writer exclusion may

improve performance by exploiting parallelism among reader requests. However, the

approach fails to support concurrent writers even if the writers operate on different

parts of the data structure.

Variants of mutual exclusion also include a popular technique known as fine-

grained locking, in which an operation only locks parts of a data structure as needed.

This approach may introduce significant overhead to a streamlined implementation,

as locks are aquired and released at each part of the data structure. In addition,

the approach inherits the scalability problems incurred from locks. An in-progress

operation that locks parts of a data structure can prevent other concurrent opera-

tions from proceeding. The overall performance can be impacted by the scheduling

decisions made by the underlying operating system.

The design and implementation of concurrent data structures can be challenging.

An ideal implementation would provide intuitive semantics and good performance

(low latency and high scalability). However, it is difficult [22] and sometimes im-

possible [5] to achieve these properties at the same time.

Specifically, the challenges in concurrent data structure design stem from a num-

ber of aspects. First, the implementations must achieve good performance across

a variety of workloads. A concurrent data structure ought to have low latency

when accessed by a single thread. This property is valuable for applications whose

threads rarely access the data structure at the same time: if latency is too high,

then the programmer may instead opt to protect a sequential data structure with

a single mutual exclusion lock. However, an implementation should also exhibit

high scalability. That is, in highly concurrent workloads, threads should not impede

each others’ progress when they access disjoint parts of the data structure. There

is typically a tension between these goals: to ensure good scalability, a greater

amount synchronization is required to coordinate potential concurrent accesses to

the data structure; however, the injection of synchronization introduces overhead

to the streamlined sequential implementation, because it often requires the use of
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expensive atomic synchronization primitives, such as compare-and-swap (CAS) in-

structions. Introducing fine-grained synchronization can result in more synchroniza-

tion primitives per operation, and thus more latency.

Secondly, many programs expect progress guarantees from concurrent data struc-

tures. Nonblocking progress, where an implementation can tolerate an unbounded

number of thread failures, has been achieved for many practical data structures. Her-

lihy [32] demonstarted the theoretical feasibility (known as universal constructions)

of converting any sequential data structure to a nonblocking concurrent implemen-

tation. Nonblocking data structures derived from universal constructions tend to be

expensive, since the universal constructions often incur significant instrumentation

overhead with increased time and space complexity [9, 19, 33]. Therefore, there has

been an increasing interest in finding practical and efficient solutions to design spe-

cific nonblocking concurrent data structures using synchronization primitives [32]

that are supported on existing hardware, such as compare-and-swap (CAS) instruc-

tions. Over the past two decades, dozens of concurrent data structures have been

proposed, providing highly scalable stacks [31], queues [41,57], lists [26], trees [17,61],

hash tables [65], skiplists [67], and many other data structures.

However, constructing nonblocking concurrent data structures directly upon

these low-level synchronization primitives can be very difficult [22]. In many data

structures, an operation needs to update multiple locations, such as resizing a hash

table and rotating a balanced search tree, but there is often significant overhead

to make concurrent updates to multiple locations appear atomic [28, 51]. Even for

simple data structures, such as linked lists and queues, their nonblocking concur-

rent implementations can be substantially more complicated than their sequential

counterparts, since instructions of multiple threads tend to interleave in a highly

concurrent manner, creating a much larger state space for programmers to reason

about.

Hardware Transactional Memory (HTM) [35] was originally designed to simplify

the task of creating concurrent data structures. The idea behind HTM is simple:

programmers mark regions of code that ought to execute as a single, indivisible oper-

ation, and then the hardware runs these “transactions” concurrently, while tracking
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their memory accesses. By tracking accesses, the hardware can identify conflicting

memory accesses among transactions. By also providing a buffering mechanism,

the hardware can abort, roll-back, and retry some of the transactions involved in a

conflict, so that each transaction appears to execute in isolation.

Unlike research HTM proposals, the first-generation HTM systems from IBM [39,

70] and Intel [38] impose significant restrictions, which limit their suitability for lock-

free programming. These “best effort” HTMs [12,45] do not guarantee progress for

arbitrary transactions: a transaction attempt will fail if it (a) attempts to access

too many distinct locations; (b) executes for longer than a scheduler quantum of

the operating system; or (c) attempts to perform an unsupported operation, such

as a system call. Transaction attempts can also fail due to memory accesses that

conflict with concurrent operations from transactions, or accesses that conflict with

concurrent nontransactional code. This property, called “strong atomicity” [6], is a

natural outcome of implementing HTM through the cache coherence protocol. It also

allows for clever composition of transactional and nontransactional code [12,16,72].

Even if these limitations did not exist, it is unlikely that HTM could ever fully

replace the best concurrent data structure implementations. As recently reported by

Gramoli [24], concurrent data structures implemented directly from synchronization

primitives (i.e. CAS) tend to provide the best performance in comparison to those

implemented by using locks or transactions.

1.2 Terminology

Model Our system model consists of a set threads communicating via shared

memory objects. An object interface defines the set of operations that a thread can

invoke on the object. An operation consists of an invocation, followed by zero or

more internal steps and a response.

We model the history of an object as a sequence of invocation and response

events. A history is sequential if every invocation is immediately followed by its

corresponding response. A sequential specification of an object is a set of sequential
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histories of the object. We say a sequential history is legal if it is a member of the

object’s sequential specification.

An operation is pending if it has an invocation but no response in some history.

A history is complete if it has no pending operations. We say a completion of

history H is a complete history that concatenates H with H ′ where H ′ consists of

only responses. For two operations o1 and o2 in history H, o1 happens before o2

(denoted as o1 → o2) if the response of o1 precedes the invocation of o2 in H.

Correctness Conditions Linearizability [36] is the canonical correctness condi-

tion for concurrent data structure implementations over the past decades. In a

linearizable implementation, every operation must happen atomically at some in-

stantaneous point (known as the linearization point) between the invocation and

response of the operation. The intuition behind linearizability is that a concur-

rent history should “look like” a sequential one, that is, non-overlapping operations

should happen in the same order in the sequential history.

More precisely, an object implementation is linearizable if for every history H,

there exists a legal sequential history Hseq such that:

• Hseq is a permutation of some completion of H;

• For any operations o1 → o2 in H, o1 → o2 in Hseq.

Progress Guarantees In nonblocking implementations, an operation can make

progress regardless of the states of concurrent operations. Nonblocking implementa-

tions can be classified according to the strength of their progress properties. Wait-

freedom [32] ensures that every thread completes its operation in a finite number

of steps. In contrast to wait-freedom, a lock-free implementation ensures that in a

finite number of steps, some thread completes its operation but individual threads

may fail to make progress.

More precisely, an object implementation is wait-free if for every infinite execu-

tion, every operation has a response. An object implementation is lock-free if every

infinite execution with a pending operation has infinite responses.
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Synchronization Primitives A synchronization primitive is an abstract atomic

operation that serves to coordinate concurrent accesses to the shared memory, which

can either be supported by the hardware or implemented in software. We now define

several synchronization primitives used in the dissertation as follows:

• Compare-and-swap (CAS) takes three arguments, the address of a given

memory word, the expected value, and the new value, and returns a boolean

result. It atomically compares the content of the memory word with the

expected value, and if they are the same, changes the content to the new value

and returns true. Otherwise the operation returns false. We say a compare-

and-swap succeeds if it returns true.

• Fetch-and-increment (FAI) takes the address of a given memory word,

atomically reads its content as an integer, and increments the content value

of the memory word by one. The value before the increment is returned.

• Double-compare-and-swap (DCAS) is similar to compare-and-swap, but

operates on two locations. The operation atomically compares both locations

with their expected values, changes them to new values if the contents of

both locations match their expected values, and returns true. Otherwise the

operation returns false.

• Double-compare-single-swap (DCSS) is similar to double-compare-and-

swap. The operation atomically compares both locations with their expected

values, but only attempts to change one of the locations.

The compare-and-swap (CAS) and fetch-and-increment (FAI) primitives are usu-

ally supported by modern processor architectures, such as Intel x86. The double-

compare-and-swap (DCAS) and double-compare-single-swap (DCSS) are rarely sup-

ported by the architecture, but they can be implemented by using multiple CAS

instructions [28, 51].

ABA Problem Concurrent data structures implemented using CAS and DCAS

primitives sometimes need to deal with an issue known as the ABA problem [26,57].

The ABA problem is a pattern of interleaved execution, described as follows:

1. Initially, the value of location X is A;
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2. Thread T is about to execute a CAS on X that attempts to change its value

from A to C, and stalls;

3. The value of X is subsequently changed to B, and then changed back to A by

concurrent updates;

4. Thread T resumes and performs the CAS which successfully changes the value

of X from A to C.

The above pattern becomes a problem only if the CAS instruction in step 4

succeeds unexpectedly. A common solution to the ABA problem is to augment the

location X with a version number, which forms a wide word 〈X, V 〉. Every time a

CAS is performed on X, it is performed on the augmented wide word 〈X, V 〉 and

increments the version number by one. In the above scenario, the CAS in the last

step will fail since the version number changed in step 3. On modern architectures

such as Intel x86 and Oracle SPARC, CAS are usually supported on both single

memory words, as well as wide words that are twice the size of a single memory

word.

1.3 Contributions

We expand the knowledge base of concurrent data structure by designing and im-

plementing the following new concurrent data structures.

We first present a nonblocking unordered linked list-based set implementation,

which admits lock-free and wait-free variants. The list algorithm is based on a novel

“enlist” technique which is the key insight to achieving practical wait-freedom. The

list algorithm also serves as the building block of other data structures such as stacks

and hash tables.

We then discuss a nonblocking dynamic-sized hash table algorithm, which is

inspired by the unordered list algorithm. The hash table can adjust its size dynam-

ically (both growing and shrinking), and operations can proceed in a nonblocking

manner, even during some thread performing a size adjustment. Our hash table

implementation outperforms the state-of-the-art implementations by improving the
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processor cache utilization and memory efficiency, and at the same time, our imple-

mentation delivers stronger theoretical properties.

The final data structure we present is an array-based, concurrent priority queue

which we call the “mound”. Our implementations include nonblocking and lock-

based variants. The mound employs randomization to reduce contention on concur-

rent insert operations, and decomposes a remove operation into smaller atomic op-

erations so that multiple remove operations can execute in parallel within a pipeline.

The mound exhibits comparable performance to state-of-the-art skip list based pri-

ority queue implementations, and in particular, provides lower latency at low thread

counts.

In addition, we present techniques that employ hardware transactional memory

to accelerate existing concurrent data structure implementations. Our optimizations

can bring a significant performance boost to a variety of concurrent data structures.

The optimizations also preserve the strong progress guarantees of the original im-

plementations, such as lock-freedom and wait-freedom.

1.4 Organization

The remainder of the dissertation is organized as follows. In Chapter 2, we dis-

cuss various existing concurrent data structure implementations and their design

techniques. Our linked list, hash table, and priority queue algorithms are respec-

tively presented in Chapters 3, 4 and 5. We discuss how hardware transactional

memory (HTM) can be used to accelerate existing nonblocking data structure im-

plementations in Chapter 6. We conclude in Chapter 7 and discuss future research

directions.

10



Chapter 2

Related Work

In this chapter, we survey various concurrent data structure implementations by

briefly summarizing their main ideas, and discussing some of the general design

techniques.

2.1 Linked Lists

Valois [69] presented the first lock-free list implementation based on a technique

that encodes in-progress operations with auxiliary nodes. Michael and Scott [56]

corrected a memory management related bug later found in the Valois algorithm.

Harris [26] proposed a practical lock-free ordered list implementation, which re-

quires language support for garbage collection. The Harris algorithm employs a

technique that marks the lower bits of the successor pointers of nodes, in order to

mark nodes as “logically deleted”. The algorithm uses a separate phase to physically

remove from the list the nodes that are logically deleted. The obligation of physical

deletion is assigned to each insert, remove and lookup operation. Michael [54] pro-

posed a variant of the Harris algorithm with manual memory management, which

also improves the performance of the original algorithm.

Heller et al. [29] designed a lock-based linked list with lazy synchronization.

Similar to the Harris-Michael algorithm, the Heller algorithm also separates the

logical and physical deletion of nodes, however, it uses a boolean field to indicate
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that a node is logically deleted. This avoids the requirement for pointer marking,

which is not generally available in every programming language. More importantly,

the Heller algorithm incorporates a more efficient wait-free design of the lookup

operation, in which logically deleted nodes are skipped instead of being removed

(as in Harris-Michael). The resulting lookup operation is wait-free and contains

no side effect on the shared memory, which significantly improves the performance

of the original Harris-Michael algorithm. The Heller algorithm also demonstrates

that concurrent object implementations can achieve competitive performance by

leveraging hybrid progress guarantees for different operations, i.e. blocking updates

and non-blocking searches.

Timnat et al. [68] constructed the first practical wait-free ordered list imple-

mentation according to the fast-path-slow-path methodology [42]. The algorithm

composes a less efficient (and more complicated) wait-free algorithm with the Harris-

Michael algorithm.

2.2 Hash Tables

The first practical nonblocking hash table was designed by Michael [54] by creat-

ing a fixed-size bucket array of lock-free linked lists. The lists are a streamlined

version of the lock-free ordered list by Harris [26]. Independently, Greenwald [25]

implemented a lock-free closed addressing hash table. Greenwald’s hash table is

resizable, but relies on a DCAS (double-compare-and-swap) operation. Unfortu-

nately, simulating DCAS in a lock-free manner is expensive [51], requiring multiple

CAS operations, and implementing it via hardware transactional memory can only

achieve obstruction-freedom.

Shalev and Shavit [65] presented a lock-free extendible hash table using the

recursive split-ordering technique. Their hash table consists of two substructures: an

ordered linked list based on the work of Michael [54], and a directory structure based

on an array of arrays. The ordered list contains both data and marker nodes, where

marker nodes roughly partition the list into constant-size contiguous sublists. To
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find an element (or its predecessor), threads first perform a constant-time traversal

of the directory to locate the closest preceding “marker” node, and then inspect

the sub-list that follows. A clever bit-reversal technique used on the hash value

of an element ensures that as buckets are split, and new marker nodes added, the

order of elements within the list need not change. Thus while resizing may require

a large number of updates to the directory, the relative position of elements in the

list does not change. Zhang and Larson [73] announced that they had implemented

a lock-free linear hash table also using recursive split-ordering technique.

Gao et al. [23] proposed a resizable, lock-free, open addressing hash table. They

maintain a second table during resizing; to migrate a key, they first mark the key as

being moved, then copy it to the second table, and finally update the original key’s

mark to indicate that it has moved. Whenever an operation finds a marked key,

it must help finish resizing the entire table, and then resume its execution on the

second table. Purcell and Harris [62] proposed another lock-free open addressing

hash table that is not resizable, but is space-efficient. In particular, their hash table

can reuse the space occupied by deleted keys.

Lastly, Feldman, LaBorde, and Dechev [20] demonstrated that with perfect hash-

ing, it is possible to implement a wait-free hash table. Their implementation makes

use of a tree-like array-of-arrays structure, with data stored in single-element leaf

arrays.

2.3 Balanced Search Structures

Fraser [22], Fomitchev and Ruppert [21], and Sundell and Tsigas [67] separately

discovered the first lock-free skip list set algorithms, which support probabilistically

balanced search operations. The Fraser [22] algorithm is adopted by the Java con-

currency library as the canonical implementation of concurrent containers (Set and

Map classes). In the Fraser algorithm, the skip list is built from a hierarchy of non-

blocking linked lists (i.e. the Harris-Michael algorithm). To insert an element, the

process first searches for a window that consists of a predecessor node with smaller
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key value and a successor node with larger key value. The process then tries to

link the node at the bottom level linked list by a CAS, and the whole operation

linearizes if the CAS succeeds. Finally, the process links the node to the linked list

at each level from the bottom to the top. Similarly, a remove operation first locates

a window and if the successor’s key matches the specified key value, the operation

tries to mark the least significant bit of the pointer at the bottom level list. The

remove operation linearizes if the marking (which uses a CAS) succeeds. Logically

deleted nodes are removed from the skip list by subsequent search operations.

It remained an open challenge to implement a nonblocking tree-based search

data structure [14], until Ellen, Fatourou, Ruppert and Breugel [17] proposed the

first nonblocking binary search tree implementation to support linearizable insert,

remove and lookup operations. The nonblocking binary search tree implementation

employs a technique based on intermediate nodes: an update operation that changes

the child pointer of a tree node must first set the pointer to point to an intermediate

“Info” record, which contains the information of the in-progress operation, such that

any concurrent operation that observes the intermediate record can first help the

in-progress operation to finish, before proceeding to its own operation.

Prokopec et al. [61] designed a nonblocking Trie (called C-Trie) implementation

based on an intermediate node technique similar to [17]. It is worth noting that

the C-Trie implementation also provides a novel feature that allows nonblocking

iteration over the set elements. The iteration is implemented by copying and times-

tamping, and hence, imposes extra time and space overhead (and complexity) on

other operations.

2.4 Priority Queues

Lotan and Shavit [50] described a method to construct quiescently consistent [34,

Chapter 3] priority queues using skip list sets. In the underlying skip list, each node

is augmented with a boolean field “deleted”. To insert an element to the priority

queue, the process simply invokes the insert method on the skip list set. To remove
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the minimal element, the process traverses from the head of the bottom list and

attempts to use a CAS to mark the first un-deleted node as deleted, and returns the

element if the CAS succeeds. The skip list based priority queue is shown to scale

well in practice. However the object is not linearizable: a removeMin operation

may sometimes remove an element that is not the minimum value in the priority

queue. The paper also introduces an algorithm variant that provides linearizability

by employing a timestamp mechanism.

The Hunt heap [37] used fine-grained locking, and avoided deadlock by repeatedly

un-locking and re-locking in insert operations to guarantee a global locking order.

Dragicevic and Bauer presented a linearizable heap-based priority queue that uses

lock-free software transactional memory (STM) [15]. Their algorithm improved

performance by splitting critical sections into small atomic regions, but the overhead

of STM resulted in unacceptable performance. Another skiplist-based priority queue

was proposed by Sundell and Tsigas [67]. While this implementation was lock-free

and linearizable, it required reference counting.

2.5 HTM-Accelerated Implementations

A variety of combining techniques have gained prominence for their ability to ac-

celerate concurrent data structures [30]. Unfortunately, these techniques do not

perform well on search data structures and they sacrifice nonblocking progress.

Neelakantam et al. used HTM to optimize existing software [60]. Their focus

was not on concurrency, but rather on speculative optimization of a program trace.

The system replaced unlikely code paths with explicit transactional aborts.

Dice et al. analyzed the impact of a real HTM system on concurrent data struc-

tures [12]. They showed that many concurrent applications could be simplified by

attempting to execute operations in HTM. Early work on hardware lock elision [63]

suggested that a locking fallback would suffice. Calciu et al. proposed lazy subscrip-

tion as optimizations to the lock-based fallback path which could have significant

impact on throughput [8]. Similarly, hybrid TM researchers have embraced the need
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for an intermediate point between HTM execution and serialized fallback. Recently,

Dice et al. pointed out several subtle pitfalls [11] in the lazy subscription technique.

Yoo et al. studied the Intel HTM implementation, applying it to high-performance-

computing applications [72]. Like Dice et al., they employed HTM in ad-hoc fashion

to a number of applications. They identified several techniques that can improve

the performance of applications. They also presented valuable guidelines for users of

Intel’s HTM, such as the importance of tuning retry parameters, and the possibility

of different behavior for read-only and writing hardware transactions.
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Chapter 3

Unordered Linked List Based

Nonblocking Sets

Our first contribution is a practical implementation of unordered linked list based set

that supports nonblocking insert, remove, and lookup operations. The algorithms

were published in Proceedings of the 27th International Symposium on Distributed

Computing (DISC 2013) [74].

The implementation is linearizable and uses only a single-word compare-and-

swap (CAS) primitive. Our wait-free implementation is built from a novel lock-free

unordered list algorithm, where each insert and remove operation first linearizes by

appending an intermediate “request” node at the head of the list, followed by a

lazy search phase that computes the return value of the operation (which depends

on whether the key value is already in the set); lookup operations have no side-

effects on the shared memory. The implementation achieves scalable wait-freedom

by adapting a technique originally designed for wait-free queues [41], and to fur-

ther improve performance, we applied the fast-path-slow-path methodology [42] to

construct adaptive variants of our algorithm.

We first present the lock-free unordered list algorithm, which serves as the basis

for our wait-free implementation. The algorithm implements a set object, where the

elements can be compared using an equality operator (=), even if they cannot be
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totally ordered.

3.1 Overview

The list supports three operations: Insert(k) attempts to insert value k into the set.

It returns true (success) if k was not present in the set, and returns false otherwise.

Remove(k) returns true if it successfully removes value k from the set and returns

false if k did not exist in the set. Contains(k) indicates whether k is contained by

the set.

Figure 3.1 presents the basic algorithm. The list is comprised of Node objects,

where each Node stores a key value, a next pointer to the successor node, and

a state field for coordinating concurrent operations. The prev and tid fields are

reserved for the wait-free algorithm (Chapter 3.4). We maintain a global pointer

head that points to the first element of the list. Elements are always inserted at the

head position. The key insight of the algorithm is to maintain a refinement mapping

function that maps a linked list object (starting from node h) to an abstract set

object AbsSet(h):

AbsSet(h) ≡























∅ if h = nil

AbsSet(h.next) if h.state = INV

AbsSet(h.next) ∪ {h.key} if h.state = INS∨h.state = DAT

AbsSet(h.next) \ {h.key} if h.state = REM

To maintain this property, an Insert or Remove operation first places a node

with an intermediate state (INS or REM) at the head of the list. Then it searches

the list for the value being inserted or removed, removing logically deleted nodes

along the way. Finally, it sets the intermediate node to a final state (DAT or INV).

In more detail, an Insert operation allocates an INS node (h) and links it to

the head of the list by invoking Enlist (lines 2 - 3). It then invokes HelpInsert

(line 4) to determine whether the insertion is effective, that is, to check whether

the key is already present in the set. The return value of HelpInsert dictates

the return value of the Insert operation, as well as the final state of h (line 5): if
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record Node

key : N // integer data field
state : N // INS, REM, DAT, or INV

next : Node // pointer to the successor
prev : Node // pointer to the predecessor
tid : N // thread id of the creator

shared variables

head : Node // initially nil

1 function Insert(k : N) : B
2 h← new Node〈k, INS,nil,nil, threadid〉
3 Enlist(n)

4 b← HelpInsert(h, k)
5 if ¬CAS(&h.state, INS, (b? DAT : INV)) then

6 HelpRemove(h, k)
7 h.state← INV

8 return b

9 function Remove(k : N) : B
10 h← new Node〈k,REM,nil,nil, threadid〉
11 Enlist(h)

12 b← HelpRemove(h, k)
13 h.state← INV

14 return b

15 function Contains(k : N) : B
16 curr ← head
17 while curr 6= nil do

18 if curr.key = k then

19 s← curr.state
20 if s 6= INV then

21 return (s = INS)∨(s = DAT)

22 curr ← curr.next

23 return false

24 procedure Enlist(h : Node)
25 while true do

26 old← head
27 h.next← old
28 if CAS(&head, old, h) then

29 return

30 function HelpInsert(h : Node) : B, k : N
31 pred← h
32 curr ← pred.next

33 while curr 6= nil do

34 s← curr.state
35 if s = INV then

36 succ← curr.next
37 pred.next← succ
38 curr ← succ

39 else if curr.key 6= k then

40 pred← curr
41 curr ← curr.next

42 else if s = REM then

43 return true

44 else if (s = INS)∨(s = DAT) then

45 return false

46 return true

47 function HelpRemove(h : Node, k : N) : B
48 pred← h
49 curr ← pred.next

50 while curr 6= nil do

51 s← curr.state
52 if s = INV then

53 succ← curr.next
54 pred.next← succ
55 curr ← succ

56 else if curr.key 6= k then

57 pred← curr
58 curr ← curr.next

59 else if s = REM then

60 return false

61 else if s = INS then

62 if CAS(&curr.state, INS,REM) then

63 return true

64 else if s = DAT then

65 curr.state← INV

66 return true

67 return false

Figure 3.1: A Lock-free List Based Set

the key was absent from the set, h.state is set to DAT, and the insertion becomes

effective; otherwise, h.state is set to INV, indicating that the insertion failed due to

the key already being present in the set, and h becomes a garbage node that will be

physically removed by some subsequent operation. The update of h.state must use
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a CAS instruction (line 5), since a concurrent Remove that deletes the same key

may attempt to change h.state concurrently. If the CAS fails, it means the key was

deleted concurrently and the thread will invoke HelpRemove (lines 6 - 7) to help

the deleting thread to clean up the list.

Similarly, a Remove operation starts by inserting a REM node at the head

position (lines 10 - 11). The real work of removal is delegated to the HelpRemove

operation (line 12), which traverses the list to delete the specified key and returns

a boolean value indicating whether the key was found (and deleted). Then node h

is set to the INV state (line 13), allowing some subsequent operation to remove it

from the list.

The Contains operation has no side effect on shared memory (it is read-only).

The operation traverses the list to find the specified key and skips any INV nodes

(lines 18 - 20). If a non-INV node with the specified key is encountered, the operation

returns true (found) if the node is in state DAT or INS (line 21). Otherwise, the node

is in REM state, which represents a Remove operation that can be thought of as

having already deleted the key from the suffix of the list, and hence, the Contains

operation immediately returns false.

Both Insert andRemove use the Enlist operation to insert a node at the head

position. In the lock-free algorithm, Enlist repeatedly performs a CAS operation

(line 28), attempting to change head to point to h, until the CAS succeeds. However,

this approach fails to provide wait-freedom, because the CAS operation at line 28 of

a specific thread may fail an unbounded number of times (due to contention), the

thread may starve in the Enlist operation and make no progress. In Chapter 3.4,

we introduce a wait-free Enlist implementation, and show the algorithm can be

made wait-free without any change to the other parts.

3.2 Coordination Protocol

The core protocol of coordinating concurrency is encapsulated by the HelpInsert

and HelpRemove operations. The two operations share a similar code structure:
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each takes a pointer parameter h, which points to the node inserted by the prior

Enlist operation. In both operations, the thread traverses the list starting from h,

and reacts to the different types of nodes it encounters.

As a common obligation of both operations, logically deleted nodes are purged

during the traversal (lines 35 - 38 and lines 52 - 55). That is, once an INV node is

encountered (pointed to by curr), the node is physically removed from the list by

setting the predecessor’s next pointer to the successor of curr. Note that since new

nodes cannot be added to the list at any point other than the head, the problems

that plague node removal in sorted lists do not apply. In particular, it is not possible

that removing one node can inadvertently lead to a new arrival disappearing from

the list. While it is possible for a removed node to re-appear in the list on account

of conflicting writes to the next pointer, such a node will necessarily already be

marked INV, and thus there will be no impact on the correctness of the list.

During the traversal, the curr node is skipped if curr.key 6= h.key (lines 39 - 41

and 56 - 58). Otherwise, we say the curr node is a “related node” with respect to

the current operation. There are three possibilities if curr is a related node: curr

is a DAT node, an INS node, or a REM node. In the latter two cases, the related

node was created by some concurrent Insert or Remove operation. We call such

operations “related operations”.

In HelpInsert, if a related REM node is encountered, there is a concurrent

Remove operation finalizing a removal of the same key. Hence, the HelpInsert

returns true (success) immediately (lines 42 - 43), since the concurrent Remove

operation ensures that the key is absent in the set. Otherwise (lines 44 - 45), if

the related node is an INS node, then the related Insert operation inserted the

same key earlier (or is determining that the key already exists in the list) and the

HelpInsert operation must return false. Finally, if the related node is a DAT

node, HelpInsert returns false since the key already exists in the set.

In HelpRemove, if a related REM node is found (lines 59 - 60), the operation

returns false immediately since the key was already deleted by a concurrentRemove

operation. If the related node is an INS node (lines 61 - 63), then the key was inserted

by a concurrent Insert operation. In this case, the thread attempts to change the
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node from INS to REM (line 62); a CAS instruction is needed to prevent data races

on the state field (i.e., line 5). In the last case, the related node is a DAT node,

meaning that the key is in the set, and the node is deleted by setting its state to

INV (line 65).

3.3 Correctness

To show that the algorithm is lock-free, we show that some operation completes

when any thread executes a bounded number of local steps. We first notice that

the Enlist operation is lock-free: a thread’s CAS at line 28 may fail only due

to another thread performing a CAS and completing its Enlist operation. Since

Enlist is invoked exactly once in each Insert and Remove, for n threads, at

least one list operation will complete if some thread fails the CAS for n times in its

Enlist operation.

To show that every HelpInsert and HelpRemove operation terminates, it is

sufficient to show the list is acyclic. There are three places where the next pointer of

a node is changed: executing line 27 cannot form a cycle, since the node h is newly

allocated and is not reachable from any other node; when a thread executes line 37

or line 54, pred is clearly always a predecessor of succ in some total order R, which

can be defined as the order in which nodes are inserted to the list (by the CAS at

line 28).

Since the size of the list is bounded by the total number of completed Enlist

operations (denoted as E), everyHelpInsert andHelpRemove operation finishes

in O(E) steps. Note that in HelpRemove, a thread never executes the CAS at

line 62 twice on the same node: if the CAS fails, the curr node is changed to a final

state (DAT or INV) and the loop will exit or skip the node in the next iteration.

Thus, for n threads, either a thread completes its own list operation in O(n + E)

local steps, or some other thread completes a list operation during this period of

time.

We define the linearization point for each operation: An Insert(k) orRemove(k)
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operation linearizes at the successful CAS at line 28 in Enlist. A Contains(k)

linearizes at line 16 if k /∈ AbsSet(head) when p executes this line. In cases

where k ∈ AbsSet(head) when p executes line 16, if the operation returns true,

the Contains(k) linearizes at this line. If the operation returns false, there ex-

ists a concurrent Remove(k) that linearizes after p executes line 16 and before p’s

Contains(k) returns. We let p’s Contains(k) linearize immediately after the lin-

earization point of this Remove(k). Note that multiple Contains(k) operations

may be required to linearize after the same Remove(k) operation, and any two of

these Contains(k) operations can be ordered arbitrarily.

3.4 Achieving Wait-freedom

The major challenge of the wait-free list algorithm lies in the implementation of

a wait-free Enlist operation. In this chapter, we present a wait-free Enlist im-

plementation adapted from the wait-free enqueue technique introduced by Kogan

and Petrank [41]. We also introduce an adaptive wait-free algorithm which allows

applications to balance average latency and worst-case latency.

The enqueue technique introduced by Kogan and Petrank [41] provides a wait-

free approach to append nodes at the tail of a list, but it is not immediately available

as a solution to the Enlist problem where nodes are appended at the head position.

We employ prev fields to solve this problem. The additional code for implementing

a wait-free Enlist is presented in Figure 3.2.

The basic idea of the wait-free Enlist algorithm is to let different Enlist op-

erations help each other complete. The helping mechanism must ensure that every

Enlist operation reaches the response point in a finite number of steps (wait-

freedom). This is achieved by requiring every thread to announce its intention by

creating a descriptor entry in a status array before starting an operation. During

its operation, the thread must visit each entry in the status array, helping other

threads make progress. To prevent starvation, each operation is assigned a phase

number from a strictly increasing counter, and an operation helps only those with
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record Desc

phase : N // integer phase number
pending : B // whether op is pending
node : Node // ptr to enqueueing node

shared variables
head : Node

dummy : Node

counter : N
status : Desc[THREADS]

initially

head← new Node〈−1,REM,nil,nil,−1〉
dummy ← new Node〈−,−,−,−,−〉
counter ← 0
foreach d in status do

d← new Desc〈−1, false,nil〉

68 procedure Enlist(h : Node)
69 phase← FAI(&counter)
70 status[threadid]← new Desc〈phase, true, h〉
71 for tid← 0 ... (THREADS− 1) do

72 HelpEnlist(tid, phase)
73 HelpFinish()

74 function IsPending(tid : N, phase : N) : B
75 d← status[tid]
76 return d.pending ∧(d.phase ≤ phase)

77 procedure HelpEnlist(tid : N, phase : N)
78 while IsPending(tid, phase) do

79 curr ← head
80 pred← curr.prev
81 if curr = head then

82 if pred = nil then

83 if IsPending(tid, phase) then

84 n← status[tid].node
85 if CAS(&curr.prev,nil, n) then

86 HelpFinish()
87 return

88 else

89 HelpFinish()

90 procedure HelpFinish()
91 curr ← head
92 pred← curr.prev
93 if (pred 6= nil)∧(pred 6= dummy) then

94 tid← pred.tid
95 d← status[tid]
96 if (curr = head)∧(pred = d.node) then

97 d′ ← new Desc〈d.phase, false, d.node〉
98 CAS(&status[tid], d, d′)
99 pred.next← curr

100 CAS(&head, curr, pred)
101 curr.prev ← dummy

Figure 3.2: Wait-free List: Enlist Operation

smaller phase numbers. The wait-free Enlist operation goes through six steps:

(a) The thread first announces its operation by creating a descriptor entry in its

slot (indexed by its thread id) in the status array (line 70). The descriptor

contains the phase number of the operation, a boolean pending field that indi-

cates whether the operation is incomplete, and a pointer to the enlisting node.

Once the descriptor is announced, the subsequent steps can be performed by

the thread itself or by some helper thread.

(b) The thread finds the node pointed to by head, and attempts to change its prev

field to the enlisting node h using a CAS instruction (line 85).

(c) The thread sets the pending flag of the operation descriptor to false by installing

a new descriptor (line 98); this prevents concurrent helpers from retrying after

the node is enlisted.
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(d) The thread sets h.next to point to the original head node (line 99). The ordering

of this step is important with respect to steps (b) and (e). That is, the update of

h.next must be ordered after head.prev is set to h, since the correct successor of

h is “unknown” until then. On the other hand, h.next must be updated before

head is changed to h, since otherwise a concurrent Contains operation may

start traversing from h and erroneously end by discovering h.next is nil.

(e) The thread fixes head by changing it to h using a CAS (line 100), which is the

linearization point of the Enlist operation.

(f) Finally, the thread clears the prev field of the original head by setting it to

a dummy state (line 101). This is necessary to allow the garbage collector to

recycle deleted nodes. Since the prev pointers are installed by the wait-free

Enlist implementation, and the lock-free algorithm is unaware of their exis-

tence, keeping the prev pointers prevents the garbage collector from reclaiming

a node even if the node is considered “unreachable” by the lock-free algorithm.

It is worth noting that we must invalidate the prev pointer by setting it to a

dummy state instead of nil, since the latter would admit ABA problems for

the CAS instruction (line 85). Once the prev field of a node is set to dummy,

it never changes.

3.5 An Adaptive Algorithm

Although the wait-free algorithm provides an upper bound on the steps required to

complete an operation in the worst case, it imposes overhead in the common cases

when contention is low. We employed the fast-path-slow-path methodology [42] to

construct an adaptive algorithm that performs competitively in the common case

while retaining the wait-free guarantee.

In the adaptive algorithm, a thread starts by executing a fast path version of the

Enlist operation, and falls back to the wait-free slow path if the fast path fails too

many times (bounded by constant F ). To prevent a thread from repeatedly taking

the fast path while another thread starves, every thread checks the global status
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array after completing D operations, and performs helping if necessary. As shown

in [42], for n threads, the adaptive algorithm ensures that every Enlist operation

completes in O(F +D ·n2) local steps. The F and D parameters can be adjusted to

balance worst-case and common-case latency of operations. It is worth noting that

the fast path Enlist of the adaptive algorithm is not equivalent to the lock-free

Enlist implementation in Figure 3.1. Instead, the fast path algorithm resembles

the wait-free protocol, but excluding the announcing and helping steps.

3.6 Performance Evaluation

We evaluate performance of the lock-free and wait-free list algorithms via a set of

microbenchmarks. These experiments allow us to vary the ratio of Insert, Remove

and Contains operations, the range of key values, and the initial size of the list.

We compare the following list-based set algorithms:

• HarrisAMR: Implementation of the Harris-Michael algorithm [54] which also

incorporates the wait-free Contains technique introduced in [29]. The imple-

mentation uses Java AtomicMarkableReference objects to atomically mark

deleted nodes.

• HarrisRTTI: Optimized implementation of HarrisAMR in which Java run-

time type information (RTTI) is used in place of AtomicMarkableReference.

This is the best-known lock-free list implementation.

• LazyList: Lock-based optimistic list implementation proposed by Heller et

al [29].

• LFList: The lock-free unordered list algorithm discussed in Chapter 3.1.

• WFList: The basic wait-free unordered list algorithm discussed in Chap-

ter 3.4.

• Adaptive: The adaptive wait-free unordered list algorithm discussed in Chap-

ter 3.5.

• FastPath: The fast-path portion of the Adaptive algorithm from Chapter 3.5.
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Harris LazyList LFList WFList Adaptive

Insert Cost 1 CAS 2 CAS 2 CAS 4 CAS + 1 F&I 3 CAS

Remove Cost 2 CAS 2 CAS 1 CAS 3 CAS + 1 F&I 2 CAS

Traverse Distance 1
2k (1− α

2 )k

Figure 3.3: Update Cost and Average Traversal Distance (in uncontended cases)

In all implementations (except “HarrisAMR”), we use Java “FieldUpdaters” to

perform CAS instructions on object fields. This approach provides better perfor-

mance than simply using atomic fields (i.e. AtomicInteger and AtomicReference),

which require expensive heap allocation cost and extra indirection overhead.

Experiments were conducted on an HP z600 machine with 6GB RAM and a

2.66GHz Intel Xeon X5650 processor with 6 cores (12 total threads) running Linux

kernel 2.6.37 and OpenJDK 1.6.0. Each data point is the median of five 5-second

trials.

3.6.1 Expected Overheads

Figure 3.3 enumerates the expected overheads of each of the algorithms. The cost

of a successful list operation is affected by the update cost and the traversal cost.

We measure the cost of an update operation (Insert or Remove) by the number

of atomic instructions required in the uncontended case. Compared to the Harris

algorithm, LFList uses an extra CAS instruction in Insert and one less in the

Remove operation. The WFList requires two more CAS instructions and an extra

FAI instruction to provide wait-freedom, though this cost is reduced in the Adaptive

algorithm by leveraging the lock-free fast path.

The traversal cost is the average number of nodes that must be accessed. Suppose

the list contains k elements uniformly selected from range [0...M) and let k = αM

(0 ≤ α ≤ 1). The average traversal distance for searching a random key value

in an ordered list is: Do = 1
2
k. In unordered lists, the average traversal distance

is averaged among successful and unsuccessful search operations: Du = α · 1
2
k +
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(1− α)k = (1− α
2
)k. This suggests that ordered lists have an increasing advantage

over unordered lists when the set is sparse. For instance, when α = 1
2
(half of

the key space is in the set), the average traversal distance in an unordered list is

50% longer than its ordered permutation. Note too that in the ordered lists, an

unsuccessful insert/remove does not perform a CAS, whereas every insert/remove

in the unordered list performs a CAS.

3.6.2 Microbenchmark Performance

In Figures 3.4–3.6, we assess the performance of the lists for a variety of workloads.

The “L” parameter indicates the percentage of operations that are lookups, with the

remainder evenly split between inserts and removals. “R” indicates the key range,

and “S” indicates the average size of the list. In every case, the list is pre-populated

with a random selection of S unique elements in the range [0, R). These elements

are chosen at random, without replacement. Thus in the unordered lists, they will

not be ordered.

The x86 processor features an aggressive pipeline, a deep cache hierarchy, and

low-latency CAS operations. On this platform, the cost of write-write sharing is

high, and thus both the wait-free enlistment mechanism and conflicting CAS op-

erations on the head of the list are potential scalability bottlenecks. Nonetheless,

our lock-free and wait-free algorithms scale well in all but a few cases. Indeed, the

difference in performance appears to be more a consequence of the increased traver-

sal distance in the unordered algorithm than increased cache misses due to frequent

updates to the head of the list.

The most immediate and consistent finding is that the Harris list without RTTI

optimizations has substantially higher latency and worse scalability than all other

algorithms. We include this result as a reminder that concurrent data structures

must be implemented using state-of-the-art techniques. Merely showing improved

performance relative to the canonical Harris list presented in [34] does not give

any indication of real-world performance. In particular, we caution that a direct

comparison between our list and the wait-free ordered list [68] is not possible until
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Figure 3.4: Microbenchmark - Short Lists (L: Lookup Ratio, R: Key Range, S: List Size)

that list is redesigned to use these modern optimizations.

We also see that long-running and read-only operations significantly reduce the

cost of wait-free enlistment. When lists are small and updates are frequent, the en-

listment table and counter themselves become a bottleneck. Otherwise, the adaptive

algorithm and its FastPath component are nearly identical.

As expected, in a read-only workload, the unordered list performs about half as

well as the ordered lists. This follows immediately from our analysis of the number

of nodes accessed. The gap is most pronounced when the list size is 1000 elements:

for smaller lists all algorithms use a small number of cache levels, and for larger
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Figure 3.5: Microbenchmark - Medium Lists (L: Lookup Ratio, R: Key Range, S: List
Size)

lists all algorithms use a large number of cache levels. Here, however, the ordered

lists tend to keep more of their working set in the cache than the unordered lists,

particularly since failed lookups traverse half as many elements.

The FastPath lock-free list is always a constant factor slower than the lock-free

unordered list, but the Adaptive algorithm remains close to FastPath. This finding

confirms Kogan and Petrank’s claim [42] that the fast-path-slow-path technique can

provide worst-case wait-freedom with lock-free performance. Furthermore, since the

average operation in our list accesses many locations, contention on the head node of

the list, while significant, does not dominate. Thus we observed that even for small
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Figure 3.6: Microbenchmark - Long Lists (L: Lookup Ratio, R: Key Range, S: List Size)

thresholds, the adaptive algorithm rarely fell back to wait-free mode. However, it is

important to observe that the lock-free FastPath algorithm itself is slower than our

best lock-free unordered list.

3.7 Summary

In this chapter, we presented lock-free and wait-free implementations of unordered

linked lists. The unordered list algorithms are suitable for use as standalone lists. In

addition, we showed that the unordered nature of the list can make it substantially
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easier to achieve wait-freedom, and the wait-free lists can serve as the foundation

for building wait-free stacks and non-resizable hash tables.

Our experience in designing the adaptive wait-free algorithm also provides in-

sights into the fast-path-slow-path methodology [42]. We showed that in an adaptive

algorithm, the lock-free fast path must be carefully designed, and sometimes modi-

fied, to be able to compose correctly with the wait-free slow path. The modification

may also introduce noticeable overheads to the lock-free algorithm.
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Chapter 4

Dynamic-Sized Nonblocking Hash

Tables

Our second contribution is an implementation of lock-free and wait-free resizable

hash tables. The algorithms were published in Proceedings of the 33rd ACM Sym-

posium on Principles of Distributed Computing (PODC 2014) [48].

Hash tables are often chosen as the data structure to implement concurrent

set and map objects, because they offer O(1) insert, remove and lookup operations.

Typically, a closed-addressing hash table consists of a static bucket array, where each

bucket is a pointer to a dynamic set object, and a hash function that directs oper-

ations to buckets according to the values of the operations’ operands. To preserve

constant time complexity when the number of elements grows, a resize operation

(or rehash) must be performed on the hash table to extend the size of the bucket

array. However, resizing a hash table in the presence of concurrent operations in

a nonblocking manner is a difficult problem [65]. Shalev and Shavit proposed the

split-ordered list [65], which circumvents explicit migration of key values between

buckets. However, their algorithm has several limitations. A “shrinking” feature

is missing in the resizing mechanism: the bucket array can only extend when the

size of set grows, during which “marker” nodes are permanently inserted into the

underlying linked list; it is unclear how these marker nodes can be reclaimed when
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the set shrinks. Furthermore, the implementation leverages the assumption that

memory size is bounded and known, and relies on a tree-based indexing structure

with predetermined parameters (i.e. levels and degrees).

We introduce new resizable hash table implementations that eliminate the lim-

itations in [65], by solving the resizing problem with a direct and more efficient

approach. In contrast to [65], our implementations achieve three new properties.

First, they are dynamic: the bucket array can adjust its size both upward and

downward, according to the size of the set. Second, the bucket array is unbounded

and we make no assumption about the size of memory. Third, our algorithm admits

wait-free variants, where every insert, remove, and lookup operation completes in

a bounded number of steps, even in the presence of resizing. The major technical

novelty of our implementations stems from the definition and use of freezable set

objects. In addition to canonical set operations (i.e., insert, lookup, and remove),

a freezable set provides a “freeze” operation that makes the object immutable. In

our algorithms, each bucket is implemented using a freezable set. To resize a hash

table, buckets in the old bucket array are frozen before their key values are copied

to the new table. The migration of keys during resizing is incrementally performed

in a lazy manner, and more importantly, the logical state of the set is never changed

by migration. This ensures that every insert, remove, and lookup operation is lin-

earizable [36].

We briefly introduce freezable set objects in Chapter 4.1, and discuss a lock-

free hash set based on freezable sets (Chapters 4.2 and 4.3). A wait-free hash set

algorithm is presented in Chapter 4.4. We discuss the implementations of freezable

sets in Chapters 4.5 and 4.6. Finally, we present evaluation results in Chapter 4.7.

4.1 Freezable Sets

We first briefly introduce FSet, a freezable set object that serves as the common

building block of our lock-free and wait-free hash table algorithms. Figure 4.1

presents the FSet specification. Discussion of nonblocking implementations of
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abstract states of FSet

set : Set of N
ok : B

abstract states of FSetOp

type : {INS,REM}
key : N

done : B

resp : B

GetResponse(op : FSetOp) : B
atomic

return op.resp

HasMember(b : FSet, k : N) : B
atomic

return k ∈ b.set

Invoke(b : FSet, op : FSetOp) : B
atomic

if b.ok∧¬op.done then

if op.type = INS then

op.resp← op.key /∈ b.set
b.set← b.set ∪ {op.key}

else if op.type = REM then

op.resp← op.key ∈ b.set
b.set← b.set \ {op.key}

op.done← true

return op.done

Freeze(b : FSet) : Set of N
atomic

if b.ok then

b.ok ← false

return b.set

Figure 4.1: Specification of FSet and FSetOp Objects

FSet appears in Chapter 4.5 and Chapter 4.6.

An FSet object implements an integer set with insert, remove, and lookup

operations, and in addition, provides a special Freeze operation. The abstract

states consist of a set of integers, and an ok bit indicating whether the set is mutable.

Modification of an FSet object can be either insertion or removal of a key.

Logically, an insert returns true if the key was not in the set, and a remove returns

true if the key was in the set; otherwise, the modification operation returns false. We

encode insert and remove operations as FSetOp objects. The states of a FSetOp

object include the operation type (INS or REM), the key value, a boolean done field

that indicates whether the operation is ever applied, and a boolean resp field that

holds the return value.

Instead of letting threads invoke insert or remove operations on an FSet object,

we adopt an alternative style where modifications are performed via the Invoke

andGetResponse interface. The Invoke operation attempts to apply an insert or

a remove operation op on a FSet object b. The operation op is executed only if b is

mutable (b.ok) and op was not applied before (¬op.done). In case op is successfully

applied, it is marked as done, with the return value written in its resp field. The
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Invoke operation returns true if op is (or was already) applied; otherwise, the

operation returns false, in which case b is immutable and op is not applied.

The HasMember operation tests whether the given key is in the FSet object.

The Freeze operation marks the given FSet object as immutable by setting its

ok bit to false, and returns all elements of the set. The GetResponse operation

returns the resp field of the given FSetOp object.

The Freeze operation renders an FSet permanently immutable, and also re-

turns the final state of an FSet object. This plays prominently in nonblocking

resize operations: when resizing, a thread first freezes the buckets (which are im-

plemented using FSet objects) that will be merged or split; thereafter, keys in the

frozen buckets can be safely migrated into new buckets without loss or duplication.

The role of the FSetOp’s done bit is to ensure that every modification is ap-

plied at most once. This is critical to our wait-free hash set design, where threads

announce operations and help each other to make progress. Using done, we can be

sure that helping does not cause an operation to execute multiple times.

4.2 A Lock-free, Dynamic-Sized Hash Set Algo-

rithm

Figure 4.2 presents a lock-free hash set algorithm. The hash set object provides

three operations: Insert adds a key value to the set and returns true if the key was

not in the set, Remove removes a key value from the set and returns true if the

key was in the set, and Contains returns whether the given key is in the set.

We assume the availability of a nonblocking implementation of the FSet object.

In particular, all Invoke, HasMember and Freeze operations performed on a

FSet object must be lock-free with respect to the object. We also require the

implementation of GetResponse to be wait-free.

Our hash set is a linked list of HNode (Hash Table Node) objects, where an

HNode represents a version of the set (a new version is installed during a Resize

operation). An HNode object consists of an array of FSets (buckets), with the
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record HNode

buckets : FSet[ ]
size : N

pred : HNode

shared variables

head : HNode

initially

head← new HNode〈new FSet[1], 1,nil〉
head.buckets[0]← new FSet〈∅, true〉

1 Insert(k : N) : B
2 resp← Apply(INS, k)
3 if 〈heuristic-policy〉 then
4 Resize(true)

5 return resp

6 Remove(k : N) : B
7 resp← Apply(REM, k)
8 if 〈heuristic-policy〉 then
9 Resize(false)

10 return resp

11 Contains(k : N) : B
12 t← head
13 b← t.buckets[k mod t.size]
14 if b = nil then

15 s← t.pred
16 if s 6= nil then b← s.buckets[k mod s.size]
17 else b← t.buckets[k mod t.size]

18 return HasMember(b, k)

19 Resize(grow : B)
20 t← head
21 if t.size > 1∨ grow then

22 for i from 0 to t.size− 1 do

23 InitBucket(t, i)

24 t.pred← nil

25 size← grow ? t.size ∗ 2 : t.size/2
26 buckets← new FSet[size]
27 t′ ← new HNode〈buckets, size, t〉
28 CAS(&head, t, t′)

29 Apply(type : {INS,REM}, k : N) : B
30 op← new FSetOp〈type, k, false,−〉
31 while true do

32 t← head
33 b← t.buckets[k mod t.size]
34 if b = nil then

35 b← InitBucket(t, k mod t.size)

36 if Invoke(b, op) then

37 return GetResponse(op)

38 InitBucket(t : HNode, i : N) : FSet
39 b← t.buckets[i]
40 s← t.pred
41 if b = nil∧ s 6= nil then

42 if t.size = s.size ∗ 2 then

43 m← s.buckets[i mod s.size]
44 set← Freeze(m) ∩ {x | x mod t.size = i}

45 else

46 m← s.buckets[i]
47 n← s.buckets[i+ t.size]
48 set← Freeze(m) ∪ Freeze(n)

49 b′ ← new FSet〈set, true〉
50 CAS(&t.buckets[i],nil, b′)

51 return t.buckets[i]

Figure 4.2: A Lock-free Dynamic-Sized Hash Set Implementation

array length stored in the size field, and a pred pointer that points to a predecessor

HNode object. A shared pointer head points to the head of the HNode list. For

simplicity, we make the following assumptions:

(1) A Resize operation either doubles (grows) or halves (shrinks) the size of the

bucket array.

(2) The use of modular arithmetic (index = k mod size) for the hash function

is acceptable.
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The key challenge in our algorithm is to coordinate the resizing mechanism (em-

bodied in the Resize operation) with the set operations (Insert, Remove, and

Contains).

A Resize operation takes a boolean parameter that indicates whether the caller

intends to grow or shrink the hash table. The thread must first ensure that all the

logical key values of the set are physically stored in the buckets of the head HNode.

This is achieved by invoking InitBucket on each bucket (line 23), which migrates

to t those key values stored in t’s predecessor but not yet in t. After the migration

is complete, we set t.pred to nil (line 24) to allow the predecessor (which is now

immutable) and its buckets to be garbage collected. The thread then allocates a

new HNode t′ with t as the predecessor, and uses a CAS instruction to make t′ the

new head HNode (line 28). The operation does not initialize entries of the new

bucket array: these entries are initialized lazily as they are later accessed by Insert

and Remove operations.

The InitBucket operation initializes the i-th bucket of a given HNode t, by

merging or splitting the corresponding buckets of t’s predecessor HNode (s), if s

exists. The operation compares the sizes of t and s to determine whether t is growing

or shrinking with respect to s, and then, freezes the corresponding bucket(s) of s

before copying the elements to t. If t doubles the size of s, then (roughly) half of

the elements in the (i mod s.size)-th bucket of s migrate to the i-th bucket of t

(line 44). Otherwise, t halves the size of s, in which case the i-th and (i+ t.size)-th

buckets of s are merged to form the i-th bucket of t (line 48). Note that a new

FSet object is allocated to store the merged or split bucket (line 49), and a CAS

instruction is used to prevent races with a helping thread (line 50).

Both Insert and Remove operations delegate their work to the Apply oper-

ation (lines 2 and 7), which applies the modification to the appropriate bucket.

Apply first allocates an FSetOp object to represent the modification request

(line 30), and then repeatedly attempts to apply the request to the correspond-

ing bucket b (line 36). If b is nil, the thread must invoke InitBucket to initialize

the bucket (line 35) before applying the modification. After the modification is suc-

cessfully applied (line 36 returns true), the operation receives its return value via
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AbsSet ≡ NodeSet(head)

NodeSet(t) ≡
t.size−1
⋃

i = 0

BuckSet(t, i)

BuckSet(t, i) ≡







Elems(t, i) if t.buckets[i] 6= nil

Split(t, i) if t.buckets[i] = nil ∧ t.pred.size ∗ 2 = t.size
Merge(t, i) if t.buckets[i] = nil ∧ t.pred.size / 2 = t.size

Elems(t, i) ≡ t.buckets[i].set

Split(t, i) ≡ Elems(t.pred, i mod t.pred.size) ∩ {x | x mod t.size = i}

Merge(t, i) ≡ Elems(t.pred, i) ∪ Elems(t.pred, i+ t.size)

Figure 4.3: Refinement Mapping from Concrete Hash Sets to Abstract Sets

GetResponse (line 37).

A modification may trigger the resizing mechanism according to heuristic poli-

cies. Since the choice of policy is orthogonal to the algorithm, we leave it unspecified

in our presentation (lines 3 and 8). As typical heuristics, Insert might approximate

the bucket size by the number of elements it visits, and grow the hash table if the

cost exceeds some threshold; upon completing a Remove, the thread may sample

the sizes of randomly selected buckets and shrink the hash table if their sizes all fall

below some threshold.

A Contains operation starts by searching the given key value in the correspond-

ing bucket (b) of the head HNode. If b is not nil, the thread simply searches the

bucket (line 18) to determine if the key value is in the set. Otherwise, the thread

must trace back to s (line 15) and perform the search there. There is one trouble-

some interleaving, which occurs when s is resized concurrently with the Contains.

Thus we must double-check (line 16) if s has become nil between lines 13 and 15,

in which case we re-read the corresponding bucket of t (line 17), which must have

become initialized prior to s becoming nil, and perform the search in it.
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4.3 Correctness

The major goal of the linearizability proof is to show that a concrete hash set

object refines an abstract set object (AbsSet), with respect to the mapping function

in Figure 4.3. Intuitively, the abstract set object is defined as the union of all

bucket sets of the head HNode. A bucket set (BuckSet(t, i)) is defined as the

elements of the bucket (Elems(t, i)) if the bucket pointer is not nil, or otherwise,

the union (Merge(t, i)) or intersection (Split(t, i)) of the corresponding buckets of

the predecessor HNode.

We define the linearization points of Insert, Remove, and Contains as fol-

lows: An Insert or a Remove operation by thread p linearizes at an Invoke

operation (line 36) that returns true (which logically sets opp.done to true). A

Contains operation linearizes at the HasMember operation (line 18) if b is mu-

table (b.ok is true) when the operation is performed; otherwise, b must have been

made immutable by some concurrent Freeze operation, in which case we let the

Contains operation linearize at the Freeze operation that sets b.ok to false, or at

p’s step at line 12, whichever happens later.

To prove lock-freedom, we show that from any reachable configuration, some

Insert, Remove or Contains operation completes in a bounded number of steps.

First, note that a Contains operation cannot delay indefinitely between lines 12

and 17, and the final call to HasMember is lock-free by definition. An Insert or a

Remove operation consists of a call to Apply and a potential call to Resize. We

show that an Apply operation takes the back edge of the while loop at line 31 only

if another Resize operation (called by an Insert or Remove) completes. Since

we maintain the invariant that every bucket of the head HNode is mutable, for an

Invoke operation of thread p to fail, p must encounter an immutable bucket. Since

a bucket is made immutable only by a Resize, then for T threads, if p’s Apply fails

more than T times, then it means that even if T−1 threads were all in Resize when

Apply was called, the T -th failure of p’s Apply indicates that some thread must

have finished its Resize, then called Apply again, indicating that it succeeded in

another Insert or Remove.

40



Suppose S is the maximum size of the head HNode during execution. Then a

Resize operation contains at most 2S FSet operations. Each iteration of the while

loop in Apply includes at most 3 FSet operations (at most 2 in InitBucket, and

one in Invoke). Therefore, at least one Insert, Remove or Contains operation

must complete upon the completion of (3T+2S)·T FSet operations, and hence, the

hash set implementation is lock-free by the assumption that the FSet operations

are lock-free.

4.4 A Wait-free Hash Set Algorithm

We extend the lock-free implementation to obtain a wait-free hash set algorithm.

Our wait-free hash set algorithm assumes that a wait-free FSet implementation

is available. We start with an illustration of the main challenge of achieving wait-

freedom. Recall that in our lock-free hash set algorithm, FSet objects are only

required to be lock-free. Now suppose a wait-free FSet implementation is given.

Does the algorithm immediately become wait-free? The answer is negative: as

demonstrated in the following example, anApply operation may take an unbounded

number of steps to complete, due to concurrent Resize operations performed on

the hash set object.

Let thread p attempt to insert some key value k into the hash set, and stall at

the Invoke operation at line 36. Let t be the head of the HNode list and let b be

the corresponding bucket where p wishes to perform the insertion. Now let another

thread q complete an Insert operation that triggers a Resize operation on the

hash set, after which, a new object t′ becomes the head of the HNode list. Now

suppose q inserts the same key value k into the hash set, and since all buckets of

t′ are nil, q invokes InitBucket to initialize the corresponding bucket of t′, which

freezes b, the corresponding bucket of its predecessor t. When thread p resumes, its

Invoke operation will fail since b is frozen (immutable), and p will repeat the while

loop in the Apply operation. The above process can repeat forever, by alternating

removals and insertions of k by q, so that p’s Apply operation never completes.
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record WFOp extends FSetOp

prio : N

additional shared variables

A : WFOp[THREADS]
counter : N

initially

counter ← 0
for tid← 0 to (THREADS− 1) do

A[tid]← new WFOp〈−,−,−,−,∞〉

52 Apply(type : {INS,REM}, k : N) : B
53 prio← FAI(&counter)
54 myop← new WFOp〈type, k, false,−, prio〉
55 A[threadid]← myop
56 for tid← 0 to (THREADS− 1) do

57 op← A[tid]
58 while op.prio <= prio do

59 t← head
60 b← t.buckets[op.key mod t.size]
61 if b = nil then

62 b← InitBucket(t, op.key mod t.size)

63 if Invoke(b, op) then

64 break

65 return GetResponse(myop)

Figure 4.4: A Wait-free Implementation of Apply

We present a wait-free implementation of the Apply operation in Figure 4.4.

The basic idea is to let threads help each other to complete their Apply operations

instead of constantly competing to change and/or freeze the buckets. Our helping

mechanism is similar to the doorway stage of Lamport’s bakery algorithm [43].

In the wait-free algorithm, an insert or remove operation is represented using

a WFOp object which adds a prio field to the FSetOp object. The prio field

represents the “priority” of an operation, which dictates the operation’s precedence

in the helping mechanism: an operation with smaller prio has precedence over one

with larger prio. The priorities of operations are generated from a strictly increasing

counter (initially 0), implemented using an atomic fetch-and-increment instruction

(line 53).

In Apply, thread p first allocates an WFOp object for its modification oper-

ation, associated with a unique priority, and then announces the object (line 55)

in a shared array (namely A), indexed by p’s thread id. Then p iterates through

A and for any operation op announced by thread q (including p itself), if op.prio

is smaller than (or equal to) p’s most recent priority, p helps q complete (lines 59

to 64). Finally, p invokesGetResponse to get the return value of its own operation

(line 65).
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To prove wait-freedom, we first observe that Contains is wait-free, as it does

not have any loops, and the call to HasMember is wait-free. To demonstrate that

Insert and Remove are wait-free, we show that for T threads, the inner while

loop at line 58 executes at most T iterations. For thread p whose Invoke at line 63

returns false, the head HNode must be changed between p’s line 59 and line 63,

since no bucket of head can be in a frozen state. The change of head must be

made by a step at line 28 of some Resize, indicating the completion of the outer

Insert or Remove operation. After T iterations of the while loop, some thread

must have completed at least 2 Insert or Remove operations, where the second

one must have a lower priority (larger prio) than the priority of p. Thus, op.done

must have been set to true, and p’s Invoke will return true in the next iteration.

Therefore, Apply operations are wait-free, since each contains at most O(T 2) FSet

operations, which are wait-free by assumption.

4.5 A Specialized Lock-free FSet Implementation

Figure 4.5 presents a lock-free FSet implementation specialized for the lock-free

hash set in Figure 4.2. It exploits the property that in the lock-free hash set algo-

rithm, every FSetOp object can only be applied to a bucket FSet by the allocating

thread, due to absence of helping, and thus, we need not keep an actual done field

in the FSetOp object.

The idea of the implementation is straightforward: we keep the underlying FSet

objects (namely FSetNodes) immutable, and let all updates be performed in a

copy-on-write manner. We maintain a pointer node that points to the current

FSetNode object, which consists of the elements of the set (set) and a bit (ok)

indicating whether the set is mutable. Any update to an FSet, either via an Invoke

or a Freeze operation, must first allocate a new FSetNode object (cloned from

the current FSetNode), then apply its change, and then finalize the modification

with a CAS instruction that points node to the new FSetNode.

The immutable nature of FSetNode objects allows us to implement the inner
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record FSetNode

set : Set of N
ok : B

record FSet

node : FSetNode

record FSetOp

type : {INS,REM}
key : N

resp : B

66 Freeze(b : FSet) : Set of N
67 o← b.node
68 while o.ok do

69 n← new FSetNode〈o.set, false〉
70 if CAS(&b.node, o, n) then

71 break

72 o← b.node

73 return o.set

74 Invoke(b : FSet, op : FSetOp) : B
75 o← b.node
76 while o.ok do

77 if op.type = INS then

78 resp← op.key /∈ o.set
79 set← o.set ∪ {op.key}

80 else if op.type = REM then

81 resp← op.key ∈ o.set
82 set← o.set \ {op.key}

83 n← new FSetNode〈set, true〉
84 if CAS(&b.node, o, n) then

85 op.resp← resp
86 return true

87 o← b.node

88 return false

89 HasMember(b : FSet, k : N) : B
90 o← b.node
91 return k ∈ o.set

92 GetResponse(op : FSetOp) : B
93 return op.resp

Figure 4.5: A Specialized Lock-free FSet Implementation

set using any sequential algorithm. Since each bucket of a hash table tends to

contain only a small number of elements, one appealing option is an unsorted array:

it exploits better cache locality than list-based alternatives, and affords the compiler

an opportunity to employ wide vector operations.

We also note that some simple (but useful) optimizations are elided in the pseudo

code to avoid clutter. In our implementation, we let an insert (or remove) operation

exit early if the key value is (or is not) in the set, thereby avoiding an unnecessary

update (allocation, CAS).

4.6 A Cooperative Wait-free FSet Implementa-

tion

Figure 4.6 presents an FSet implementation designed for our wait-free hash set al-

gorithm, where the FSet implementation “cooperates” with the helping mechanism
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record FSetNode

set : Set of N
op : FSetOp ∪ {⊥}

record FSet

node : FSetNode

flag : B

record FSetOp

type : {INS,REM}
key : N

resp : B

prio : N

94 Invoke(b : FSet, op : FSetOp) : B
95 while b.node.op 6= ⊥∧ op.prio 6=∞ do

96 if b.flag then

97 DoFreeze(b)
98 break

99 o← b.node
100 if o.op = nil then

101 if op.prio 6=∞ then

102 if CAS(&o.op,nil, op) then

103 HelpFinish(b)
104 return true

105 else

106 HelpFinish(b)

107 return op.prio =∞

108 Freeze(b : FSet) : Set of N
109 b.flag ← true

110 return DoFreeze(b)

111 HasMember(b : FSet, k : N) : B
112 o← b.node
113 op← o.op
114 if op 6= nil ∧ op 6= ⊥ ∧ op.key = k then

115 return op.type = INS

116 return k ∈ o.set

117 GetResponse(op : FSetOp) : B
118 return op.resp

119 DoFreeze(b : FSet) : Set of N
120 while b.node.op 6= ⊥ do

121 o← b.node
122 if o.op = nil then

123 if CAS(&o.op,nil,⊥) then

124 break

125 else

126 HelpFinish(b)

127 return b.node.set

128 HelpFinish(b : FSet)
129 o← b.node
130 op← o.op
131 if op 6= nil∧ op 6= ⊥ then

132 if op.type = INS then

133 resp← op.key /∈ o.set
134 set← o.set ∪ {op.key}

135 else if op.type = REM then

136 resp← op.key ∈ o.set
137 set← o.set \ {op.key}

138 op.resp← resp
139 op.prio←∞
140 CAS(&b.node, o,new FSetNode〈set,nil〉)

Figure 4.6: A Cooperative Wait-free FSet Implementation

(Figure 4.4) to achieve wait-freedom.1

We inherit the immutable design of the underlying set objects as in the previous

lock-free FSet implementation. Now, however, the wait-free implementation must

prevent duplicate execution of operations due to the presence of helping. This is

achieved by leveraging the prio field: for any FSetOp object op, its abstract done

field is true if op.prio is set to ∞, and we maintain an invariant that op is performed

only if op.prio is not ∞.

1The implementation is lock-free by itself.

45



The key to the protocol is to let contending threads synchronize at the op field

of an FSetNode object. To perform an FSetOp (op), a thread first attempts to

change node.op from nil using CAS. Subsequently, the thread invokes HelpFinish

to compute the return value of op, marks op as done, and replaces the current

FSetNode with the result set (a new object) using CAS.

A Freeze operation first announces its intention by setting flag to true, and

invokes DoFreeze to set node.op to ⊥. To show a Freeze operation is wait-free,

it is sufficient to show that DoFreeze completes in a bounded number of steps.

For any thread p in an DoFreeze operation, we notice that the CAS at line 123

can fail only because node.op is changed by a concurrent CAS at line 123 or line 102.

In the former case, node.op is set to ⊥ and p’s while loop will terminate in the next

iteration. In the latter case, any subsequent Invoke operation will see that flag

is set, and invoke DoFreeze. Thus, either p’s CAS succeeds in its next iteration,

or a concurrent DoFreeze sets node.op to ⊥, which forces p to terminate its while

loop in the following iteration.

An HasMember operation must first check if there exists a linearized insert or

remove operation by inspecting the op field. This is necessary because an Invoke

operation on a FSet object b may return true without invoking HelpFinish on b

(in cases where op is performed by a concurrent thread), leaving b in an intermediate

state. Neglecting to check the op field can cause a subsequent Contains operation

to erroneously miss the immediately preceding insert or remove operation, which

violates linearizability.

4.7 Performance Evaluation

We evaluate the performance of our hash tables via a stress-test microbenchmark.

The experiments were run on a Niagara2 system with one 1.165 GHz, 64-way Sun

UltraSPARC T2 CPU with 32 GB of RAM, running Solaris 10. The Niagara2 has

eight cores, each eight-way multi-threaded, for a total of 64 threads. We used the

Oracle JDK version 1.7.0 13. We also run experiments on an x86 system with one
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2.66GHz Intel Xeon X5650 processor and 6GB of RAM, running Linux kernel 3.11.

The processor has six cores, each two-way multi-threaded, for a total of 12 threads.

On the x86, we used OpenJDK version 1.7.0 51.

We compare eight implementations:

• SplitOrder is the algorithm proposed by Shalev and Shavit [65] and is used

as our baseline. Our Java implementation of SplitOrder used the latest C++

version as a reference, to ensure a faithful implementation. To the best of

our knowledge, this is the best-performing algorithm for implementing an ex-

tensible (but not shrinkable) hash table. Furthermore, the implementation

optimized its configuration of the directory structure (using a two-level tree)

for the size of each experiment. This ensures a minimal bucket size for the du-

ration of each experiment. Unlike the baseline, the remaining seven algorithms

were run with support for dynamic resizing.

• LFArray is our lock-free hash table, in which per-bucket freezable sets are

implemented as arrays of unsorted elements (Chapter 4.5).

• LFArrayOpt removes a level of indirection from LFArray by pointing buckets

directly to array elements, rather than FSet markers.

• LFList is similar to LFArray, except it uses an unsorted list implementation

(Chapter 3) for its freezable sets. In addition to the above lock-free imple-

mentations, we consider four wait-free implementations, which use a wait-free

FSet (Chapter 4.6).

• WFArray and WFList employ the straightforward wait-free Apply from

Figure 4.4 to make the LFArray and LFList algorithms wait-free.

• Adaptive applies the Fastpath/Slowpath technique [42] to reduce the over-

head of WFArray.

• AdaptiveOpt applies the optimizations from LFArrayOpt to Adaptive. All

adaptive algorithms used a threshold of 256 consecutive failures to trigger a

switch to the slow path.

All implementations (to include SplitOrder) were optimized using techniques

from the java.util.concurrent package.

Our main focus is performance in the absence of resizing operations. To this
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Figure 4.7: Microbenchmark Performance on Niagara2 (Write-Heavy)

end, for a given experiment we begin by pre-populating each hash table to hold half

of the experiment’s key range. For a lookup ratio L, we randomly select operations

such that insert and remove are chosen with equal probability (1 − L)/2. Thus

while operations and keys are randomly selected, the number of elements in the

table remains steady. We report the average of five 5-second trials. Variance was

negligible.
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Figure 4.8: Microbenchmark Performance on Niagara2 (Read-Heavy)

4.7.1 SPARC Performance

Figures 4.7 and 4.8 present performance on the Niagara2. The Niagara2 has simple

in-order cores with per-core L1 caches and a shared L2 cache. While memory access

latencies are low, there is no out-of-order execution to hide the latency of memory

accesses: during a cache miss, another hardware thread is scheduled. For all but the

smallest key range, the random distribution of keys ensures that every access will

incur an L1 cache miss to dereference the bucket, regardless of the implementation.

Since SplitOrder uses a sorted list, whereas LFList uses an unsorted list, SplitOrder

should traverse half as many pointers, on average. However, our efficient mechanism
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for finding buckets keeps the gap below 2×.

When we implement each per-bucket FSet as an array, a new trade-off is in-

troduced. On the one hand, all pointer chasing within a bucket is eliminated; on

the other, insert and remove operations must copy the entire array. The high mem-

ory bandwidth of the Niagara2, coupled with the absence of pointer chasing within

each bucket, result in superior performance for LFArray and LFArrayOpt. The

most important factor in hash table performance on Niagara2 appears to be pointer

chasing.

The WFArray and WFList implementations show limited scaling, except when

lookups dominate. The poor performance is due to the cost of announcing every

operation: incrementing a single global shared counter is a bottleneck, as is the

use of the WFOp array for announcing operations and finding threads to help.

The Fastpath/Slowpath technique does much to recover this cost. However, even

though our threshold of 256 failures virtually guarantees no fallbacks to the slow

path, wait-free FSet operations still carry a cost due to extra memory indirection

and allocation.

4.7.2 x86 Performance

In experiments on a 6-core/12-thread Intel Xeon 5650, our algorithms behaved sim-

ilarly to the Niagara2. The key differences were that there was little difference

between LFArray and LFArrayOpt, and that, at high lookup ratios, the adaptive

algorithms were able to close much of the gap with LFList. Given the much differ-

ent microarchitecture of the X5650, the lack of significant difference between these

results and those reported for the Niagara2 give confidence that the behaviors we

observed were consequences of the fundamental characteristics of our algorithms,

rather than architecture-specific anomalies. In particular, the locality afforded by

implementing each bucket as an array enables LFArray to outperform SplitOrder in

most cases.
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Figure 4.9: Microbenchmark Performance on x86 (Write-Heavy)

4.8 Summary

Our resizable hash table implementations differ from prior efforts in that they allow

keys to be moved among buckets during a resize, without sacrificing throughput

or progress. Our technique allows the hash table’s buckets to be implemented as

arrays, which increases locality and reduces pointer chasing. Our practical wait-free

algorithms also demonstrate the resilience of the fast-path-slow-path technique [42]:

it took little effort to make our lock-free algorithms wait-free, and the result was

dramatically faster than a naive wait-free solution.
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Figure 4.10: Microbenchmark Performance on x86 (Read-Heavy)

The FSet objects used within the hash table leaves great opportunity for im-

provement. Most significantly, we show (in Chapter 6) that our copy-on-write based

implementation can be accelerated by hardware transactions, which significantly im-

proves performance and preserves the lock-free/wait-free progress guarantee.
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Chapter 5

Array-Based Concurrent Priority

Queues

Our third contribution is a practical concurrent priority queue implementation based

on a heap-like structure, which we call the “mound”. The original paper was pub-

lished in Proceedings of the 41st International Conference on Parallel Processing

(ICPP 2012) [47].

A mound is a tree of sorted lists that can be used to construct linearizable,

disjoint access parallel priority queues that are either lock-free or lock-based. Like

skiplists, mounds achieve balance, and hence asymptotic guarantees, using random-

ization. However, the structure of the mound tree resembles a heap. The benefits of

mounds stem from the following novel aspects of their design and implementation:

• While mound operations resemble heap operations, mounds employ random-

ization when choosing a starting leaf for an Insert. This avoids the need for

insertions to contend for a mound-wide counter, but introduces the possibility

that a mound tree will not be perfectly balanced.

• The use of sorted lists avoids the need to swap a leaf into the root position

during ExtractMin. Combined with the use of randomization, this improves

disjoint-access parallelism. Asymptotically, ExtractMin is O(log(N)), with

roughly the same overheads as the Hunt heap [37].
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record LNode

value : N // value stored in this list node
next : LNode // next element in list

record MNode

list : LNode // sorted list of values
dirty : B // false if mound property holds
c : N // incremented on every update

initially

depth← 1
for i← 0 to N do

tree[i]← new MNode〈nil, false, 0〉

Figure 5.1: Mound Datatypes

• The sorted list also obviates the use of swapping to propagate a new value to

its final destination in the mound Insert operation. Instead, Insert uses a

binary search along a path in the tree to identify an insertion point, and then

uses a single writing operation to insert a value. The Insert complexity is

O(log(log(N))).

• The mound structure enables several novel uses, such as the extraction of

multiple high-priority items in a single operation, and extraction of elements

that are likely to have high priority.

5.1 Mound Algorithm Overview

A mound is a rooted tree of sorted lists. For simplicity of presentation, we consider

an array-based implementation of a complete binary tree, and assume that the array

is always large enough to hold all elements stored in the mound. The array structure

allows us to locate a leaf in O(1) time, and also to locate any ancestor of any node

in O(1) time. We focus on the operations needed to implement a lock-free priority

queue with a mound, namely ExtractMin and Insert. We permit the mound

to store arbitrary non-unique, totally-ordered values, and ∞ is the maximum value.

We reserve ∞ as the return value of an ExtractMin on an empty mound, to

prevent the operation from blocking.

Figure 5.1 presents the basic data types for the mound. A mound consists of an
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array-based binary tree of MNode objects (namely tree) and a depth field. The

MNode type describes nodes that comprise the mound’s tree. Each node consists

of a pointer to a sorted list, a boolean field, and a sequence number (unused in the

locking algorithm). We define the value of a MNode based on whether its list is nil

or not. If the MNode’s list is nil, then its value is ∞. Otherwise, the MNode’s

value is the value stored in the first element of the list, i.e., list.value. The Val

function is a shorthand for this computation. A mound is initialized by setting every

element in the tree to 〈nil, false, 0〉. This indicates that every node has an empty

list, and hence a logical Val of ∞.

In a traditional min-heap, the heap invariant only holds at the boundaries of

functions, and is stated in terms of the following relationship between the values of

parent and child nodes:

∀p, c ∈ [1, N ] : (⌊c/2⌋ = p) ⇒ Val(tree[p]) ≤ Val(tree[c])

Put another way, a child’s value is no less than the value of its parent. This property

is also the correctness property for a mound when there are no in-progress operations.

In other words, when dirty is not set, a node’s value is no greater than the value

of either of its children. Precisely, when an operation is between its invocation and

response, we employ the dirty field to express a more localized mound property:

∀p, c ∈ [1, N ] : (⌊c/2⌋ = p) ∧ (¬tree[p].dirty)

⇒ Val(tree[p]) ≤ Val(tree[c])

Insert When inserting a value v into the mound, the only requirement is that

there exist some node index c such that Val(tree[c]) ≥ v and if c 6= 1 (c is not

the root index), then for the parent index p of c, Val(tree[p]) ≤ v. When such

a node is identified, v can be inserted as the new head of tree[c].list. Inserting v

as the head of tree[c].list clearly cannot violate the mound property: decreasing

Val(tree[c]) to v does not violate the mound property between tree[p] and tree[c],

since v ≥ Val(tree[p]). Furthermore, for every child index c′ of c, it already holds
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that Val(tree[c′]) ≥ Val(tree[c]). Since v ≤ Val(tree[c]), setting Val(tree[c]) to

v does not violate the mound property between tree[c] and its children.

The Insert method operates as follows: it selects a random leaf index l and

compares v to Val(tree[l]). If v ≤ Val(tree[l]), then either the parent of tree[l] has

a Val less than v, in which case the insertion can occur at tree[l], or else there must

exist some node index c in the set of ancestor indices {⌊l/2⌋, ⌊l/4⌋, . . . , 1}, such that

inserting v at tree[c] preserves the mound property. A binary search is employed to

find this index. Note that the binary search is along an ancestor chain of logarithmic

length, and thus the search introduces O(log(log(N)) overhead. The leaf is ignored

if Val(tree[l]) < v, since the mound property guarantees that every ancestor of

tree[l] must have a Val < v, and another leaf is randomly selected. If too many

unsuitable leaves are selected (indicated by a tunable THRESHOLD parameter),

the mound is expanded by one level. Note that Insert is bottleneck-free. Selecting

a random leaf avoids the need to maintain a pointer to the next free leaf, which

would then need to be updated by every Insert and ExtractMin. Furthermore,

since each node stores a sorted list, we do not need to modify a leaf and then swap

its value upward, as in heaps. The number of writes in the operation is O(1).

ExtractMin ExtractMin resembles its analog in traditional heaps. When the

minimum value is extracted from the root, the root’s Val changes to equal the next

value in its list, or ∞ if the list becomes empty. This behavior is equivalent to the

traditional heap behavior of moving some leaf node’s value into the root. At this

point, the mound property may not be preserved between the root and its children,

so the root’s dirty field is set true.

To restore the mound property at N , a helper function (Moundify) is used. It

analyzes the triangle consisting of a dirty node and its two children. If either child

is dirty, it first calls Moundify on the child, then restarts. When neither child

is dirty, Moundify inspects the Val of tree[n] and its children, and determines

which is smallest. If tree[n] has the smallest value, or if it is a leaf with no children,

then the mound property already holds, and the tree[n].dirty field is set to false.

Otherwise, swapping tree[n] with the child having the smallest Val is guaranteed
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1 Insert(v : N)
2 while true do

3 c← FindInsertPoint(v)
4 C ← tree[c]
5 if Val(C) ≥ v then

6 h← new LNode〈v, C.list〉
7 C′ ←MNode〈h,C.dirty, C.c+ 1〉
8 if c = 1 then

9 if CAS(&tree[c], C, C′) then return

10 else

11 P ← tree[c/2]
12 if Val(P ) ≤ v then

13 DCSS(&tree[c], C, C′,&tree[c/2], P )

14 delete(h)

15 ExtractMin() : N
16 while true do

17 R← tree[1]
18 if R.dirty then

19 Moundify(1)
20 else if R.list = nil then

21 return ∞
22 else

23 R′ ←MNode〈R.list.next, true, R.c+ 1〉)
24 if CAS(&tree[1], R,R′) then

25 v ← R.list.value
26 delete(R.list)
27 Moundify(1)
28 return v

29 Val(N : MNode) : N
30 if N.list = nil then

31 return ∞
32 else

33 return N.list.value

34 RandLeaf(d : N) : N
35 return random i ∈ [2d−1, 2d − 1];

36 FindInsertPoint(v : N) : N
37 while true do

38 d← depth
39 for attempts← 1 to THRESHOLD do

40 leaf ← RandLeaf(d)
41 if Val(leaf) ≥ v then

42 return BinarySearch(leaf, 1, v)

43 CAS(&depth, d, d+ 1)

Figure 5.2: The Lock-free Mound Algorithm

to restore the mound property at tree[n], since Val(tree[n]) becomes less than or

equal to the value of either of its children. However, the child involved in the swap

now may not satisfy the mound property with its children, and thus its dirty field

is set true. In this case, Moundify is called recursively on the child. Just as in a

traditional heap, O(log(N)) calls suffice to “push” the violation downward until the

mound property is restored.

5.2 The Lock-Free Mound

An appealing property of mounds is their amenity to a lock-free implementation.

The pseudocode for our lock-free algorithm appears in Figures 5.2 and 5.3. As is
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44 Moundify(n : N)
45 while true do

46 N ← tree[n]
47 d← depth
48 if ¬N.dirty then

49 return

50 if n ∈ [2d−1, 2d − 1] then
51 N ′ ←MNode〈N.list, false, N.c+ 1〉
52 if CAS(&tree[n], N,N ′) then

53 return

54 continue

55 L← tree[2 ∗ n]
56 R← tree[2 ∗ n+ 1]
57 if L.dirty then

58 Moundify(2 ∗ n)
59 continue

60 if R.dirty then

61 Moundify(2 ∗ n+ 1)
62 continue

63 if Val(L) ≤ Val(R)∧Val(L) < Val(N) then

64 N ′ ←MNode〈L.list, false, N.c+ 1〉
65 L′ ←MNode〈N.list, true, L.c+ 1〉
66 if DCAS(&tree[n], N,N ′,&tree[2 ∗ n], L, L′) then

67 Moundify(2 ∗ n)
68 return

69 else if Val(R) < Val(L)∧Val(R) < Val(N) then

70 N ′ ←MNode〈R.list, false, N.c+ 1〉
71 R′ ←MNode〈N.list, true, R.c+ 1〉
72 if DCAS(&tree[n], N,N ′,&tree[2 ∗ n+ 1], R,R′) then

73 Moundify(2 ∗ n+ 1)
74 return

75 else

76 N ′ ←MNode〈N.list, false, N.c+ 1〉
77 if CAS&(tree[n], N,N ′) then

78 return

Figure 5.3: The Lock-free Mound Algorithm: Moundify

common when building lock-free algorithms, we require that every shared memory

location be read atomically. We perform updates to shared memory locations us-

ing compare-and-swap (CAS), double-compare-and-swap (DCAS), and optionally

double-compare-single-swap (DCSS) operations. We assume that these operations

atomically read/modify/write one or two locations, and that they return a boolean

indicating if they succeeded. We assume that CAS, DCAS, and DCSS do not fail

spuriously. We also assume that the implementations of these operations are at least

lock-free. Note that lock-free DCAS and DCSS can be simulated using CAS prim-

itives. Given these assumptions, the lock-free progress guarantee for our algorithm
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is based on the observation that failure in one thread to make forward progress

must be due to another thread making progress. To avoid the ABA problem, every

mutable shared location (e.g., each MNode) is augmented with a counter (c). The

counter is incremented on every CAS/DCAS/DCSS.

Lock-Free Moundify If no node in a mound is marked dirty, then every node

satisfies the mound property. In order for tree[n] to become dirty, either (a) tree[n]

must be the root, and an ExtractMin must be performed on it, or else (b) tree[n]

must be the child of a dirty node, and a Moundify operation must swap lists

between tree[n] and its parent in the process of making the parent’s dirty field

false.

Since there is no other means for a node to become dirty, the algorithm provides a

strong property: in a mound subtree rooted at n, if n is not dirty, then Val(tree[n])

is at least as small as every value stored in every list of every node of the subtree.

This in turn leads to the following guarantee: for any node tree[p] with children

tree[l] and tree[r], if tree[p] is dirty and both tree[l] and tree[r] are not dirty, then

executing Moundify(p) will restore the mound property at tree[p].

In the lock-free algorithm, this guarantee enables the separation of the extrac-

tion of the root’s value from the restoration of the mound property, and also enables

the restoration of the mound property to be performed independently at each level,

rather than through a large atomic section. This, in turn, allows the recursive

cleaning Moundify of one ExtractMin to run concurrently with another Ex-

tractMin.

The lock-free Moundify operation retains the obligation to clear any dirty bit

that it sets. However, since the operation is performed at one level at a time, it

is possible for two operations to reach the same dirty node. Thus, Moundify(n)

must be able to help clean the dirty field of the children of tree[n], and must also

detect if it has been helped (in which case tree[n] will not be dirty).

The simplest case is when the operation has been helped. In this case, the read

on line 46 discovers that the parameter is a node that is no longer dirty. The next

simplest case is when Moundify is called on a leaf: a CAS is used to clear the
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dirty bit.

The third and fourth cases are symmetric, and handled on lines 63-74. In these

cases, the children tree[r] and tree[l] of tree[n] are read and found not to be dirty.

Furthermore, a swap (by DCAS) is needed between tree[p] and one of its children,

in order to restore the mound property. Note that a more expensive “triple compare

double swap” involving tree[n] and both its children is not required. Consider the

case where tree[r] is not involved in the DCAS: for the DCAS to succeed, tree[n]

must not have changed since line 46, and thus any modification to tree[r] between

lines 56 and 66 can only lower Val(tree[r]) to some value ≥ Val(tree[n]).

In the final case, tree[n] is dirty, but neither of its children has a smaller Val.

A simple CAS can clear the dirty field of tree[n]. This is correct because, as in the

above cases, while the children of tree[n] can be selected for Insert, the inserted

values must remain ≥ Val(tree[n]) or else tree[n] would have changed.

Lock-Free ExtractMin The lock-freeExtractMin operation begins by reading

the root node of the mound. If the node is dirty, then there must be an in-flight

Moundify operation, and it cannot be guaranteed that the Val of the root is the

minimum value in the mound. In this case, the operation helps perform Moundify,

and then restarts.

There are two ways in which ExtractMin can complete. In the first, the

read on line 17 finds that the node’s list is nil and not dirty. In this case, at the

time when the root was read, the mound was empty, and thus ∞ is returned. The

linearization point is the read on line 17.

In the second case, ExtractMin uses CAS to atomically extract the head of the

list. The operation can only succeed if the root does not change between the read

and the CAS, and it always sets the root to dirty. The CAS is the linearization

point for the ExtractMin: at the time of its success, the value extracted was

necessarily the minimum value in the mound.

Note that the call to Moundify on line 27 is not strictly necessary: Extract-

Min could simply return, leaving the root node dirty. A subsequent ExtractMin

would inherit the obligation to restore the mound property before performing its
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own CAS on the root. Similarly, recursive calls to Moundify on lines 67 and 73

could be skipped.

After an ExtractMin callsMoundify on the root, it may need to make several

recursive Moundify calls at lower levels of the mound. However, once the root is

not dirty, another ExtractMin can remove the new minimum value of the root.

Lock-Free Insert The simplest technique for making Insert lock-free is to use a

k-Compare-Single-Swap operation, in which the entire set of nodes that are read in

the binary search are kept constant during the insertion. However, the correctness

of Insert depends only on the insertion point tree[c] and its parent node tree[p].

First, we note that expansion only occurs after several attempts to find a suitable

leaf fail: In Insert, the RandLeaf and FindInsertPoint functions read the

depth field once per set of attempts to find a suitable node, and thus THRESHOLD

leaves are guaranteed to all be from the same level of the tree, though it may not

be the leaf level at any point after line 38. The CAS on line 43 ensures expansion

only occurs if the random nodes were, indeed, all leaves.

Furthermore, neither the FindInsertPoint nor BinarySearch method needs

to ensure atomicity among its reads: after a leaf is read and found to be a valid

starting point, it may change. In this case, the binary search will return a node that

is not a good insertion point. This is indistinguishable from when binary search

finds a good node, only to have that node change between its return and the return

from FindInsertPoint. To handle these cases, Insert double-checks node values

on lines 4 and 11, and then ensures the node remains unchanged by updating with

a CAS or DCSS.

There are two cases for Insert: when an insert is performed at the root, and

the default case.

First, suppose that v is being inserted into a mound, v is smaller than the root

value (Val(tree[1])), and the root is not dirty. In this case, the insertion must occur

at the root. Furthermore, any changes to other nodes of the mound do not affect

the correctness of the insertion, since they cannot introduce values < Val(tree[1]).

A CAS suffices to atomically add to the root, and serves as the linearization point
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(line 9). Even if the root is dirty, it is acceptable to insert at the root with a CAS,

since the insertion does not increase the root’s value. The insertion will conflict with

any concurrentMoundify, but without preventing lock-free progress. Additionally,

if the root is dirty and a Moundify operation on the root is concurrent, then either

inserting v at the root will decrease Val(tree[1]) enough that the Moundify can

use the low-overhead code path on line 77, or else it will be immaterial to the fact

that line 66 or 72 is required to swap the root with a child.

This brings us to the default case. Suppose that tree[c] is not the root. In this

case, tree[c] is a valid insertion point if and only if Val(tree[c]) ≥ v, and for tree[c]’s

parent tree[p], Val(tree[p]) ≤ v. Thus it does not matter if the insertion is atomic

with respect to all of the nodes accessed in the binary search. In fact, both tree[p]

and tree[c] can change after FindInsertPoint returns. All that matters is that

the insertion is atomic with respect to some reads that support tree[c]’s selection

as the insertion point. This is achieved through reads on lines 4 and 11, and thus

the reads performed by FindInsertPoint are immaterial to the correctness of the

insertion. The DCSS on line 13 suffices to linearize the Insert.

Note that the dirty fields of tree[p] and tree[c] do not affect correctness. Suppose

tree[c] is dirty. Decreasing the value at tree[c] does not affect the mound property

between tree[c] and its children, since the mound property does not apply to nodes

that are dirty, and cannot affect the mound property between tree[p] and tree[c], or

else FindInsertPoint would not return c. Next, suppose tree[p] is dirty. In this

case, for line 13 to be reached, it must hold that Val(tree[p]) ≤ v ≤ Val(tree[c]).

Thus the mound property holds between tree[p] and tree[c], and inserting at tree[c]

will preserve the mound property. The dirty field in tree[p] is either due to a

propagation of the dirty field that will ultimately be resolved by a simple CAS (e.g.,

Val(tree[p]) is ≤ the Val of either of tree[p]’s children), or else the dirty field will

be resolved by swapping tree[p] with tree[c]’s sibling.
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5.3 Additional Features

Since the mound uses a fixed tree as its underlying data structure, it is amenable

to two nontraditional uses. The first, “probabilistic ExtractMin”, is also avail-

able in a heap: since any MNode that is not dirty is, itself, the root of a mound,

ExtractMin can be executed on any such node to select a random element from

the priority queue. By selecting with some probability shallow, nonempty, non-root

MNodes instead of the root, ExtractMin can lower contention by probabilistically

guaranteeing the result to be close to the minimum value.

It is possible to execute an “ExtractMany” operation, which returns several

elements from the mound. In the common case, most MNodes in the mound will be

expected to hold lists with a modest number of elements. Rather than remove a

single element, ExtractMany returns the entire list from a node, by setting the

list pointer to nil and dirty to true, and then calling Moundify. This technique

can be used to implement prioritized work stealing. Finally, mounds can be used

in place of bag data structures, by executing ExtractMin or ExtractMany

on any randomly selected non-null node. While lock-free bag algorithms already

exist [66], this use demonstrates the versatility of mounds.

5.4 Performance Evaluation

In this chapter, we evaluate the performance of mounds using targeted microbench-

marks. Experiments labeled “Niagara2” were collected on a 64-way Sun Ultra-

SPARC T2 with 32 GB of RAM, running Solaris 10. The Niagara2 has eight cores,

each eight-way multithreaded. On the Niagara2, code was compiled using gcc 4.3.2

with –O3 optimizations. Experiments labeled “x86” were collected on a 12-way HP

z600 with 6GB RAM and a Intel Xeon X5650 processor with six cores, each two-way

multithreaded, running Linux 2.6.32. The x86 code was compiled using gcc 4.4.3,

with –O3 optimizations. On both machines, the largest level of the cache hierarchy

is shared among all threads. The Niagara2 cores are substantially simpler than the

x86 cores, and have one less level of private cache.
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We implemented DCAS using a modified version of the technique proposed by

Harris et al [28]. The resulting implementation resembles an inlined nonblocking

software transactional memory [27]. We chose to implement DCSS using a DCAS.

Rather than using a flat array, we implemented the mound as a 32-element array of

arrays, where the nth second-level array holds 2n elements. We did not pad MNode

types to a cache line. This implementation ensures minimal space overhead for small

mounds, and we believe it to be the most realistic for real-world applications, since

it can support extremely large mounds. We set the THRESHOLD constant to 8.

Changing this value did not affect performance, though we do not claim optimality.

Since the x86 does not offer non-faulting loads, we used a per-thread object pool

to recycle LNodes without risking their return to the operating system. To enable

atomic 64-bit reads on 32-bit x86, we used a lightweight atomic snapshot algorithm,

as 64-bit atomic loads can otherwise only be achieved via high-latency floating point

instructions.

5.4.1 Effects of Randomization

Unlike heaps, mounds do not guarantee balance, instead relying on randomiza-

tion. To measure the effect of this randomization on overall mound depth, we ran

a sequential experiment where 220 Inserts were performed, followed by 219 + 218

ExtractMins. We measured the fullness of every mound level after the inser-

tion phase and during the remove phase. We also measured the fullness whenever

the depth of the mound increased. We varied the order of insertions, using either

randomly selected keys, keys that always increased, or keys that always decreased.

These correspond to the average, worst, and best cases for mound depth. Lastly,

we measured the impact of repeated insertions and removals on mound depth, by

initializing a mound with 28, 216, or 220 elements, and then performing 220 randomly

selected operations (an equal mix of Insert and ExtractMin).

Table 5.1 describes the levels of a mound that have nodes with empty lists after

220 insertions. For all but the last of these levels, incompleteness is a consequence of

the use of randomization. Each value inserted was chosen according to one of three
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Insert Order % Fullness of Non-Full Levels
Increasing 99.96% (17), 97.75% (18), 76.04% (19), 12.54% (20)
Random 99.99% (16), 96.78% (17), 19.83% (18)

Table 5.1: Incomplete mound levels after 220 insertions. Incompleteness at the largest
level is expected.

Initialization Ops Non-Full Levels
Increasing 524288 99.9% (16), 94.6% (17), 61.4% (18),

17.6% (19), 1.54% (20)
Increasing 786432 99.9% (15), 93.7% (16), 59.3% (17),

17.6% (18), 2.0% (19), 0.1% (20)
Random 524288 99.7% (16), 83.4% (17), 14.7% (18)
Random 786432 99.7% (15), 87.8% (16), 38.9% (17), 3.6% (18)

Table 5.2: Incomplete mound levels after many ExtractMins. Mounds were initialized
with 220 elements, using the same insertion orders as in Table 5.1.

policies. When each value is larger than all previous values (“Increasing”), the worst

case occurs. Here, every list has exactly one element, and every insertion occurs at a

leaf. This leads to a larger depth (20 levels), and to several levels being incomplete.

However, note that the mound is still only one level deeper than a corresponding

heap would be in order to store as many elements. 1

When “Random” values are inserted, we see the depth of the mound drop by

two levels. This is due to the average list holding more than one element. Only 56K

elements were stored in leaves (level 18), and 282K elements were stored in the 17th

level, where lists averaged 2 elements. 179K elements were stored in the 16th level,

where lists averaged 4 elements. The longest average list (14 elements) was at level

10. The longest list (30) was at level 7. These results suggest that mounds should

produce more space-efficient data structures than either heaps or skiplists, and also

confirm that randomization is an effective strategy.

We next measured the impact of ExtractMin on the depth of mounds. In

1The other extreme occurs when elements are inserted in decreasing order, where the mound

organizes itself as a sorted list at the root.
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Initial Size Incomplete Levels
220 99.9% (16), 99.4% (17), 74.3% (18)
216 99.7% (13), 86.1% (14)
28 95.3% (6), 68.8% (7)

Table 5.3: Incomplete mound levels after 220 random operations, for mounds of varying
sizes. Random initialization order was used.

Table 5.2, we see that randomization leads to levels remaining partly filled for much

longer than in heaps. After 75% of the elements have been removed, the deepest

level remains nonempty. Furthermore, we found that the repeated ExtractMin

operations decreased the average list size significantly. After 786K removals, the

largest list in the mound had only 8 elements.

To simulate real-world use, we pre-populated a mound, and executed 220 oper-

ations (an equal mix of Insert and ExtractMin), using randomly selected keys

for insertions. The result in Table 5.3 shows that this usage does not lead to greater

imbalance or to unnecessary mound growth. However, the incidence of removals did

reduce the average list size. After the largest experiment, the average list size was

only 3.

5.4.2 Insert Performance

Next, we evaluate the latency and throughput of Insert operations. As comparison

points, we include the Hunt heap [37], which uses fine-grained locking, and a quies-

cently consistent, skiplist-based priority queue [50]. Each experiment is the average

of three trials, and each trial performs a fixed number of operations per thread. We

conducted additional experiments with the priority queues initialized to a variety

of sizes, ranging from hundreds to millions of entries. We present only the most

significant trends.

Figure 5.4 presents Insert throughput. The extremely strong performance of

the fine-grained locking mound is due both to its asymptotic superiority, and its
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Figure 5.4: Insert Test: Each thread inserts 216 randomly selected values.

low-overhead implementation using simple spinlocks. In contrast, while the lock-

free mounds scale well, they have much higher latency. On the Niagara2, CAS is

implemented in the L2 cache; thus there is a hardware bottleneck after 8 threads,

and high overhead due to our implementation of DCAS with multiple CASes. On

the x86, both 64-bit atomic loads and DCAS contribute to the increased latency.

As previously reported by Lotan and Shavit, insertions are costly for skip lists.

The hunt heap has low single-thread overhead, but the need to “trickle up” causes

Inserts to contend with each other, which hinders scalability.

5.4.3 ExtractMin Performance

In Figure 5.5, each thread performs 216 ExtractMin operations on a priority

queue that is pre-populated with exactly enough elements that the last of these

operations will leave the data structure empty. The skip list implementation is

almost perfectly disjoint-access parallel, and thus on the Niagara2, it scales well. To

extract the minimum, threads attempt to mark (CAS) the first “undeleted” node

as “deleted” in the bottom level list, and keeps searching if the marking failed. On

successfully marking a node as “deleted”, the thread performs a subsequent physical

removal of the marked node, which mitigates further contention between operations.
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Figure 5.5: ExtractMin Test: Each thread performs 216 operations to make the pri-
ority queue empty.

On the x86, the deeper cache hierarchy results in a slowdown for the skiplist from

1–6 threads, after which the use of multithreading decreases cache misses and results

in slight speedup.

The algorithms of the locking mound and the Hunt queue are similar, and their

performance curves match closely. Slight differences on the x86 are largely due to

the shallower tree of the mound. However, in both cases performance is substantially

worse than for skiplists. As in the Insert experiment, the lock free mound pays

additional overhead due to its use of DCAS. Since there are O(log(N)) DCASes,

instead of the single DCAS in Insert, the overhead of the lock free mound is

significantly higher than the locking mound.

5.4.4 Scalability of Mixed Workloads

The behavior of a concurrent priority queue is expected to be workload dependent.

While it is unlikely that any workload would consist of repeated calls to Insert and

ExtractMin with no work between calls, we present such a stress test microbench-

mark in Figure 5.6 as a more realistic evaluation than the previous single-operation

experiments.
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Figure 5.6: Mixed Test: Equal mix of random Insert and ExtractMin operations are
performed on a queue initialized with 216 random elements.

In the mixed workload, we observe the mounds provide better performance at

lower thread counts. On the x86, the locking mound provides the best performance

until 10 threads, but suffers under preemption. The lock-free mounds outperform

skiplists until 6 threads. As in the ExtractMin test, once the point of hard-

ware multithreading is reached, the large number of CASes becomes a significant

overhead.

5.4.5 ExtractMany Performance

One of the advantages of the mound is that it stores a collection of elements at each

tree node. As discussed in Chapter 5.3, implementing ExtractMany entails only

a simple change to the ExtractMin operation. However, its effect is pronounced.

As Figure 5.7 shows, ExtractMany scales well.

This scaling supports our expectation that mounds will be a good fit for appli-

cations that employ prioritized or probabilistic work stealing. However, there is a

risk that the quality of data in each list is poor. For example, if the second element

in the root list is extremely large, then using ExtractMany will not provide a set

of high-priority elements. Table 5.4 presents the average list size and average value
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Figure 5.7: ExtractMany Test: The mound is initialized with 220 elements, and then
threads repeatedly call ExtractMany until the mound is empty.

Level List Size Avg. Value Level List Size Avg. Value
0 12 52.5M 9 15.46 367M
1 15.5 179M 10 13.81 414M
2 21.75 215M 11 12.33 472M
3 21.75 228M 12 10.57 538M
4 21.18 225M 13 8.80 622M
5 20.78 263M 14 7.22 763M
6 19.53 294M 15 5.47 933M
7 18.98 297M 16 3.67 1.14B
8 17.30 339M 17 2.14 1.45B

Table 5.4: Average list size and list value after 220 random insertions.

of elements in a mound after 220 insertions of random values. As desired, extracted

lists are large, and have an average value that increases with tree depth. Similar

experiments using values from smaller ranges are even more pronounced.

5.5 Summary

We presented the mound, a new data structure for use as concurrent priority queues.

The mound combines a number of novel techniques to achieve its performance and
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progress guarantees. Chief among these are the use of randomization and the em-

ployment of a structure based on a tree of sorted lists. Linearizable mounds can

be implemented in a highly concurrent manner using either pure-software DCAS or

fine-grained locking. Their structure also allows several new uses. We believe that

prioritized work stealing is particularly interesting.

In our evaluation, we found mound performance to exceed that of the lock-

based Hunt priority queue, and to rival that of skiplist-based priority queues. The

performance tradeoffs are nuanced, and will certainly depend on workload and ar-

chitecture. Workloads that can employ ExtractMany or that benefit from fast

Insert will benefit from the mound. The difference in performance between the

x86 and Niagara2 suggests that deep cache hierarchies favor mounds.

The lock-free mound is a practical algorithm despite its reliance on software

DCAS. We believe this makes it an ideal data structure for designers of new hard-

ware. In particular, we demonstrate (in Chapter 6) that the effectiveness of new

concurrency primitives, such as hardware transactional memory, will be easier to

address given algorithms like the mound, which can serve as microbenchmarks and

demonstrate the benefit of faster hardware multiword atomic operations.
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Chapter 6

Transactional Acceleration of

Concurrent Data Structures

Our fourth contribution is to introduce the Prefix Transaction Optimization (PTO),

a set of techniques that employ hardware transactional memory to accelerate existing

concurrent data structures. The original paper was published in Proceedings of

the 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA

2015) [49].

We explore how HTM might benefit the design and implementation of nonblock-

ing concurrent data structures. Specifically, we propose a methodology, called Prefix

Transaction Optimization (PTO), by which HTM can be used to accelerate an ex-

isting implementation. There are three components of PTO, which vary in terms of

the degree to which they can be automated, the amount of implementation-specific

knowledge needed, and the potential gain. In the first step, we create a prefix

transaction to execute a sequence of steps in the existing implementation, which

uses HTM but may fail. In the second step, we mechanically optimize this prefix

through strength reduction and elimination of corner cases [60], and other classic

compiler optimizations. In the third step, we modify the original algorithm so as to

introduce minimal “overhead” while affording more aggressive optimization of the

prefix transaction.
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Figure 6.1: Prefix Transaction Transformation

PTO offers many compelling properties. It preserves the progress guarantees of

the original algorithm, which is an improvement over many approaches to transac-

tional acceleration of concurrent programs. It is also a composable technique, which

can be applied at multiple levels of granularity. PTO optimizations can be linked

together, and the benefits of doing so are (more or less) additive. Lastly, and most

significantly, PTO can dramatically improve performance. We observe speedups of

up to 1.5x at one thread, and up to 3x at 8 threads, on state-of-the-art nonblocking

data structures.

6.1 Prefix Transaction Optimization

In this chapter, we present the algorithm-agnostic aspects of the Prefix Transaction

Optimization (PTO) technique. Enhancements and modifications specific to a single

data structure or class of data structures are discussed in Chapter 6.2.

6.1.1 Model

The PTO technique is applicable to concurrent objects implemented in shared

memory using read/write registers and common synchronization primitives (e.g.
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compare-and-swap, fetch-and-add, etc). The object interface defines a set of invo-

cable operations.

We adopt the control flow graph representation [59] for each operation (and

its sub-operations), where a node represents a step in the algorithm and an edge

represents a transition in the control flow. We assume each operation has a single

start node. For two nodes a and b in a control flow graph, a dominates b if any

code path from start to b includes a. A superblock is a connected sub-graph where

all nodes are dominated by a single entry node. An edge from a node within a

superblock to one outside is called an exit edge.

We assume that HTM is supported by the architecture via three instructions:

TxBegin starts a transaction, TxEnd commits the transaction, and TxAbort causes

the transaction to abort. The TxBegin instruction can return more than once: if

a transaction cannot commit for any reason, then the effects of the transaction are

undone, and control returns to the point of TxBegin with a return value indicating

the cause of the inability to commit. A return value of OK indicates that the code is

running as a transaction.

HTM is assumed to provide strong atomicity [6]. When a hardware transaction

is running, none of its effects are visible to any concurrent code; all effects become

visible atomically at TxEnd. During the execution of the transaction, if any concur-

rent transaction performs a conflicting access, the HTM will choose (at least) one

transaction to abort. If any nontransactional code performs a conflicting access, the

transaction will immediately abort. Upon any abort, control will return to TxBegin,

where the program can decide whether to attempt the transaction again.

6.1.2 The Prefix Transaction Transformation

Given a superblock B in a control flow graph G, the Prefix Transaction Trans-

formation (illustrated in Figure 6.1) is constructed by attempting to execute the

superblock using a hardware transaction. If that attempt fails, then the original

version of code is invoked, without the use of a transaction. More precisely:
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Definition 1. Let B be a superblock of a control flow graph G. The Prefix Trans-

action Transformation is a function TB(G) that maps G to G′, a copy of G with B

replaced by B′, such that:

• TB is a copy of T where a TxEnd instruction is inserted at each exit edge, and

zero or more TxAbort instructions are inserted at any edges of T except the

exit edges;

• S is a TxBegin instruction with a branch to the dominator of TB if the return

value is OK and a branch to the dominator of B otherwise;

• Let B′ be the superblock dominated by S with all nodes of TB and B included.

Given a transformation TB(G) defined in Definition 1, we say B′ is the optimized

superblock. Inside B′, we say TB is the prefix transaction of B, and B is the fallback.

The following theorems capture basic properties of the Prefix Transaction Trans-

formation. We first prove the correctness of our transformation, by constructing a

refinement mapping [3] from the transformed implementation to the original (The-

orem 2). We then prove the progress guarantee of the original implementation is

preserved by the transformation (Theorem 3). Finally, implied by the theorems, we

observe that the program may choose to explicitly abort a transaction at any point

(within the transaction) without compromising correctness or progress conditions.

Theorem 2 (Refinement). Let G be the control flow graph of some operation of

an implementation I, and let I ′ be the implementation with TB(G) applied to I. I ′

refines I.

sketch. The mapping of states is simply an identical function that maps the states

of I ′ to the states of I. For a process p taking a step in I ′, if the step is not a

transactional instruction or access, we let p take a corresponding step in I. For a

TxBegin, TxAbort, or a transactional access step in I ′, p takes no step in I. For a

TxEnd step in I ′, let k be the number of steps p has taken in-between the TxEnd the

last TxBegin step, we let process p take k steps in I.

Theorem 3 (Progress Preservation). Let G be the control flow graph of some opera-

tion of a lock-free (or wait-free) implementation I, and let I ′ be the implementation

with TB(G) applied to I. I ′ provides lock-free (or wait-free) progress.
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sketch. Suppose I is lock-free. Then some operation in I completes if process p takes

a bounded number of steps. For a given configuration c of I, let k be this bound.

Then at most k steps are spent in superblock B before some operation completes,

and since B contains at least one step, it can be executed no more than k times

before some operation completes.

Let f be the refinement mapping constructed in Theorem 2. For a configuration

c′ in I ′ where c = f(c′), process p can spend at most k steps in a transaction (exclud-

ing the TxBegin, TxAbort and TxEnd steps) before some operation completes. A

committed or aborted transaction takes at most (k+3) steps including the TxBegin,

TxAbort and TxEnd steps. In case the transaction aborts, at most (2k + 3) steps

are spent to execute the optimized superblock. Hence, we know in configuration c′,

some operation completes within k · (2k + 3) steps taken by process p.

Proving the preservation of wait-free progress employs the similar technique.

6.1.3 Optimizing Prefix Transactions

We now turn our discussion to how to optimize the prefix transaction. We first

present optimizations that can be easily identified and performed by a compiler

using canonical static analyses.

Eliminating Synchronization: Correctness proofs of concurrent data structures

often assume sequential consistency [44]. Implementations, in turn, must entail

memory fences to enforce explicit ordering on architectures with weaker memory

models.

Within a prefix transaction, memory fences can be elided, since they are sub-

sumed by the implicit memory fences of TxBegin and TxEnd instructions, and atomic

synchronization primitives, such as compare-and-swap and read-modify-write oper-

ations, can be replaced with their corresponding loads, stores, and branches.

Eliminating Redundant Loads: Double-checking is a technique used in many

concurrent data structures [17, 57]. Implementations employ double-checking to
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ensure a consistent view of multiple memory locations. In the prefix transaction,

a single read to a shared location suffices, since the second read will always return

the same value (given the transaction does not perform a write to the location in-

between the reads); any conflicting write to the location will cause the transaction

to abort.

For implementations that use the atomic compare-and-swap primitive, the compare-

and-swap is usually attempted after a preceding read to the location. Since in a

transaction we convert the compare-and-swap to a read followed by a conditional

write, the read (produced by the conversion) can coalesce with the former read.

We also observe that many search data structures [17,71] employ a search phase,

followed by an update phase that performs its writes after validating selected loca-

tions accessed in the search phase. These implementations are likely to benefit from

the elimination of redundant loads enabled by our transformation.

Eliminating Redundant Stores: Nonblocking data structures often exploit in-

termediate states during an update operation to allow helping from concurrent

threads. The size of intermediate states may vary from unused bits embedded in

the data fields [26,46] to complex, dynamically-allocated auxiliary structures [17,61].

Fundamentally, these intermediate states are introduced to overcome the difficulty

that traditional synchronization primitives can update only a single word at a time.

It is commonly seen in nonblocking algorithms [17,47,61,64] that operations first

attempt to change several locations from a clean state to some intermediate state,

and then restore them back to a clean state. Given that an update is performed

within a transaction, and all stores to a location appear atomically, the temporary

change to intermediate states can be eliminated. Furthermore, if dynamic memory

allocations are involved to create intermediate objects, these allocations can be

eliminated together with the silent stores, mitigating pressure on the shared allocator

object.

In concurrent data structures using hazard pointers [55] or reference counts [67]

to manage dynamic memory, intermediate updates to the hazard lists (i.e., inser-

tion followed by removal) or to the reference counters (i.e., increment followed by
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decrement) can be safely eliminated as redundant stores in the prefix transaction.

6.1.4 Avoiding Helping in Prefix Transactions

Although helping is the key idea behind many nonblocking concurrent data struc-

tures, it tends to increase contention among threads in some cases [29, 42, 47, 58].

When a prefix transaction observes states in which it must perform helping to

make progress, it may be preferable to simply abort the transaction and switch to

executing the lock-free fallback. The rationale governing such decision is twofold:

First, when a prefix transaction determines to help, the situation suggests a concur-

rent operation is accessing locations touched by the transaction (and vice versa) and

is likely to create a conflict that causes the transaction to abort. Thus, the explicit

abort can serve as an ad-hoc backoff mechanism to avoid the contention in the first

place. Second, if the prefix transaction is optimized (as discussed in Chapter 6.1.3)

so that it does not introduce intermediate states, it can be desirable to maximally

avoid helping (which introduces intermediate states) in the prefix transaction for

the sake of improving total throughput.

From a pragmatic perspective, we argue that it is fairly straightforward for a con-

current data structure designer to identify the helping code paths in the algorithm,

and decide whether to replace them with explicit aborts in the prefix transactions.

Examples of how to make such choices are discussed in subsequent chapters. On the

other hand, we found that in most nonblocking algorithms, a helping code path can

be defined as an unreachable sub-path in the control flow graph of a single-threaded

execution. A trivial example is the code to handle a failed compare-and-swap op-

eration. Using this definition as a heuristic, an optimizing compiler can collect

information from a single-threaded profile run, and (approximately) identify the

helping paths for making optimization decisions.
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6.1.5 Recursive Optimizations

Prefix Transaction Transformation is a local optimization, which means it can be

applied to a whole operation or to individual components (superblocks) of the oper-

ation. More importantly, the optimization can be repeatedly applied on optimized

code until achieving the best performance.

The simplest example of an recursive optimization is to allow an aborted prefix

transaction to retry before attempting the fallback. For instance, the following

transformation attempts the same prefix transaction TB twice before switching to

the fallback:

TB(TB(G))

A more powerful use of recursive optimization is to compose optimizations in a

hierarchical structure. Suppose that in the control flow graph G of some operation,

superblock B is a sub-graph of superblock A. The following transformation:

TB(TA(G)) where B ⊂ A

first attempts the prefix transaction TA, and in the fallback path of TA, the program

can still benefit from the optimizations of TB(G).

Hierarchical composition has an important impact in practice: Applying the

transformation on larger superblocks maximizes the opportunity for eliminating re-

dundancy (i.e. loads, stores, and fences), but makes it harder for transactions to

make progress under contention, and thus, hurts scalability. Applying the transfor-

mation on smaller superblocks facilitates making progress, but reduces the oppor-

tunity to reduce latency. Composing optimizations makes it possible to achieve low

latency and high scalability at the same time. We also notice that, by Theorem 3,

applying the transformation for a bounded number of times preserves the progress

guarantees of the original implementation.
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6.2 Applying Prefix Transaction Optimization

The PTO technique presented in Chapter 6.1 does not require much algorithm-

specific knowledge, though a programmer with knowledge about expected common

paths may insert explicit aborts to increase optimization opportunities. We now

turn our attention to the technical details of applying PTO to specific concurrent

data structures, including additional algorithm-specific optimizations.

Mindicators We first consider the Mindicator data structure [46]. Like SNZI [18]

and the f-array [40], the Mindicator is a static-sized tree that computes a function

over a set of values, where each thread offers at most one value as an input to the

function. The original Mindicator algorithm uses a marking phase to traverse from

a per-thread leaf up to some point in the tree, and unmarks nodes as it traverses

back to the leaf. Unlike f-array, not all operations must traverse to the root; unlike

SNZI, additional functions (min, max) are supported in addition to 0/1 saturating

addition.

The application of PTO to the Mindicator did not make use of any algorithm-

specific optimizations, primarily because the tree is static and hence there is no

memory allocation. By applying PTO, the marking and unmarking steps could be

coalesced: marking and unmarking were previously both implemented as increments

to a per-node counter; with PTO, the counter is incremented once, by two. This,

in turn, eliminated the downward traversal entirely. After applying PTO, we tuned

the threshold for retries before PTO falls back to the lock-free slow path. A choice

of three attempts yielded the best performance.

Mounds We also applied PTO to the mound, a heap-like data structure that

implements a priority queue (discussed in Chapter 5). Like the Mindicator, the

mound is a tree-shaped data structure. However, it is a tree of sorted lists, where

each list is only modified at its head. We did not choose the mound because it is

the best nonblocking heap or priority queue. We chose it instead for the value it
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adds when evaluating PTO. Specifically, the mound employs double-compare-and-

swap (DCAS) and double-compare-single-swap (DCSS) operations throughout its

implementation, to perform atomic updates on up to two locations. This afforded

an opportunity to evaluate the impact of applying PTO locally, e.g., to individual

DCAS and DCSS operations.

In the mound, insertion consists of a search, followed by a double-compare-

single-swap (DCSS), which is implemented in software through a sequence of CAS

instructions. Removal entails performing a CAS to remove the top of the heap,

and then several DCAS operations to restore invariants at the root and then on

its children, recursively. Insertions can barely benefit from PTO, because they are

streamlined and contention-free already: the heap itself is a static tree, obviating

memory management overheads, and the insertion entails a log-log-depth traversal

and just one simulated DCSS. Similarly, employing PTO on the entire removal

operation is not effective at any level of concurrency, since all concurrent removals

contend at the top of the heap. However, it is profitable to use PTO on a sub-

operation of insert and removal, namely the DCAS/DCSS operations.

Skip Lists Lock-free skip lists [22] are a widely used search data structure to

implement concurrent maps and sets. In the skip list algorithm, an update operation

first locates the predecessor and successor nodes of a given key value, and then uses a

sequence of compare-and-swap operations to link/unlink the nodes into the hierarchy

of lists.

We experimentally determined that local application of PTO was the only promis-

ing technique. We proceeded to apply PTO only to the insert and remove operations.

In an insert operation, we use a prefix transaction to update the next pointers of

the predecessors. Similarly, in a remove operation, we attempt to mark the deleted

node’s next pointers using a single transaction, instead of performing individual

compare-and-swap operations.

Nonblocking Binary Search Trees We now discuss our experience with apply-

ing PTO to the nonblocking binary search tree (BST) algorithm created by Ellen et
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al. [17]. The algorithm implements a set object with insert, remove, and lookup op-

erations. To achieve lock-freedom, the algorithm employs a “marking” technique to

coordinate concurrent updates to the BST. During an insert or a remove operation,

the thread first traverses down the tree (the search phase) to locate an appropriate

position to perform the update. Then in the update phase, the thread allocates an

operation descriptor (Info record) that contains sufficient information to allow help-

ing from other threads. The descriptor is installed at nodes involved in the update,

using compare-and-swap operations: one node is marked in an insertion and two

are marked in a removal. An operation linearizes if it successfully marks all nodes

involved in the update. Upon completion, some of the nodes are restored to a clean

state.

We identify two opportunities to apply PTO in the binary search tree algorithm.

The first is to put the entire update operation inside a transaction. The second is to

use a prefix transaction to execute the update phase, leaving the search phase out

of the transaction. In both choices, we can eliminate the allocation of the descriptor

for an insert operation, because the node is restored to a clean state at the end of the

transaction. For a remove operation, since the algorithm does not restore one of the

updated nodes to a clean state, we cannot safely eliminate its descriptor. However,

we can use a unique, statically-allocated dummy descriptor in place of a dynamically

allocated one: When all updates are performed in a transaction, there is no need

for helping if the transaction commits, and the dummy descriptor is simply ignored

by subsequent operations.

Dynamic-Sized Hash Tables The final data structure we studied is a non-

blocking resizable hash table (discussed in Chapter 4). The algorithm employs a

“freezable set” abstraction to achieve nonblocking size adjustments. In the hash

table, each bucket is a pointer to a freezable set object, which is implemented as

an unsorted array of elements. All updates to the array are performed via copy-on-

write, that is, by creating an updated version of the array to replace the old one,

and then using a compare-and-swap on the bucket pointer.

A straightforward application of PTO on the hash table appears barely helpful,
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since the algorithm is streamlined: In the common case, an insert or a remove

operation on the hash table consists of a single allocation and an uncontended

compare-and-swap on the bucket pointer. To improve performance, we changed the

algorithm by removing the copy-on-write within transactions.

The idea of our optimization is to perform speculative in-place writes to the array

objects, so that allocations could be avoided in the common case. When making

this change, we attached a counter to the bucket pointers, so that a transactional

update could increment the counter and modify the bucket in place. Unfortunately,

this can affect the correctness of a concurrent lookup to the bucket. To prevent

errors, we degrade the progress of lookups from wait-free to lock-free, by requiring

lookups to double-check the bucket pointer counter after they search the bucket.

6.3 Evaluation

In this chapter, we evaluate the effectiveness of PTO in accelerating concurrent

data structures. We consider five data structures as discussed in Chapter 6.2, which

affords us the ability to look at the various aspects of PTO in detail.

6.3.1 Microbenchmarks

We use three microbenchmarks in our experiments:

setbench evaluates of set implementations which support insert, remove, and

lookup operations. Each thread repeatedly invokes a lookup or an update oper-

ation (with equal chance of being an insert or a remove) with some random value

within range.

pqbench evaluates priority queue implementations where each thread repeatedly

invokes a Insert with some random value or a ExtractMin; the ExtractMin

returns a null value if the queue is empty.

83



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1  2  3  4  5  6  7  8

T
h

ro
u

g
h

p
u

t 
(o

p
s
/m

s
)

Threads

Mindicator (Lockfree)
Mindicator (PTO)
Mindicator (TLE)

Figure 6.2: Mindicator Microbenchmarks

mbench evaluates Mindicator objects where each thread repeatedly invokes an

arrive operation with some random value, followed by a depart operation.

All experiments were conducted on an machine equipped with an Intel Core i7-

4770 CPU running at 3.40GHz, with 8 GB of RAM. The i7-4770 supports Intel’s

Restricted Transactional Memory (rtm) interface. There are 4 cores, each 2-way

multi-threaded, for a total of 8 hardware threads. The software stack included

Ubuntu 14.04.1 and GCC 4.8.2. All experiments were run in 32-bit mode, and data

points are the average of 5 trials.

6.3.2 Latency and Scalability Improvement

Figure 6.2 contrasts the performance of the PTO Mindicator with the original lock-

free implementation. We also compare to a version in which the Mindicator is

protected by a coarse-grained lock, and transactional lock elision (TLE) [63] is em-

ployed to allow concurrency. In the experiment, threads repeatedly insert and then

remove a randomly-chosen value; this ensures that some operations must traverse

to the top of the tree. We configured the Mindicator as a binary tree with 64 leaves,

and used the default mapping, where threads were assigned to leaves from left to

right.
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Figure 6.3: Priority Queue Microbenchmarks

There are two important trends: First, we see that at a single thread, PTO

provides latency that is nearly as good as TLE, which does not have marking,

unmarking, or helping phases. Thus we can conclude that PTO can provide near-

optimal single-thread performance. Second, we see that whereas TLE scales poorly,

due to its locking fallback, PTO scales comparably to the original lock-free code.

Thus in all cases, PTO is on par with the best performing algorithm. Furthermore,

beyond 4 threads we see that PTO scales better than the lock-free code. This is a

natural consequence of the workload: when using random keys, as the number of

threads increases, the likelihood that any thread must traverse to the root decreases.

As fewer threads traverse to the root, the likelihood of conflicts for any thread also

decreases, and the prefix transaction becomes more likely to succeed.

Figure 6.3 shows performance for a workload with an even mix of insert and

removeMin operations on the mound, using random keys. Using PTO, we were able

to replace up to five CAS operations with a single transaction for each of the DCAS

and DCSS operations. We encapsulated the DCAS in a function, and tuned the

retry parameter once, ultimately settling on a value of four. This value was used

for all DCASes, whether at the (high contention) root of the mound, or at leaves.

The main benefit of PTO for the mound was in removing latency from each
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Figure 6.4: Logarithmic Search Data Structure Microbenchmark

DCAS. This result is similar to the finding of Yoo et al. [72], that coarsening atomic

regions via hardware transactions can amortize some of the costs of atomicity. In

terms of concurrent data structure design, the lesson is that thinking in terms of

DCAS and other simpler primitives remains useful: assuming the availability of

DCAS allowed the mound to split ExtractMin into multiple atomic operations,

thereby limiting the duration of contention on the mound root.
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6.3.3 Impacts on Relative Performance

We next turn our attention to skiplists. We evaluate skiplists in two settings: as a

search data structure (Figure 6.4) and as a priority queue (Figure 6.3).

We began with Gramoli’s skiplist implementation [24]. To create a skiplist pri-

ority queue, we employed a modified version of the Lotan-Shavit technique [50],

and made it linearizable by disallowing a pop operation from traversing through an

marked node.

While we expected to observe a similar decrease in latency to the mound, due to

the reduced latency for coarsened atomic operations, such benefit did not manifest.

There are two drivers of this result. First, the main source of latency is not silo

maintenance, but accessing locations that are not in the cache, during the traversal

stage. According to the criteria in [10], the skiplist implementation is already close

to optimal with respect to concurrency. Thus at one thread, there was little to

gain. The second impediment to speedup at higher thread counts is that as a silo

maintenance operation traverses the silo, it becomes increasingly prone to conflicts

with concurrent readers. Intel TSX employs a requester-wins [7] conflict detection

strategy, and thus any read to the write set of an PTO operation causes the PTO

operation to fail.

6.3.4 Additive Benefits in Recursive PTO

PTO is a compositional technique, and can be used to optimize an entire operation,

as well as a portion of its fallback path. To assess this property, we evaluated the

nonblocking BST created by Ellen et al. [17]. We transliterated the code from Java

to C++, replacing volatile variables with sequentially consistent std::atomic

variables. We also employed an epoch-based memory reclamation policy, to ensure

that locations were not reclaimed while a concurrent thread held a reference to them.

We identified two applications of PTO to the BST, which we refer to as PTO1

and PTO2. In PTO1, the entire insert, remove, and lookup operations are trans-

formed using PTO. By optimizing the lookup phase, we are able to remove code

that double-checks the values of reads. We were also able to replace sequentially
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Figure 6.5: Composition of PTO on a Binary Search Tree

consistent std::atomic accesses with relaxed accesses, which may avoid processor

and compiler fences on some architectures.

As Figure 6.5 shows, PTO1 results in more than 75% higher throughput at low

thread counts. In contrast, PTO2 only optimizes the update phase of the insert and

remove operations. While it also offers an improvement at all thread counts, the

effect is much less at low levels of concurrency, where search overhead dominates,

but much higher as concurrency increases. The improvement at higher thread counts

is a consequence of a smaller contention window: since the traversal is not part of

the hardware transaction, there are fewer opportunities to conflict with concurrent

transactions. However, the lookup phase no longer runs in a hardware transaction,

and thus must incur the overheads of double-checking and fences.

In PTO1+PTO2, we employ PTO1, and then use PTO2 within the fallback

path. To fall back all the way to the original lock-free algorithm, an operation must

first fail 2 times in PTO1, and then 16 times in PTO2. This composition achieves

close to the best of both approaches. Even more remarkably, the composition of

PTO+PTO2 boosts the BST performance to a constant factor higher than the

skiplist set. As Figure 6.4 shows, the optimized BST provides the same scalability

as the skiplist, but with lower latency.
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Figure 6.6: Hash Table Microbenchmark

6.3.5 Fast Speculative In-place Updates

We ported the hash table from Java to C++, again using an epoch-based memory

reclamation policy. We applied PTO to each of the insert, lookup, and remove

operations, and then performed algorithm-specific optimizations to eliminate copy-

on-write.

The simple application of PTO does little to benefit updates, since their overhead

is dominated by the cost of allocating a new bucket, copying the old bucket’s values,

and applying the corresponding insert or removal. However, lookup operations show

a decrease in latency. When PTO is applied to the lookup, all interaction with the
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Figure 6.7: Fence Elimination on Mound

epoch-based reclaimer can be elided. This eliminates two memory fences and two

stores. Given the streamlined code path, there is a noticeable impact on latency.

Figure 6.6 presents the performance improvement for this optimization. In a

write-only workload, we observe more than 2x speedup at 8 threads, and 1.8x

speedup at one thread. The improvement is a consequence of the elimination of

copying, and reduced interaction with the allocator. Since the allocator can require

system calls, and its metadata can present a bottleneck, the benefits increase at

higher thread counts.

6.4 What Makes PTO Fast?

Our evaluation shows some dramatic improvements in performance, particularly for

the BST and hash table. However, it also shows some more modest gains, and fails

to improve the skiplist at all. While the methodology does simplify the task of

accelerating a concurrent data structure, it is still beneficial to be able to analyze

an algorithm and predict whether it will benefit from PTO.

Generalizing our above experiments, we believe that there are four principal

sources of latency that PTO can eliminate:
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Figure 6.8: Fence Elimination on Binary Search Tree

Memory Fences: Figure 6.7 and 6.8 present additional results for the mound

and BST, showing the impact when we did not elide memory fences within hard-

ware transactions. For both the mound, where the placement of fences was hand-

optimized, and the BST, where the placement of fences mirrored their placement in

the equivalent (and necessarily conservative) Java code, we see that the elimination

of fences contributed significantly to savings in latency. For the mound, the impact

of removing fences was the sole source of improvement. For the BST, fences were a

component of a suite of techniques that decreased latency.

Double-Checking Reads: Double-checked reads introduce two costs: not only

do they add more instructions to the operation, but they also introduce branches,

for when the check fails. In Figure 6.8, we break down sources of reduced latency

for the BST write-only experiment. While fence removal plays a significant role,

the baseline improvement comes without it. At low thread counts, where the entire

operation is enclosed in a transaction, the credit is largely due to eliminating double-

checking of reads.

Redundant Stores: In the Mindicator and mound, the process of marking and

unmarking nodes during an update or DCAS creates unnecessary work. Eliminating
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this work was the primary driver of improved latency in the mound.

Allocation: The ability to replace copy-on-write in the hash table was single-

handedly responsible for more than 2x speedup on the write-dominated workload.

This improvement directly followed from the reduced interaction with the allocator.

A similar benefit arose in the BST, where we were able to avoid allocating descrip-

tors, but did not affect the mound, where descriptors are reused from one operation

to the next.

6.5 Rethinking Concurrent Data Structure De-

sign and Implementation

We highlight two implications of PTO on concurrent data structure design.

Optimization on Strengthened Invariants: We first observe that the use of

a hardware transaction can strengthen some of the invariants of the original data

structure. The most straightforward example is that within a hardware transaction,

the intermediate states of an operation are not visible to other threads. In many

nonblocking data structures, operation descriptors are installed by the operation to

indicate that a certain objects are involved in an operation, and those descriptors

are removed during the clean-up phase of the operation, after its linearization point.

In many algorithms, it will be possible to avoid not only the installation and removal

of descriptors, but also their allocation and deallocation.

Similarly, some algorithms employ hazard pointers to prevent objects from be-

ing made unreachable during critical periods in a method’s execution. When the

method is executed within a hardware transaction, there is an invariant that mem-

ory accessed by the transaction will not change due to external events. Thus it

is not possible for an object accessed by a transaction T to become unreachable

before T commits. While T must respect the hazard pointers reserved by concur-

rent (non-transactional) threads, T need not guard locations via hazard pointers
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during its own operation. In an analogous manner, hardware transactions do not

need to update memory management epochs [22, 52]. This latter case clearly can-

not be handled by the compiler, since epochs are represented with monotonically

increasing counters. For short operations, such as those on hash tables, epoch op-

erations and their corresponding memory fences can be a significant contributor to

latency; for read-only operations, epochs can again be a significant cost, due to their

introduction of memory fences.

Progress vs. Optimization Trade-off: A more aggressive opportunity lies in

weakening the progress guarantees of the original algorithm to increase the oppor-

tunity for fast-path optimization. There exist algorithms [29,48] in which read-only

lookup operations are wait-free. Reducing the progress of lookups to lock-free can

have non-local benefits by increasing the opportunity to optimize the PTO fastpath

of inserts and removals.

In the hash table case, we see a PTO insertion or removal can modify the array

in-place, as long as it increments the counter within its hardware transaction. Doing

so ensures that concurrent lookups will not miss a value concurrently removed and

inserted, at the cost of the operation retrying when there is concurrency. If concur-

rency between modifications and lookups is rare, or if modifications are, themselves,

frequent, the optimization may outweigh the added overhead (and reduced progress

guarantees) of the modified set. Modifications of this technique can be applied

to algorithms that use copy-on-write, marking, descriptors, simulated DCAS, and

indirection-based versioning of data.

In summary, we see significant potential to (re)design concurrent data structures

to be PTO-friendly. If the prefix succeeds with high probability, then common costs,

especially those related to memory management (reference counts, hazard pointers,

epochs, indirection), become less significant. A slow-path that bears these costs,

coupled with an unencumbered fast-path, may provide a “sweet spot” for algorithm

designers. When these techniques cease to be performance bottlenecks, they may

be employed to more rapidly develop novel concurrent data structures.
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6.6 Summary

We introduced a methodology for accelerating concurrent data structures by using

hardware transactional memory. Our technique involves creating a fast-path trans-

action that succeeds or fails in bounded time, and a set of optimizations that can be

applied to that fast-path to eliminate latency. In evaluation on five data structures,

we saw performance benefits ranging from 50% to 3x for the hash table and binary

search tree. Even when the methodology did not improve performance, we did not

observe any significant slowdowns.

Apart from performance, our methodology offers many other benefits: It relies

upon, and hence confirms the value of, strongly atomic hardware transactions. It

preserves nonblocking progress, despite the absence of progress guarantees for cur-

rent hardware transactional memory. Our technique is oblivious to the capacity of

the underlying HTM. Lastly, it is both local and compositional. This last point

is crucial, as it allows data structure designers to use existing mechanisms, such as

lock-free DCAS, and then transactionally accelerate them.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, we created nonblocking implementations of unordered linked

lists, resizable hash tables, and array-based priority queues.

The lock-free and wait-free unordered linked list algorithms introduced in this

dissertation are shown to scale well across a variety of benchmarks, making them

suitable for use both as standalone lists, and as the foundation for wait-free stacks

and non-resizable hash tables.

The nonblocking hash table algorithms support resizing in both directions: shrink-

ing and growing. The heart of the table, a freezable set abstraction, greatly simplifies

the task of moving elements among buckets during a resize. Furthermore, the freez-

able set abstraction makes possible the use of highly optimized implementations of

individual buckets, including implementations in which a single flat array is used

for each bucket, which improves cache locality. In performance evaluation, we find

that our lock-free implementation is consistently better than the current state-of-

the-art split-ordered list, and that performance for the adaptive wait-free algorithm

is compelling across microbenchmark configurations.

The mound priority queues combine a number of novel techniques to achieve their
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performance and progress guarantees. Chief among these are the use of randomiza-

tion and the employment of a structure based on a tree of sorted lists. Linearizable

mounds can be implemented in a highly concurrent manner using DCAS. Their

structure also allows several new uses such as the probabilistic ExtractMin and

ExtractMany operations. In performance evaluation, we show that the lock-free

mound is a practical algorithm despite its reliance on software DCAS.

We also introduced the Prefix Transaction Optimization (PTO) to use HTM to

accelerate existing concurrent data structures. The technique provides significant

performance boost to a variety of state-of-the-art data structures while preserving

their strong progress guarantees.

7.2 Future Research Directions

Systematic approaches to efficient wait-free computation. Herlihy [32]

demonstrated the existence of universal constructions for wait-free concurrent ob-

jects. It remains an open problem whether all such objects can be made practical,

because wait-free data structures implemented from universal constructions [33] tend

to incur significant overhead. Although many lock-free data structures have been

proposed, practical wait-free implementations are relatively rare. There exist tech-

niques [42] to construct adaptive wait-free implementations whose performance ap-

proximates their lock-free versions, however, there are still considerable latency gaps

between the best lock-free implementation and the best sequential implementation.

HTM can potentially bridge the aforementioned performance gap, and ulti-

mately, create a systematic approach to construct efficient and scalable wait-free

data structures. In many wait-free data structures, operation descriptors are in-

stalled to indicate that certain objects are involved in an operation, and those de-

scriptors are removed during the clean-up phase of the operation. Within a hardware

transaction, the intermediate states of an operation are not visible to other threads,

and thus, in these algorithms, it will be possible to avoid not only the installation
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and removal of descriptors, but also their allocation and deallocation. As demon-

strated in Chapter 6, HTM can also be used to create speculative fast paths that

avoid, in the common case, the overhead of the wait-free code paths.

Concurrent implementations of STL containers. The C++ Standard Tem-

plate Library (STL) provides a set of general-purpose data structures such as list,

set, and map objects. These data structures are designed and implemented for

sequential use, and require external synchronization (i.e., locks) when concurrent

accesses are demanded. Since C++ is widely-used in programming concurrent sys-

tems (OS and web servers), it is desirable to provide a standardized, alternative

version of STL that is optimized for concurrency, similar to the approach adopted

by the Java standard libraries [1].

Despite the potential impact on real-world applications, there are several research

challenges in this direction. For example, most data structures proposed in research

literature provide relatively narrow interfaces, while the STL tends to include extra

functionality, such as iteration and statistics methods. Ensuring linearizability of

all operations is challenging, due to performance costs and verification. Hence,

it may be attractive to provide relaxed specifications. A possible approach is to

promise linearizability only to a limited set of operations, and to provide weaker

consistency for the rest of the operations. The techniques needed to compose such

hybrid specifications, as well as their impacts on practicality, remain interesting open

questions. One can leverage recent progress in concurrent data structure research

to facilitate this research, such as memory management, iterators, and HTM-based

acceleration.

In-memory databases. In recent years, researchers have made significant progress

to improve the performance and capacity of non-volatile memory systems. The avail-

ability of low-latency, non-volatile random-access memory has great potential to cre-

ate disruptions in database management system (DMBS) implementations. In fact,

the DBMS industry is currently trying to leverage shared-memory concurrent data

structures to build highly efficient and scalable in-memory database solutions [4].
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The concurrent data structures presented in this dissertation can be used to im-

prove in-memory DBMS implementations. We see the potential shift to non-volatile

memory technology as an opportunity to unify the research of disk-optimized data

structures (i.e. optimized for sequential accesses) and shared-memory concurrent

data structures. Specifically, we believe the pragmatic importance of using scalable

synchronization techniques will increase along with the adoption of non-volatile

memory systems: Since the latency gap between accessing persistent storage and

accessing memory is shrunk if not eliminated, the DBMS implementation may no

longer assume the use of mutual exclusion locks (or “latches”) is comparatively

cheap, and hence, one must carefully contemplate the trade-off among various syn-

chronization options. Shared-memory concurrent data structures, which provide

high scalability and low latency, are a promising response to such technology trends.

7.3 Concluding Remarks

Our work showed that concurrent data structure design remains a fertile research

area. With careful investigation of the properties of specific data structures, we were

able to gain new insights to further improve their performance, and to strengthen

their progress guarantees (from lock-freedom to wait-freedom).

We demonstrated the potential of using HTM to accelerate concurrent data

structure implementations. It is clear that HTM has changed our toolboxes as well

as our fundamental performance assumptions in concurrent data structure design.

A refactoring of existing implementations to exploit the power of HTM is likely to

create significant performance benefits. An even more promising research direction

is to investigate how much improvement one can obtain by changing the way in

which data structures are designed, with the availability of HTM in mind.
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