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Figure 4.5 – Sequence Alignment of Alu-93 cDNA, gDNA, and AluY family consensus 
sequence.  The fully edited cDNA sequence for Alu-93 containing all edited nucleotides 
is aligned to the Alu-93 genomic sequence and the AluY family consensus sequence.  
Edited nucleotides are underlined and boxed in red in order to highlight their location.  
CpG dinucleotides are highlighted within the family consensus sequence.  Only the 
central-A track, Alu right arm, and poly-A tail are shown.  Nucleotide positions at the end 
of the column are relative to the start of the central-A track (first number) and the start of 
the Alu element (second number). 
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Figure 4.6 – A model of A-to-I RNA editing during Alu retrotransposition.  A model of 
how A-to-I RNA editing in transcriptionally active Alu elements may impact 
retrotransposition.  ADAR activity may alter the Alu sequence leading to introduction of 
guanosine in newly retrotransposed Alu elements.  Alternatively, ADAR activity may 
influence the retrotransposition process.  
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Chapter 5 

Closing Remarks And Future Directions 
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Alu elements are major A-to-I RNA editing targets within the human genome.  

However, analysis of editing within Alu elements has been limited to those present as 

inverted Alu repeats embedded within larger genes expressed by RNA Pol II.  The goal 

of this dissertation was to expand our knowledge of known editing targets to include Alu 

elements expressed by RNA Pol III.  The implications for editing in these targets include 

the impact of A-to-I RNA editing on human evolution, on Alu function as a lncRNA, and 

on regulation of A-to-I RNA editing.   

 The experimental strategy to studying A-to-I RNA editing in RNA Pol III 

transcripts had three key steps that each provided different information.  The first step 

was the development of expression constructs that expressed a known non-Alu A-to-I 

RNA editing target under either an RNA Pol II or RNA Pol III promoter.  This 

demonstrated that RNA Pol III transcripts undergo A-to-I RNA editing by ADARs.  

Comparison of A-to-I RNA editing between these constructs as well as in the presence of 

either overexpressed ADAR1 or ADAR2 showed that RNA Pol II expressed targets were 

more highly edited relative to RNA Pol III expressed editing targets.  The R/G editing 

target was also more highly edited in the presence of ADAR2 compared to ADAR1 under 

both RNA Pol II and RNA Pol III expression.  Finally, a partial deletion of RNA Pol II 

CTD increased A-to-I RNA editing by ADAR1, though this increase was marginal.  

Editing by ADAR2 was unaffected by the partial CTD deletion, but remained high 

(above 90% editing).  These experiments indicate that ADARs are not dependent on an 

interaction with RNA Pol II to function and that a significant amount of editing can occur 

post-transcriptionally rather than co-transcriptionally. 
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 The second step was to use the RNA Pol II and RNA Pol III expression constructs 

to better understand A-to-I RNA editing of Alu elements.  Alu elements were 

promiscuously edited, but only if an inverted Alu element was present in the transcript.  

This was observed independent of the kind of polymerase responsible for transcription as 

well as overexpression of ADAR1 or ADAR2.  Inverted Alu pairs expressed by RNA Pol 

III were promiscuously edited similar to editing observed in embedded Alu elements 

(Athanasiadis et al. 2004, Peng et al. 2012). 

 The final goal was to observe A-to-I RNA editing in transcriptionally active Alu 

elements expressed in vivo.  This was done by first identifying individual Alu elements 

previously shown to be transcriptionally active.  Next, using a filter process, these Alu 

elements were screened for the likelihood of forming dsRNA, and for feasibility of 

specific amplification.  The selected Alu elements were then individually examined by 

RT-PCR and single transcript analysis using RNA derived from either human brain or 

spleen from different individuals.  Only one brain tissue sample displayed evidence of A-

to-I RNA editing.  Though editing was occurred at a basal level, one nucleotide was 

preferentially edited. 

 These experiments provide interesting insights into different facets of A-to-I RNA 

editing.  The experiments using the R/G site from GluR-B demonstrated that RNA Pol III 

transcripts can undergo ADAR directed A-to-I RNA editing.  This was supported by the 

inverted Alu elements expressed by RNA Pol III being edited as well.  While both targets 

were edited, these two experiments provide an interesting comparison since the R/G site 

provides a study of editing efficiency while Alu elements can be used to understand 

editing site selectivity.   
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Editing site selectivity is the targeting of ADARs to particle adenosines but not 

others throughout a dsRNA molecule, while editing efficiency is the amount of editing 

that takes place at an individual adenosine.  In a broad sense, editing efficiency and 

editing site selectivity are separate events and are inversely correlated (Gommans et al. 

2008, Kallman et al. 2003).  The most efficiently edited RNA substrates, such as the Q/R 

site from GluR-B tend to be edited at a lower number of sites, while promiscuously 

edited sequences tend to display lower editing efficiency on a site-by-site basis.  For 

example, the Q/R site from GluR-B is edited at only one adenosine, but is edited to 

almost 100% in human brain tissue, while a survey of embedded Alu elements showed 

that Alu elements can be edited at multiple sites and that editing efficiency ranged 

between less that 1% to greater than 70% at individual adenosines (Athanasiadis et al. 

2004, Higuchi et al. 1993).  These generalities were observed in both RNA Pol II and 

RNA Pol III transcripts, however, RNA Pol II transcripts were more efficiently edited.  

Overexpression of ADAR1 in the R/G studies indicated that ADAR1 does not 

target the R/G site when it is expressed by RNA Pol III.  This was not the case with 

inverted Alu repeats, in which promiscuous editing was observed regardless of the type 

of ADAR overexpressed.  This indicates that the editing efficiency in RNA Pol III 

transcripts by ADAR1 is dependent on the ability of ADAR1 to target the editing 

substrate.  It has previously been shown that RNA Pol II CTD increases editing 

efficiency by ADAR2 when the editing substrate contains a splice site (Bratt and Ohman 

2003, Laurnecikiene et al. 2006, Ryman et al. 2007). It is possible that RNA Pol II helps 

to promote ADAR1 editing efficiency at the R/G site as well.  Though partial deletion of 

the RNA Pol II CTD resulted in an increase in ADAR1 directed RNA editing, full CTD 
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deletion may be necessary to see larger changes in RNA editing efficiency.  This increase 

was significant at p=0.05 but not p=0.025, indicating this change in editing may be 

marginal at best, or perhaps not significant with larger sample sizes.  While the 

interaction between the CTD and ADAR1 has not previously been published, similar 

studies have been performed with ADAR2 (Laurnecikiene et al. 2006, Ryman et al. 

2007).  Both my results and previous work demonstrate that partial CTD deletion does 

not influence ADAR2 activity when a splice is absent from the double stranded region.  

 The full role of RNA Pol II in directing A-to-I RNA editing is difficult to define.  

Previous CTD deletion studies have demonstrated a role by the RNA Pol II CTD in 

coordinating editing by ADAR2 with splicing (Bratt and Ohman 2003, Laurnecikiene et 

al. 2006, Ryman et al. 2007).  These studies have indicated differing effects by the CTD 

in regulating editing.  This may depend on the location of the exon/intron junction 

relative to the dsRNA region.  Further increasing the difficulty in understanding this 

coordinating role is the lack of data from ADAR and RNA Pol II co-IP studies that would 

demonstrate a direct interaction between the two (Nishikura 2010).  This indicates that 

ADAR2 may be transiently associated with RNA Pol II during transcription rather than 

directly associated.  This is in contrast to other co-transcriptional modifications, such as 

RNA splicing, in which partial deletion of heptads 26-52 impaired splicing efficiency, or 

RNA capping, in which capping enzymes have been shown to associate with heptads 26-

52 of the RNA Pol II CTD (Fong and Bentley 2001).   

 Previous research has indicated that editing site selectivity and editing efficiency 

are influenced by a combination of the ability of ADAR to bind to its substrate and the 

localized sequence and structure surrounding the editing site (Kallman et al. 2003, 
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Ohman et al. 2000, Stefl et al. 2010, Xu et al. 2006).  My results indicate that the type of 

polymerase responsible for transcription may also influence editing efficiency but not site 

selectivity.  Editing at the R/G site was higher in RNA Pol II transcripts relative to RNA 

Pol III transcripts when ADAR1 or ADAR2 was overexpressed.  This indicates either a 

coordinating role by RNA Pol II or a better ability by the ADAR enzymes to recognize 

RNA Pol II transcripts based on the presence of modifications, such as a 5’ cap or poly-A 

tail, that are specific to RNA Pol II transcripts.  The coordinative role of RNA Pol II is 

supported by the observation that ADAR1 overexpression increased editing in RNA Pol 

II transcripts but not RNA Pol III transcripts.  However, promiscuous editing was 

observed in the Alu repeats, regardless of the manner of transcription or overexpression 

of ADAR1 or ADAR2.  This indicates that editing efficiency may be partially dependent 

on the type of polymerase, factors involved in transcription, or presence of other RNA 

modifications, while editing site selectivity may be inherently regulated by the ADAR 

enzymes themselves, as well as the substrate sequence and secondary structure.  An 

interesting experiment to test this hypothesis would be an in vitro titration experiment in 

which the RNA editing targets differ by the presence or absence of a 5’ cap and poly-A 

tail, structures that are prevalent in RNA Pol II transcripts (Anderson 2005, Kapp and 

Loerrsh 2004). 

 Differences in editing between Alu elements expressed in cell culture versus 

transcriptionally active Alu elements studied in vivo provides another interesting 

comparison.    While a single Alu element was not edited in cell culture, inverted Alu 

pairs were promiscuously edited when expressed by either RNA Pol II or RNA Pol III.  

However, transcriptionally active Alu elements were not promiscuously edited and 
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displayed basal level editing in vivo.  This disparity is likely due to the manner of 

expression.  The experiments performed in cell culture used an RNA Pol III promoter to 

drive expression of the inverted Alu pairs.  The in vivo studies did not investigate either 

the level of transcription, or how often the nearest downstream inverted Alu element was 

present within the transcript.  Inclusion levels were just one of several possible factors 

potentially impacting A-to-I RNA editing.  The RT-PCR experiments performed here do 

not provide information about the quantity of RNA that is present.  Quantitative RT-PCR 

and northern blot analysis could be used to address this issue. 

Another potential factor is the selective degradation of highly edited 

transcriptionally active Alu elements in vivo.  Tudor SN is a nuclease that targets inosine 

containing RNA molecules for degradation (Scadden 2005, Scadden 2007).  RNA 

molecules containing higher amounts of inosine are more highly targeted.  In addition, 

piRNA are short RNA molecules that selective target repetitive elements via a 

mechanism involving the RISC complex.  piRNA may also be involved in reducing the 

quantity of Alu RNA.  It is possible that low expression levels of the inverted Alu pair 

combined with selective degradation of promiscuously edited Alu elements combined to 

result in the observation of basal level editing in transcriptionally active Alu elements in 

vivo.   

In addition, there were other factors in the in vivo study that could have 

contributed to the low editing levels that were observed.  The tissue donors were all male, 

but were of different ages.  There was also no information regarding the manner of death, 

the amount of time between death and tissue sampling or tissue sampling and RNA 

extraction, or the region of the brain sampled from each individual.  In addition, this 
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study was limited by the starting pool of transcriptionally active Alu elements.  Of the 

more than 1 million Alu elements present in the genome, only 87 were included in the 

Alu screen, and only 2 Alu elements reached the point of transcript analysis.  So while 

basal level editing was observed in one instance, this should not be extrapolated to 

describe editing in all transcriptionally active Alu elements. 

Implications of A-to-I RNA editing on Alu Retrotransposition and Human Genome 

Evolution 

 Transcriptionally active Alu elements are responsible for the expansion of Alu 

elements throughout the human genome (Bennett et al. 2008, Dewannieux et al. 2003).  

This has enabled Alu elements to play a significant role in shaping the human genome 

(IHGSC 2001).  A-to-I RNA editing could impact the rate of Alu retrotransposition and 

can change the sequence that retrotransposes.  This implicates A-to-I RNA editing as 

having a significant role in the evolution of the human genome. 

Alu elements retrotranspose via an L1 directed retrotransposition process that uses 

Alu RNA as a template (Dewannieux et al. 2003).  This process could be influenced by 

A-to-I RNA editing in a number of ways.  The influence A-to-I RNA editing has on 

miRNA processing serves as a model of how editing could impact Alu retrotransposition.  

miRNA processing is inhibited by ADAR in both editing dependent and editing 

independent mechanisms (Kawahara et al. 2007, Kawahara et al. 2008, Yang et al. 2006).  

Editing dependent mechanisms rely on the effect editing has on the secondary structure 

of pri- and pre-miRNA.  A-to-I RNA editing can destabilize these secondary by changing 

the base pairing within the dsRNA region, which affects miRNA processing.  Editing 
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independent mechanisms rely on ADAR competing with Drosha and Dicer for substrates, 

reducing the amount of pri- and pre-miRNA available for processing.   

Editing dependent influences on Alu retrotransposition rates would potentially 

influence the interaction between edited Alu elements and SRP9/14.  Though the specific 

role of SRP9/14 during Alu retrotransposition is unclear, it is thought to be involved in 

helping to recruit Alu RNA to the ribosome as L1 Orf2 is translated. (Bennett et al. 

2008).  This enables Alu elements to recruit newly translated L1 Orf2 proteins for Alu 

retrotransposition.  The Alu-SRP9/14 interaction is dependent on conserved secondary 

structure in the Alu left and right arms (Bennett et al. 2008, Hasler and Strub 2006, Huck 

et al. 2004, Sarrowa et al. 1997).  Changes in the Alu left and right arm can alter the base 

pairing properties of Alu RNA, leading to impaired binding by SRP9/14 and a reduction 

in Alu retrotransposition (Bennett et al. 2008).   Just as A-to-I RNA editing can influence 

miRNA binding by Drosha and Dicer, editing could also influence the Alu-SRP9/14 

interaction by affecting the conserved Alu structures involved in the interaction with 

SRP9/14.   

An editing independent mechanism in which ADAR binding could influence 

retrotransposition may be similar to the impact the APOBEC3 family of cytidine 

deaminases have on Alu retrotransposition.  APOBEC3 can bind and sequester Alu RNA 

away from the retrotransposition machinery, thereby inhibiting Alu retrotransposition 

(Bogerd et al. 2006, Chiu et al. 2006).  ADAR binding may have a similar sequestration 

impact.  There are several mechanisms that act to repress Alu retrotransposition (Bogerd 

et al. 2006, Chiu et al. 2006, Kochanek et al. 1995, Liu et al. 1994, Lukic and Chen 2011, 

Muiznieks and Doerfler 1994).  These include transcriptional regulation, piRNA directed 
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Alu RNA degradation, and sequestration by APOBEC3.  ADAR binding to Alu 

transcripts may be an additional regulatory mechanism that aids in repressing Alu 

retrotransposition. 

Even if A-to-I RNA editing does not impact Alu retrotransposition rates, editing 

may provide a mechanism of altering the Alu sequence that retrotransposes.  For 

example, Alu elements have high C/G content and are enriched for CpG dinucleotides 

(Cho et al. 2007, Kang et al. 2006).  Since inosine is interpreted as guanosine, A-to-I 

RNA editing provides a mechanism of generating new CpG dinucleotides by editing 

adenosines prior to retrotransposition.  Since DNA methylation of CpG dinucleotides is 

an important mechanism of epigenetic regulation, the enriched presence of CpG 

dinucleotides in Alu elements allows for altered regulation of expression in the new 

genomic regions into which Alu elements retrotranspose (Baillie et al. 2011, Hellmann-

Blumberg et al. 1993). 

A-to-I RNA editing may also impact the identification of source genes, or master 

genes, responsible for Alu retrotransposition.  Alu retrotransposition in humans is 

currently only seen in the AluY family (Britten et al. 1988, Deininger and Slagel 1998).  

This is supported by Alu insertion polymorphisms present among different individuals 

(Styles and Brookfield 2007, Cordaux et al. 2006, Liu et al. 2009, Xing et al. 2007).  

These Alu polymorphisms have intact RNA Pol III promoter elements in the left arm and 

long poly-A tails, two structures necessary for retrotransposition (Bennett et al. 2008, 

Dewannieux and Heidmann 2005).   A majority of Alu elements in the human genome 

lack conservation of either one or both of these structures, indicating that they are unable 

to retrotranspose (Batzer et al. 1996, Bennett et al. 2008, Comeaux et al. 2009).  This has 
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led to the hypothesis that Alu retrotransposons are derived from a relatively small group 

of master genes (Britten et al. 1988, Britten et al. 1989).  The sequence variation among 

different Alu polymorphisms has led to the hypothesis that there are multiple master 

genes (Deininger and Slagel 1998).   A-to-I RNA editing may affect the search for these 

master genes since editing could potentially alter the Alu sequence prior to 

retrotransposition.  This increases the difficulty involved with identifying the specific 

master gene, since any guanosine present in the newly inserted Alu element could 

potentially be due to A-to-I RNA editing.   

A-to-I RNA Editing and Alu Derived lncRNA 

 Another potential impact A-to-I RNA editing could have on transcriptionally 

active Alu elements is by regulating the functions of Alu derived lncRNA.  lncRNA are 

functional non-protein coding RNA molecules longer than 200 nucleotides (Cabili et al. 

2011, Loewer 2010).  In the case of Alu RNA, this includes interactions with RNA Pol II 

following cell stress to selectively decrease transcription, association with the SRP9/14 

and the ribosome to modulate translation activity, and regulation of gene expression 

through interactions between lncRNA and complementary RNA or DNA sequences 

(Hasler and Strub 2006, Mariner et al. 2008, Pandey et al. 2011, Rubin et al. 2002, 

Wagner et al. 2010).  All of these functions share the characteristic of Alu elements 

behaving as global regulators of gene expression in trans.   

 Expression of transcriptionally active Alu elements increases following cell stress 

(Li and Schmid 2001, Liu et al. 1995, Panning and Smiley 1995, Rudin and Thompson 

2001).  Alu RNAs can then interact with RNA Pol II to decrease transcription of non-cell 

stress response genes (Mariner et al. 2008).  The RNA Pol II transcription factor TFIIF is 
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involved in preventing the Alu-RNA Pol II interaction at promoter regions of genes 

whose expression levels do not decrease following cell stress (Wagner et al. 2009).  A-to-

I RNA editing could impact this regulatory process in two ways.  First, A-to-I RNA 

editing may influence the Alu/RNA Pol II interaction by changing the Alu sequence and 

potentially the Alu secondary structure.  Specifically, a conserved repression domain in 

the Alu right arm may be altered, affecting this repression functionality (Mariner et al. 

2008,Wagner et al. 2009).  Second, structural changes caused by A-to-I RNA editing 

could alter the ability of TFIIF to disrupt the Alu/RNA Pol II interaction.  This could be 

by a mechanism by which editing alters the Alu-RNA Pol II interaction, thereby changing 

the influence TFIIF has on the Alu/RNA Pol II association. 

 A-to-I RNA editing may have a similar influence on the ability of Alu RNA to 

interact with both SRP9/14 and the ribosome to regulate translation in trans.  Alu RNA 

by itself can interact with the ribosome, leading to an increase in reporter gene expression 

(Hasler and Strub 2006, Rubin et al. 2002).  However, Alu RNA can also interact with 

SRP9/14 (Bovia et al. 1997, Hsu et al. 1995).  This complex can then further interact with 

the ribosome leading to a decrease in translation initiation (Hasler and Strub 2006).  

While the Alu/SRP9/14 interaction can occur between either the Alu left or right arms, 

the Alu-ribosome interaction is dependent on the Alu right arm only.  A-to-I RNA editing 

may participate in this regulatory process through both editing dependent and editing 

independent mechanisms.   

In the editing dependent mechanism, A-to-I RNA editing would change the Alu 

sequence, thereby disrupting base pairing and dsRNA structures within Alu RNA.  This 

could reduce the ability of the Alu right arm to interact with the ribosome.  This would 
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decrease the activity of Alu RNA to enhance translation.  While A-to-I RNA editing 

could also disrupt the formation of the Alu/SRP9/14 complex, this is less likely since 

each arm of the Alu RNA can participate in this interaction.   

An editing independent mechanism would likely have a net inhibitory effect on 

translation.  ADARs would compete with SRP9/14 and the ribosome for binding to Alu 

RNA. This would reduce the number of Alu/SRP9/14 and Alu/ribosome interactions by 

reducing the availability of Alu RNA.  However, since Alu/SRP9/14 complex formation 

is achieved through binding to either of two regions in the Alu element versus one for the 

Alu/ribosome interaction, ADAR binding to Alu RNA may more significantly impact the 

Alu/ribosome interaction (Hasler and Strub 2006).  This would result in a net decrease in 

translational activity when ADAR concentrations in the cell are high. 

Finally, the ability of Alu RNA to regulate expression of complementary 

sequences could also be influenced by A-to-I RNA editing.  Alu RNA expressed in an 

antisense direction relative to another gene enables binding between complementary 

sequences and can result in a decrease in the transcript level of the target gene (Gong and 

Maquat 2011, Pandey et al. 2011).  Similar to the influence editing has on miRNA 

function, editing of transcriptionally active Alu elements could reduce complementarity 

to one gene while increasing complementarity to another, thereby altering which genes 

are regulated by the edited Alu RNA. 

Future Directions 

 This dissertation has laid a foundation for future study by demonstrating that A-

to-I RNA editing can target RNA Pol III transcripts in general, and more specifically 

transcriptionally active Alu elements.  To further understand the significance of A-to-I 
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RNA editing in transcriptionally active Alu elements, I am proposing two general 

experimental ideas.  The first is the use of a cell culture system to study cellular 

mechanisms regulated by A-to-I RNA editing of transcriptionally active Alu elements in 

order to understand how A-to-I RNA editing influences Alu retrotransposition.  The 

second is the use of high throughput sequencing selectively targeting transcriptionally 

active Alu RNA.  This would allow for analysis of A-to-I editing within transcriptionally 

active Alu elements on a large scale, allowing for a broader understanding of where and 

when A-to-I RNA editing targets these Alu transcripts. 

 The cell culture system would use stably transfected cells overexpressing either 

ADAR1 or ADAR2 in conjunction with both wild-type cells and the use of RNAi to 

knockdown ADAR activity.  This would allow for an increased ability to study how 

ADAR impacts transcriptionally active Alu elements.  This would be used in conjunction 

with RNAi to investigate factors, such as Tudor SN, that may influence the concentration 

of edited transcriptionally active Alu elements within the cell.  In addition, these 

strategies could be used to gain a better understanding of the impact A-to-I RNA editing 

has in regulating the function of Alu derived lncRNA.  These include Alu RNA 

interactions with RNA Pol II, SRP9/14, and the ribosome as well as the role of Alu 

derived lncRNA in STAU-1 mediated decay of complementary RNA (Gong and Maquat 

2011, Hasler and Strub 2006, Mariner et al. 2008, Wagner et al. 2009).  This cell culture 

system would take advantage of an array of cell types.  This is necessary in order to 

highlight differences that may occur on a cell type by cell type basis as well as to 

understand the breadth of cell types in which these processes are impacted. 
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 Another important process that could be studied using these cells lines is Alu 

retrotransposition.  The marked Alu expression vector developed by Thierry Heidmann’s 

lab could be used to gain a better understanding of how A-to-I RNA editing influences 

Alu retrotransposition rates as well as the Alu sequence that retrotransposes (Comeaux et 

al. 2009, Dewannieux et al. 2003).  This marked Alu expression vector would be 

modified to include an inverted Alu element located downstream of the marked Alu.  

Differences in the number of drug resistant colonies would be used to measure the 

influence A-to-I RNA editing has on the rate of retrotransposition.  This would be 

compared to controls that either lack the inverted Alu element, or to cells in which 

ADAR function has been knocked down.  Furthermore, the level of A-to-I RNA editing 

could be compared between marked Alu RNA and newly retrotransposed Alu elements to 

determine the relative rate at which the edited Alu sequence retrotransposes.  This would 

be extremely beneficial in gaining an understanding of the total impact A-to-I RNA 

editing has on Alu retrotransposition. 

 The second future direction involves the use of high throughput sequencing to 

understand A-to-I RNA editing in transcriptionally active Alu elements in vivo.  

Development of high throughput sequencing that specifically targets Alu RNA depends 

on two things (Li and Schmidt 2001).  First, due to the high sequence conservation 

present in the over 1 million Alu elements in the human genome there is a great difficulty 

involved in properly annotating individual Alu transcripts to their source gene.  This 

problem is compounded because A-to-I RNA editing may additionally alter the Alu RNA 

sequence.  There needs to be a mechanism in place that can specifically align individual 

Alu transcripts to their source gene in the human genome.  Second, because Alu elements 
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can be expressed either by RNA Pol II or RNA Pol III, there needs to be a way to 

differentiate these two species of Alu RNA.  Addressing these issues requires a 

combination of database analysis and selection of the proper high throughput sequencing 

method.  

 Transcriptionally active Alu elements are expressed by RNA Pol III using internal 

promoters that recruit RNA Pol III to the transcription start site (Ishiguro et al. 2002, 

Kenneth et al. 2008).  Transcription continues until it reaches a transcription termination 

site encoded as four consecutive thymine nucleotides (Chu et al. 1995, Chu et al. 1997, 

Gunnery et al. 1999).  The location of these termination sequences relative to the end of 

the Alu element varies on an individual Alu gene basis (Borchert et al. 2006, Gu et al. 

2009, Li and Schmid 2001).  The intervening region between the end of the Alu element 

and the transcription termination site is often a sequence that is unique to each individual 

Alu locus.  These unique regions could be used to address the issue of aligning Alu 

elements to their source gene.     

 The second issue of differentiating Alu transcripts based on their method of 

transcription would take advantage of differences in transcription start sites (Dieci et al. 

2007, Li and Schmid 2001).  Alu elements expressed by RNA Pol II are embedded within 

larger RNA molecules with transcription start sites located upstream from the 5’end of 

the Alu sequence.  RNA Pol III transcripts have start sites at the 5’end of the Alu 

element.  The differences between these two transcription start sites could be used to 

distinguish RNA Pol II from RNA Pol III transcripts.     

 The final step necessary for sequencing would be to choose a high throughput 

strategy that provides sequence reads long enough to cover the span between the 5’ 
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transcription start site and the 3’ unique sequence.  High throughput sequencing uses 

parallel sequencing of DNA that has been cut into uniformly sized fragments (Hall 2007, 

Schuster 2008).  Due to differences in sequencing strategies, the length of these DNA 

fragments (read lengths) varies depending on the strategy.  Some high throughput 

sequencing methods use strategies employing read lengths greater than 300 nucleotides.  

These methods include Roche’s 454 pyrosequencing (300-500 nt read lengths), DNA 

nanoball sequencing (400-500 nt read lengths) by Complete Genomics, and Pacific 

Biosciences’ single molecule real time sequencing (SMRT) (1500 nt read lengths) 

(Foquet et al. 2008, Margulies et al. 2005, Porreca 2010).   Sequence reads would be 

aligned to the genome to identify nucleotide mismatches between gDNA and cDNA that 

arise due to A-to-I RNA editing.  In addition, the number of sequence reads would be 

used to quantify expression on an individual Alu transcript basis. 

 This high throughput method could be used to study transcriptionally active Alu 

elements from different tissues as well as in cell culture.  Two interesting cell populations 

to study would be embryonic stem cells and germ cells.  This is due to the potential 

impact A-to-I RNA editing could have on the sequence of Alu elements able to 

retrotranspose.  In order for newly retrotransposed Alu elements to be inherited by an 

individual’s offspring, retrotransposition would need to occur in either embryonic stem 

cells that eventually differentiate into germ cells, or in germ cells themselves which 

eventually mature into either egg or sperm cells.  Identification of A-to-I RNA editing in 

transcriptionally active Alu elements in either of these cell populations would raise the 

possibility that A-to-I RNA editing is impacting the Alu sequence and thus human 

genome evolution.  
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