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years ago, within the framework of a Fokker-Planck equation. Several other studies 

followed the lead of Caughey  [32–34] in the context of the random motion of sliding 

buildings in response to earthquake. More recently, the problem of stochastic motion 

involving Coulombic friction has been enlivened by de Gennes  [35] as well as by 

Kawarada and Hayakawa  [36] that also received rigorous treatments of path 

integral  [32,37]  and Fokker-Planck  [38,39] formalisms in the past and recent times. 

Major progress has recently been made by Menzel and Goldenfeld  [39], who focused on 

the displacement statistics associated with the random motion governed by Coulombic 

friction using a Fokker-Planck equation, which was previously addressed using a pulse 

train excitation approach  [40] or a numerical integration of the Langevin equation  [1–3]. 

When both a Coulombic and a viscous friction are at work, Menzel and Goldenfeld  [39] 

demonstrated clearly that the displacement statistics at different time scales are not self-

similar – it is exponential at short time scale and Gaussian at a longer time scale, which is 

consistent with the recent experimental observations  [1–3,19]. In spite of the non-

Gaussian fluctuation, the variance of the distribution grows linearly  [1,2] at the large 

time limit. Similar observations were also made by Wang et al  [19] in an unusual 

Brownian motion of a colloidal particle in contact with a microtubule. When a bias is 

imposed  [1,2], the object drifts with a velocity that increases sub-linearly with the 

strength of the noise, but linearly with the applied bias. This linear growth of 

displacement variance with time with a non-Gaussian statistics is not intuitive, but it is 

observed within the numerical solution of a Langevin  [1–3] and/or a Fokker-Planck  [39] 

equation.   
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In order to focus our discussion, let us consider a modified Langevin 

equation  [1–3,18,41]: 

 
  

  
 

 

  
  ( )   ̅   ( ) 5.1 

Here, V is the velocity of the particle,    is the external force divided by the mass of the 

object, L is the Langevin relaxation time , and  t  is the time dependent acceleration of 

the white noise, the power (or the noise strength) associated with which is K.  The second 

term on the left of this equation is due to the linear kinematic friction and the third term is 

due to the Coulombic friction.   is the magnitude of the dry friction expressed in terms 

of the static friction force divided by the mass of the object.  If  is smaller than   t 

, the object moves. On the other hand, if  )(t   < , the object remains stuck to the 

surface, unless its momentum gained from the previous impulse is significantly 

large  [35]. It will set into motion again if another strong acceleration pulse )(t  rescues it 

from the stuck state. As the non-linear dry (or Coulombic) friction exhibits a jump 

discontinuity at V=0, it is convenient to multiply   with a signum function  V  which 

is positive when V > 0 and negative when V < 0 with   00  .  Within the above 

formalism, there is no operational difference between dry friction (solid on solid), wetting 

hysteresis (liquid drop on solid), or adhesion hysteresis  [42] as it appears in rolling 

motion.  

           Caughey and Dienes  [18] considered Eq. 5.1 (without the bias and the kinematic 

friction terms, i.e. 0  and L ) and its corresponding Fokker Planck equation in 
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order to obtain an expression for the transition probability density in the velocity space. 

Their results showed that normal diffusive like motion prevails even when the dynamics 

is governed by the non-linear friction but the diffusivity (D 43 /~ K ) varies more 

strongly with the power of the noise than the case with a linear kinematic friction ( KD ~

). Another important finding of Caughey et al  [18] is that the transition probability 

density at the stationary state is exponential with velocity.  

            Although our recent interests to study the role of non-linear friction in stochastic 

motion stem from its relevance to the problems of soft matter physics, the early interests 

in this subject arose from its importance in studying the sliding of the building 

foundations in response to earthquake.  In this arena, following the lead of Caughey and 

Dienes  [18] , Ahmadi  [33] and Crandall et al  [34] presented some approximate, but 

useful results. Below, we briefly review and extend certain predictions of the above 

authors, which would be important in interpreting the results of the experiments 

performed by us.    

The non-linear nature of Eq. 5.1 makes it cumbersome to treat it analytically. As 

far as average values are concerned, one way to tackle the problem is to consider a 

classical linear version  [18,43] of this equation and estimate the equivalent of the 

Langevin relaxation time. Following Caughey  [18,43] and Crandall et al  [34], we 

express Eq. 5.1 (without the bias) in the form shown in Eq. 5.2 with the addition of a 

remainder term   as in Eq. 5.3.  
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  ( )  5.3 

The criterion for equivalent linearization is to minimize the average value of    with 

respect to   
 , which leads to the following equation: 

 
 

  
  

 

  
 

 〈 ( ) 〉

〈  〉
 5.4 

Calculation of the averages shown in Eq. 5.4 requires an expression for the stationary 

probability density of velocity, which can be obtained by setting the diffusive flux in the 

velocity space to zero:  

 
 

 

  

  
  

| |

 
  

  

  
   5.5 

The stationary velocity distribution (P(V)) is  

  ( )       ( 
  

   
 

 | | 

 
) 5.6 

 

The averages in Eq. 5.4 can now be carried out with the velocity distribution function 

given in Eq. 5.6.  The analysis can be simplified if the exponential term (due to 

Coulombic friction) of Eq. 5.6  dominates over the kinematic term, which is often the 

case. One thus obtains: 
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 5.7 

Equation 5.7 defines the equivalent relaxation time in terms of the Coulombic and a 

linear kinematic friction. When a small external bias is imposed, an expression for the 

drift velocity  [1,2,35,41] can be obtained from the linear response theory, i.e. *
LdriftV  .  

We thus have, 

    
 ̅  

        
 5.8 

Equation 5.8 applies with an ideal white noise. However, any noise generated 

mechanically has a finite bandwidth and has certain amount of correlations. Thus, for a 

quantitative discussion of the nature of the drift and diffusion caused by an external 

noise, the value of K should be properly calibrated.  

In a typical experiment of stochastic rolling or sliding, one can perform two types 

of measurements. With a random noise and a bias, the ball rocks forward and backward 

randomly but with a net drift. At a given bias, one can record the motion of the ball over 

a large distance for a given duration of time and estimate the drift velocity. Alternately, 

one can record the stochastic motion of the ball with a high speed camera to study the 

trajectory over certain duration of time. The spatial segments of the trajectories 

corresponding to a given time segment can then be used to obtain probability distribution 

function (pdf) of the displacement fluctuation. Such a pdf has a given peak and a 

dispersion of displacements. By plotting the position of the peak as a function of time 
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segments, a drift velocity can be estimated. Furthermore, from the slope of the variance 

of the displacement versus time, one can obtain the diffusivity. When only a linear 

friction operates, the drift velocity should simply be a product of the bias     and the 

Langevin relaxation time (L). On the other hand, when only the dry friction operates, the 

drift velocity is given by 2/K .  With the presence of both the kinematic and a dry 

friction, the drift velocity starts  [1,2,41] from a very low value and progressively 

saturates to L  sub-linearly. These predictions are consistent with our previously 

reported sliding experiments  [1,2], but not, exactly, with a steel ball rolling on a fibrillar 

PDMS substrate. Here the drift velocity increases in a sigmoidal fashion with the strength 

of the noise. Understanding this discrepancy is the central objective of this paper.  

          At this point we should mention that a non-linear evolution of the drift velocity 

with K can also be observed with a non-linear friction of the type: ( n
V~ ). Here, the 

Langevin equation is: 

 
  

  
 

 | | 

 
 ( )   ( ) 5.9 

The stationary probability distribution function  [1,2] for the velocity is given by the 

following equation: 

  ( )    
    ( 

  | |   

 (   ) 
) 5.10 
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5.4.1.1 Drift velocity and the strength of noise 

The steel ball rolled on a straight path without exhibiting any significant sidewise drift. 

Using a low magnification camera, the drift velocities were obtained from the 

displacement of the ball for a given duration of time using several tracks for each noise 

strength.  The stochastic displacement of the ball was also examined in detail with a high 

speed camera. At a low power (0.06 m
2
/s

3
), each track lasted for about 6s. This track was 

divided into different time segments (0.001s to 1s) using all possible starting and ending 

times.  

Figure 5.2: Drift velocity increases with the power of the noise. The profile is slightly 

sigmoidal at low values of K. The filled blue circles are the experimental data. The 

dashed line represents the velocity obtained using Eq. (5.14).  In order to construct this 

plot, particular values of    and L had to be used. The value of m/s
2
) was 

obtained by fitting the drift velocity with 
2/K  at the very low values of K, L (0.1 s) 

was approximated from the saturated value of the drift velocity. Solid line represents the 

velocity obtained using an empirical equation 4.1

1)/tanh( KKV Ld  . The open squares 

and triangles represent the data obtained using the three state and two state models of 

friction (see below). 
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5.4.2 The nature of non-linear rolling friction as gleaned from the 

displacement fluctuations 

Figure 3 summarizes the fluctuations of the displacements of the steel ball on the 

fibrillated PDMS substrate corresponding to a low bias (0.04 mN) at two different noise 

strengths.  It should be borne in mind that these displacement pdfs bear the signatures of 

velocity dependent friction. The displacement pdf for K=0.06 m
2
/s

3
 at =0.001s (Figure 

5.3) is much sharper than that would be expected of a Gaussian behavior. This supports 

the picture that a friction resembling dry friction operates near the zero velocity region. 

The pdf for =0.01s is, superficially, Gaussian thus suggesting that a viscous friction 

operates at higher velocity. The pdf corresponding to =0.05 s also appears to be 

Gaussian, but it is somewhat asymmetric.  

More detailed information regarding the natures of these pdfs can be surmised by 

considering the velocity distribution as given in Eq. 5.10. As a consequence of a super (n 

< 1) or a sub (n > 1) Gaussian velocity distribution, the displacement fluctuation at short 

time limit should also follow a function of the type,
















 

m

p
xxc

o
PP /)(exp , where 

 is the width of the pdf and xp is the displacement corresponding to the peak of such a 

distribution.  
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Figure 5.3: Summary of the fluctuations of the displacements of a steel ball rolling on a 

fibrillated PDMS at a bias of 0.04 mN corresponding to the time segments of 0.001s, 

0.005s, 0.01s, and 0.05s respectively. Low K and high K correspond to 0.06 m
2
/s

3
 (upper 

panel) and 1.7 m
2
/s

3
 (lower panel) respectively. The pdfs are fitted as )~exp(~

m
xcP  , 

with the values of m embedded inside the figs. For a symmetric pdf, only one value of m 

is given. For an asymmetric pdf, two values of m are given, one for the left and the other 

for the right side of the pdf. 

 

With a power law type friction, it is, however, not easy to define the stationary state as 

the time to reach that state depends on the strength of the noise. Thus, the stochastic 

behavior of the displacement needs to be gleaned from a solution of the Langevin 

equation. Numerical integration of Eq. 5.13a was carried out using a generalized 

integration method for stochastic differential equations as outlined by Gillespie [50]. 

Stochastic acceleration of the vibrating plate as measured using an accelerometer were 

used as the input, (t), in the same sequence as they were generated experimentally to 

ensure that the noise correlation is identical in the experiment and the simulation. While 

the simulated drift velocity as well as the variance of the displacement did not depend on 
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There is clear evidence of the effect of the noise strength on the overall state
4
 of the 

system, i.e. the system remains in a fluidized state at all velocities when the noise is 

strong. These are the main findings of this work and any further progress in this research 

should rest on direct experimentation to obtain the friction force f(V,K) that depends on 

effective temperature and rate of the system along with a molecular/mesoscopic level 

understanding of the phenomena. However, a toy model of friction can be constructed 

that is consistent with the essential features of the displacement pdfs as well as the noise 

dependent evolution of the drift velocity. In order to illustrate this point, we numerically 

integrate the Langevin equation (Eq. 5.13a) of the steel ball with a friction law (Eq. 

5.12a) as follows:  

 

 (| |  )    (| |)   ( 
 

  
)  

| |

  
 

  (| |)      ( 
| |

  
)      [ (

| |    

  
)
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5.12a 
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     (  )  (| |  )   ̅   ( ) 

  

  
   

5.13a 

 

5.13b 

 

                                                 
4
 Here, “state” means whether the system is in a solid-like or a liquid-like state. At any 

given level of noise, friction depends on various variables, leading to the well-known 

“state and rate” law of friction. 
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Figure 5.8: The pdfs of the displacement fluctuation at different values of  as obtained 

from experiments (filled blue circle) and from simulations (open pink circle) using the 

three state friction model (Eq. (5.12)). 

 

Nevertheless, the sharpness of the pdf disappears faster with , and the transition to a 

smoother pdf occurs at a much shorter time scale than that predicted by the two state 

model of friction (Figure 5.7). The simulated pdfs at the higher power of the noise are in 

better agreement with those obtained experimentally. Using the same friction model (Eq. 

5.12), we also estimated the drift velocities by integrating Eq. (5.13) at various values of 

K, the values of which are in satisfactory agreement with the experimental observations 

(Figure 5.2). 

 

5.5 Concluding remarks 

This exploratory research revealed several interesting phenomenology of non-linear 

rolling friction under a stochastic setting. We summarize below the main points of the 

work and discuss what remains as open questions. The first point is about the Brownian 

32 /06.0 smK 

32 /7.1 smK 
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like drift of the steel ball, which is linear in time in spite of the fact that the underlying 

frictional dynamics is non-linear. In the Einsteinian Brownian motion with a linear 

kinematic friction, it is an established fact that the object drifts linearly with time that 

being independent of the strength of the noise. However, in the current case of a non-

Einsteinian Brownian motion, the drift velocity depends strongly on the strength of the 

noise. The rolling motion is controlled by a Coulomb like friction at low K, but by a 

viscous like friction at high K suggesting, furthermore, a possible fluidization of the 

interface with noise. The pattern of the displacement pdfs suggests that a higher order 

non-linearity operates at an intermediate velocity, while a linear friction operates at even 

a higher velocity with the non-linearity weakening with K.  

An evidence of a complex friction law comes from the observation of the drifted 

motion of the ball when it is subjected to an asymmetric vibration. What is pertinent to 

the point regarding the state dependent friction is that the drift velocity due to asymmetric 

vibration decreases significantly with the strength of the noise, which is contrary to what 

happens with a fixed bias. Taken together, the above evidences suggest that friction 

depends not only on the rate (V), but also on the state (K) as well.  

In terms of developing a microscopic model of friction, we need to consider 

several factors. The first one being the rates at which interfacial bonds are formed and 

broken. It is also important to consider the roles of certain characteristic time scales of the 

fibrils, one of which comes from the ratio of the fibrillar spacing  [26,60] to the rolling 

speed and the other relates to the resonant frequency (~100 kHz) of the fibrils. The 
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advantage of the current model system is that these parameters can be rigorously studied 

by careful design of the fibrillar geometry with which to develop a state and rate  [61,62] 

dependent model of friction at any given value of K.  Although a K and V dependent toy 

model of friction reproduces the essential features of the drift velocity and the evolution 

of the displacement pdf, some of the disagreements of the displacement statistics of the 

simulation and experiment clearly show that our understanding of the rolling friction 

dynamics is incomplete. A direct measurement of the rolling friction, clearly decoupling 

it from microscopic sliding, spanning several decades of velocity and acceleration is very 

much needed in order to make further progress in this research. Modification of a 

recently proposed  [25] apparatus may be adequate for such a study. The value of the 

current work, however, is that it could guide the designs of such experiments and set the 

stage for studying friction using the tools of statistical mechanics. If methods are 

developed to measure the statistics of the velocity fluctuations, then these data, in 

conjunction with the displacement statistics, could be used for analyzing frictional 

dynamics more directly than that can be achieved with displacement statistics.  

In the Langevin model, we tacitly assumed that the friction term has no memory. 

However, with the simultaneous presence of the elastic (due to fibrils) and viscous 

response of the system, friction may be viscoelastic. The elastic response of the fibrils, 

along with the non-linear friction dynamics may also exhibit spatio-temporal 

oscillations  [23,63,64] in the rolling motion.  
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            The experiments presented in this paper complement the previous reports where a 

non-classical Brownian motion was anticipated  [18,35,36] and observed  [1–3] with a 

small object undergoing a Coulombic slip on a surface under a stochastic forcing. It is 

clear that an adhesion hysteresis arising from a pinning-depinning dynamics at the 

interface can also give rise to a threshold force that is akin to the Coulombic dry friction. 

Wang et al  [19] recently observed a non-Gaussian displacement fluctuation with a 

colloidal particle undergoing a Brownian motion in weak adhesive contact with a soft 

microtubule. As the particle moves, it is possible that new bonds are formed at the 

advancing edge, whereas older bonds are broken at the trailing edge resulting in a 

hysteresis of adhesion. Based on what we report here, it is not implausible that such type 

of adhesion hysteresis could give rise to a non-Gaussian displacement statistics of the 

colloidal particle as was observed by Wang et al  [19]. A possibility of this type has also 

been pointed out recently by Menzel and Goldenfeld  [39]. What is also interesting in the 

displacement statistics observed by Wang et al   [19]  is that a transition from a non-

Gaussian to a Gaussian pdf occurs rather abruptly, as is also observed in our current 

experiments. Similar issues may also be important in understanding the hindered 

diffusion of a soft colloid near a surface  [65]. 
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5.6 Appendix 

5.6.1 Rolling of the steel ball on the fibrillated rubber without noise 

The ball starts rolling on the fibrillated rubber at an angle of about 3
o
. A video 

microscopic image of the motion of the ball shows that it accelerates as it rolls down. The 

fact that the data can be fitted with a simple equation of accelerating motion of the type S 

= Vi t + 0.5 at
2
 (Vi being the initial velocity and a is the falling acceleration) suggests that 

there is virtually no kinematic friction acting on the ball. Only resistance here is a 

Coulombic type dry friction. If this is the case, the acceleration should simply be 

mgsinExperiments carried out at different angle of inclination show that beyond a 

threshold angle (c), the acceleration increases (Figure 5.9) with the angle of inclination 

as, a~(sin-sinc)
2/3

. This sub linear 

 

Figure 5.9: (a) Figure shows a parabolic growth of the distance travelled by a ball on an 

inclined (10
o
) surface with time. The falling accelerations are summarized in fig. (b). 
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growth of acceleration with the angle of inclination suggests that the dry friction 

resistance () increases with the applied force as well.  In the past, it has been proposed 

[1, 2] that the dynamics of the motion of  a line that is pinned randomly by defects 

exhibits a supercritical behavior in  the sense that no motion is observed when the applied 

force (F) is less than a threshold value (Fc), above which the velocity (V) grows as V~ (F-

Fc)

.   is the velocity exponent, the value of which lies in the range of 0.6 to 0.8. We are 

not aware of any analysis suggesting the strengthening of dry friction with force. 

 

5.6.2 Characteristics of the noise 

The approximate Eq. 5.8 was derived on the condition that the noise is strictly white and 

Gaussian. 

 

Figure 5.10: The autocorrelation of the noise file (a) as generated from the computer and 

that (b) obtained from the output of the oscillator as measured with an accelerometer. The 

Gaussian noise as generated from the waveform editor, (t), was used to solve the 

Langevin equation of the oscillator: )(/ 2 txxx o    . Here, x is the displacement of 

the oscillator,  (250 s) is its relaxation time and  (~1.5x10
4
 s

-1
) is its fundamental 

frequency of vibration. The autocorrelation of the simulated noise of the acceleration is 

shown in fig.  
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This is not exactly the case for the type of noise that we generate experimentally. In our 

case, the Gaussian white noise is generated with a waveform generator that feeds pulses 

of random heights, but of a finite width (40 s) to an oscillator.The output of these pulses 

is used to vibrate the stage on which the rolling experiment is performed. Since a 

mechanical oscillator has a tendency to spring back after each excitation, the 

autocorrelation of the output noise exhibits a negative peak (Figure 5.10b), which is also 

consistent with the Autocorrelation Function (ACF) of the noise generated numerically 

using the properties of the oscillator (Figure 5.10c). The noise pulses, however, are 

Gaussian with a probability density of  2)/(5.0exp  oPP  , as evidenced from the slope 

(~2) of the plot of ln(-ln(P/P0))  versus  /ln (Figure 5.11). Because the noise is 

somewhat correlated, Eq. (8), which is derived on the basis of the classical Fokker Planck 

equation, needs to be corrected. This correction is carried out as follows. By numerically 

integrating the Langevin equation (Eq. 5.1) with the omission of the kinematic friction 

term and using the sequence of the noise pulses obtained directly from the accelerometer, 

several trajectories are generated. The strength of the noise as used in these experiments 

is nominally defined as the product of the mean square acceleration and the pulse width 

(c), i.e. ctK  )(2 . 
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Figure 5.11: Probability distribution function of the noise obtained from accelerometer at 

a given value of K (0.06 m
2
/s

3
). The pdf is also fitted with a Gaussian function as 

indicated by the solid line. The inset shows the plot of ln(-ln(P/Po)) versus  /ln , the 

slope of which is ~2. 

 

However, the value of this K is re-normalized in order to use it in Eq. 5.8. For a 

given set of and K, 100 trajectories, each lasting for 6 seconds, were used to estimate 

the drift velocity. Although this drift velocity varies (Figure 5.12) linearly as 2/K , its 

slope is found to be 0.03. Thus, Eq.5.8 is modified as: 

    
 ̅  

          
 5.14 
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Figure 5.12: The drift velocity is calculated using Eq. 5.1 without the kinematic term 

using the noise output file of an accelerometer attached to an oscillator. Various values of 

are usedmaster plot is obtained by plotting all the drift velocity data against 2/ K . 
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6. CHAPTER SIX: Athermal Activation5  

 

6.1 Introduction 

This paper is about a form of a Brownian motion that is induced by a mechanical noise to 

a system where the friction arises from the irreversible adhesive contact of two surfaces. 

The specific experiment involves the motion of a small rigid sphere on a soft fibrillated 

rubber substrate with which it can undergo a noise assisted pinning-depinning
 
transition. 

With such a system, we address the question of an effective temperature using the 

Einstein’s ratio of diffusivity and mobility in a driven diffusive condition that agrees with 

what is obtained from a work fluctuation relation. Next we attempt to validate this 

effective temperature by designing a barrier crossing experiment, the dynamics of which 

is controlled by a non-linear friction. The essential conclusion of these studies is that a 

system with a non-linear friction may not have a unique effective temperature.    

A random motion with an interfacial resistance was first discussed about fifty 

years ago by Caughey and Dienes  [1] in the context of sliding structures responding to 

earthquake.  Similar kinds of motion with a weak adhesive contact have been reported 

recently with a colloidal particle on a soft microtubule  [2], and with a small object on a 

solid surface  [3–5].  Frictional dynamics in many of these systems are hysteretic or non-

linear  [6–13], in that they are driven by instabilities  [8,9] .  As Muser  [8] eloquently 

pointed out, the viscous drag friction results from the distribution of collision energy 

                                                 
5
 This work has been published as: P. S. Goohpattader and M. K. Chaudhury; Random motion with 

interfacial contact: driven diffusion vis-a-vis mechanical activation. Eur. Phys. J. E, 35, 67 (2012). 
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from the central degree of freedom of a Brownian particle to other degrees of freedom of 

the solvent particles. However, even at a vanishingly small velocity of sliding of one 

solid past another, fast motions of certain degrees of freedom result in “stick slip” 

instability that lead to non-linear friction.  These instabilities are observed not only with a 

spring/mass system, but with random noise excitations  [5] as well.  They are also 

observed with the relaxation of the contact line  [4] of a liquid drop on a solid surface. It 

was proposed
 
[14] long ago that a similar Coulomb friction like instability accompanies 

the collapse of the Bloch wall structures and the Barkhausen noise in magnetism as well.   

Recent experiments carried out in our laboratory  [3–5] showed that the sliding of 

a small block and the motion of a liquid drop on a solid support exhibit certain 

comparable characteristics in a stochastic setting. For example, when a small external 

force is applied, no motion occurs. However, in conjunction with an external noise, a 

kinematic friction
 
like property emerges out of the static friction so that a ball moves 

through a granular medium  [14], a slider slides  [3,5] or a drop glides  [5] with an 

uniform drift velocity that increases linearly with the applied force.  The signature of the 

non-linear friction, nonetheless, is evident in that the drift velocity increases non-linearly 

with the strength of the noise [K (m
2
/s

3
)= c, where  is the root mean square 

acceleration (m/s
2
) of the object, and c (s) is the time duration of the pulse], but 

saturating at large values of K
 

 [3–5]. Furthermore, the microscopic displacement 

distributions are super Gaussian
 
 [3–5]

 
at short time limit but, they all evolve towards a 

skewed Gaussian distribution in the long time limit. While the variance of the 

displacement is linear with time, the diffusivity grows super linearly with the strength of 
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the noise. Displacement spikes  [3] (stick-slip type instability) are observed as well. All 

these features contrast the behavior of a linear kinematic friction, where the motion is 

always smooth and the diffusivity grows linearly with K.  In the current paper, we are 

interested to find out as to what extent such a non-linear stochastic dynamics is amenable 

to a standard definition of an effective temperature, e.g. the Einstein’s ratio of diffusivity 

and mobility  [15–17] or that extracted from a typical fluctuation relation  [18]?   

A temperature like intensive property has been long sought after
 
 [19–25] in 

systems driven by active as well as quenched fluctuations.  In dynamic systems, ranging 

from vibrated granular media
 
 [18–23] to earthquake

 
 [24], various definitions of a non-

equilibrium temperature have been proposed.  Several path breaking experiments
 
 [21–

23] were conducted as well,  including a torsional pendulum immersed in a vibrated 

granular medium
 
 [21], fluctuation of  a ball in a turbulent flow

 
 [22], and the  diffusion of 

particles in a shear flow
 
 [23] to name a few. These experiments provided estimates of the 

effective temperature using the familiar concepts of statistical mechanics, such as the 

kinetic energy, the Einstein’s ratio of diffusivity and mobility as well as the density of 

states  [22].  Notably, Abate and Durian
 
 [22] published a paper, in which they reported 

reasonable agreements of the estimates of the “effective temperature” of a granular 

medium obtained using different metrics, mentioned as above.  

Motivated by the encouraging results of the previous studies, we ask how does an 

“effective temperature” obtained from a driven diffusion experiment compare with an 

energy exchange process that we are familiar with. A sub-critical instability, such as a 
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barrier crossing phenomenon, is an example of the latter.  This subject of activated 

dynamics in an athermal system has also been discussed recently in the context of the 

deformation and flow behaviors of glassy systems
 
 [17–25], the relaxation of a sand 

pile
 
 [26], the shear rate dependent stiffening of granular materials  [27] and in slow 

granular flows  [28].  While driven diffusive experiments
 
 [3–5,29] can be performed 

with various systems exhibiting non-linear friction, the systems with which to conduct 

both this as well as a barrier crossing experiment involve the motion of a small rigid 

sphere  [29] on a soft fibrillated rubber substrate. The fibrillar surface mimics the features 

of well-decorated asperities with which a sphere undergoes a pinning-depinning  [30,31] 

transition (fig. (2)). This leads to a threshold force somewhat like the Coulombic sliding 

or wetting hysteresis, which has to be overcome before rolling occurs. We show below 

how this experiment could also be adapted to study the barrier crossing rate with the aid 

of an undulated support.  While the bulk of our research concerns the rolling motion of a 

rigid sphere, we also report results of some barrier crossing experiments involving a 

deformable sphere, i.e. a liquid drop. 

6.2 Non-linear rolling friction    

When a rigid sphere is brought into contact and separated from a fibrillated rubber 

surface [30,31], a significant difference of the adhesion energy is observed signifying that 

the interaction of the contactor with the substrate is hysteretic. Rolling of a sphere on a 

surface accompanies the propagation of two cracks [32–37], one closing at the advancing 

edge and the other opening at the receding edge.  Because of the difference in the 

energies of the opening and closing the cracks, a threshold force or torque is needed to 


