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Figure 18. SEM micrograph of AAO membrane with 64nm pores examined after soaking 

in cell culture media 

 An SEM micrograph of the cell layer on TCT glass is shown in Figure 19.  The 

cell layer is several microns thick, and interactions can be seen in between the neurons 

and the surface of the cell layer. Small focal adhesions were observed attaching the tissue 

layer to the TCT glass.  

 

Figure 19. SEM micrographs of C17.2 cell layer after differentiation on TCT glass 

showing neuron interacting with the cell layer (left) and focal adhesions (right) 
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 Figure 20 shows representative SEM micrographs of the cell layer found on AAO 

membranes after differentiation. The AAO membranes all showed similar cell layer 

morphology, regardless of pore size. A dense tissue-like layer was found that was thicker 

than that found on the TCT glass in most areas. Similar to the TCT glass, evidence was 

found of neuronal interaction with the cell layer. Morphological differences were also 

observed in the tissue layer on the AAO membranes supporting the mixed phenotype 

results from ICC. 

 

Figure 20. SEM micrographs of the cell layer on AAO membranes after differentiation 

showing a dense cellular growth (a) and neuronal interactions with the cell layer (b,c)  

a b 

c 
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Figure 21 shows SEM micrographs of the cell interactions with the features on the AAO 

membranes. Neurons were found outstretched and interacting with the surface of the 

AAO membranes. Cells were seen to interact primarily with the surface of the 

membranes, and no evidence from SEM analysis suggests that the cells reach into the 

pore openings for the size range examined in this work. Figure 21c shows the edge of an 

AAO membrane after cell growth and suggests that the through-pore structure was in fact 

maintained throughout the cell culture process. 

 

Figure 21. SEM micrographs of cell interactions with AAO membranes after 

differentiation (a,b) showing an intact through-pore morphology (c) 

a b 

c 



 

34 

 

VI. Conclusions 

 AAO membranes were fabricated in 2.7% oxalic acid with varying pore diameters 

and seeded with C17.2 NSCs. AAO membranes with pore sizes ranging from 34-117nm 

were achieved. After cell culture and differentiation via serum withdrawal, the cellular 

response of the AAO was evaluated by ICC and SEM. The data suggests a highly tunable 

correlation between AAO pore diameter and differentiated cell populations. The 

following conclusions can be made based on the observed data: 

1. AAO membranes support greater neurite outgrowth than TCT glass, regardless of 

pore size 

2. Neuronal population varies with the pore size of AAO membranes, and the 

presence of a dense layer with mixed phenotypes suggests the possibility of tissue 

growth on AAO membranes 

3. Through-pore morphology appears to be maintained indicating that AAO is a 

suitable candidate for an artificial cell/material synapse system 

VII. Future Work 

 AAO membranes have been shown to have potential as highly tunable materials 

for cellular devices. It would be valuable to evaluate all steps in the AAO fabrication 

process for their influence on cellular response. The use of other electrolytes and other 

electrolyte concentrations opens up a much more significant range (10-300nm pore 

diameter) of ordered pores for study. The wide range of pores could allow for highly 

tunable surfaces which have very specific molecular selectivity in a cellular hybrid 

device. Surface modification techniques could also be incorporated once the basic 



 

35 

 

properties of AAO membranes from different fabrication methods are understood. As a 

precursor to understanding the complex variables in AAO fabrication, the next step of 

this study will be to perform XPS on the membranes fabricated for this experiment to 

fully understand the chemical configuration that the cells are interacting with.  

 The complex roughness of the polycrystalline alumina showed some interesting 

results as compared to the AAO membranes in this experiment. Future studies could 

incorporate patterned aluminum substrates to understand the effect of combinations of 

different surface features on AAO surfaces. It is possible that the benefits of promoting 

neurite outgrowth length could be combined with increased neuronal percentages to 

further tune the types of cells that differentiate on these engineered surfaces.  

 Finally, the results shown in this work showed great promise for tailoring cellular 

response of NSCs. It is likely, however, that different cell types will also have varied 

behavior on the AAO membranes. Expanding the types of cells studied on AAO 

membranes will widen the applications of AAO in biomedical devices. Additionally, 

from a scientific stand-point, understanding the response of other cell types on these 

materials could provide insight into the complex mechanisms by which AAO and it’s 

morphology is affecting cell differentiation. 
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