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Figure V – 26 Reinforced TPE Flate Plate in Uniaxial Extension, blue: simulation using quad edge 

elements, ICD; red: experimental 100*20 mm plate at 10 mm/min.  

 

We chose to use a simple geometry first to ensure the reliability of the quad edge 

mesh. A flat plate of reinforced TPE is loaded in uniaxial traction. The stress-strain 

curves of the simulation are compared with the experimental data (Fig. V-26). We 

observe that the quad mesh using experimental data allows a close simulation of the 

stress-strain curves for a planar deformation. The other point to be noted is the low 

cost of the simulation: at 120 % strain, 4 minutes are needed for the linear simulation 

of 20,000 nodes using the MATLAB solver with CPU 2.5 GHz, 4 Gb RAM. The ICD 

time integration is valuable in terms of cost for large scale simulation compared to FE 

simulation (V–2.4). 
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Figure V – 27  Poisson’s Coefficient Considerations for an X-axis Extension (a) Y over X-axis 

deformation (b) Z over X-axis deformation.  

 

Regarding the deformations, we observe that the deformations in space are not 

equivalent (Fig. V-27). For the first 5-10 % of strain, the sample extension is 

compensated along the thickness direction. It has to be noted that within this range, 

the stress is found induced by the matrix only (Fig. V-27a). Therefore, it seems that at 

small extension the matrix layer is thinning. From 10 % strain, the compensation of 

volume is done though the width reduction. The sample then is barely thinning.  
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Intermediate Conclusion 

We focus on the deformation phase. We introduced finite element method for  

simulation purposes. Using hyperelastic models, we are able to model the TPE and 

TPO deformations for uniaxial, pure shear and biaxial inflation with close match to 

experimental data. Then we presented a FE model developed in [Bekisli 2010] based 

on hexagonal repetitive units. The system of equations to calibrate the springs’ force-

displacement curves has been solved and some simulations were run. The model can 

give good agreement with experimental data except in pure shear walewise, for which 

the strain is underestimated. 

Finally, the cohesion between the matrix and reinforcement affects the 

composite mechanical properties: it is not simply a sum of each component. We chose 

to present a cloth technology simulation. The main aim of such model is to avoid non-

linear equation system to be solved. The cloth model is much faster in term of cost as 

the forces are deduced from the Poisson’s ratio and not deduced form a non-linear 

system. For planar extension, an indirect method was used with experimental data, the 

orientation toward coursewise is taken into account. The resulting deformation ratios 

over the 3D space have been depicted. The Poisson’s ratio notion is not applicable for 

fabric reinforced composite as the deformations are anisotropic. Cloth-like 

simulations might be an asset if developed as they are low cost to compute. They may 

be used along more usual FE simulations to study unusual behaviors and materials.  
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Discussion and Conclusion 

 

A feasibility study of fabric reinforcement applied to thermoforming has been 

presented. The matrices used were thermoplastic elastomers: Thermoplastic 

Elastomer (TPE) and Thermoplastic Olefin (TPO). They differ from regular 

vulcanized natural rubbers as the polymer chains are linear. It results into cavitation 

phenomenon which lowers the expected stress at considered strain. It seems that 

compression molding also affects the mechanical properties of TPE sheets as it does 

not provide a good mixing of melt pellets due to the melt rotationless. Some weak 

pellet boundaries are then observed at low strain rate on few samples. A conventional 

compression molding of sandwich-like structure (matrix-reinforcement-matrix) is not 

suitable for flexible composite. The aim regarding flexible composites is to have a 

loose interface; the reinforcement should not be refrained from stretching. In order to 

increase to stretchability of reinforced materials, we lubricate the fabric before the 

plate forming through compression molding. The results show that lubrication only 

does not improved much the stretches to rupture; on the contrary the stresses to 

rupture are lowered. The latter arises from the fact that lubrication prevents fiber to be 

incorporated into the matrix; they will not rupture during the deformation. Regarding 

the stretchability, the yarn even lubricated are bedded onto the matrix topography and 

as such refrained from stretching. As a conclusion, we point out that to improve 

reinforced material stretchability the matrix layers in contact with the fabric should 

not have any “cliff and valley” topography resulting from the compression molding 

phase. Therefore, direct compression molding of a sandwich-like structure should be 

avoided for stretchability concerns. The induced fiber impregnations and surface 

matrix topography prevent the fabric from stretching and therefore reduce the 
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composite stretchability. A proposed alternative would be to add a flexible layer 

between the matrix and the fabric which has a higher Tg or Tm. Polyamide films 

would be potential candidates. Nevertheless, some issues regarding the adhesion 

between the film and the matrix will arise. Another alternative would be to form 

composite plate through plate extrusion in rubbery state. However, the thermoforming 

temperature at core should be carefully monitored then to avoid the matrix melting 

and the resulting fiber impregnations during thermoforming. It has to be stressed that 

this particular issue needs a dedicated study and should be treated specifically.  The 

interface between the matrix and the reinforcement is found to have a major influence 

on reinforced material mechanical properties.  

The fabric reinforcement is found anisotropic and highly dependent on the 

load orientation toward a fabric reference axis or coursewise. Fabric lubrication is 

found to decrease the force to rupture for all loading directions whereas the 

corresponding strains to rupture are not affected. Observations and comparisons with 

literature data for a jersey knit pattern are made regarding the relations among loop 

geometries, yarn diameters, fiber natures and mechanical properties. A major point of 

using knit fabric is that they can be tailored to adjust the desired properties such as the 

thickness or the deformations of the final product. We presently only compare data for 

a specific knit pattern: Jersey. Results regarding the loop geometry, yarn diameter and 

mechanical properties should be extended to various knit pattern.  

Reinforced materials in uniaxial traction and pure shear loading are behaving 

differently: the former is anisotropic and the latter is isotropic. Pure shear stress-strain 

curves are found close to the ones for biaxial inflation. One should use pure shear 

behavior for thermoforming deformation; uniaxial traction tests are not representative 

of thermoforming. Non-reinforced biaxial stress-strain curves are highly dependent on 
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the polymer chemical state or free volume changes. The fabric reinforcement prevents 

such dependency and should be used in case variations are not acceptable. 

Hyperelastic models have been introduced and may provide simple and useful 

characterizations for simulation purposes. However, it has to be noted that 

hyperelastic models does not account on the strain rate whereas fabric reinforcements 

are strain-rate dependent. The fabric loop deformations depend on the ability of the 

yarns to stretch; it rules the reinforced composite stress-strain relation.   

IR heating during thermoforming can be optimized through objective 

functions. The incidence angle is found to have a large impact on the reflectivity or 

radiation losses during the heating. Each polymer reflectivity has its own incidence 

angle dependency. The set-ups studied were all found unsuitable for efficient 

industrial productions in terms of useful radiation repartition and/or in term of 

electrical consumption. The non-reflected or useful irradiance can be improved by 

changing the emitter localizations and temperatures. The use of irradiance and 

radiance calculations enables to diminish the distance emitter-plate and therefore 

lower the electrical power input. As a result, cost of manufacturing may be reduced. 

The fabric reinforcement is found to improve the repartition of useful irradiance 

through conduction and improves the uniformity of the heating. It also lowers the 

heating time due to lower specific heats. 

The deformation phase of thermoforming can be modeled using finite element 

simulation. This issue is to account on the interface mechanical properties. The 

sandwich-like structure is not the sum of each layer. One should only use the 

reinforced material data to calibrate the finite elements. The Poisson’s ratio may not 

be useful for plate extension. Indeed, the anisotropy of the fabric does lead to 

anisotropic deformations in space. A real time measurement of the deformation ratio 
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may seem a useful thing to carry out. The fabric reinforcement applied to 

thermoforming is promising although a lot has still to be investigated. Large high 

cadency production can be achieved and the process may be suitable to the 

transportation industry. Lightweight flexible composites may be used for numerous 

applications at competitive cost of production if both the IR heating and the 

deformation phases of thermoforming are managed. 

 

Appendices 

Appendix A: Absorption Phenomena 

 

 The absorption phenomena of organic solids are directly related to the 

chemical composition of the considered solid. Indeed, Infrared spectroscopy exploits 

the fact that molecules absorb specific frequencies that are characteristic of their 

structure. Matter interacts with electromagnetic radiations and spectroscopic 

techniques probe energy levels of atoms and macromolecules. After interactions, 

systems have various excited states for which their energies are higher than the 

ground state. Different absorbed energy lead to various energetic levels, they are 

ascribed to different motions (electronic, nuclear, rotational and vibrational). 

Conveniently, the transitions that involve the different types of energy levels usually 

occur in different parts of the electromagnetic spectrum:  

2* * *c
k

µ
λ π=                    (E.A.1) 

 (E.A.1) shows that the wavelength λ associated to a vibrational motion is only 

function of the masses of the atoms and the strength of the bond between them. 
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Therefore, only the nature of the atoms involved in the bonding determines the 

wavelength of absorption. It is somehow easy to extend some concepts to other 

vibrational motions of larger molecules: the vibrations act as ideal harmonic 

oscillators that have certain wavefunctions and certain quantized energies. However, 

normal modes are vibrations of all atoms in a molecule, not just two. (E.B.1) is not 

directly applicable even if the idea of a force constant for a polyatomic motion is 

used. In addition, many normal modes are largely motions of only a few connected 

atoms of a large molecule. It is not uncommon to read " C-H stretch" or "CH2 bend" 

even if technically such labels are incorrect but quantitatively describing the normal 

modes of the molecule. IR radiation absorption induces those motions and only 

certain wavelengths of excitation are allowed. An IR spectrometer scans a wide range 

of wavelength and records the absorption bands. Additional materials can be found in 

[Ball 2003]. The vibrational energies are quantized with the vibrational quantum 

numberν : 

* 1
( ) *( ) 0,1,2,3....

2

h c
E v with vλ

λ
= + =         (E.A.2) 

Therefore considering a band of absorption at the wavelength λ, we except that the 

differences in the energies will have only certain values from one state to the upper 

one: 

*
( ) ( 1) ( )

h c
E E v E vλ

λ
∆ = + − =         (E.A.3) 

We note that the energy of transition given for adjacent states of transition is the 

energy provided by an electromagnetic radiation (E.I.2). Therefore from the intensity 

of the absorbed bands, one can deduce the composition of a solid. As a conclusion on 

the IR spectroscopy, we can write that the observed wavelength of absorption 
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indicates the nature of the constitutive elements and the peak intensities the 

composition of such elements in the material (Fig. A-1).  

 

Figure A-1  (a) Potential energy for the vibration of a molecule [Ball 2003]  

(b) IR absorption band table from http://jan.ucc.nau.edu/~jkn/235A-Appendix.htm; May 2012 

 

Appendix B: Radiative Transfer Equation  

Concerning the Radiative Transfer Equation, the density vector of the radiative flux 

rq
uur

 is defined using the monochromatic radiance Lλ: 

0 4

( ) * * *rq L s s d dλ
π

λ
∞

= Ω∫ ∫
uur r

    (E.B.1) 

where s is the curvaceous abscissa associated to the radiuss
r

. The radiance is then 

calculated with the radiative transfer equation [Andrieu 2005]: 
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( ) 1
* ( ) * * ( ) ( )* * ( )*

4

S s

dL s
L s n L T L s P s s d

ds

λ λ

λ
λ λ λ λ λ λ λ

π
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π

=− + + → Ω∫
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 (E.B.2) 

All the terms are defined in the notation section. The first term corresponds to the loss 

of the radiative energy by absorption and diffusion of the IR ray within the media. λβ  

is the sum of the volumic monochromatic coefficients of absorption λκ and diffusion 

λσ : 

λ λ λβ κ σ= +     (E.B.3) 

The second term of (E.C.8) is a gain due to the own medium radiation using the 

monochromatic refraction index nλ. The third term is also a gain but this time due to 

the diffusion.  

The ratio of the diffusion phase function 
'( )Ps s→
ur r

 over the solid angle 4π is the 

probability of an IR ray inside the element of solid angle 'dΩ  centered on the 

direction 
's
ur

diffusing within the element of solid angle dΩ  centered on the direction 

s
r

; 
's
ur

and s
r

 must be different directions. 

If the diffusion and the radiative terms of the medium are summed up, we can 

introduce the generation term ( )S sλ

ur
, (E.I.34) is then written: 

( )1
( ) ( )

dL s
L s S s

ds
λ

λ λ
λβ

+ =    (E.B.4) 

 

Appendix C: Rheological laws and melt viscosity 
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Compression molding involves melt polymers. Therefore, some notions in melt 

viscosity have to be presented. Rheology is the study of the deformation and of the 

flow of matter. The range of melt viscosity usually encountered in materials is given 

in table G.1. Polymer solutions may be much more viscous, depending on the 

concentration, molecular weight, and temperature. 

Table C-1 Viscosity of common materials [Sperling 2006] 

Composition Viscosity in Pa.s Constitency 

Air 10-5 Gaseous 

Water 10-3 Fluid 

Polymer latexes 10-2 Fluid 

Olive oil 10-1 Liquid 

Glycerine 100 Liquid 

Golden syrup 102 Thick liquid 

Polymer melts 102 - 106 Toffee-like 

Pitch 109 Stiff 

Plastics 1012 Glassy 

Glass 1021 Rigid 

 

The melt viscosity is temperature dependent. The WLF equation can be used to model 

such dependency: 

1

2

* ( )
log( ) g

Tg g

C T T

C T T

η
η

− −
=

+ −
              (E.C.1) 

where Tg is the glassy transition temperature, ηTg is the viscosity at the Tg. 

The constants of (E.F.1) are: 

1 17.44C =                       (E.C.2) 
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    2 51.6C K=                                 (E.C.3) 

The second equation often used is the Arrhenius relationship: 

exp( )
B

A
T

η = −                  (E.C.4) 

where A and B are constant of the liquid. The Arrhenius equation may be shown to be 

an approximation of the WLF equation for region far above the glass transition 

temperature. The viscosity is dependent on the shear rate γ& . The Newton's equation 

for a perfect liquid exhibiting a melt viscosity η may be written: 

τ
η

γ
=
&
          (E.C.5) 

where τ  and γ&  are the shear stress and strain rate respectively.  

The shear viscosity or melt viscosity η of low molecular weight materials can be 

newtonian. However for larger molecular weight systems, various shear-rate-

dependent phenomena are observed (Fig.G1). Usually, polymers are shear thinning. 

 

Fig. C-1 Common shear-rate-dependent rheological phenomena 

Several models are used to model the various flows encountered. Several flow 

equations are summarized in Table C-2. Here, η0 the viscosity at low shear rates and 

η∞ at high shear rates, and α and n are constants.  
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Table C-2 Flow models and equations [Schoff 1988] 

Model Equation 

Newtonian *τ η γ= &  

Bingham Plastic 0 *τ τ η γ− = &  

Power law * nτ η γ= &  

Power law with yield value 0 * nτ τ η γ− = &  

Casson fluid 
0 *τ τ η γ∞− = &  

Willamson 
0

1
m

η η
η η

τ
τ

∞
∞

−
− =

+
 

Cross 0

1 * n

η η
η η

α γ
∞

∞

−
− =

+ &  

 

There are several different types of viscometers, of varying complexity, good 

for specific purposes and/or ranges of viscosity. We describe only the rotational 

rheometer as we use it in the present study. Designs include concentric cylinders (cup 

and bob), cone-and-plate, parallel-plate, and disk, paddle, or rotor in a cylinder. The 

most important shape is the cone-and-plate viscometer (Fig.C-2). The advantage of 

the cone-and-plate geometry is that the shear rate is very nearly the same everywhere 

in the fluid, provided the gap angle θ0 is small. The shear rate in the melt is given by: 

1

0

γ
θ
Ω

=&                   (E.C.6) 

where 1Ω is the angular velocity of the rotating platter. The viscosity is then given by: 
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0
3

1

3 *

2 * *

f

a

θ
η

π
=

Ω
                 (E.C.7) 

where f is the force deduced from the couple measured. 

 

Fig. C-2 Rotational viscometer 

The melt viscosities of TPE and TPO have different behaviors as the former is in the 

melt and the latter is not (Fig. C-3). 

 

Fig. C-3 Melt viscosity in Pa.s versus Frequency in Hz (a) TPE (b) TPO 
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Appendix D: Clausius-Duhem inequality 

 

 

The second principle of thermodynamic implies for a reversible transformation: 

ds
T Q

dt
≥ &                  (E.D.1) 

with s the entropy and Q&  the heat production. 

The heat equation can be written: 

. : .
t t t

dU
ndA rdV dV

dt
φ σ ε

Γ Ω Ω

= − + +∫ ∫ ∫
r r

&                  (E.D.2) 

with U the internal energy,  A the area, V the volume.  

We have: 

t

mdUdU
dV

dt dt
ρ

Ω

= ∫                  (E.D.3) 

with Um the intern energy per mass unit. 

Using the Ostrogradsky theorem to the right part of  (E.D.2) we have: 

. :mdU
r

dt
ρ σ ε= −∇Φ+ +

ur
&                  (E.D.4) 

with r the density of the received heat. 

We note that if the medium is incompressible, the internal energy is function of the 

temperature: 

. :p

dT
C

dt
ρ σ ε= −∇Φ+

ur
&                  (E.D.5) 

The Clausius-Duhem inequality is written using (E.D.1) and (E.D.4): 
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 1
: ( ) . 0

d dT
s T

dt dt T

ψ
σ ε ρ− + − Φ ∇ ≥

ur
&    (E.D.6) 

with s  the entropy of the system, T the temperature, ψ the free energy per mass unit, 

Φ
ur

is the heat flow received by the considered surface. 

We can express the free energy using a Green-Lagrange tensorL : 

:
d Ld dT

dt T dt L d t

ψ ψ ψ∂ ∂
= +

∂ ∂
     (E.D.7) 

The Clausius-Duhem inequality becomes: 

1
: : ( ) . 0

d Ld d dT
s T

d L dt dT dt T

ψ ψ
σ ε ρ ρ− − + − Φ ∇ ≥

ur
&    (E.D.8) 

We have: 

0

: :
d L

dt

ρ
σ ε

ρ
= ∑&      (E.D.9) 

with ∑ the Piola-Kirchhoff stress tensor. 

The inequality is verified if: 

s
T

ψ∂
= −

∂
      (E.D.10) 

and  

0 L

ψ
ρ

∂
∑ =

∂
      (E.D.11) 

which leads to the condition: 

TF F
L

ψ
σ ρ

∂
=

∂
     (E.I.12) 

with  

0d x F d x=
r uur

      (E.D.13) 

0x is the position before and x  after the deformation. 
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We suppose the medium as isotropic, the free energy depends on the temperature and 

the invariants I1, I2 and I3 of the Green tensor defined as: 

1 ( )I tr B=        (E.D.14) 

22
2

1
(( ( )) ( ))

2
I tr B tr B= −      (E.D.15) 

3 det( )I B=        (E.D.16) 

with  

TB F F=        (E.D.17) 

 

We can show through calculations that we have [Germain 1979]: 

1'
3

1 2

2 2
W W

p I B I B
I I

σ −∂ ∂
= − + −

∂ ∂
     (E.D.18) 

with  

W ρψ=        (E.D.19) 

and 

'
2 3

2 3

2( )
W W

p I I
I I

∂ ∂
= − +

∂ ∂
      (E.D.20) 

I is the identity tensor. 

The general equation for hyperelastic and incompressible solid is then [Kaye 1992]: 

1'

1 2

2 2
W W

p I B B
I I

σ −∂ ∂
+ = −

∂ ∂
    (E.D.21) 

In case of 

1 2 1 1( , ) ( 3)W I I C I= −      (E.D.22) 

we have the neo-Hookean law (E.I.58) with C1 defined in (E.I.57). 
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Appendix E: Jersey Fabric and Fibers Characterizati ons 

We introduce three dimensions to characterize the fabric. dy is the diameter of the 

yarn, C is the number of loop per mm coursewise and W is the number of loop per 

mm walewise. 

The manufacturer gives the following data: C = 1 loop/mm; W=1.4 loop/mm and the 

yarn is made out of 500 deniers or 500 g per 9 km long fiber. 

 

Fig. E-1 (a) loop geometry (b) yarn diameter 

Experimental measurements are averaged on 20 samples.  

Table E-1 Experimental results 

Features Values 

dy 0.234±0.025 mm 

C 0.984±0.044 loop/mm 

W 1.421±0.073 loop/mm 

 

We observe that the experimental data of C and W match the data provided by the 

manufacturer. Usually, cheap polyester fibers are made of PET. However, 

Polycarbonate (PC) fibers are also used. As simplification of (E.I.74) can be written: 
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64.444*10 *

*y
fiber

Denier
d

π ρ
=     (E.E.1) 

 As  

3 31.34 . 1.41 .PETg cm g cmρ− −< <     (E.E.2) 

and 

31.2 . PCg cm ρ− ≈     (E.E.3) 

We expect for the PET: 

0.223 0.229ymm d mm< <     (E.E.4) 

and for the Polycarbonate: 

0.243 ymm d≈     (E.E.5) 

The theorical results for both the PET (E.E.4) and the PC (E.E.5) are found to be close 

to the experimental data (Table E-1) when considering the standard deviation of 

measurements. However, in order to confirm which polymer is used, we carry out a 

DSC experiment on some fibers extracted from the fabric. The Tg of PET is expected 

around 70-80°C and the one for the PC around 140°C for the atactic form. We 

observe that indeed, the fibers are made out of PC as we observe a Tg characteristic 

change of slope around 140°C. However, we note that a slight change in Cp is 

oservable at 75-80°C, therefore traces of PET may be present and this issue would be 

answered quantitatively through MNR measurements. 
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Fig. E-2 Heat Flow of the polyesters fibers (a) zoom out (b) from 20°C to 100°C (c) from 100 °C 

to 200°C EXO UP through flux compensation method, the Tg by itself is hardly spotable but the 

Cps are accurate 
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Appendix F: Fabrics and Data from [Baléa 2011] 

 

Fig. F-1 (a) Force-stretch ratio curves walewise (b) Force-stretch ratio curves coursewise 

(c) Loop geometric parameters 

 

Table F-1 Stretch to rupture in % divided by CS in % 

fiber type  coursewise   walewise  

Carbon 88/82 55/52 

Glass 92/88 62/57 

Basalt 94/91 63/59 

 

Table F-2 Fabric measurements walewise 

fiber type Carbon Glass  Basalt 

h (mm) 2.75 2.65 2.65 

b (mm) 4.10 4.35 4.40 

Lf (mm) 14.95 13.90 13.10 
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Lf/(b*h)  0.09 0.09 0.09 

thickness (mm) 1.50 1.60 1.45 

g.m-2 568 726 689 

 

Table F-3 Fabric measurements coursewise 

fiber type Carbon Glass  Basalt 

h (mm) 2.65 2.65 2.65 

b (mm) 4.00 3.80 3.85 

Lf (mm) 12.50 13.30 12.00 

Lf/(b*h) 0.10 0.10 0.10 

thickness (mm) 1.55 1.60 1.60 

g.m-2 533 805 787 
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Fig. F-2 Fabric local strain during uniaxial traction; 0° coursewise, 90° walewise measured 

through stereo correlation 
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Appendix G: Reinforced PolyUrea (PU) Caracterizatio ns 

The reinforced PolyUrea composite is poured and cured at 70°C (160°F) for 16 hours 

in a 3 mm thick mold, the fabric is deposed inside the mold before pouring. The pre-

polymer is Airthane PHP-80D cured with Versalink P1000 by Air Products with a ratio 

of 1/1.5 by weight. The sample size is 100mm x 20mm x 3mm. 

 

Fig. G-1 Stress strain curve in uniaxial traction; glass fabric  

(a) Non-lubricated (b) Lubricated 

We observe on Fig G-1 that the stretch to rupture is particularly improved by the 

lubrication. We also note that the stress to rupture is much lower as the strain energy 

ratio. All data can be found in Table G-1 below. 
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Table G-1 Characterizations of Lubricated or non-lubricated glass fabric reinforced PU 

Event Orientation non-lubricated lubricated 

Maximal/Rupture 

stress in MPa 

Coursewise 7.7 4.9 

45° 9.8 4.7 

Walewise 9.9 5.5 

Stretch to rupture 

in % 

Coursewise 101 126 

45° 50 96 

Walewise 62 113 

Strain energy 

ratio at rupture 

Coursewise 5.62 2.11 

45° 3.88 1.78 

Walewise 3.18 2.18 

 

 

Appendix H: Thicknesses and measurement uncertainty  

The initial thicknesses of the disks used in Fig. III–25 are given in Table H-1. 

Table H-1. Calculated uncertainty in µm for the considered disks: TPE, PolyEster fabric 

reinforced TPE Coursewise and Walewise, PolyEster fabric reinforced TPO 

(µm) / Disk TPE 
Reinf. TPE 

Coursewise 

Reinf. TPE 

Walewise 

Reinf. 

TPO 

Maximum Initial 

thickness 
1141 1700 1700 2000 

Minimum Initial 725 1566 1566 1900 
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thickness 

 

The uncertainty of thickness measurement is estimated: 

2 2 2 2( ) ( ) ( ) ( ) ( )a f r eu t u t u t u t u t= + + +   (E.H.1) 

with the uncertainty of type A based on the standard deviation of 10 measurements 

(m=10): 

2

1

( )
( )

m

i
i

a

t t
u t

m
=

−
=

∑
     (E.H.2) 

and 

1( ) 6.6n
fu t m

n

σ
µ−= =      (E.H.3) 

The uncertainty of type f is based on 30 measurements (n=30) of the same point. 

( ) 7.2
12

r

Digit
u t mµ= =     (E.H.4) 

The uncertainty of reading is ru  depends on the smallest digit of the screen, the digit 

of the probe screen equals 0.01 in or 25 µm. Finally, the uncertainty of the probe is 

given as 2%. 

( ) *0.02Eu t t=      (E.H.5) 

 

Appendix I: FE Simulation of Yarn Impregnation 

 

In order to produce the composite plates through compression molding, we used a 

force of one klb for a 300*300 mm2 plate. The resulting applied pressure is 0.494 bar, 

we use 0.5 bar for the simulation. We use a constant viscosity for TPE at 150 °C of 
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2,800 Pa.s (Fig. C-3). The yarn is initially filled with air. The volume fraction of TPE 

inside the yarn is simulated on Fig. I –1.  

 

Figure. I –1 Volume Fraction of TPE into the yarn , Laminar Flow,  FE Simulation for a pressure 

of 0.5 Bar , 150 K at various compression time in minutes (a) 0.1 (b) 0.5 (c) 1 (d) 4   

 

We observe that the outer zone of the yarn is immediately impregnated which would 

reduce the compression molding cycle. Despite the high temperature, we note that the 

yarn is not fully impregnated at core. It may be due to the constant viscosity as TPE is 
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shear-thining. The processing time may be saved by increasing the compression 

temperature as the melt viscosity is lowered. 

 

Appendix J: Fast Projection Algorithm 

 

The Fast Projection method algorithm fully described in [Goldenthal 2010, Ozgen 

2011]: 

� Input:  // candidate velocity 

� Input:  // known start-of-step position 

1.  0j < −  

2.  0  x x tv< − +∆% %  

3.  while the strain of  exceeds the constraint 

4.  solve  ( ) 2 1( ( ) ( )T
j j jC x t C x M C x−= ∆ ∇ ∇  for  

5.  use ( )2 1
1 ( ( ) 1T

j jx t M C x jδ δλ−
+ = −∆ ∇ +  for  

6.  1 1j j jx x xδ+ += +  

7.  1j j< − +  

� Output: 
( )jx x

t

−

∆

%
  // constraint-enforcing velocity 
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