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4.2 Effect of Na Content on Raman Spectra of Ti-NT 

The as-prepared H-Ti-NT samples were estimated to contain ~1% TiO2 (anatase), 

while the Na/H-Ti-NT does not contain even a trace of anatase Raman bands (see 

Figure 1).  The absence of TiO2 (anatase) in the NA/Ti-NT nanotubes is consistent 

with the observation that the relative intensity of the small TiO2 (anatase) Raman band 

increased as the Na content was decreased during the intermediate ion-exchange 

stages in the preparation of H-Ti-NT (not shown).  The current observation is in 

agreement with similar observations previously reported by Kasuga et al.
62,63

 

The Raman spectra of ambient Na/H-Ti-NT and H-Ti-NT titanates exhibit a small 

band at 926 cm
-1

 (see Figures 1 and 2) that was previously assigned to bridging Na-O-

Ti bonds formed by surface Na on the titanate particles.
19,55,65-67

  Note that this broad 

Raman band sharpens upon dehydration (see Figures 2a and 2b).  The comparable 

intensity of this Raman band for the Na/H-Ti-NT and H-Ti-NT titanates, with the 

former containing >70 times more Na than the latter, strongly suggests that this band 

the 926 cm
-1

 band is not related to the bridging Na-O-Ti vibrations and that the ~926 

cm
-1

 titanate Raman band may be related to an overtone of the 453-458 cm
-1

 band. 

With regards to TiO2 (anatase) formation, Figure 3a shows that at 550 °C, the H-Ti-

NT phase completely transforms to the anatase phase (632 cm
-1

).  TiO2 (anatase) 

begins to form by 350 °C which is indicated by the splitting of the broad band into two 

peaks at 641 and 710 cm
-1

.  In contrast, the titanate Raman bands of the Na/H-Ti-NT 

powder exhibit nearly the same intensity up to 200 °C.  A slight decrease and blue 

shift in the titanate bands at higher temperatures can be observed due to thermal 
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broadening and due temperature effects, respectively.  However, the Na/H-Ti-NT 

phase does not transform to TiO2 (anatase) below 550 °C and a new minor band 

appears at ~117 cm
-1

 that is reminiscent of Na2Ti3O7.
55

  These comparative thermal 

studies clearly demonstrate that Na stabilizes the H-Ti-NT titanate phase at elevated 

temperatures and that in the absence of Na the H-Ti-NT phase transforms to TiO2 

(anatase). 

It is possible that nanorods and nanowires exist in the thermally treated samples 

without significant Na content.  Temperature, phase transitions, and moisture can 

cause the collapse of nanotubes into these other structures.  Figure S5 shows STEM 

high angle annular dark field (HAADF) images of H-Ti-NT (low Na) that has been 

impregnated with WOx species and calcined at 550 °C.  Analysis of the images shows 

that while the nanotubular structure is still preserved in some cases (Figure S5a), the 

collapse of nanotubes to nanowires can also be observed (Figure S5b). 

4.3 Structure-Activity Relationships for Photocatalytic Reactions Over Ti-NT 

Combining the structural characterization information (Raman spectroscopy and 

TEM) with photoactivity data allows for establishing fundamental structure-activity 

relationships for the photocatalytic reactions examined over the Ti-NT nanotubes.  For 

the photocatalytic decomposition of 4-CP, the relative activities of the catalysts were 

found to be H-Ti-NT (400 °C) >> H-Ti-NT (400+500 °C) > H-Ti-NT (500 °C) >> H-

Ti-NT (as-prepared).  The strong influence of calcination temperature upon the 

photocatalytic performance is directly a consequence of the Ti-NT structural changes.  

The poor performance of the as-prepared H-Ti-NT is related to the greater degree of 
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disorder present for the titanate phase relative to the more crystalline TiO2 (anatase) 

phase that is readily detectable in by its sharp Raman bands.  The high photoactivity of 

the thermally treated H-Ti-NT nanotubes are ascribed to the more ordered TiO2 

(anatase) phase crystalline NT formed during thermal treatments since increased 

crystallinity of a material provides fewer defects to act as sites for the recombination 

of electron (e
-
) and holes (h

+
) generated during excitation and, thus, these e

-
/h

+
 pairs 

are made more readily available to photocatalytic reactions.
35,46

  This explains the 

increased activity for decomposition of 4-CP for the catalyst treated at 400 °C over the 

as-prepared H-Ti-NT, which had the lowest activity.  Further thermal treatments at 

500 °C and above, even if they are performed incrementally (400 + 500 °C), start to 

cause the collapse of the H-Ti-NT nanotube structure as shown by the STEM-HAADF 

in Figure S5 and the current observation is supported by the literature.
11

  The smaller 

surface area of these structures, despite the TiO2 (anatase) crystallinity, is the reason 

why they exhibit a reduced photoactivity for 4-CP decomposition that closely matches 

that of P-25. 

Similar trends can be seen for H2 production during photocatalytic water splitting 

over the H-Ti-NT catalysts.  The thermal treatment at 500 °C enhanced the 

photoactivity for H2 production relative to the as prepared H-Ti-NT titanate phase. 

Although a 400 °C thermally activated H-Ti-NT was not examined for water splitting, 

it should have generated twice as much H2 as the H-Ti-NT (500 °C) photocatalyst 

because of the partial decomposition of the TiO2 nanotubes with the higher thermal 

treatment.  Sodium ions are a known poison to photocatalytic activity as they have 
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been attributed to the increase in recombination centers for electron and hole pairs, 

preventing the participation of such excitons in the photocatalytic process.
22,52,68

  The 

presence of significant Na in the as prepared Na-Ti-NT reduced the photoactivity for 

H2 production, reflecting this poisoning effect.  Furthermore, the inability of the Na-

Ti-NT titanate nanotubes to be thermally activated by conversion to the crystalline 

TiO2 (anatase) nanotubes suggests that alkali-containing Ti-NTs cannot be thermally 

activated as the H-Ti-NT nanotubes. 

The relative photoactivity of the H-Ti-NT nanotubes differed somewhat relative to 

that of TiO2 (P-25) depending on the specific photocatalytic reaction. While the H-Ti-

NT(500 °C) was slightly more active than the TiO2 (anatase) for photodecomposition 

of 4-CP it was less active than TiO2 (P-25) for splitting of water. These slight 

photoactivity differences may reflect the different requirements of dissimilar 

photoreactions or possibly reflect the sensitivity of the H-Ti-NT to minor synthesis 

conditions.  

A DFT study by Valdés et al. showed that the calculated that the active site for water 

oxidation is a coordinatively unsaturated site on the TiO2 surface and the breaking of 

the Ti-O-Ti bond, though a possible route, is energetically unfavorable.
69

  The TEM in 

Figure 4 revealed that the H-Ti-NT structures have a wall thickness of ~1-2 nm and 

surfaces of this thickness contain a greater percentage of Ti-O-Ti bonds rather than 

bulk TiO2 surfaces.  Therefore, the lower number of surface coordinatively 

unsaturated surface sites may be another reason for the lower water splitting activity of 

thermally treated H-Ti-NT compared to TiO2 (P-25) powder. 
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5. Conclusions 

Hydrothermally prepared titanate nanotube powders with negligible and high Na 

content were prepared and characterized with Raman spectroscopy as a function of 

synthesis procedures and thermal treatments.  The structural characterization was then 

used to explain photocatalytic activity in the samples.  The as-prepared nanotube 

powders primarily consist of the H-Ti-NT phase (Raman bands at ~195, 285, 458, 

~700, 830 and 926 cm
-1

).  Moisture was found to broaden the Raman bands at ~700, 

830 and 926 cm
-1

 suggesting that they are related to surface vibrational modes.  The 

titanate Raman band at 926 cm
-1

, which was previously assigned in the literature as 

originating from Na-O-Ti vibrations, is present in both titanate samples, where the Na 

content varies by a factor of > 70, revealing that this band is not related to a Na-O-Ti 

vibration. The Na-containing titanate powder is thermally stabilized by Na and 

decomposes at 700 °C to multiple titania phases (H-Ti-NT, Na2Ti3O7, Na2Ti6O13 and a 

small amount of TiO2 (anatase)).  The H-Ti-NT phase with negligible Na, however, 

readily transforms to TiO2 (anatase) nanotubes upon calcination between 200-700 °C.  

Thus, the above reports on the successful synthesis of Na/H-Ti-NT and H-Ti-NT 

nanotubes and clarifies some of their Raman assignments and their thermal solid-state 

chemistry. 

Photocatalytic decomposition of 4-chlorophenol and photocatalytic water splitting 

on the as-prepared H-Ti-NT samples showed that thermal treatment to increase the 

TiO2 (anatase) content was beneficial in both reactions.  At 500 °C, the nanotubes 

begin to collapse to nanorods or nanowires, and this proved detrimental to the Ti-NT 
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activity for water splitting as there was no improvement over bulk TiO2 activity.  The 

activity of the decomposition of 4-CP, however, was not deterred by the collapse of 

the nanotube structure, reflecting the possible different requirements of high activity 

for dissimilar photoreactions.  The poisoning effect of residual Na impurities was 

observed for water splitting as the Na/H-Ti-NT catalyst exhibited a decreased 

production of H2 product.  Furthermore, the inability of Na/H-Ti-NT to form TiO2 

(anatase) nanotubes was concluded to be a negative structural aspect when attempting 

to transform as-prepared nanotubes into photocatalytically more active forms of 

crystalline TiO2, namely TiO2 (anatase). 
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Table 1: H2 production over 5h during photocatalytic water splitting for Ti-NT 

catalysts with various pretreatment conditions.  A TiO2 (P-25) catalyst is also shown 

for comparison. 

Catalyst Pretreatment H2 Produced (µmol/5h) 

H-Ti-NT (0.12% Na) As-Prepared 11.0 

Na/H-Ti-NT As-Prepared 5.3 

H-Ti-NT Calcined 500 °C in Air 31.9 

TiO2 (P-25) None 69.0 
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Figure 1 Raman spectra of the as-prepared titanate powders with negligible Na 

content (H-Ti-NT) and with 7.02 at% Na content (Na/H-Ti-NT) under ambient 

conditions. 
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Figure 2 Raman spectra of the titanate powders with negligible Na content (H-Ti-NT) 

freeze-dried multiple times (a) and of the powders with various drying methods (b) 

under ambient conditions. 
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Figure 3 In situ Raman spectra of the titanate powders (a) with negligible Na content 

(H-Ti-NT) and (b) with 7.02 atom % Na content (Na/H-Ti-NT) taken at temperatures 

of 100 °C to 550 °C with a flowing 10% O2/Ar (30 sccm). 
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Figure 4 TEM image for the H-Ti-NT powder after heat treatment at 400 °C for 30 

minutes in air. 
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Figure 5 Raman spectra of the titanate powders with negligible Na content (H-Ti-NT) 

and with 7.02 at% Na content (Na/H-Ti-NT) under ambient conditions after calcining 

at 700 °C for 3 hrs in air. (A: anatase phase, R: rutile phase) 
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Figure 6: Photocatalytic decomposition of 4-chlorophenol over Ti-NT catalysts after 

various pretreatment procedures.  A pure TiO2 (P-25) sample was also run for 

comparison.
32
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Chapter 5 

Supporting Information 

 

The initial analysis of the as-prepared H-Ti-NT was accomplished by comparison to 

reference Raman spectra of the various TiO2 phases: anatase, rutile, brookite, and TiO2 

(B).  Figure S1 shows these spectra normalized to the same scale alongside the as-

prepared H-Ti-NT spectrum. As indicated in the manuscript, the main spectral features 

present in the H-Ti-NT are those identified in the literature as indicative of titanate 

species. The dashed lines in Figure S1 label the major features of the H-Ti-NT 

spectrum and indicate that there is a trace amount of anatase present corresponding to 

the presence of the vibration at 144 cm
-1

. This band is further analyzed semi-

quantitatively below.  There also appears to be a slight rutile contribution to the 

spectrum, however, analysis of the relative intensity of the rutile spectral features 

indicates that a band at ~614 cm
-1

 should also be present in the case of rutile.  The 

broad band at ~600–720 cm
-1

 could be misconstrued as this rutile contribution, but the 

later drying treatments shown in Figure 2 of the manuscript show that this peaks 

sharpens with the removal of water and is indeed a titanate vibration.  Finally, it is 

clear that the brookite and TiO2 (B) phases are absent since their most intense Raman 

peaks at ~156 cm
-1

 and ~122 cm
-1

, respectively, do not contribute to the H-Ti-NT 

spectrum.
 
 

In order to semi-quantitatively estimate the amount of TiO2 (anatase) present in the 

titanate nanotubes, physical mixtures of TiO2 (anatase) and Na/H-Ti-NT nanotube 
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powders were prepared. The pure TiO2 (anatase) powder was obtained by thermally 

transforming H-Ti-NT, with negligible Na, by calcination in air at 700 °C for 3 hrs to 

form the TiO2 (anatase) nanotubes. The resulting TiO2 (anatase) nanotube powder 

only contained a trace of TiO2 (rutile) as shown in Figure 4. The physical mixtures 

were combined with ethanol dried in a convection oven at 105 °C for 2 hrs. Raman 

spectra of the ambient physical mixtures are shown in Figure S2 and S3. As can be 

seen in Figure S2, the TiO2 (anatase) phase has a much stronger Raman cross-section 

than the TiO2 (titanate) phase. Furthermore, only the TiO2 (anatase) Raman bands are 

present at 50 wt% TiO2 (anatase) and higher contents. Below 50 wt% TiO2 (anatase), 

it is possible to estimate the amount of TiO2 (anatase) present in the H-Ti-NT titanate 

by comparing the Raman bands of the titanate (288 cm
-1

) and anatase (138 cm
-1

). 

Comparison of the Raman spectrum of the 1.6 wt% TiO2 (anatase) + 98.4% Na/H-Ti-

NT physical mixture with the Raman spectrum of the as prepared H-Ti-NT titanate 

nanotube suggests that the TiO2 (anatase) content in the H-Ti-NT titanate powder is 

slightly less than 1.0 wt%. 

The in situ Raman spectra of the supported WO3/titanate catalyst powders with 7.0 

atom% Na content (Na/H-Ti-NT) and with negligible Na content (H-Ti-NT) taken 

after maintaining for 10 minutes at 700 °C with flowing 10% O2/Ar (30 sccm) are 

presented in Figure S4. The H-Ti-NT and Na/H-Ti-NT nanotube powders were used 

as support materials to prepare the supported 12 wt% WO3/Ti-NT samples by 

incipient wetness impregnation of aqueous ammonium meta-tungstate (Pfaltz and 

Bauer). The amount of tungsten oxide was estimated based on monolayer surface 



258 

7. “Structure-Photocatalytic Relationships of Well-Defined TiO2 Nanodomains,” 

C. Roberts, A. Puretzky, S. Phivilay, & I. Wachs, March 2009 - Catalysis 

Society of Metropolitan New York Spring Symposium. 

8. “Structure-Photocatalytic Relationships of Well-Defined TiO2 Nanodomains,” 

C. Roberts, A. Puretzky, S. Phivilay, & I. Wachs, March 2009 - Catalysis Club 

of Philadelphia Annual Poster Contest. 

9. “Photocatalytic Structure-Activity Relationship of Well-Defined TiO2 

Nanodomains,” C. Roberts, E. Berrier, H. Vezin, E. Payen, & I. Wachs, June 

2008 - Gordon Research Conference on Catalysis. 

10. “Photocatalytic Structure-Activity Relationship of Well-Defined TiO2 

Nanodomains,” C. Roberts, E. Berrier, H. Vezin, E. Payen, & I. Wachs, March 

2008 - Catalysis Society of Metropolitan New York Spring Symposium. 

11. “Photocatalytic Structure-Activity Relationship of Well-Defined TiO2 

Nanodomains,” C. Roberts, E. Berrier, H. Vezin, E. Payen, & I. Wachs, March 

2008 - Catalysis Club of Philadelphia Annual Poster Contest. 

12. “Investigating the Volcano Curve Correlation for Formic Acid Decomposition 

on Bulk Metal Catalysts,” C. Roberts & I. Wachs, June 2007 - 20th North 

American Catalysis Society. 

13. “Investigating the Volcano Curve Correlation for Formic Acid Decomposition 

on Bulk Metal Catalysts,” C. Roberts & I. Wachs, March 2007 - Catalysis 

Society of Metropolitan New York Spring Symposium. 

14. “Investigating the Volcano Curve Correlation for Formic Acid Decomposition 

on Bulk Metal Catalysts,” C. Roberts & I. Wachs, March 2007 - Catalysis 

Club of Philadelphia Annual Poster Contest. 


