Figure 18. SEM micrograph of AAO membrane with 64pones examined after soaking

in cell culture media

An SEM micrograph of the cell layer on TCT glasshown in Figure 19. The
cell layer is several microns thick, and interacsi@an be seen in between the neurons

and the surface of the cell layer. Small focal &ithres were observed attaching the tissue

layer to the TCT glass.

Figure 19. SEM micrographs of C17.2 cell layer rafliéferentiation on TCT glass

showing neuron interacting with the cell layer tjl@nd focal adhesions (right)
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Figure 20 shows representative SEM micrograplbeotell layer found on AAO
membranes after differentiation. The AAO membraadeshowed similar cell layer
morphology, regardless of pore size. A dense tiikadayer was found that was thicker
than that found on the TCT glass in most areasil&ito the TCT glass, evidence was
found of neuronal interaction with the cell lay®lorphological differences were also
observed in the tissue layer on the AAO membranppating the mixed phenotype

results from ICC.

Figure 20. SEM micrographs of the cell layer on AAK@mbranes after differentiation

showing a dense cellular growth (a) and neuronafactions with the cell layer (b,c)
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Figure 21 shows SEM micrographs of the cell inteoas with the features on the AAO
membranes. Neurons were found outstretched anchatiteg with the surface of the

AAO membranes. Cells were seen to interact primpavrith the surface of the
membranes, and no evidence from SEM analysis stgjtyet the cells reach into the
pore openings for the size range examined in tbikwFigure 21c shows the edge of an
AAO membrane after cell growth and suggests thathhough-pore structure was in fact

maintained throughout the cell culture process.

7. 3mm 14.0kV: x7.0k

1] §
1

Figure 21. SEM micrographs of cell interactionshM#AO membranes after

differentiation (a,b) showing an intact through-@anorphology (c)
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V1. Conclusions
AAO membranes were fabricated in 2.7% oxalic adgith varying pore diameters
and seeded with C17.2 NSCs. AAO membranes with giaes ranging from 34-117nm
were achieved. After cell culture and differenbatvia serum withdrawal, the cellular
response of the AAO was evaluated by ICC and SEM.data suggests a highly tunable
correlation between AAO pore diameter and diffaegatl cell populations. The
following conclusions can be made based on therebdalata:
1. AAO membranes support greater neurite outgrowth T@T glass, regardless of
pore size
2. Neuronal population varies with the pore size of@\Aembranes, and the
presence of a dense layer with mixed phenotypegestig) the possibility of tissue
growth on AAO membranes
3. Through-pore morphology appears to be maintaindidating that AAO is a

suitable candidate for an artificial cell/matesghapse system

VII. Future Work

AAO membranes have been shown to have potentlabasy tunable materials
for cellular devices. It would be valuable to exstiall steps in the AAO fabrication
process for their influence on cellular respondee Uise of other electrolytes and other
electrolyte concentrations opens up a much morefgignt range (10-300nm pore
diameter) of ordered pores for study. The wide eapigpores could allow for highly
tunable surfaces which have very specific molecsidectivity in a cellular hybrid

device. Surface modification techniques could &lsancorporated once the basic
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properties of AAO membranes from different fabricatmethods are understood. As a
precursor to understanding the complex variablesA® fabrication, the next step of
this study will be to perform XPS on the membrafaésicated for this experiment to
fully understand the chemical configuration that tells are interacting with.

The complex roughness of the polycrystalline aharshowed some interesting
results as compared to the AAO membranes in tipsraxent. Future studies could
incorporate patterned aluminum substrates to utadeishe effect of combinations of
different surface features on AAO surfaces. Itasgble that the benefits of promoting
neurite outgrowth length could be combined withr@ased neuronal percentages to
further tune the types of cells that differentiatethese engineered surfaces.

Finally, the results shown in this work showedagi@omise for tailoring cellular
response of NSCs. It is likely, however, that diéf cell types will also have varied
behavior on the AAO membranes. Expanding the tgbeslls studied on AAO
membranes will widen the applications of AAO inmiedical devices. Additionally,
from a scientific stand-point, understanding treposse of other cell types on these
materials could provide insight into the complexchenisms by which AAO and it's

morphology is affecting cell differentiation.
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